
ami
McGRAW-HILL INTERNATIONAL EDITION

The MeGraw Hilt Companies

SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH
SIXTH EDITION
International Edition 2005

Exclusive rights by McGraw-Hill Education (Asia), for manufacture and export. This book cannot be

re-exported from the country' to which it is sold by McGraw-Hill. The International Edition is not

available in North America.

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies. Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2005, 2001, 1997, 1992. 1987, 1982 by The McGraw-

Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior written

consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other

electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside

the United States.

10 09 08 07 06 05 04 03 02 01

20 09 08 07 06 05 04

CTF BJE

When ordering this title, use ISBN 007-123840-9

Printed in Singapore

ww'w.mhhe.com

To my parents

,

who taught me how
to navigate life's many roads.

To Barbara, Mathew, and Michael,
who make the journey worthwhile.

Roger S. Pressman is an internationally recognized authority in software process

improvement and software engineering technologies. For over three decades,

he has worked as a software engineer, a manager, a professor, an author, and a con-

sultant, focusing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development

of CAD/CAM systems for advanced engineering and manufacturing applications. He

has also held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut, Dr.

Pressman moved to academia where he became Bullard Associate Professor ofCom-

puter Engineering at the University of Bridgeport and director of the university's

Computer-Aided Design and Manufacturing Center.

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a con-

sulting firm specializing in software engineering methods and training. He serves as

principle consultant and has designed and developed Essential Software Engineering,

a complete video curriculum in software engineering, and Process Advisor, a self-

directed system for software process improvement. Both products are used by thou-

sands of companies worldwide. More recently, he has worked in collaboration with

qai India to develop a comprehensive internet-based "eSchool" in software engi-

neering.

Dr. Pressman has written many technical papers, is a regular contributor to in-

dustry periodicals, and is author of six technical books. In addition to Software Engi-

neering: A Practitioner's Approach, he has written the award-winning A Managers

Guide to Software Engineering (McGraw-Hill); Making Software Engineering Happen

(Prentice-Hall), the first book to address the critical management problems associ-

ated with software process improvement; and Software Shock (Dorset House), a

treatment that focuses on software and its impact on business and society. Dr. Press-

man has been on the Editorial Boards of a number of industry journals, and for many

years, was editor of the "Manager" column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry

conferences. He is a member of the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta

Kappa Nu, and Pi Tau Sigma.

On the personal side, Dr. Pressman lives in South Florida with his wife, Barbara.

An athlete for most of his life, he is a serious tennis player (NTRP 4.5) and a single-

digit handicap golfer. He has written two novels, The Aymara Bridge and The

Puppeteer.

PART ONE

CHAPTER 1 Introduction to Software Engineering 33

The Software Process si

CHAPTER 2

CHAPTER 3

CHAPTER 4

A Generic View of Process 52

Process Models 77

An Agile View of Process 1 03

part two Software Engineering Practice 127

CHAPTER 5 Software Engineering Practice 128

CHAPTER 6 System Engineering 154

CHAPTER 7 Requirements Engineering 174

CHAPTER 8 Building the Analysis Model 207

CHAPTER 9 Design Engineering 258

CHAPTER 10 Creating an Architectural Design 286

CHAPTER 11 Mode ing Component-level Design 324

CHAPTER 12 Performing User Interface Design 356

CHAPTER 13 Testing Strategies 386

CHAPTER 14 Testing Toctics 420

CHAPTER 15 Producl Metrics 46!

part three Applying Web Engineering 499

CHAPTER 16 Web Engineering 500

CHAPTER 17 Initiating a WebApp Project 514

CHAPTER 18 Analysis for WebApps 539

CHAPTER 19 Design for WebApps 559

CHAPTER 20 Testing for WebApps 594

PART four Managing Software Projects 627

CHAPTER 21 Project Management 628

CHAPTER 22 Metrics for Process and Project 649

CHAPTER 23 Estimation 674

CHAPTER 24 Proiect Scheduling 705

CHAPTER 25 Risk Management 726
7

8 CONTENTS AT A GLANCE

CHAPTER 26 Quality Management 744

CHAPTER 27 Change Management 771

PART FIVE Advanced Topics in Software Engineering

CHAPTER 28 Formal Methods 802

CHAPTER 29 Cieanroom Software Engineering 828

CHAPTER 30 Component-Based Development 847

CHAPTER 31 Reengineering 869

CHAPTER 32 The Rood Ahead 892

801

I Table of Contents

Preface 25

Walkthrough 29

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 33

1 . 1 The Evolving Role of Software 34

1.2 Software 36

1 .3 The Changing Nature of Software 40

1 .4 Legacy Software 42

1.4.1 The Quality of Legacy Software 43

1 .4.2 Software Evolution 43

1 .5 Software Myths 45

1 .6 How It All Starts 47

1 .7 Summary 48

REFERENCES 49

PROBLEMS AND POINTS TO PONDER 49

FURTHER READINGS AND INFORMATION SOURCES 50

PART ONE—THE SOFTWARE PROCESS 51

CHAPTER 2 A GENERIC VIEW OF PROCESS 52

2. 1 Software Engineering—A Layered Technology 53

2.2 A Process Framework 54

2.3 The Capability Maturity Model Integration (CMMI| 59

2.4 Process Patterns 63

2.5 Process Assessment 66

2.6 Personal and Team Process Models 68

2.6.1 Personal Software Process |PSP'| 68

2.6.2 Team Software Process (TSP| 70

2.7 Process Technology 71

2.8 Product and Process 72

2.9 Summary 73

REFERENCES 74

PROBtEMS AND POINTS TO PONDER 75

FURTHER READINGS AND INFORMATION SOURCES 75

CHAPTER 3 PROCESS MODELS 77 __
3. 1 Prescripti ve Models 78

3.2 The Waterfall Model 79

3.3 Incremental Process Models 80

3.3.1 The Incremental Model 80

3.3.2 The RAD Model 81

3.4 Evolutionary Process Models 83

3.4.1 Prototyping 83

3.4.2 The Spiral Mode! 86

9

10 TABLE OF CONTENTS

3.4.3 The Concurrent Development Model 88

3.4.4 A Final Comment on Evolutionary Processes 89

3.5 Soeciaftzed °rocess Mode's 9!

3 5 1 Conponent-Bcsed Development 91

3.5.2 The Formal Methods Model 92

3.5.3 AspectOriented Software Development 93

3.6 The Unified Process 94

3 ,6.1 A Brief History 95

3 6.2 Phases of the Unified Process 96

3.6.3 Unified Process Work Products 98

3.7 Summary 99

REFERENCES 100

PRO&iEMS AND POINTS TO PONDER 1 0

1

FURTHER READINGS AND INFORMATION SOURCES 1 02

CHAPTER 4 AN AGILE VIEW OF PROCESS 103

4.1 What Is Agility? 105

4.2 What Is an Agile Process? 106

4.2. ’ The Politics of Agi.e Development i 07
4.2.2 Human Foctors 108

4.3

4.4

Agile Process Models 1 09

4.3.1 Extreme Programming (XP) 110

4.3.2 Adaptive Software Development (ASD) 114

4.3.3 Dynamic Systems Development Method [DSDM]

4.3 4 Sc'um 117

4.3.5 Crystal 119

4.3.6 Feature Driven Development (FDD)

4 3.7 Agie Modeling (AM) 121

Summory 1 23

REFERENCES 1 24

PROBIEMS AND POINTS TO PONDER 1 25

FURTHER READINGS AND INFORMATION SOURCES 1 26

116

PART TWO—SOFTWARE ENGINEERING PRACTICE 127

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 128

5.1 Software Engineering Practice 129

5.1.1 The Essence of Practice 1 29

5.1.2 Core Principles 131

5.2 Communication Practices 133

5.3 Plonning Practices 136

5.4 Modeling ProcFces 139

5 4.1 Analysis Modeling 0rinciples 140

5.4.2 Design Modeling Principles 141

5.5 Construction Practice 144

5.5.1 Coding Principles and Concepts 145

5.5.2 Testing Principles 146

5.6 Deployment 148

5.7 Summary 150

TABLE OF CONTENTS 11

REFERENCES 151

PROBLEMS AND POINTS TO PONDER 1 52

FURTHER READINGS AND INFORMATION SOURCES 1 52

CHAPTER 6 SYSTEM ENGINEERING 154

6. 1 Computer-Based Systems 1 55

6.2 The System Engineering Hierarchy 157

6.2.1 System Modeling 158

6.2.2 System Simulation 160

6.3 Business Process Engineering: An Overview 161

6.4 Product Engineering: An Overview 162

6.5 System Modeling 164

6.5.1 Hatley^Pirbhoi Modeling 165

6.5.2 System Modeling with UML 167

6.6 Summary 171

REFERENCES 1 72

PROBLEMS AND POINTS TO PONDER 1 72

FURTHER READINGS AND INFORAAALION SOURCES 1 73

CHAPTER 7 REQUIREMENTS ENGINEERING

7. 1 A Bridge to Design and Construction 1 75

7.2 Requirements Engineering Tosks 176

7.2 1 Inception 176

7.2.2 Elicitation 177

7.2.3 Elaboration 177

7.2.4 Negotiation 178

7.2.5 Specification 179

7.2.6 Validation 179

7.2.7 Requirements Management 180

7.3 Initiating the Requirements Engineering Process 1 8

1

7.3.1 Identifying the Stakeholders 182

7.3.2 Recognizing Multiple Viewpoints 182

7.3.3 Working toward Collaboration 183

7.3.4 Asking the First Questions 183

7.4 Eliciting Requirements 1 84

7.4.1 Collaborative Requirements Gathering 185

7.4.2 Quality Function Deployment 188

7.4 3 User Scenarios 189

7.4

4 Elicitation Work Products 190

7.5 Developing Use-Coses 191

7.6 Building the Analysis Model 1 96

7.6. 1 Elements of the Analysis Model 1 96

7.6.2 Analysis Patterns 200

7.7 Negotiating Requirements 201

7.8 Validating Requirements 203

7.9 Summary 204

REFERENCES 204

PROBLEMS AND POINTS TO PONDER 205

FURTHER READINGS AND INFORMATION SOURCES 206

174

12 TABLE OF CONTENTS

CHAPTER 8 BUILDING THE ANALYSIS MODEL 207

8.1 Requirements Analysis 208

8.1.1 Overall Objective and Philosophy 209

8.1.2 Analysis Rules of Thumb 2 1

0

8.1.3 Domain Analysis 2 1

0

8.2 Analysis Modeling Approaches 2 1

1

8 3 Data Modeling Concepts 2 1 3

8.3.1 Data Objects 213

8.3.2 Data Attributes 2 1

4

8.3.3 Relationships 2 1

4

8.3.4 Cardinality and Modality 2 1

5

8.4 Ob|ect-Oriented Analysis 2 1

7

8.5 Scenario-Based Modeling 2 1

8

8.5 1 Writing Use-Cases 2 1

8

8.5.2 Developing an Activity Diagram 223

8.5.3 Swimlane Diagrams 224

8.6 Flow-Oriented Modeling 226

8.6 1 Creating a Data Flow Model 226

8.6.2 Creoting a Control Flow Model 229

8 6.3 The Control Specification 230

8.6.4 The Process Specification 232

8.7 Class-Based Modeling 233

8.7.1 Identifying Analysis Classes 233

8 7 2 Specifying Attributes 236

8.7.3 Defining Operations 237

8.7.4 Class-Responsibility-Collaborator ICRC1 Modeli

8.7.5 Associations ond Dependencies 246

8.7.6 Analysis Packages 247

8.8 Creating a Behavioral Model 248

8.8.1 Identifying Events with the Use-Case 249

8.8.2 State Representations 250

8.9 Summary 253

REFERENCES 254

PROBLEMS AND FONTS to ponder 255

FURTHER READINGS AND INFORMATION SOURCES 256

CHAPTER 9 DESIGN ENGINEERING 258

9.1 Design within the Context of Software Engineering 259

9.2 Design Process and Design Quality 26

1

9.3 Design Concepts 265

9.3.1 Abstraction 265

9.3.2 Architecture 265

9.3.3 Potterns 266

9.3.4 Modularity 267

9.3.5 Information Hiding 268

9.3.6 Functional Independence 268

9.3.7 Refinement 269

9.3.8 Refoctoring 270

9.3.9 Design Classes 271

9.4 The Design Model 274

9.4.1 Data Design Elements 275

TABLE OF CONTENTS 13

9.4.2 Architectural Design Elements 275
9.4.3 Interface Design Elements 276
9.4.4 Component-level Design Elements 278
9.4.5 Deployment-Level Design Elements 279

9.5 Pattern-Bcsed Software Design 280
9.5. 1 Describing a Design Pattern 280
9.5.2 Using Patterns in Design 281

9.5.3 Frameworks 281

9.6 Summary 282

REFERENCES 283

PROBLEMS AND POINTS TO PONDER 283
FURTHER READINGS AND INFORMATION SOURCES 284

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 286

10.1 Software Architecture 287

10.1.1 What Is Architecture? 287
10.1.2 Why 1$ Architecture Important? 288

10.2 Data Design 289

10.2.1 Data Design at the Architectural level 289
10.2.2 Data Design at the Component Level 290 "

10.3 Architectural Styles and Patterns 29

1

10.3.1 A Brief Taxonomy of Architectural Styles 292

10.3.2 Architectural Patterns 296
10 3.3 Organization and Refinement 297

10.4 Architectural Design 298

'

104.1 Representing the System in Context 298

10.4 2 Defining Archetypes 300
10.4.3 Refining the Architecture into Components 301

10.4.4 Describing Instantiations of the System 303
10.5 Assessing Alternative Architectural Designs 304

10.5.1 An Architecture Trade-Off Analysis Method 304
10.5.2 Architectural Complexity 306 *

10.5.3 Architectural Description languages 306
10.6 Mapping Data Flow into a Software Architecture 307

10.6.1 Transform Flow 308
106.2 Transaction Flow 308

10.6.3 Transform Mopping 309

10.6.4 Transaction Mapping 3 1

6

10.6.5 Refining the Architectural Design 320
10.7 Summary 320

REFERENCES 321

PROBLEMS AND POINTS TO PONDER 322
FURTHER READINGS AND INFORMATION SOURCES 323

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 324

11.1 What Is a Component? 32.5

11 . 1.1 An Object-Oriented View 326
1 1.1.2 The Conventionc View 327
1 1.1.3 A Process-Related View 330

11.2 Designing Class-Based Components 330
1 1.2.1 Bosic Design Principles 331

14 TABLE OF CONTENTS

11.2.2 Component-Level Design Guidelines 334

112.3 Cohesion 335

1 1 .2.4 Coupling 337

1 1 .3 Conducting Component-level Design 339

11.4

Object Constraint Language 345

1 i .5 Designing Conventional Components 347

1 1 .5. 1 Graphical Design Notation 348

1 1 .5.2 Tabular Design Notation 349

11.5.3 Program Design Language 350

11.5.4 Comparison of Design Notation 352

1 1 .6 Summary 353

REFERENCES 354

PROBLEMS AND POINTS TC PONDER 354

FURTHER READiNGS ANC INFORMATION SOURCES 355

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 356

12.1 The Golden Rules 357

12.1.1 Ploce the User in Control 357

12.1.2 Reduce the User's Memory Lood 359

12.1 3 Make the Interface Consistent 360

12.2 User Interface Analysis and Design 361

12.2 1 Interface Analysis and Design Models 362

12.2.2 The Process 363

12.3 Interface Analysis 365

12.3.1 User Analysis 365

12.3.2 Task Analysis and Modeling 367

12.3.3 Analysis of Display Content 372

12.3.4 Analysis of the Work Environment 373

12.4 Interface Design Steps 373

12.4.1 Applying Interface Design Steps 374

12.4.2 User Interface Design Patterns 375

12.4.3 Design Issues 377

12.5 Design Evaluation 381

12.6 Summary 383

REFERENCES 383

PROBLEMS AND POINTS 'O PONDER 384

FURTHER READINGS AND INFORMATION SOURCES 385

CHAPTER 13 TESTING STRATEGIES 386

13.1

A Strategic Approach to Software Testing 387

13.1.1 Verification and Validation 388

13.1.2 Organizing for Software Testing 388

13.1.3 A Software Testing Strategy for Conventional Architectures 390

1 3. 1 .4 A Softwore Testing Strategy for Object-Oriented Architectures 391

13.1.5 Criteria for Completion of Testing 392

f 3.2 Strategic Issues 393

13.3 Test Strategies for Conventional Software 394

13.3.1 Unit Testing 394

13.3-2 Integration Testing 397

13.4 Test Strategies for Object-Oriented Software 404

13.4.1 Uni' Testing in the OO Context 404

13.4.2 Integration Testing in the OO Comext 405

TABLE OF CONTENTS 15

13.5 Validation Testing 406
1 3.5. 1 Validation Test Criteria 406
13.5.2 Configuration Review 406
13.5.3 Alpha and Beta Testing 406

13.6 System Testing 408

13.6.1 Recovery Testing 409
13.6.2 Security Testing 409
13.6.3 Stress Testing 409
13.6.4 Performance Testing 410

1 3.7 The Art of Debugging 4 1 1

1 3.7. 1 The Debugging Process 4 1 1

13.7.2 Psychological Considerations 413
13 7.3 Debugging Strategies 414
13.74 Correcting the Error 416

13.8 Summory 416

REFERENCES 417

PROBLEMS AND POINTS TO PONDER 4 1 7

FURTHER READINGS AND INFORMATION SOURCES 4 1 8

CHAPTER 14 TESTING TACTICS 420

14.1 Software Testing Fundamentals 421

14.2 Black-Box and White-Box Testing 423
14.3 White-Box Testing 424

14.4 Basis Path Testing 425

14.4.1 Flow Graph Notation 425
14.4.2 Independent Program Paths 426
14 4.3 Deriving Test Cases 428
14.4.4 Graph Matrices 431

14.5 Control Structure Testing 432
14.5.1 Condition Testing 432

14.5.2 Data Flow Testing 432
14.5.3 Loop Testing 433

14.6 Black-Box Testing 434

1 4.6. 1 Graph-Based Testing Methods 435
14.6.2 Equivalence Partitioning 437
14.6.3 Boundary Value Analysis 438
14.6.4 Orthogonal Array Testing 439

1 4.7 Object-Oriented Testing Methods 442
14.7.1 The Test Case Design Implications of OO Concepts 442
14.7.2 Applicability of Conventional Test Case Design Methods 443
14 7 3 Fault-Based Testing 443
14.7.4 Test Cases ond Class Hierarchy 444
14.7.5 Scenario-Based Testing 444
14.7.6 Testing Surfoce Structure and Deep Structure 446

1 4.8 Testing Methods Applicable ot the Class Level 447
14.8. Random Testing fo' OO Closses 447
14.8.2 Partition Testing at the Closs Level 448

14.9 InterCloss Test Case Design 449
14 9.1 Multiple Class Testing 449
14 9,2 Tests Derived from Behavior Models 450

1 4. 10 Testing for Specialised Environments, Architectures, and Applications 452
14.10.1 Testing GUIs 452

16 TABLE OF CONTENTS

14.10.2 Testing of Clienl/Server Architectures 452

14.10.3 Testing Documentation and Help Facilities 453

14.10.4 Testing for Real-Time Systems 454

14.11 Testing Patterns 456

14.12 Summary 457

REFERENCES 458

PROBtEMS AND POINTS TO PONDER 459

FURTHER READINGS AND INFORMATION SOURCES 460

CHAPTER 15 PRODUCT METRICS 461

15.1 Software Quality 462

15.1.1 McCall's Quality Factors 463

15.1.2 ISO 91 26 Quality Foctois 464

15.1.3 The Transition to a Quantitative View 465

1 5.2 A Framework for Product Metrics 466

15.2.1 Measures, Metrics, and Indicators 466

15.2.2 The Challenge of Product Metrics 466

15.2.3 Measurement Principles 467

15.2.4 Goal-Oriented Software Measurement 468

15.2.5 The Attributes of Effective Software Metrics 469

15.2.6 The Product Metrics landscape 470

15.3 .Metrics for the Analysis Model 472
' 15.3.1 Function-Based. Metrics 472

15.3.2 Metrics for Specification Quality 4-76"

15 4 Metrics for the Design Model ’ 477

j 5.4.1 Architectural Design Metrics 477.

15.4.2 Metrics for Object-Oriented Design 480
15.4.3 Class-OHe'nted Metrics—The CK Metrics Suite 481

15.4.4 ClassOriented, Metrics—The MOOD Metrics Suite 484

15.4.5 OO Metrics Proposed by Lorenz and Kidd 485

15.4.6 Component-level Design Metrics 486
15.4.7 OperationOriented Metrics 488

1 5.4.8 User Interface Desiqn Metrics 489

49015.5 Metrics for Source Code

15.6 Metrics for Testing 491

1 5.6. 1 Halstead Metres Applied to Testing

15 .6.2 Metrics for ObjectOriented Testing

15.7 Metrics for Maintenance 492

15.8 Summary 493

REFERENCES 494

PROBLEMS AND POINTS TO PONDER 496

further Readings and information sources 497

491

491

PART THREE—APPLYING WEB ENGINEERING 499

CHAPTER 16 WEB ENGINEERING 500

16.1 Attributes of Web-Based Systems and Applications 501

16.2 WebApp Engineering layers 504

16.2.1 Process 504

16.2.2 Methods 505

16.2.3 Tools and Technology 506

TABLE OF CONTENTS 17

16.3 The Web Engineering Process 506
16.3.1 Defining the Framework 507
16.3.2 Refining the Framework 509

1 6.4 Web Engineering Best Practices 5 1

0

16.5 Summary 511

REFERENCES 5 1 2

PROBLEMS AND POINTS TO PONDER 5 1 2

FURTHER readings AND INFORMATION sources 5 1

3

CHAPTER 17 INITIATING A WEBAPP PROJECT 514

17.1 Formulating Web-Based Systems 515
1 7. 1 . 1 Formulation Questions 5 1

5

17 1 .2 Requirements Gathering for WebApps 5 1

7

17.1.3 The Bridge to Analysis Modeling 521
1 7.2 Planning for Web Engineering Projects 522
17.3 The Web Engineering Team 523

17.3.1 The Players 523
17.3.2 Building the Team 524

17.4 Project Management Issues for Web Engineering 525
17.4.1 WebApp Planning—Outsourcing 526
17.4.2 WebApp Planning—In-House Web Engineering 530

17.5 Metrics for Web Engineering and WebApps 532
1 7.5. 1 Metrics for Web Engineering Effort 533
17.5.2 Metrics for Assessing Business Value 534

17.6 'Worst Practices" for WebApp Projects 534
17.7 Summary 536
references 536
PROBLEMS AND POINTS TO PONDER 537
FURTHER READINGS AND INFORMATION SOURCES 538

CHAPTER 18 ANALYSIS FOR WEBAPPS 539

18.1 Requirements Analysis for WebApps 540
18.1.1 The User Hierarchy 54

1

18.1.2 Developing Use-Cases 542
18.1.3 Refining the Use-Case Model 544

18.2 The Analysis Model for WebApps 545
18.3 The Content Model 545

18.3.1 Defining Content Objects 546
18.3.2 Content Relationships and Hierarchy 546
18.3.3 Anolysis Classes for WebApps 547

18.4 The Interaction Mode! 548
1 8.5 The Functional Model 55

1

18.6 The Configuration Model 553
18.7 Relationship-Navigation Anolysis 553

18.7.1 Relationship Anolysis—Key Questions 554
18.7.2 Navigation Analysis 555

18.8 Summary 556
REFERENCES 557
PROBtEAAS AND aOtNTS TO PONDER 557
FURTHER READINGS AND INFORMATION SOURCES 558

18 TABLE OF CONTENTS

CHAPTER 19 DESIGN FOR WEBAPPS 559

19. 1 Design Issues for Web Engineering 560

’9,1.1 Desgn ond WebApp Quality 560

19.1.2 Design Goals 563

19.2 The WebE Design Pyramid 564

19.3 WebApp Interface Design 565

19.3.1 Inlerfoce Design Principles and Guidelines 566

19 3.2 Interface Control Mechanisms 57

1

19.3.3 Interface Design Workflow 571

19.4 Aesthetic Design 573

19.4.1 layout Issues 574

19 4,2 Graohic Design Issues 574

19.5 Content Design 575

19.5.1 Content Objects 575

19.5.2 Content Design Issues 576

1 9.6 Architecture Design 577

19.6.1 Content Architecture 577

1 9.6.2 WebApp Architecture 579

19.7 Navigation Design 581

19.7.1 Navigation Semantics 581

19.7.2 Navigation Syntax 583

19.3 Componerl level Design 584

19 9 Hypermedia Design Palerns 584

19 10 CbjecKDriented Hypermedio Design Method [OOHDM] 586

19.10.1 Conceptual Design for OOHDM 586

19.10.2 Ncvigattona 1 Desigr for OOHDM 587

1 9 1 0.3 Aostroct Interface Design and Implementation 588

19.11 Design Metrics fot WebApps 588

19.12 Summary 589

REFERENCES 590

PROBLEMS AND POINTS TO PONDER 592

FURTHER READINGS AND INFORMATION SOURCES 593

CHAPTER 20 TESTING FOR WEBAPPS 594

20.1 Testing Concepts for WebApps 595

20. 1 . 1 Dimensions of Quality 595

20.1.2 Errors within a WebApp Environment 596

20.1.3 Testing Strategy 597

20. 1 .4 Test Plonning 598

20.2 The Testing Process—An Overview 598

20.3 Content Testing 601

20.3.1 Content Testing Objectives 60

20.3.2 Dolabose Testing 6C3

20.4 Jser Interface Tes’ing 605

20.4.1 Interface Testing Strategy 605

20.4.2 Testirg Interface Mechanisms 606

20.4.3 Testing Inteifoce Semantics 608

20.4.4 Usability Tests 608

20.4.5 Compatibility Tests 610

20.5 Component-level Testirg 611

TABLE OF CONTENTS
19

20.6 Navigation Testing 6 1

3

20.6.1 Testing Navigation Syntax 6 1

3

20.6.2 Testing Navigation Semantics 614
20.7 Configuration Testing 6'

5

20.7.1 ServerSide Issues 6"i6

20.7.2 Client-Side Issues 6 1

6

20.8 Security Testing 6 1

7

20.9 Performance Testing 6 '

9

20.9 1 Performance Testing Objectives 6 1

9

20 9.2 Load Testing 620
20.9.3 Stress Testing 620

20.10 Summary 622
REFERENCES 623

PROBLEMS AND POINTS TO PONDER 624
FURTHER READINGS AND INFORMATION SOURCES 625

PART FOUR—MANAGING SOFTWARE PROJECTS 627

CHAPTER 21 PROJECT MANAGEMENT 628

21.1 The Management Spectrum 629
21.1.1 The People 629
21.1.2 The Product 630
21.1.3 The Process 630
21.1.4 The Project 630

21.2 The People 631

21.2.1 Tire Stakeholders 63

1

21.2.2 Team Leaders 632
21.2.3 The Software Team 633
21 24 Agile Teams 636
21.2.5 Coordination and Communication Issues 637

21.3 The Product 638
21.3.1 Soflware Scope 638
21.3.2 P roblem Decomposition 639

21.4 i he Process 640
21 .4.1 Melding the Product and the Process 640
21 4 2 Process Decomposition 64

1

21.5 Ihe Project 642
21.6 The W5HH Principle 644
21.7 Criticcl Practices 644
21.8 Summory 645
REFERENCES 646
PROBLEMS AND POINTS TO PONDER 646
FURTHER READINGS AND INFORMATION SOURCES 647

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 649

22. 1 Metrics in the Process and Project Domains 650
22. 1 . 1 Process Metrics and Software Process Improvement 650
22.1.2 Project Metrics 653

22.2 Soflware Measurement 654
22.2.1 Size-Oriented Metrics 655
22.2.2 Function-Oriented Metrics 656

20 TABLE OF CONTENTS

22.2.3 Reconciling lOC and FP Metrics 656

22.2.4 Object-Oriented Metrics 658

22.2.5 UseCose Oriented Metrics 659

22.2.6 Web Engineering Project Metrics 659

22.3 Metrics for Software Quality 661

22.3.1 Measuring Quality 662

22.3.2 Defect Removoi Efficiency 663

22.4 Integrating Metrics within the Software Process 664

22 4. 1 Arguments for Software Metrics 665

22.4.2 Establishing a Baseline 665

22.4.3 Metrics Collection. Computation, and Evaluation 666

22.5 Metrics tor Smoll Organizations 666

22.6 Establishing a Software Metrics Program 668

22.7 Summary 670

REFERENCES 670

PROBtEMS AND POINTS TO PONDER 67

1

FURTHER READINGS AND INFORMATION SOURCES 672

CHAPTER 23 ESTIMATION 674

23.1 Observations on Estimation 675

23.2 The Project Planning Process 676

23.3 Soflwore Scope and Feasibility 677

23.4 Resources 677

23.4.1 Human Resources 678

23 4.2 Reusable Software Resources 678

23.4.3 Environmental Resources 679

23.5 Software Project Estimation 680

23.6 Decomposition Techniques 681

23.6.1 Software Sizing 681

23.6.2 Problem-Based Estimation 682

23.6.3 An Example of IOC-Based Estimation 683

23.6.4 An Example of FP-Based Estimation 685

23 .6.5 Process-Based Estimation 686

23.6.6 An Example of Process-Based Estimation 687

23.6.7 Estimation with Use-Coses 688

23.6.8 An Example of UseCase Based Estimation 689

23.6.9 Reconciling Estimates 690

23.7 Empirical Estimation Models 691

23 .7. 1 The Structure of Estimation Models 692

23.7.2 The COCOMO II Model 692

23.7.3 The Software Equation 694

23.8 Estimation for Object-Oriented Projects 695

23.9 Specialized Estimation Techniques 696

23.9. 1 Estimation for Agile Developmenl 696

23.9.2 Estimation for Web Engineering Projects 697

23.10 The Make/Buy Decision 698

23. 1 0. 1 Creoting o Decision Tree 699

23.10.2 Outsourcing 700

23.11 Summary 701

REFERENCES 702

PROBIEMS AND POINTS TO PONDER 703

FURTHER READINGS AND INFORMATION SOURCES 703

TABLE OF CONTENTS
21

CHAPTER 24 PROJECT SCHEDULING 705

24. 1 Basic Concepts 706
24.2 Project Scheduling 708

24.2. 1 Basic Principles 709
24.2.2 The Relationship Between People and Effort 710
24.2.3 Effort Distribution 712

24. 3 Defining a Task Set for the Software Project 7 1

3

24.3.1 A Task Set Example 7 1

4

24.3.2 Refinement of Major Tasks 714
24.4 Defining a Task Network 715

24.5 Scheduling 716

24.5.1 Timeline Charts 717
24.5.2 Tracking the Schedule 718
24.5.3 Tracking Progress for an OO Project 720

24.6 Earned Value Analysis 722
24.7 Summary 723

REFERENCES 723

PROBtEMS AND POINTS TO PONDER 724
FURTHER READINGS AND INFORMATION SOURCES 725

CHAPTER 25 RISK MANAGEMENT 726

25. 1 Reactive vs. Proactive Risk Strategies 727
25.2 Software Risks 728

25.3 Risk Identification 729

25.3.1 Assessing Overall Project Risk 730
25.3.2 Risk Components and Drivers 73!

25.4 Risk Projection 732

25.4.1 Developing a Risk Table 733
25.4.2 Assessing Risk Impact 735

25.5 Risk Refinement 737
25.6 Risk Mitigation, Monitoring, and Management 737
25.7 The RMAAM Plan 740
25.8 Summary 741

REFERENCES 742

PROBLEMS AND POINTS TO PONDER 742

FURTHER READIN20GS AND INFORMATION SOURCES 743

CHAPTER 26 QUALITY MANAGEMENT 744

26. 1 Quality Concepts 745

26. 1 . 1 Quality 746
26. 1 .2 Quality Control 746
26.1.3 Quality Assurance 747
26. 1 .4 Cost of Quality 747

26.2 Software Quality Assurance 748

26.2.1 Background Issues 749
26.2.2 SQA Activities 749

26.3 Software Reviews 751

26.3.1 Cost Impact of Software Defects 752
26.3.2 Defect Amplification and Removal 752

26.4 Formal Technical Reviews 754
26.4.1 The Review Meeting 754

26.4.2 Review Reporting and Record Keeping 755

22 TABLE OF CONTENTS

26.4.3 Review Guidelines 756

26.4.4 Sample-Driven Reviews 757

26.5 Formal Approaches to SQA 759

26.6 Stat stical Software Quality Assurance 759

26.6.1 A Generic Example 760

26.6.2 Six Sigmc for Software Engineering 761

26.7 Software Reliability 762

26.7.1 Measures of Reliability and Availability 763

26.7.2 Software Safety 763

26.8 The ISO 9000 Quality Standards 765

26.9 The SQA Plan 766

26. 1 0 Summary 767

REFERENCES 768

PROBLEMS AND POINTS TO PONDER 769

FURTHER READINGS AND INFORMATION SOURCES 769

CHAPTER 27 CHANGE MANAGEMENT 771

27. 1 Software Configuration Management 772

27.1.1 A SCM Scenario 773

27.1.2 Elements of a Configuration Management System 774

27.1.3 Baselines 775

'

. 27.1.4 Software Configuration Items 775

27.2 The SCM Repository 777

27.2. 1 The Rote of the Repository 777

27.2.2 General Features and Content 778

27.2.3 SCM Feotures 779

27.3 The SCM Process 780

27.3.1 Identification of Objects in the Software Configuration 78!

27.3.2 Version Control 782

27.3.3 Change Control 784

27.3.4 Configuration Audit 787

27.3.5 Status Reporting 788

27.4 Configuration Monogement for Web Engineering 788

27.4.1 Configuration Management Issues for WebApps 789

27.4.2 WebApp Configuration Objects 790

27.4.3 Content Management 790

27.4.4 Change Management 793

27.4.5 Version Control 795

27.4.6 Auditing and Reporting 796

27.5 Summary 797

REFERENCES 798

PROBLEMS AND FONTS TO PONDER 799

FURTHER READINGS AND, INFORMATION SOURCES 800

PART FIVE—ADVANCED TOPICS IN SOFTWARE ENGINEERING 801

CHAPTER 28 FORMAL METHODS 802

28.

1

Basic Concepts 803

28.1.1 Deficiencies of Less Formal Approaches 804

28.1 .2 Mathematics in Software Development 805

28.1.3 Formal Methods Concepts 805

TABLE OP CONTENTS

808

813

28.2 Mathematical Preliminaries 808
28.2.) Sets and Constructive Specification

28.2.2 Set Operators 8)0
28.2.3 logic Operators 812
28.2.4 Sequences 812
Applying Mathematical Notation for Formal Specification

Formal Specification Languages 8 1

5

Object Constraint language |OCLj 8 1

6

28.5. 1 A Brier Overview of OCL Syntax and Semantics
28.5.2 An Example Using OCL 8 1

8

'Hie Z Specification language 820
28.6.1 A Brie* Overview of Z Syntax and Semantics 820
28.6.2 An Example Using Z 820
The Ten Commandments of Formal .Methods 823
Formal Methods—The Rood Ahead 824
Summary 825

REFERENCES 825

PROBLEMS AND POINTS TO PONDER 826
FURTHER READINGS AND INFORMATION SOURCES 827

‘

CHAPTER 29

28.3

28.4

28.5

28.6

28.7

28 8

28.9

816

29.1

29.2

29.3

29.4

CLEANROOM SOFTWARE ENGINEERING 828
’The Cleanrocm Approach 829
29.1.1 The Cleanroom Strategy 830
29.1.2 What Mokes Cleanroom Different? 832
Functional Specification 833
29.2. 1 Black-Box Specification _ 834
29.2.2 State-Box Specification 835
29.2.3 CieorBox Specification 835
Cleanroom Design 836
29.3. 1 Design Refinement and Verification

29.3.2 Advantages of Design Verification

Cleanroom Testing 841

842

836

840

29.4. 1 Statistical Use Testing

29.4.2 Certification 843
29.5 Summary 844
REFERENCES 844

PROBLEMS AND POINTS TO PONDER 845
FURTHER READINGS AND INFORMATION' SOURCES 846

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 847
30.1

30.2

30.3

30.4

Engineering of Component-Based Systems 848
The CBSE Process 850
Domain Engineering 85

1

30.3.1 The Domain Analysis Process 851
30.3.2 Characterization Functions 852
30.3.3 Structural Modeling and Structure Points

Component-Based Development 854
853

30.4 1

30.4.2

30.4.3

Component Qualification, Adaptation, and Composition
Component Engineering 857
Analysis ond Design for Reuse 858

854

24 TABLE OF CONTENTS

30.5 Classifying and Retrieving Components 859

30.5. 1 Describing Reusable Components 859

30.5.2 The Reuse Environment 861

30.6 Economics of CBSE 862

30.6. 1 Impact on Quality, Productivity, and Cost 862

30.6.2 Cost Analysis Using Structure Points 863

30.7 Summary 864

REFERENCES 865

PROBLEMS AND POINTS TO PONDER 866

RURTHER READINGS AND INFORMATION SOURCES 867

CHAPTER 31 REENGINEERING 869

31.1 Business Process Reengineering 870

31.1.1 Busi ness Processes 87

1

31.1.2 A BPR Model 871

31.2 Software Reengineering 873

31.2.1 Software Maintenance 873

31.2.2 A Software Reengineering Process Model 874

31.3 Reverse Engineering 878

31.3.1 Reverse Engineering to Understand Dato 880

31.3.2 Reverse Engineering to Understand Processing 880

31.3.3 Reverse Engineering User Interfaces 881

31.4 Restructuring 882

31.4.1 Code Restructuring 882

31.4.2 Data Restructuring 883

3 1 .5 Forward Engineering 884

31.5.1 Forward Engineering for Client/Server Architectures 885

3 1 .5.2 Forward Engineering for Object-Oriented Architectures 886

31.5.3 Forward Engineering User Interfaces 887

3 1 .6 The Economics of Reengineering 887

31.7 Summary 888

REFERENCES 889

PROetfMS AND POINTS TO PONDER 890
' further readings and information sources 89

1

CHAPTER 32 THE ROAD AHEAD 892 ,

32. 1 The Importance of Software—Revisited 893

32.2 The Scope of Change 893

32.3 People and the Way They Build Systems 895

32.4 The 'New" Software Engineering Process 896

32.5 New Modes for Representing Information 897

32.6 Technology as a Driver 899

32.7 The Softwore Engineer's Responsibility 900

32.8 A Concluding Comment 902

references 903

PROBLEMS AND POINTS TO PONDER 903

FURTHER READINGS AND INFORMATION SOURCES 903

Index 905

When computer software succeeds—when it meets the needs of the people who use it,

when it performs flawlessly over a long period of time, when it is easy to modify and

even easier to use—it can and does change things for the better. But when software fails—
when its users are dissatisfied, when it is error prone, when it is difficult to change and even

harder to use—bad things can and do happen. We all want to build software that makes

things better, avoiding the bad things that lurk in the shadow of failed efforts. To succeed,

we need discipline when software is designed and built. We need an engineering approach.

In the 25 years since the first edition of this book was written, software engineering

has evolved from an obscure idea practiced by a relatively small number of zealots to a

legitimate engineering discipline. Today, it is recognized as a subject worthy of serious

research, conscientious study, and tumultuous debate. Throughout the industry, soft-

ware engineer has replaced programmer as the job title of preference. Software process

models, software engineering methods, and software tools have been adopted success-

fully across a broad spectrum of industry applications.

Although managers and practitioners alike recognize the need for a more disciplined

approach to software, they continue to debate the manner in which discipline is to be ap-

plied. Many individuals and companies still develop software haphazardly, even as they

build systems to service today's most advanced technologies. Many professionals and

students are unaware of modern methods. And as a result, the quality of the software that

we produce suffers, and bad things happen. In addition, debate and controversy about the

true nature of the software engineering approach continue. The status of software engi-

neering is a study in contrasts. Attitudes have changed, progress has been made, btft

much remains to be done before the discipline reaches full maturity.

The sixth edition of Software Engineering: A Practitioner's Approach is intended to serve

as a guide to a maturing engineering discipline. The sixth edition, like the five editions that

preceded it, is intended for both students and practitioners, retaining its appeal as a guide

for the industry professional and as a comprehensive introduction for the student at the

upper-level undergraduate or first-year graduate level.

The sixth edition is considerably more than a simple update. The book has been revised

extensively and restructured to emphasize new and important software engineering

processes and practices, in addition, a new "support system," illustrated on the next page,

provides a comprehensive set of student, instructor, and professional resources to com-

plement the content of the book. These resources are presented as part of a Web site

(www.mhhe.com/pressman) specifically designed for Software Engineering: A Practi-

tioner's Approach.

The Sixth Edition. The 32 chapters of the sixth edition have been organized into five

parts. This has been done to compartmentalize topics and assist instructors who may not

have the time to complete the entire book in one term. Part 1 , The Software Process, pre-

sents different views of software process, considering all important process models and

addressing the debate between prescriptive and agile process philosophies. Part 2,

25

26 PREFACE

The SEPA 6/e
Support

System

Web Resources

(900+ links)

Reference Library

(500+ links)

Checklists

Work Product Templates

Tiny Tools

Adaptable Process Model

Umbrella Activities Task Set

Comprehensive Case Study

Instructor'

i Manual i

Powerpoini

L Slides ,

Industry-'

comment.

Distance

learning

_ x Practice
ChapterX Qui22es
Study

) y
Guides JKfo... ^ _ , J\

» Solved \

I Problems)

Software Engineering Practice, presents analysis, design, and testing methods with an em-
phasis on object-oriented techniques and UML modeling. Because object-oriented meth-
ods are now widely used throughout the industry, the-content of Part 4 of the fifth edition

("object-oriented software engineering") has now been fully integrated into all discussions

of software engineering practice in this edition. Part 3, Applying WeiPkngineering, presents

a complete engineering approach for the analysis, design, and testing ofWeb applications.

Part 4, Managing Software Projects, presents topics that are relevant to those who plan,

manage, and control a software project. Part 5, Advanced Topics in Software Engineering,

presents dedicated chapters that address formal methods, cleanroom software engineer-

ing, component-based software engineering, reengineering, and future trends.

In addition to many new and significantly revised chapters, the sixth edition introduces

r 120 sidebars that (1) allow the reader to follow a (fictional) project team as it plans and
ineers a computer-based system; (2) provide complementary discussions ofselected top-

(3) outline "task sets" that describe work flow for selected software engineering activi-

;
and (4) suggest automated tools relevant to chapter topics.

The five-part organization of the sixth edition enables an instructor to "cluster" topics

—-ed on available time and student need. An entire one-term course can be built around
one or more of the five parts. For example, a "methods course" might emphasize only Parts

1 and 2; a Web development course might emphasize Parts 1 and 3; a "management course"

would stress Parts 1 and 4. By organizing the sixth edition in this way, I have attempted to

PREFACE
27

provide an instructor with a number of teaching options. In every case, the content of the
sixth edition is complemented by the following elements of the SEPA, 6/e Support System.

Student Resources. A wide variety of student resources includes an extensive on-line
learning center encompassing study guides, practice quizzes and a variety of Web-based
resources including software engineering checklists, an evolving collection of "tiny tools,"
a complete case study, and work product templates. In addition, over 900 categorized Web
references allow a student to explore software engineering in greater detail.

Instructor Resources. A broad array of instructor resources has been developed to sup-
plement the sixth edition. These include a comprehensive on-line Instructor's Guide (also

downloadable) and supplementary teaching materials including a complete set of over
700 Powerpoint slides that may be used for lectures, a test bank, and sample exams. In
addition, a "reference library'

1

, containing pointers to over 500 software engineering pa-
pers (organized by topic and downloadable in pdf format) can be used in advanced soft-

ware engineering courses where in-depth discussion of specific topics is required.
The Instructor's Guide presents suggestions for conducting various- types of software,

engineering courses, recommendations' for a variety of software projects to be conducted
in conjunction with a course, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners [as
well as students and faculty) includes outlines and samples of software engineering doc-
uments and other work products, a useful set of software engineering checklists, a cata-
log of software engineering (CASE) tools, a comprehensive collection of Web-based
resources, and an "adaptable process model" that provides a detailed task breakdown of
the software engineering process.

When coupled with its on-line support system, the sixth edition of Software Engineer-
ing: A Practitioner's Approach provides flexibility and depth of content that cannot be
achieved by a textbook alone.

Acknowledgments. My work on the six editions ofSoftware Engineering: A Practitioner's

Approach has been the longest continuing technical project ofmy life. Even when the writ-

ing stops, information extracted from the technical literature continues to be assimilated
and organized. For this reason, my thanks to the many authors of books, papers, and ar-

ticles (in both hardcopy and electronic media) who have provided me with additional in-

sight, ideas, and commentary over the past 25 years.

Special thanks go to Tim Lethbridge of the University of Ottawa who performed an ex-
tremely detailed review of the sixth edition, assisted me in the development of UML and
OCL examples, and developed the comprehensive case study that accompanies this book.
His assistance and comments were invaluable. Special thanks also go to Bruce Maxim of
the University ofMichigan-Dearbom, who assisted me in developing the Web site that ac-

companies this book. Bruce is responsible for much of its pedagogical content. Finally, I

wish to thank the reviewers of the sixth edition. Their in-depth comments and thoughtful

criticism have been invaluable.

Mark Ardis

Rose-Hulman Institute

Xiaoxia Cao
Shanghai University

Nimmagadda Chalamaiah
Jawaharlal Nehru Technological University

Sergiu Dascalu
University ofNevada, Reno

Harry Delugach
University ofAlabama, Huntsville

Premkumar Devanbu
University ofCalifornia, Davis

28 PREFACE

Lipika Dey
I.I.T., Delhi

Osama Eljabiri

New Jersey Institute ofTechnology

Gerald Gannon
Arizona State University

David Gustafson
Kansas State University

Qingchun Hu
East China University ofScience

and Technology

Shi-Ming Huang
National Chung Cheng University

Clinton Jeffery

New Mexico State University

Barbara Jennings

Colorado School ofMines

Venkatesh Kamat
Goa University

Jo Ann Lane
San Diego State University

Minglu Li

Shanghai Jiao Tong University

Robert Lingard

California State University, Northridge

Jiang B. Liu

Bradley University

WYLiu
City University ofHongkong

Banshidhar Majhi

National Institute ofTechnology

John D. McGregor
Clemson University

Hong Mei
Peking University

Ahmed Naumaan
University ofMinnesota

Joey Paquet
Concordia University

James Purtilo

University ofMaryland

Tong Seng, Jon Quah
Nanyang Technological University

K.V.S.V.N. Raju

Andhra University ‘

D Janaki Ram
Indian Institute ofTechnology, Madras

Ahmed Salem
California State University, Salem

Hee Beng Kuan Tan
Nanyang Technological University

Chris Teng
San Jose State University

Flora Tsai

Nanyang Technological University

David Umphress
Auburn University

Liang Wang
Renmin University ofChina

Laura Williams

North Carolina State University

Junmin Ye
Central China Normal University

Renkun Ying
Tsinghua University

The content of the sixth edition of Software Engineering: A Practitioner’s Approach has

been shaped by industry professionals, university professors, and students who have used

earlier editions of the book and have taken the time to communicate their suggestions,

criticisms, and ideas. My thanks to each of you. In addition, my personal thanks go to our

many industry clients worldwide, who certainly have taught me as much or more than I

could ever teach them.

As the editions of this book have evolved, my sons, Mathew and Michael, have grown

from boys to men. Their maturity, character, and success in the real world have been an

inspiration to me. Nothing has filled me with more pride. And finally, to Barbara, my love

and thanks for encouraging still another edition of "the book."

Rogers. Pressman

A

Walkthrough

Process: A Generic View

T"» rascciUAS San* Thai pro.ides an economist vim* Wstftwwe And sett-
Concert: ware wavering Howard Sat:** n J8AC9BI commcou evs -.tie tonware
aw x *pnos.

SWT"' JS
»Elw.». Jl* Ml tifMB *caballed L-w-led*, .nu IwrMvw lh»l bu -I

mm «*U in^mpac In Utyr«*« wflw«r Pc-

[prwtes TV it.w a * dirfcpK In KtKh die

S* H«W*|* •* Ttv^jjx together irrf nt*»Ocxl a Ok
C TV pvccw pmwrfea UKeractkat bctwcm uxr* «iw dMgmn »«n

nc ho-totUrwpitn mo evdvir* Club. (U^hmiuipi hi*

*31 the evening !»!(«•« tenet «s

manKAtor mWi ax» trm mod of the dlakt^r cfc.m* n
fmnihepaopitmvclved

Indcw) building computer software U *n netware learning Croces and die

ourcome scenethlng ihw Oor.ic' would c»’, 'softwarn c*ju;*l -H an eir*w>w»fr.t

ofknowtedite coiteoed- due-led. and organized as the process is ccne^ted

* is HT wWi r

n* *> 90 rvTX^Ei c tows d pnr &al yco'ne brjidi <g. On* proem* nlgKr b* op
(Vtofetoip.—o rood nop nrrVipi piapfwM. tw cracwng wb-on. by on arerob

=.-«». a irwy.^ ;*«!<•., •».* ftw r»d rrmamfl n-vw- «*ite on e-'.-vJ. c.fteren-

*o> you iolowuccfcajoKAw'ar*proem* procmswxaiUWkciiwdiot dweroeiicn «<o
ITT SiAwei* •ngiraari WVJ •«*/ W*ta VI*

*» 4**e n«*d« and Wheat U H*« wo*V prodveff From Twpo-N d
' *' L l*

- 0*0 lobware
...

,r«'W| _
0"*T non oc**tkm tonoli ond ifaiwnP
Inn 4k* or* nppmprlqt* Irr *x« fycroc »»

ond Pa ooijCI 4v» i«l* produced.

WsiseMncab* daprocm*
w tie I «n««r* Thai r«a dona 4 rigid?
rVrl O* a wto c< mb**** proem* sum*

*0 'mainly' ei her wivo*t crnxm*

Practical Flavor

New Running Case Study
“SafeHome" is found
throughout the text. These
dialogues present real world
situations that show you how
members of a software team
interact and apply key software

engineering principles and
methods.

Chapter Opener

Introduces the topics that you
will learn and provides basic

background.
Quick Look provides an

overview of what the chapter is

about.

drvtlnpin !*•' to boiW something immcdMiety. Vi

lor ihe rcriiiKuig

• The tunnfe: <m«*ui lobe J vidrVrg version o< tv
aware dial lb* prototype a raid eogcdm *wMb iK-xing gum v
on*wart ihw Hi the rush vo get R working we haven 1 oMisWered :n«*II kA-
ware ifillRy t* long-lcnn m«inlsin*b«k>- 'When rrormed UiM Sie product

mu* be reoali so trial lugp leveti of ^ml». <«nW -rjinuewd. Pie cmTcmer

trim foul and demands due a lew flues' Be applcd w make the pntcsyv* t

wnking pro*** Too cd«n. wAwan deoek^menr. managemers relenu

1 TV devck^pei nOcn mj|c** unplen’«oi»'>wi compromses in order to gel a

proiorype wciklng avuily An inapprtenste operate* syiseir or program-

ming language mayV used amply Vcauw 11 is miuhle and knewn. an n
etiioenl a^otarwn may Be implemer.isil simply to demnnsirare capability

Alter a nine ihe 4e*eloper may become ccmfcnaSie with these choices and

forget all the reason* why ih*y avert mappropnare The less than -ideal

choice Has now become »n nugral part of ihe system.

AXhough problems un occur, procotspmg car be an eBecthv paradigm tor serf:

wane engineer** The key a to define ihe roe*of the game at the begreit^ that is

die customer and deveiopei anus both aceeihM Ihe p-molypce bulk voseix as 1

meehaiw for defining requirement* k « «en dixarded ai l«a« *• part-, and the

Mtual aodware is engrieeres wwi an eye toward quality

Se/at/rif a Proca-x aeurfef. Pori I

•*>Vi -*•~ 70 * «< el u do * mot,ah
. *^*. I^ ilk,m *.r a K»*
•- r.-r» p>»| a «epxarf<V «*wi perf rf An

^

30 WALKTHROUGH

Software Tools sidebars help you

identify which software tools are

appropriate for specific tasks. The

sidebars also include a list of

representative tools.

CMAKTta * ANALYSIS MOMHM

S O SUMMABY

V

rectangle RespoftSMttks are represented as parallel segments ‘Jot *vWe the dia

gram veWcaily, HXc tne lanes in a swimming pool

nvee analysis daises-Homeowner, Interface, andCamera-hawe in-

direct msponstoiUties in the corxe* at the activity diagram repeese-ved n Hgure S.7

Referring to figure 8 «. the activity diagram is rearranged so that activities associated

with a particular analysts class fail inside the swnnlane for that class For example, the

Interface class represents the user interface as seen By the homeoArer The acovttv

diagram notes two prompts that ate the rcsoonsiWity of the interface—prompt for

The objective ofanalysts modeling is to create a varietyof representations that depict

soitware reouirements for information. function. and behavior To accomplish this,

two different ibui potentially complementary! modeling philosophies car ne applied

structured analysis arid object-oriented analysis . Structured analysis 'aews software

as an information transformer It assists the sortware engineer m dentilyinR data ob-

jects their telaticnsntps. and the manner In which those data objects are transformed

as '>ey ?tow through acT.wate processing junction. Obiect-oriented analysts exam-

ries a problem domain defined as a set of use-cases m an effort to extract classes that

define the problem Each class has a set of attributes and operations Classes are re-

lated to one another it a variety of afflerent ways and arc modeled using UML dia-

grams. The analysis model ks composed of four modeling elements scenario-based

models flow models, class-based models and behavioral model*

5cenano-based models depas software rci^uiremerts from the users point ofview.

The use-case—a narrative or template-driven description cfan interact**! between an

aoceandthe software— is trie prmary modeling dement Orr.ved dumg requirement

eivatacon. the use-case defines. the key steps for a specific funct <ei cr interaction The

re traaersailes by the» •opecore sewsxeo

UML Diagrams are used to

illustrate important analysis

and design methods for both

conventional software and Web
applications.

WALKTHROUGH 31

^ADVICE^.

Practical advice horn

the real world of

software engineering.

Advice Icons provide

pragmatic guidance that

can help you make the

right decision or avoid

common problems while

building software.

Excellent Pedagogy

Quotes interspersed throughout the

book makes reading fun and interesting.

9.3 D:afiN Ca«SUr7£

A Ml sotTwarr Oesijn concepts his evoked ever Tie hwon ofvl-

«.»-r trgineertrg *Jtho>qf> Vk Jeste ct miriest in earn <oncepi ha* varied ovci

ate yean e»:b has siood ate leslot lime Cacb proanles the aobwart downer wstn

i fcundaoon from «t«n more sopiinCMMd design methods can he «plied.

M * liKkaon (TAC7M«Mr said -The beprnng or wtsdorv for a software engi-

neer) h in m(ogrs» the arSerence between gelling a program ic work and selling

a rglu ‘ rvndamenui software design concepts reside the necessary framework

9.3 1 Absttoctton

e—»
thal have a veofc and wined funawat The name of procedural abstract** impies

ihear fcngMm hJ specific duuilt are suppressed An example or a procedural ah-

«»»eilan would 5e ihe word open tar a door. Oper Implies a long sequence of pro-

cedural sites fe.g.. walk ic the dm». reach and grasp knot, nan kiwfc and ;*dl

dooe. step away hem mmmgdixr.eU •

A dew jPmv.vo.-v: u a named codccuon e

l

data dial describes a data ohieci In she

cnnmnf iht procedural atauacUon oper. wecar.deftve i

door, lie any data .Then ihe cau abstraction fee door w
aurhus that deserfee die door te.g. far —s smidi. ~ve*aw«m
V«JM. iwCTi It fef»*s that me peoceAral aw.ractlcr open would make use Of

rlcrmatwn contained in the eltiWutes of the data abstraction door

9 3 2 AjehUactur*

SoitaorruKhaecrur alXMesu Hie overall snucttre el die software are ihe ways w
lyslent- rswi«a| mnmm-

-e w crganueikm of program .umpenent*

The KeyPoints Icon -

highlights important

concepts to remember.

Info sidebars present _
information that

complements and
enhances the topic being

discussed.

;-v
desgn andim-aunl design •menace desgn, and cotrpooenc-teve

»ie a coogn nvjdei rand'or a des>sn

tefererg again ta figure 3 5 out

laud week products qualm assurance potnts ire preset! milestones. The -jsk sel ifvai

best accommodate the needs or the protect are die charaacrsticsct die learn acre

sn icg. . design car. be adapted to we

rs M»>;..<ruirvfr »un->«a>cuv tu

V

32 WALKTHROUGH

WebRef
For powtws that will

tnke you direclly to

Web resources

The WebRef Icon points

readers to where more
relevant information can
be found on the web.

The Question Mark a where con l

Icon asks common • find the

questions that are answer?

answered in the body of

the text.

End Of Chapter Material

A Summaiy briefly reviews the

highlights of each chapter.

Numerous References to

significant literature give you a lead

on quickly finding more information.

Problems and Points to Ponder
are problem sections that reinforce

important software engineering
concepts.

Further Readings provide pointers

to further indepth information.

Supplements for Instructors,

Students, and Professionals

WWW.MHHE .COM/PRESSMAN

For Instructors:

r . n
bocry Lite ctho itpn i» wflwire WcbAcp* can be assessed using a variety at

quauy criuttk lltaa .mtud* tedbWy. functionality. rdaWity. dhcMacy, maMMuh.
uy seamy. nvallahuty KaMMHy. and lime to mattes

h*bt can be dnolbed t r three layer*—process methods, amt uain/lachnotogy

The w«*e (voce** adapts the agile development phHosopny that ciryduvi/cr a

lean- engineering approach that <aJs l» pm mcretnenlal delivery ot the system to

be buft The fenerK peace** Iramnootk—lenmusHtaiMin. piannrg. iteMeUng. ccr

iWKiKsn. and drpfoymen.—a appllcat*: to WttE These lYamewtr* Ktimir* are

"•Inc* mio a K> .* tetbl tasks that are asapled Us the needs ofeach pmfeu A «i
at vmfceelU dOMUn witter to those applied Aetng aottware engineering rwrt-
SQA sen prefect management— apply to all weed prefect*

RtrtBuma
lanvMt arvtmt u tM»-luve agie Vdoare OMMgmeM atz tureouirr

-twenbet 'Detetrbet. :**».«> 1* te
|U*ftK|MlS. Xxrwmi) it* **b Cn«. Candpnten MMiagcm«*i. nvfCSt
I'ttuna.iiWtt-p.my ACM to* Angelm Uay 1m (htv ,Ve* Fnt
CSC ucvsjhyi on ntr Cngnmtf are puMshed o* im as hw Jtaaa\ maciiuwm
eau J«a'sann.-se»* *w«/icsr»-wm pr«/ oa.okhm

hrtai V anl ; Myptamah -The Agile Minim.-. • ftytmav .-Vi>*yanfH Mepanhe
Ajgus tup •' '•newwmaganneuiee/dxtmres.n-MS/ s«wiOaa.tK<ea no*

teamiMcOoAiai A.atMA wetani.A«irtween*nanM<'i«C/h>aa IX|W*. « » Oi cam
mo Scie*ce Lnven*y * CJatcon lev!**:*. Kent l«-loot -te aoci Swtewr tan

IMLKMI wimgewr. S ttwe tan.- Pape hup /,SinmmKtn.etw«u»i' w
I*«dpb «nncn. a Arptyt* C*aa KrcMm twMtaary utihodnttglei to we» Ikvek*-

nere-fttv fiat (CSC Mtfteiav in ll*b Oyanrottyt ACM ixa Angara May l*»
|ivr*n: h-«rl T A vnestel>9*wnng rnmKc-KJIt i«ai

tPMWI home «. S maknue. Can fiemet-teiad AflAanr. he
tebnitr SWgunbvi«9«.pp IP* t<0

«0C*C-f tJdbeUeyonel. K Chalk* for wet Me OaWty Assutance - gway me* i-.ooe

Mot Juneloailbte (m»i nvn. ft* Ih-aamwa* « eubcMcy 7reyeMa/QMT30li.
-ar*--- '^teheiaa-.-.OUei pdr

tt*T»-.j: vceinvhent. t. -c^etolnge an! the w»0- Oestgnng lee heofle.- axu
ttsg /mm .fieow* coevleamctactsasp

Psnmyi ami.Eaum laJPamia
1* 1 . At* dter* cefee puck ndun due ctnnmwe MrbApf* Inw next rervetetcnal

sobean antkatons’ Tyy to naa< i«o or treve

l*J. Ifcmeiym: Mtgcl-C Ttatu-iea ttkh wwjteapncemctehei* lO^natyMlie-
-in dial yewMmi are m«i aip^iiau

• Instructor Guide provides tips for

teaching.
• PowerPoint Slides
• Test Questions
• Sample Exams
• Problem Solutions

For Students and Professionals

• Chapter Outlines
• Practice Quizzes
• Web Resources provide links to over

900 Web-based software engineering

resources.
• Software Engineering Reference
Library provides access to hundreds of

articles on software engineering.
• Software Engineering Checklists
• Adaptable Process Model
• Work Product Templates
• Tiny Tools are a collection of simple

software engineering tools, which allow

practice of techniques learned in the

book.
• Industry Commentaiy

CHAPTER

Key
Concepts

application

categories

challenges

deterioration

evolution

failure curves

history

legacy software

myths

software

characteristics

software definition

Introduction to
Software Engineering

Have you ever noticed how the invention of one technology can have pro-

found and unexpected effects on other seemingly unrelated technologies,

on commercial enterprises, on people, and even on culture as a whole?

This phenomenon is often called '"the law of unintended consequences."

Today, computer software is the single most important technology on the

world stage. And it is also a prime example of the law of unintended conse-

quences. No one in the 1950s could have predicted that software would become
an indispensable technology for business, science, and engineering; that software

would enable the creation of new technologies (e.g„ genetic engineering), the ex-

tension of existing technologies (e.g., telecommunications), and the demise of

older technologies (e.g., the printing industry); that software would be the driving

force behind the personal computer revolution; that shrink-wrapped software

products would be purchased by consumers in neighborhood malls; that a soft-

ware company would become larger and more influential than the vast majority

of industrial-era companies; that a vast software-driven network called the Inter-

net would evolve and change eveiything from library research to consumer shop-

ping to the dating habits of young (and not-so-young) adults.

No one could have foreseen that software would become embedded in systems

of all kinds: transportation, medical, telecommunications, military, industrial, en-

tertainment, office machines—the list is almost endless. And ifwe are to believe the

law ofunintended consequences, there are many effects that we cannot yet predict.

0 What is it? Computer software is

the product that software profession-

als build and then support over the

long term. It encompasses programs

that execute within a computer of any size and
architecture, content that is presented as the

computer programs execute, and documents in

both hardcopy and virtual forms that encompass

all forms of electronic media.

Who does if? Software engineers build and sup-

port it, and virtually everyone in the industrial-

ized world uses it either directly or indirectly.

Why is it important? Because it affects nearly

every aspect of our lives and has become per-

vasive in our commerce, our culture, and our

everyday activities.

What are the steps? You build computer soft-

ware like you build any successful product, by

applying an agile, adaptable process that leads

to a high-quality result that meets the needs of

the people who will use the product. You apply

a software engineering approach.

What is the work product? From the point of

view of a software engineer, the work product is

the programs, content (data), and documents that

are computer software. But from the user's view-

point, the work product is the resultant informa-

tion that somehow makes the user's world better.

How do I ensure that I've done it right?

Read the remainder of this book, select those

ideas which are applicable to the software that

you build, and apply them to your work.

33

34 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING
I

And, finally, no one could have foreseen that millions of computer programs

would have to be corrected, adapted, and enhanced as time passed and that the bur-

den of performing these "maintenance" activities would absorb more people and

more resources than all work applied to the creation of new software.

"Idecs and technological discoveries are the driving engines of economic growth.'

The Wail Street Journal

As software's importance has grown, the software community has continually at-

tempted to develop technologies that will make it easier, faster, and less expensive to

build and maintain high-quality computer programs. Some of these technologies are

targeted at a specific application domain (e.g., Web-site design and implementation);

others focus on a technology domain (e g., object-oriented systems or aspect-oriented

programming); and still others are broad-based (e.g., operating systems such as

LINUX). However, we have yet to develop a software technology that does it all, and

the likelihood of one arising in the future is small. And yet, people bet their jobs, their

security, and their very lives on computer software. It better be right.

This book presents a framework for those who build computer software—people

who must get it right. The framework encompasses a process, a set of methods, and

an array of tools that we call software engineering.

"In modem society, the role of engineering is to provide systems ond products thot enhonce the material aspects of

humon life, thus making life easier, safer, more secure, ond more enjoyable.”

Richard Fairley and Mary Willshire

1.1 The Eypiyins Bole or Software,

POINT
Software is both o

product and a vehicle

that delivers a product.

Today, software takes on a dual role. It is both a product and a vehicle for delivering

a product. As a product, it delivers the computing potential embodied by computer

hardware or, more broadly, by a network of computers that are accessible by local

hardware. Whether software resides within a cellular phone or operates inside a

mainframe computer, it is an information transformer—producing, managing, ac-

quiring, modifying, displaying, or transmitting information that can be as simple as

a single bit or as complex as a multimedia presentation. As the vehicle for delivering

the product, software acts as the basis for the control of the computer (operating sys-

tems), the communication of information (networks), and the creation and control

of other programs (software tools and environments).

Software delivers the most important product of our time—information. It trans-

forms personal data (e.g., an individual's financial transactions) so that the data can

be more useful in a local context; it manages business information to enhance com-

petitiveness; it provides a gateway to worldwide information networks (e.g., the In-

ternet) and provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over a span of

little more than 50 years. Dramatic improvements in hardware performance, pro-

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 35

WebRef
Take a look back ot the

software industry ot

www.softwore

history.org.

If you have some lime,

take o look atone or

more of these classic

books. Pay attention to

whot these experts got

wrong as they

predicted future events

and technologies. Stay

humble: none of us

con really know the

future of the systems

we build.

found changes in computing architectures, vast increases in memory and storage

capacity, and a wide variety of exotic input and output options have all precipitated

more sophisticated and complex computer-based systems. Sophistication and com-
plexity can produce dazzling results when a system succeeds, but they can also pose
huge problems for those who must build complex systems.

Popular books published during the 1970s and 1980s provide useful historical in-

sight into the changing perception of computers and software and their impact on
our culture. Osborne (OSB79] characterized a "new industrial revolution." Toffler

1TOF80] called the advent of microelectronics part of "the third wave of change" in

human history, and Naisbitt [NAI82J predicted the transformation from an industrial

society to an "information society." Feigenbaum and McCorduck [FEI83] suggested

that information and knowledge (controlled by computers) would be the focal point

for power in the twenty-first century, and Stoll [STO89] argued that the "electronic

community" created by networks and software was the key to knowledge inter-

change throughout the world. All of these writers were correct.

As the 1990s began, Toffler [TOF90] described a "power shift" in which old power
structures (governmental, educational, industrial, economic, and military) disinte-

grate as computers and software lead to a "democratization of knowledge." Yourdon
[YOU92] worried that U.S. companies might lose their competitive edge in software-

related businesses and predicted "the decline and fall of the American programmer."
Hammer and Champy [HAM93] argued that information technologies were to play a

pivotal role in the "reengineering of the corporation." During the mid-1990s, the per-

vasiveness of computers and software spawned a rash of books by "neo-Luddites"

(e.g., Resisting the Virtual Life, edited by James Brook and lain Boal, and The Future

Does Not Compute by Stephen Talbot). These authors demonized the computer, em-
phasizing legitimate concerns but ignoring the profound benefits that have already

been realized [LEV95]

.

"Computers moke it eosy to do o lot of things, but most of the things they moke it eosier to do don't need to be done."

Andy Rooney

During the later 1990s, Yourdon [YOU96] reevaluated the prospects of the soft-

ware professional and suggested the "the rise and resurrection" of the American pro-

grammer. As the Internet grew in importance, Yourdon's change of heart proved to

be correct. As the twentieth century closed, the focus shifted once more, this time to

the impact of the Y2K "time bomb." (e.g., [YOU98a], [KAR99]). Although the dire pre-

dictions of the Y2K doomsayers were overreactions, their popular writings drove
home the pervasiveness of software in our lives.

As the 2000s progressed, Johnson fJOHOl] discussed the power of "emergence"—
a phenomenon that explains what happens when interconnections among relatively

simple entities result in a system that "self-organizes to form more intelligent, more
adaptive behavior." Yourdon [YOU02] revisited the tragic events of 9/ 1 1 to discuss

36 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

WebRef

Fotcommentoryooo

wide orroy of softwore-

reloted topics, visit

www.yowdon.com.

the continuing impact of global terrorism on the IT community. Wolfram [WOL02]

presented a treatise on "a new kind of science" that posits a unifying theory based

primarily on sophisticated software simulations. Daconta and his colleagues

[DAC03] discussed the evolution of "the semantic Web" and ways in which it will

change the way people interact across global networks.

"For I dipped into the future, for as the human eye could see, Saw the vision of the world ond all the wonder that

would be."

Tennyson

Today, a huge software industry has become a dominant factor in the economies

of the industrialized world. The lone programmer of an earlier era has been replaced

by teams of software specialists, each focusing on one part of the technology re-

quired to deliver a complex application. And yet, the questions that were asked of

the lone programmer are the same questions that are asked when modem computer-

based systems are built:'

• Why does it take so long to get software finished?

• Why are development costs so high?

• Why can't we find all errors before we give the software to our customers?

• Why do we spend so much time and effort maintaining existing programs?

• Why do we continue to have difficulty in measuring progress as software is

being developed and maintained?

These questions and many others demonstrate the industry' s concern about soft-

ware and the manner in which it is developed—a concern that has lead to the adop-

tion of software engineering practice.

1.2 Software

In 1 970, less than l percent of the public could have defined what "computer soft-

ware" meant. Today, most professionals and many members of the public at large

feel that they understand software. But do they?

- How shou |d
a textbook definition of software might take the following form: Software is (1) in-

W we define structions (computer programs) that when executed provide desiredfeatures, Junction,

software? an(j performance; (2) data structures that enable the programs to adequately manipulate

information; and (3) documents that describe the operation and use of the programs.

1 In an excellent book of essays on the software business, Tom DeMarco [DEM95] argues the coun-

terpoint. He states: “instead of asking why software costs so much, we need to begin asking what

have we done to make it possible for today's software to cost so little. The answer to that question

will help us continue the extraordinary level of achievement that has always distinguished the soft-

ware industry."

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 37

"V
POINT

Software is

engineered, not

manufactured.

There is no question that more complete definitions could be offered. But we need

more than a formal definition.

To gain an understanding of software (and ultimately an understanding of soft-

ware engineering), it is important to examine the characteristics of software that

make it different from other things that human beings build. Software is a logical

rather than a physical system element. Therefore, software has characteristics that

are considerably different than those of hardware:

1 . Software is developed or engineered; it is not manufactured in the classical sense.

POINT
Software doesn't wear

out, but it does

deteriorate.

Although some similarities exist between software development and hard-

ware manufacturing, the two activities are fundamentally different. In both

activities, high quality is achieved through good design, but the manufactur-

ing phase for hardware can introduce quality problems that are nonexistent

(or easily corrected) for software. Both activities are dependent on people,

but the relationship between people applied and work accomplished is en-

tirely different (see Chapter 24). Both activities require the construction of a

"product," but the approaches are different. Software costs are concentrated

in engineering. This means that software projects cannot be managed as if

they were manufacturing projects.

2 . Software doesn 't “wear out.

"

Figure 1 . 1 depicts failure rate as a function of time for hardware. The relation-

ship, often called the "bathtub curve," indicates that hardware exhibits rela-

tively high failure rates early in' its life (these failures are often attributable to •

design or manufacturing defects). Defects are then corrected, and failure rate

Time

38 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

Failure curves

for software

Ifyou want to reduce

software deterioration,

you'll have to do

better software design

(Chapters 9-12).

POINT
Software engineering

methods strive to

reduce the magnitude

of the spikes and slope

of the actual curve in

Figure 1.2.

drops to a steady-state level (hopefully, quite low) for some period of time. As

time passes, however, the failure rate rises again as hardware components

suffer from the cumulative affects of dust, vibration, abuse, temperature ex-

tremes, and many other environmental maladies. Stated simply, the hardware

begins to wear out.

Software is not susceptible to the environmental maladies that cause

hardware to wear out. In theory, therefore, the failure, fate curve for software

should take the form of the "idealized curve" shown in Figure 1 .2. Undiscov- •

ered defects will cause high failure rates early in the life of a program. How-

ever, these are corrected (hopefully, without introducing other errors), and

the curve flattens as shown. The idealized curve is a gross oversimplification

of actual failure models (see Chapter 26 for more information) for software.

However, the implication is clear—software doesn't wear'out. But it does de-

teriorate! -

This seeming contradiction can best be explained by considering the "ac-

tual curve" in Figure 1.2. During its life,
2 software will undergo change. As

changes are made, it is likely that errors will be introduced, causing the fail-

ure rate curve to spike as shown in Figure 1 .2. Before the curve can return to

the original steady-state failure rate, another change is requested, causing

the curve to spike again. Slowly, the minimum failure rate level begins to

rise—the software is deteriorating due to change.

2 In fact, from the moment that development begins and long before the first version is delivered,

changes may be requested by the customer

CHAPTER l INTRODUCTION TO SOFTWARE ENGINEERING 39

3*

POINT
Most software

continues to be custom

built.

Another aspect of wear illustrates the difference between hardware and

software. When a hardware component wears out, it is replaced by. a spare

part. There are no software spare parts. Every software failure indicates an

error in design or in the process through which design was translated into

machine-executable code. Therefore, software maintenance involves consid-

erably more complexity than hardware maintenance.

3. Although the industry is moving toward component-based construction, most

software continues to be custom built.

Consider the manner in which the control hardware for a computer-

based product is designed and built. The design engineer draws a simple

schematic of the digital circuitry, does some fundamental analysis to ensure

that proper function will be achieved, and then goes to the shelf where cata-

logs of digital components exist. Each integrated circuit has a part number, a

defined and validated function, a well-defined interface, and a standard set

of integration guidelines. After each component is selected, it can be or-

dered off the shelf.

As an engineering discipline evolves, a collection of standard design

components is created. Standard screws and off-the-shelf integrated circuits

are only two of thousands of standard components that are used by me-

chanical and electrical engineers as they design new systems. The reusable

components have been created so that the engineer can concentrate on the

truly innovative elements of a design, i.e„ the parts that represent some-

thing new. In the hardware world, component reuse is a natural part of the

engineering process. In the software world, it has only begun to be achieved

on a broad scale.

"Ideas ore the building blocks of ideas.'

Jason Zebehazy

A software component should be designed and implemented so that it can

be reused in many different programs. Modem reusable components encap-

sulate both data and the processing that is applied to the data, enabling the

software engineer to create new applications from reusable parts .

3 For exam-

ple, today's user interfaces are built with reusable components that enable

the creation of graphics windows, pull-down menus, and a wide variety of

interaction mechanisms. The data structures and processing detail required

to build the interface are contained within a library of reusable components

for interface construction.

3 Component-based software engineering is presented in Chapter 30.

40

LA

WebRef
One of the most

comprehensive libraries

ofshoremie/freewore

con be found ot

shareware.

oiet.com.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

The Changing Nature of Software

Today, seven broad categories of computer software present continuing challenges

for software engineers:

System software. System software is a collectionof programs written to service

other programs. Some system software (e.g., compilers, editors, and file manage-

ment utilities) processes complex, but determinate,4 information structures. Other

systems applications (e g., operating system components, drivers, networking soft-

ware, telecommunications processors) process largely indeterminate data. In either

case, the systems software area is characterized by heavy interaction with computer

hardware; heavy usage by multiple users; concurrent operation that requires sched-

uling, resource sharing, and sophisticated process management; complex data

structures; and multiple external interfaces.

Application software. Application software consists of standalone programs that

solve a specific business need. Applications in this area process business or techni-

cal data in a way that facilitates business operations or management/technical decision-

making. In addition to conventional data processing applications, application

software is used to control business functions in real-time (e.g., point-of-sale trans-

action processing, real-time manufacturing process control).

Engineering/scientific software. Formerly characterized by "number crunch-

ing" algorithms, engineering and scientific software applications range from as-

tronomy to volcanology, from automotive stress analysis to space shuttle orbital

dynamics, and from molecular biology to automated manufacturing. However, mod-

ern applications within the engineering/scientific area are moving away from con-

ventional numerical algorithms. Computer-aided design, system simulation, and

other interactive applications have begun to take on real-time and even system soft-

ware characteristics. • • -

Embedded software. Embedded software resides within a product or system and

is used to implement and control features and functions for the end-user and for the

system itself. Embedded software can perform limited and esoteric functions (e.g.,

keypad control for a microwave oven) or provide significant function and control ca-

pability (e.g., digital functions in an automobile such as fuel control, dashboard dis-

plays, braking systems, etc.).

Product-line software. Designed to provide a specific capability for use by many

different customers, product-line software can focus on a limited and esoteric mar-

4 Software is determinate if the order and timing of inputs, processing, .and outputs is predictable.

Software is indeterminate if the order and timing of inputs, processing, and outputs cannot be pre-

dicted in advance.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 41

ketplace (e.g., inventory control products) or address mass consumer markets (e.g.,

word processing, spreadsheets, computer graphics, multimedia, entertainment,

database management, personal and business financial applications).

Web-applications. "WebApps," span a wide array of applications. In their simplest

form, WebApps can be little more than a set oflinked hypertext files that present in-

formation using text and limited graphics. However, as e-commerce and B2B appli-

cations grow in importance, WebApps are evolving into sophisticated computing

environments that not only provide standalone features, computing functions, and

content to the end user, but also are integrated with corporate databases and busi-

ness applications.

Artificial intelligence software. AI software makes use of nonnumerical al-

gorithms to solve complex problems that are not amenable to computation or

straightforward analysis. Applications within this area include robotics, expert sys-

tems, pattern recognition (image and voice), artificial neural networks, theorem

proving, and game playing.

"Tliere is no computer that has common sense."

Marvin Minsky

Millions of software engineers worldwide are hard at work on projects in one or

more of these categories. In some cases, new systems are being built, but in others,

existing applications are being corrected, adapted, and enhanced. It is common for

a young software engineer to work on a program that is older than she is' Past gen-

erations of software people have left a legacy in each of the categories we have dis-

cussed. Hopefully, the legacy left behind by this generation will ease the burden of

future software engineers. And yet, new challenges have appeared on the horizon:

Ubiquitous computing. The rapid growth of wireless networking may soon lead

to true distributed computing. The challenge for software engineers will be to de-

velop systems and application software that will allow small devices, personal com-

puters, and enterprise system to communicate across vast networks.

Netsourcing. The World Wide Web is rapidly becoming a computing engine as

well as a content provider. The challenge for software engineers is to architect sim-

ple (e.g., personal financial planning) and sophisticated applications that provide

benefit to targeted end-user markets worldwide.

"You can't always predict, but you con always prepare."

Anonymous

Open source. A growing trend that results in distribution of source code for sys-

tems applications (e.g., operating systems, database, and development environ-

ments) so that customers can make local modifications. The challenge for software

42 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

engineers is to build source code that is self-descriptive, but, more importantly, to de-

velop techniques that will enable both customers and developers to know what
changes have been made and how those changes manifest themselves within the

software.

The “new economy." The dot-com insanity that gripped financial markets during

the late 1 990s and the bust that followed in the early 2000s have lead many business

people to believe that the new economy is dead. The new economy is alive and well,

but it will evolve slowly. It will be characterized by mass communication and distri-

bution. Andy Lippman [LIP02] notes this when he writes:

We are entering an era characterized by communications among distributed machines

and dispersed people, rather than being mostly about a connection between two individ-

uals or between an individual and a machine. The old approach to telephony was about

"connections to"; the next wave is about "connections among." Napster, instant messag-

ing, short message systems, and BlackBerries are examples.

The challenge for software engineers is to build applications that will facilitate mass
communication and mass product distribution using concepts that are only now
forming.

Each of these "new challenges" will undoubtedly obey the law of unintended con-

sequences and have effects (for business people, software engineers, and end-users)

that cannot be predicted today. However, software engineers can prepare by instan-

tiating a process that is agile and adaptable enough to accommodate dramatic

changes in technology and business rules that are sure to come in the next decade.

TTlhe computer itself will make o historic transition from something that is used for analytic tasks ... to something

that can elitit emotion."

David Vaskevitfh

,1.4 Legacy Software

7 What is

• legacy

software?

Hundreds of thousands of computer programs fall into one of the seven broad applica-

tion domains—system software, application software, engineering/scientific software,

embedded software, product software, WebApps, and Al applications—discussed in

Section l .3. Some of these are state-of-the-art software—just released to individuals,

industry, and government. But other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus

of continuous attention and concern since the 1960s. Dayani-Fard and his col-

leagues [DAY99] describe legacy software in the following way:

Legacy software systems . were developed decades ago and have been continually

modified to meet changes in business requirements and computing platforms. The pro-

liferation of such systems is causing headaches for large organizations who find them

costly to maintain and risky to evolve.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 43

O What should

• I do If I

encounter a legacy

system that

exhibits poor

quality?

What types

• of changes

are made to

legacy systems?

£very software

engineer must

recognize that change

is natural. Don't try to

fight it.

Liu and his colleagues [LIU98] extend this description by noting that "many legacy

systems remain supportive to core business functions and are indispensable to the

business." Hence, legacy software is characterized by longevity and business

criticality.

1.4.1 The Quality of Legacy Software'

Unfortunately, there is one additional characteristic that can be present in legacy

software—poor quality.
5 Legacy systems sometimes have inextensible designs, con-

voluted code, poor or nonexistent documentation, test cases and results that were

never archived, a poorly managed change history—the list can be quite long. And

yet, these systems support "core business functions and are indispensable to the

business" [LIU98], What can one do?

The only reasonable answer may be to do nothing, at least until the legacy sys-

tem must undergo some significant change. If the legacy software meets the needs

of its users and runs reliably, it isn't broken and does not need to be fixed. How-

ever, as time passes legacy systems often evolve for one or more of the following

reasons:

• The software must be adapted to meet the needs of new computing environ-

ments or technology.

• The software must be enhanced to implement new business requirements.

• The software must be extended to make it interoperable with more modern

systems or databases.

• The software must be re-architected to make it viable within a network

environment.

When these modes of evolution occur, a legacy system must be reengineered (Chap-

ter 31) so that it remains viable into the future. The goal of modern software engi-

neering is to "devise methodologies that are founded on the notion of evolution;"

that is, the notion that "software systems continually change, new software systems

are built from the old ones, and ... all must interoperate and cooperate with each

other" [DAY99).

1.4.2 Software Evolution

Regardless of its application domain, size, or complexity, computer software will

evolve over time. Change (often referred to as software maintenance) drives this

process and occurs when errors are corrected, when the software is adapted to a

new environment, when the customer requests new features or functions, and when

5 In this case, quality is judged based on modem software engineering thinking—a somewhat unfair

criterion since some modern software engineering concepts and principles may not have been well

understood at the time that the legacy software was developed.

44 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

the application is reengineered to provide benefit in a modern context. Sam Williams

|WIL02] describes this when he writes:

As large-scale programs such as Windows and Solaris expand well into the range of 30

to SO million lines of code, successful project managers have learned to devote as much

time to combing the tangles out of legacy code as to adding new code. Simply put, in a

decade that saw the average PC microchip performance increase a hundredfold, soft-

ware's inability to scale at even linear rates has gone from dirty little secret to an industry-

wide embarrassment.

Over the past 30 years, Manny Lehman |e.g., LEH97a) and his colleagues have per-

formed detailed analyses of industry-grade software and systems in an effort to develop

a unified theoryfor software evolution. The details of this work are beyond the scope of

this book,6 but the underlying laws that have been derived are worthy ofnote [LEH97b|

:

Why do

• legacy

systems evolve as

time passes?

The Law of Continuing Change (1974). E-type systems7 must be continually

adapted, or else they become progressively less satisfactory.

The Law of Increasing Complexity (1974). As an E-type system evolves its

complexity increases unless work is done to maintain or reduce it.

The Law of Self-Regulation (1974). The E-type system evolution process is

self-regulating with distribution of product and process measures close to normal.

The Law of Conservation of Organizational Stability (1980). The average

effective global activity rate in an evolving E-type system is invariant over product

lifetime.

The Law of Conservation of Familiarity (1980). As an E-type system

evolves all associated with it, developers, sales personnel, and users, for example,

must maintain mastery of its content and behavior to achieve satisfactory evolu-

tion. Excessive growth diminishes that mastery. Hence the average incremental

growth remains invariant as the system evolves.

The Law of Continuing Growth (1980). The functional content of E-type

systems must be continually increased to maintain user satisfaction over the sys-

tem's lifetime.

The Law of Declining Quality (1996). The quality of E-type systems will ap-

pear to be declining unless they are rigorously maintained and adapted to opera-

tional environment changes.

The Feedback System Law (1 996). E-type evolution processes constitute

multilevel, multiloop, multiagent feedback systems and must be treated as such to

achieve significant improvement over any reasonable base.

6 The interested reader should see |LEH97al for a comprehensive discussion of software evolution.

7 E-types systems are software that has been implemented in a real-world computing context and will

therefore evolve over time.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 45

The laws that Lehman and his colleagues have defined are an inherent part of a soft-

ware engineer's reality. For the remainder of this book, we discuss software process

models, software engineering methods, and management techniques that strive to

maintain quality as software evolves.

1.5 Software Myths

Software myths—beliefs about software and the process used to build it—can be

traced to the earliest days of computing. Myths have a number of attributes that have

made them insidious. For instance, myths appear to be reasonable statements of fact

(sometimes containing elements of truth), they have an intuitive feel, and they are

often promulgated by experienced practitioners who "know the score."

"In the absence of meaningful standards, a new industry like software comes to depend instead an folklore."

Tom DeMarco

Today, most knowledgeable software engineering professionals recognize myths

for what they are—misleading attitudes that have caused serious problems for man-

agers and technical people alike. However, old attitudes and habits are difficult to

modify, and remnants of software myths are still believed.

Management myths. Managers with software responsibility, like managers in

most disciplines, are often under pressure to maintain budgets, keep schedules from

slipping, and improve quality. Like a drowning person who grasps at a straw, a soft-

ware manager often grasps at belief in a software myth, if that belief will lessen the

pressure (even temporarily).

WebRef

The Softwore Project

Monogere Network con

help you dispel these

ood other myths. It con

be found at

www.spmn.com.

Myth: We already have a book that'sfull ofstandards and proceduresfor

building software. Won't that provide my people with everything they

need to know

?

Reality: The book of standards may very well exist, but is it used? Are soft-

ware practitioners aware of its existence? Does it reflect modern soft-

ware engineering practice? Is it complete? Is it adaptable? Is it

streamlined to improve time to delivery while still maintaining a focus

on quality? In many cases, the answer to all of these questions is no.

Myth: ifwe get behind schedule, we can add more programmers and catch up

(sometimes called the Mongolian horde concept).

Reality: Software development is not a mechanistic process like manufac-

turing. In the words of Brooks [BR075]: "Adding people to a late

software project makes it later." At first, this statement may seem

counterintuitive. However, as new people are added, people who

were working must spend time educating the newcomers, thereby

reducing the amount of time spent on productive development

46 CHAPTER l INTRODUCTION TO SOFTWARE ENGINEERING

effort. People can be added but only in a planned and well -coordinated

manner.

Myth: IfI decide to outsource the software project to a third party, I can just re-

lax and let thatfirm build it

Reality: If an organization does not understand'how to manage and control

software projects internally, it will invariably struggle when it out-

sources software projects.

Work very hold to

understood wbotyou

hove to do before you

start, you my not be

oble to develop every

detoil, but trie more

you know, the less risk

you take.

Customer myths. A customer who requests computer software may be a person

at the next desk, a technical group down the hall, the marketing/sales department,

or an outside company that has requested software under contract. In many cases,

the customer believes myths about software because software managers and prac-

titioners do little to correct misinformation. Myths lead to false expectations (by the

customer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement ofobjectives is sufficient to begin writingprograms—

we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is

not always possible, an ambiguous statement of objectives is a

recipe for disaster. Unambiguous requirements (usually derived itera-

tively) are developed only through effective and continuous commu-
nication between customer and developer.

Myth: Project requirements continually change, but change can be easily ac-

commodated because software isflexible.

Reality: It is true that software requirements change, but the impact of

change varies with the time at which it is introduced When require-

ment changes are requested early (before design or code has been

started), cost impact is relatively small.8 However, as time passes,

cost impact grows rapidly—resources have been committed, a design

framework has been established, and change can cause upheaval

that requires additional resources and major design modification.

Whenever you think

thot we don't hove

time for software engi-

neering, ask yourself,

will we have time to

do it over again?

Practitioner's myths. Myths that are still believed by software practitioners have

been fostered by over 50 years ofprogramming culture. During the early days ofsoft-

ware, programming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, ourjob is done.

Reality: Someone once said that the sooner you begin writing code, the

longer it’ll take you to get done. Industry data indicate that between

8 Many software engineers have adopted an "agile" approach that accommodates change incre-

mentally, thereby controlling its impact and cost. Agile methods are discussed in Chapter 4.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 47

60 and 80 percent of all effort expended on software will be ex-

pended after it is delivered to the customer for the first time.

Myth: Until I get the program running, 1 have no way ofassessing its quality.

Reality: One of the most effective software quality assurance mechanisms

can be applied from the inception of a project—theformal technical

review. Software reviews (described in Chapter 26) are a "quality fil-

ter" that have been found to be more effective than testing for finding

certain classes of software errors.

Myth: The only deliverable work productfor a successful project is the working

program.

Reality: A working program is only one part of a software configuration that

includes many elements. Documentation provides a foundation for

successful engineering and, more importantly, guidance for software

support.

Myth: Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about

creating quality. Better quality leads to reduced rework. And reduced

rework results in faster delivery times.

Many software professionals recognize the fallacy of software myths. Regret-

tably, habitual attitudes and methods foster poor management and technical

practices, even when reality dictates a better approach. Recognition of software

realities is the first step toward formulation of practical solutions for software

engineering.

1.6 How It All Starts

Every software project is precipitated by some business need—the need to correct a

defect in an existing application; the need to adapt a legacy system to a changing

business environment; the need to extend the functions and features of an existing

application; or the need to create a new product, service, or system.

At the beginning of a software engineering project, the business need is often ex-

pressed informally as part of a simple conversation. The conversation presented in

the sidebar (next page) is typical.

With the exception ofa passing reference, software was hardly mentioned as part

of the conversation. And yet, software will make or break the SafeHome product line.

The engineering effort will succeed only ifSafeHome software succeeds. The market

will accept the product only if the software embedded within it properly meets the

customer's (as yet unstated) needs. We'll follow the progression of SafeHome soft-

ware engineering in subsequent chapters.

48 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

How a Pioject Starts

The scene: Meeting room at CPI

Corporation, o (fictional) company that makes consumer

products for home and commercial use.

The plaiyers: Mai Golden, senior manager, product

development; Lisa Perez, marketing manager; Lee

Warren, engineering manager; Joe Camalieri, executive

VP, business development.

The conversation:

Joe: Okay, Lee, what's this I hear about your folks

developing a what? A generic universal wireless box?

Lee: It's pretty cool, about the size of a small matchbook.

We can attach it to sensors of all kinds, a digital camera,

just about anything. Using the 802.1 1 b wireless protocol.

It allows us to access the device's output without wires.

We think it'll lead to a whole new generation of products.

Joe: You agree, Mai?

Mai: I do. In fact, with sales as flat as they've been this

year, we need something new. Uso and I have been

doing a little market research, and we think we've got a

line of products that could be big.

Joe: How big. . . ,
bottom-line big?

Mai: (avoiding a direct commitment): Tell him

about our idea, Lisa.

Lisa: It's a whole new generation of what we call

"home management products." We coll 'em SafeHome.

They use the new wireless interface, provide

homeowners or small business people with a system

that's controlled by their PC—home security, home

surveillance, appliance and device control. You know,

turn down the home air conditioner while you're driving

home, that sort of thing.

Lee: (jumping in) Engineering's done a technical

feasibility study of this idea, Joe. It's doable at low

manufacturing cost. Most hardware is off the shelf.

Software is an issue, but it's nothing that we can't do.

Joe: Interesting. Now, I asked about the bottom line.

Mai: PCs have penetrated 60 percent of all households

in the USA. if we could price this thing right, it could be a

killer-App. Nobody else has our wireless box—it's

proprietary. We'll have a two-year jump on the

competition. Revenue? Maybe as much as $30-40 million

in the second year.

Joe (smiling): Lets take this to the next level. I'm

interested.

1.7 Summary

Software has become the key element in the evolution of computer-based systems

and products and one of the most important technologies on the world stage. Over

the past 50 years, software has evolved from a specialized problem solving and in-

formation analysis tool to an industry in itself. Yet we still have trouble developing

high-quality software on time and within budget. Software—programs, data, and

documents—addresses a wide array of technology and application areas, yet all soft-

ware evolves according to a set of laws that have remained the same for over 30

years. The intent of software engineering is to provide a framework for building

higher quality software.

9 The SafeHome project will be used throughout this book to illustrate the inner workings of a proj-

ect team as it builds a software product. The company, the project, and the people are purely ficti-

tious, but the situations and problems are real.

CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING 49

Reference
[BR075j Brooks, F, The Mythical Man-Month, Addison -Wesley, 1975.
[DAC03] Daconta, M., L. Obrst, and K. Smith, The Semantic Web, Wilev 2003
ID
m!1

T
DT ni'!a

!!

1, H " et al "
“Le8acy Software Systems: Issues, Progress, and Challenges,"™ ReP° rt: TR-74. 1 65-k, April 1999, available at http://www.cas.ibm.com/

toronto/pubIications/TR-74.
1 65/k/legacy.html .

'

[DEM95] DeMarco, T
, Why Does Software Cost So Much?, Dorset House, 1 995.

™yiTnbaUm
'
E ' A '' and P McCorduck

' The Fifth Generation. Addison-Wesley 1983
ammer

'
M ” and J - chamPy. Reengineering the Corporation, HarperCollins Publishers,

I “93.

[JOHOll Johnson, S„ Emergence: The Connected Lives ofAnts, Brains, Cities, and Software, Scrib-
nCFj 2001

.

[KAR99] Karison, E., and). Kolber, A Basic Introduction to Y2K: How the Year 2000 Computer Cri-
sis Affects YOU, Next Era Publications, Inc., 1999.

^mt: ftess T997
M

’^ L ProSram Evol^on: Processes ofSoftware Change. Acade-

[LEH97b] Lehman, M„ et al., "Metrics and Laws of Software Evolution—The Nineties View," Pro-
ceedings ofthe 4th International Software Metrics symposium (METRICS ‘97), IEEE 1997 can
be downloaded from http://www.ece.utexas.edu/~perry/ work/papers/feast I .pdf.

[LEV95] Levy, S., "The Luddites Are Back," Af'eivsvveek, July 12, 1995, p. 55.
[LIP02] Lippman, A., "Round 2.0," Context Magazine, August 2002, http //www

contextmag.com/. • v

[LIU98) Liu K et al., "Report on the First SEBPC Workshop on Legacy Systems," Durham Uni-

port hftnl

1998 aVa ‘lable at ^ t[P:/7www.dur.ac.uk/ CSM/SABA/Iegacy-wkspl/re-

[OSB79] Osborne, A., Running Wild-The Next Industrial Revolution Osborne/
McGraw-Hill, 1979.

[NAI82] Naisbitt, J., Megatrends, Warner Books, 1982.
[ST089] Stoll, C., The Cuckoo's Egg, Doubleday, 1989.
[TOF80] Tofifier, A., The Third Wave, Morrow Publishers, 1980.
[TOF90] Toffter, A., Powersoft, Bantam Publishers, 1990.
[WIL02J Williams, S„ "A Unified Theory of Software Evolution," salon.com 2002

http://www.saion.com/tech/feature/2002/04/08/lehman/index.html.
[WOL02] Wolfram, S., A New Kind ofScience, Wolfram Media, Inc, 2002.
[YOU92J Yourdon, E., The Decline and Fall ofthe American Programmer, Yourdon Press, 1 992
[YOU96J Yourdon, E„ The Rise and Resurrection of the American Programmer, Yourdon Press,

[YOU98al Yourdon, E., and). Yourdon, Time Bomb 2000, Prentice-Haii, 1 998.
[YOU98b] Yourdon, E., Death March Projects, Prentice-Hall, 1999.
[YOU02] Yourdon, E., Byte Wars, Prentice-Hall, 2002.

-Ejbqblems and Points to Pondep
1 . 1 . Does the definition for software presented in Section 1.2 apply to Web sites? If you an-
swered yes, indicate the subtle difference between a Web site and conventional software, if any.

1 .2. Develop your own answers to the questions asked in Section 1 . 1 . Discuss them with vour
fellow students. 3

1 .3. Provide a number ofexamples (both positive and negative) that indicate the impact of soft-
ware on our society. Review one of the pre-1990 references in Section 1.1 and indicate where
the author's predictions were right and where they were wrong.

1 .4 . Provide at least five additional examples ofhow the law of unintended consequences ap-
plied to computer software.

50 CHAPTER 1 INTRODUCTION TO SOFTWARE ENGINEERING

1 5. Select one of the new challenges noted in Section 1 .3 (or an even newer challenge that has

arisen since this book was printed) and write a one-page paper that descnbes the technology

and the challenges it poses for software engineers.

l .6. Describe The Law ofConservation ofFamiliarity
(Section 1 .4.2) in your own words.

1.7. Many modem applications change frequently-before they are Prescnted to the end-user

and then after the first version has been put into use Suggest a few ways to build software

stop deterioration due to change.

1.8. Peruse the Internet newsgroup comp.risks and prepare a summary of risks

have recently been discussed Alternate source: Software Engineering Notes published by the ACM.

1 .9. Consider the seven software categories presented in Section 1 .3. Can the same approach

to software engineering be applied for each? Explain your answei.

1 . 1 0. As software becomes more pervasive, risks to the public (due to faulty programsi become

an increasingly significant concern Develop a realistic doomsday scenario where the failure or

a computer program could do great harm (either economic or human).

1.11. Describe The Law ofDeclining Quality (Section 1 .4.2) in your own words.

1.12. Describe The Law of Conservation of Organizational Stability (Section 1.4.2) in your own

words.

Further Readings and Information SOURC E S .-

There are literally thousands of books written about computer software. The vast mai°rityfi-
cuss programming languages or software applications, but a few discuss software itself. Press-

man and Herron (Software Shock, Dorset House, 1991) present an early discussion Reeledlat

the lavman) of software and the way professionals build it. Negroponte s best-selling book (Be

ins Digital Alfred A. Knopf, Inc., 1 995) provides a view of computing and its overall •mPa5
t “»

the twenty-first century. DeMarco [DEM95] has produced a collection of amusing and insightful

essays on software and the process through which it is developed. Books by Norman [The In

visible Computer, MIT Press, 1 998) and Bergman (information Appliances and Beyond. Academic

Press/Morgan Kaufmann, 2000) suggest that the widespread impact of the PC will decline as in-

formation appliances and pervasive computing connect everyone in the industrialized world

and almost every "appliance" that they own to a new internet infrastructure^

Minasi (
The Software Conspiracy: Why Software Companies Put Out Faulty Products, How They

Can Hurt You. and What You Can Do, McGraw-Hill, 2000) argues that the "modem scourge of

software bugs can be eliminated and suggests ways to accomplish this. Compaine (Digital Di-

vide- Facing a Crisis or Creating a Myth, MIT Press, 200 1)
argues that the "divide between those

who have access to information resources (e.g., the Web) and those who do not is narrowing as

we move into the first decade of this century.

A wide variety of information sources on software related topics and management are avafi-

able on the internet. An up-to-date list of World Wide Web resources that are relevant to soft-

ware can be found at our Web site:

http://www.mhhe.com/pressman.

10 The Further Readings and information Sources section presented at the conclusion of each chapter

presents ^brief overview of print sources that can help to expand your understanding of the major

topics presented in the chapter. We have created a comprehensive Web site to support Sojhvare £n

Omeeting: A Practitioner's Approach at http://www.mhhe.com/pressman. Among the many topics

addressed within the Web site are chapter-by-chapter software engineering resources to Web-

bas^d mformafion that can complement the material presented in each chapter. An Amazon.com

link to every book noted in this section is contained within these resources.

PART

One

The Software

Process

I
n this part of Software Engineering: A Practitioner's Approach
you'll learn about the process that provides a framework for

software engineering practice. These questions are addressed
in the chapters that follow:

• What is a software process?

• What are the generic framework activities that are present in

every software process?

« How are processes modeled and what are process patterns?

• What are prescriptive process models and what are their

strengths and weaknesses?

• What characteristics of incremental models make them
amenable to modern software projects?

• What is the unified process?

• Why is "agility" a watchword in modern software engineering

work?

• What is agile software development and how does it differ

from more traditional process models?

Once these questions are answered you'll be better prepared to

understand the context in which software engineering practice is

applied.

51

CHAPTER

A Generic View of Process

Key
Concepts
CMMI

ISO 9001: 2000

process assessment

process framework

process patterns

process technology

PSP

task set

TSP

umbrella activities

I
n a fascinating book that provides an economists view of software and soft-

ware engineering, Howard Baetjer, Jr. [BAE98] comments on the software

process:

Because software, like all capital, is embodied knowledge, and because that knowl-

edge is initially dispersed, tacit, latent, and incomplete in large measure, software de-

velopment is a social learning process The process is a dialogue in which the

knowledge that must become the software is brought together and embodied in the

software. The process provides interaction between users and designers, between

users and evolving tools, and between designers and evolving tools (technology!. It is

an iterative process in which the evolving tool itself serves as the medium for com-

munication, with each new round of the dialogue eliciting more useful knowledge

from the people involved.

Indeed, building computer software is an iterative learning process, and the

outcome, something that Baetjer would call "software capital, is an embodiment

of knowledge collected, distilled, and organized as the process is conducted.

What is it? When you work to

build a product or system, it's impor-

tant to go through a series of pre-

dictable steps—a road map that helps

you create a timely, high-quality result. The road

map that you follow is called a software process.

Who does it? Software engineers and their

managers adapt the process to their needs and

then follow it. In addition, the people who have

requested the software have a role to play in the

process of defining, building, and testing it.

Why is it important? Because it provides sta-

bility, control, and organization to an activity

that can, if left uncontrolled, become quite

chaotic. However, a modern software engineer-

ing approach must be "agile." It must demand

only those activities, controls, and documenta-

tion that are appropriate for the project team

and the product that is to be produced.

What are the steps? At a detailed level, the

process that you adopt depends on the software

that you're building. One process might be ap-

propriate for creating software for an aircraft

avionics system, while an entirely different

process would be indicated for the creation of a

Web site.

What is the work product? From the point of

view of a software engineer, the work products

are the programs, documents, and data that are

produced as a consequence of the activities and

tasks defined by the process.

How do I ensure that I've done it right?

There ore a number of software process assess-

ment mechanisms that enable organizations to de-

termine the "maturity" of their software process.

However, the quality, timeliness, and long-term vi-

ability of the product you build are the best indi-

cators of the efficacy of the process that you use.

52

CHAPTER 2 A GENERIC VIEW OF PROCESS 53

But what exactly is a software process from a technical point of view? Within the

context of this book, we define a software process as a framework for the tasks that

are required to build high-quality software. Is process synonymous with software en-

gineering? The answer is yes and no. A software process defines the approach that

is taken as software is engineered. But software engineering also encompasses tech-

nologies that populate the process—technical methods and automated tools.

More important, software engineering is performed by creative, knowledgeable

people who should adapt a mature software process that is appropriate for the prod-

ucts they build and the demands of their marketplace.

2,1 Software Engineering—A Layered Technology

Although hundreds of authors have developed personal definitions of software engi-

neering, a definition proposed by Fritz Bauer [NAU69] at the seminal conference on

the subject still serves as a basis for discussion:

[Software engineering is) the establishment and use of sound engineering principles in or-

der to obtain economically software that is reliable and works efficiently on real machines.

Almost every reader will be tempted to add to this definition. It says little about the

technical aspects of software quality; it does not directly address the need for cus-

tomer satisfaction or timely product delivery; it omits mention of the importance

of measurement and metrics; it does not state the importance of an effective

process. And yet, Bauer's definition provides us with a baseline. What are the

"sound engineering principles" that can be applied to computer software develop-

ment? How do we "economically" build software so that it is "reliable"? What is re-

quired to create computer programs that work "efficiently" on not one but many
different "real machines"? These are the questions that continue to challenge

software engineers.

"More than o discipline or o body of knowledge, engineering is o verb, on action word, o woy of approaching o

problem."

Scott Whitmire

The IEEE [IEE93] has developed a more comprehensive definition when it states:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable ap-

proach to the development, operation, and maintenance of software; that is, the applica-

tion of engineering to software. (2) The study of approaches as in (1).
software

engineering?

And yet, what is "systematic, disciplined" and "quantifiable" to one software team
may be burdensome to another. We need discipline, but we also need adaptability

and agility.

54 PART ONE THE SOFTWARE PROCESS

POINT
Software engineering

encompasses o

process, methods,

and tools.

WebRef
Cm W: iso journal

that provides pragmatic

information on process,

methods, and tools. It

con be found of

www.stsc.hllL

of.mil.

Software engineering is a layered technology. Referring to Figure 2.1, any engi-

neering approach (including software engineering) must rest on an organizational

commitment to quality. Total Quality Management, Six Sigma, and similar philoso-

phies foster a continuous process improvement culture, and it is this culture that ulti-

mately leads to the development ofincreasingly more effective approaches to software

engineering. The bedrock that supports software engineering is a qualityfocus.

The foundation for software engineering is the process layer. Software engineer-

ing process is the glue that holds the technology layers together and enables rational

and timely development ofcomputer software. Process defines a framework [PAU93j

that must be established for effective delivery of software engineering technology.

The software process forms the basis for management control of software projects

and establishes the context in which technical methods are applied, work products

(models, documents, data, reports, forms, etc.) are produced, milestones are estab-

lished, quality is ensured, and change is properly managed.

Software engineering methods provide the technical "how to's” for building soft-

ware. Methods encompass a broad array of tasks that include communication, re-

quirements analysis, design modeling, program construction, testing, and support.

Software engineering methods rely on a set of basic principles that govern each area

of the technology and include modeling activities and other descriptive techniques.

Software engineering tools provide automated or semiautomated support for the

process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established.

2.2 A Process Framework

A processframework establishes the foundation for a complete software process by

identifying a small number offramework activities that are applicable to all software

projects, regardless of their size or complexity. In addition, the process framework

encompasses a set of umbrella activities that are applicable across the entire software

process.

CHAPTER 2 A GENERIC VIEW OF PROCESS 55

A software

process

framework

Software process

Process framework

Referring to Figure 2.2, each framework activity is populated by a set of software
engineering actions—-a collection of related tasks that produces a major software

engineering work product (e.g., design is a software engineering action). Each action

is populated with individual work tasks that accomplish some part of the work im-
plied by the action.

"A process defines who is doing what, when, ond how to reach a certain goal.”

Ivor Jacobson, Grady Booch, and James Rumbaugh

^ What are

• the five

generic process

framework

activities?

PART ONE THE SOFTWARE PROCESS

The following generic process framework (used as a basis for the description of

process models in subsequent chapters) is applicable to the vast majority of software

projects:

Communication. This framework activity involves heavy communication and

collaboration with the customer (and other stakeholders') and encompasses re-

quirements gathering and other related activities.

Planning. This activity establishes a plan for the software engineering work

that follows. It describes the technical tasks to be conducted, the risks that are

likely, the resources that will be required, the work products to be produced, and a

work schedule.

Modeling. This activity encompasses the creation of models that allow the de-

veloper and the customer to better understand software requirements and the de-

sign that will achieve those requirements.

Construction. This activity combines code generation (either manual or auto-

mated) and the testing that is required to uncover errors in the code.

Deployment. The software (as a complete entity or as a partially completed in-

crement) is delivered to the customer who evaluates the delivered product and

provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small

programs, the creation of large Web applications, and for the engineering of large,

complex computer-based systems. The details of the software process will be quite

different in each case, but the framework activities remain the same.

"Bnstein argued that there must be a simplified explanation of nature, because God is not capricious or arbitrary. No

such faith comforts the software engineer. Much of the complexity that he must master is arbitrary complexity."

Fred Brooks

Using an example derived from the generic process framework, the modeling ac-

tivity is composed of two software engineering actions—analysis and design. Analy-

sis2 encompasses a set of work tasks (e.g„ requirements gathering, elaboration,

negotiation, specification, and validation) that lead to the creation of the analysis

model (and/or requirements specification). Design encompasses work tasks (data

1 A stakeholder is anyone who has a stake in the successful outcome of the project-business man-

agers, end-users, software engineers, support people, and so forth. Rob Thomsett jokes that a

stakeholder is a person holding a large and sharp stake— If you don't look after your stakehold-

ers, you know where the stake will end up."

2 Analysis is discussed at length in Chapters 7 and 8.

CHAPTER 2 A GENERIC VIEW OF PROCESS 57

POINT
Different projects

demand different tosk

sets. The software team

chooses the tosh set

based on problem ond

project characteristics.

design, architectural design, interface design, and component-level design) that cre-

ate a design model (and/or a design specification).3

Referring again to Figure 2.2, each software engineering action is represented by a

number of different task secs—each a collection of software engineering work tasks, re-

lated work products, quality assurance points, and project milestones. The task set that

best accommodates the needs of the project and the characteristics of the team is cho-

sen. This implies that a software engineering action (e.g., design) can be adapted to the

specific needs of the software project and the characteristics of the project team.

Task Set

A task set defines the actual work to be done

to accomplish the objectives of a software

engineering action. For example, "requirements

gathering" is an important software engineering action

that occurs during the communication activity. The goal

of requirements gathering is to understand what various

stakeholders want from the software that is to be built.

For a small, relatively simple project, the tosk set for

requirements gathering might look like this:

1 . Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and

functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

<5. Note areas of uncertainty.

For a larger, more complex software project, a

different task set would be required. It might encompass

the following work tasks:

1 .

2 .

V
Make a list of stakeholders for the project.

Interview each stakeholder separately to determine

overall wants and needs.

3. Build a preliminary list of functions and

based on stakeholder input.

4. Schedule a series of facilitated requirements

gathering meetings.

5. Conduct meetings.

6. Produce informal user scenarios as part of each

meeting.

7. Refine user scenarios based on stakeholder

feedback.

8. Build a revised list of stakeholder requirements.

9. Use quality function deployment techniques to

prioritize requirements.

1 0. Package requirements so that they can be delivered

incrementally.

1 1 . Note constraints and restrictions that will be placed

on the system.

1 2. Discuss methods for validating the system.

Both of-these task sets achieve requirements

gathering, but they are quite different in their depth and

formality. The software team chooses the task set that will

allow it to achieve the goal of each process activity and

software engineering action and still maintain quality

and agility.

J
The framework described in the generic view of software engineering is comple-

mented by a number of umbrella activities. Typical activities in this category include:

Software project tracking and control—allows the software team to assess

progress against the project plan and take necessary action to maintain schedule.

3 It should be noted that "modeling" must be interpreted somewhat differently when the mainte-

nance of existing software is conducted. In some cases, analysis and design modeling do occur, but

in other maintenance situations, modeling may be used to help understand the legacy software as

well as to represent additions or modifications to it.

58 PART ONE THE SOFTWARE PROCESS

POINT
Umbrello activities

occur throughout the

softv/ore process and

focus primorily on

project management,

tracking, ond control.

POINT
Software process

adaptation is essential

for project success.

^ How do

• process

models differ from

one another?

Risk management—assesses risks that may effect the outcome of the project

or the quality of the product.

Software quality assurance—defines and conducts the activities required to

ensure software quality.

Formal technical reviews—assesses software engineering work products in

an effort to uncover and remove errors before they are propagated to the next ac-

tion or activity.

Measurement—defines and collects process, project, and product measures

that assist the team in delivering software that meets customers' needs; can be

used in conjunction with all other framework and umbrella activities.

Software configuration management—manages the effects of change

throughout the software process.

Reusability management—defines criteria for work product reuse (including

software components) and establishes mechanisms to achieve reusable components.

Work product preparation and production—encompasses the activities re-

quired to create work products such as models, documents, logs, forms, and lists.

Umbrella activities are applied throughout the software process and are discussed in

detail later in this book.

All process models can be characterized within the process framework shown in

Figure 2.2. Intelligent application of any software process model must recognize that

adaptation (to the problem, project, team, and organizational culture) is essential for

success. But process models do differ fundamentally in:

• The overall flow of activities and tasks and the interdependencies among

activities and tasks.

• The degree to which work tasks are defined within each framework activity.

• The degree to which work products are identified and required.

• The manner which quality assurance activities are applied.

• The manner in which project tracking and control activities are applied.

• The overall degree of detail and rigor with which the process is described.

• The degree to which customer and other stakeholders are involved with the

project.

• The level of autonomy given to the software project team.

• The degree to which team organization and roles are prescribed

“I feel a recipe is only a theme which on intelligent cook can ploy each time with o variation.'

Madame Benoit

Process models that stress detailed definition, identification, and application ofprocess

activities and tasks have been applied within the software engineering community for

CHAPTER 2 A GENERIC VIEW OF PROCESS 59

^ What

• characterizes

an "agile"

process?

2L1

WebRef

Complete informction

on the CMMI con be

obtained at

http://www.sei.

cmu.ed.u/cmmi/.

the past 30 years. When these prescriptive process models are applied, the intent is to

improve system quality, to make projects more manageable, to make delivery dates and

costs more predictable, and to guide teams of software engineers as they perform the

work required to build a system. Unfortunately, there have been times when these ob-

jectives were not achieved. If prescriptive models are applied dogmatically and without

adaptation, they can increase the level of bureaucracy associated with building com-

puter-based systems and inadvertently create difficulty for developers and customers.

Process models that emphasize project agility and follow a set of principles4 that

lead to a more informal (but, proponents argue, no less effective) approach to soft-

ware process have been proposed in recent years. These agile process models em-

phasize maneuverability and adaptability. They are appropriate for many types of

projects and are particularly useful when Web applications are engineered.

Which software process philosophy is best? This question has spawned emotional

debate among software engineers and will be addressed in Chapter 4. For now, it is

important to note that these two process philosophies have a common goal—to create

high-quality software that meets the customer's needs—but different approaches.

The Capability Maturity Model Integration (CMMI)

The Software Engineering Institute (SEI) has developed a comprehensive process

meta-model that is predicated on a set of system and software engineering capabil-

ities that should be present as organizations reach different levels of process

capability and maturity. To achieve these capabilities, the SEI contends that an or-

ganization should develop a process model (Figure 2.2) that conforms to The Capa-

bility Maturity Model Integration (CMMI) guidelines [CMM02].

The CMMI represents a process meta-model in two different ways: (1) as a con-

tinuous model and (2) as a staged model. The continuous CMMI meta-model de-

scribes a process in two dimensions as illustrated in Figure 2.3. Each process area

(e.g., project planning or requirements management) is formally assessed against

specific goals and practices and is rated according to the following capability levels:

Level O: Incomplete. The process area (e.g., requirements management) is ei-

ther not performed or does not achieve all goals and objectives defined by the

CMMI for level 1 capability.

Level l : Performed. All of the specific goals of the process area (as defined by

the CMMI) have been satisfied. Work tasks required to produce defined work prod-

ucts are being conducted.

Level 2: Managed. All level 1 criteria have been satisfied. In addition, all work

associated with the process area conforms to an organizationally defined policy;

all people doing the work have access to adequate resources to get the job done;

4 Agile models and the principles that guide them are discussed in Chapter 4.

60 PART ONE THE SOFTWARE PROCESS

CMMI process

area capa-
bility profile

[PHI02]

1

12

|
3 2

PP Project planning

REQM Requirements management

MA Measurement and analysis

CM Configuration management

PPQA Process and product QA
3

4 —

2

—

0 —
MA CM PPQA

Process area

others

fvery organization

should strive to

achieve the intent of

the CMMI. However,

implementing every

aspect of the model

may be<overkill in

some situations.

stakeholders are actively involved in the process area as required; ail work tasks

and work products are "monitored, controlled, and reviewed; and are evaluated for

adherence to the process description" [CMM02],

Level 3; Defined. All level 2 criteria have been achieved. In addition, the

process is "tailored from the organization's set of standard processes according

to the organization's tailoring guidelines, and contributes work products, mea-

sures, and other process-improvement information to the organizational process

assets" [CMM02].

Level 4: Quantitatively managed. All level 3 criteria have been achieved.

In addition, the process area is controlled and improved using measurement and

quantitative assessment. "Quantitative objectives for quality and process

performance are established and used as criteria in managing the process"

[CMM02]

.

Level 5: Optimized. All capability level 4 criteria have been achieved. In addi-

tion, the process area is adapted and optimized using quantitative (statistical)

means to meet changing customer needs and to continually improve the efficacy of

the process area under consideration" [CMM02],

.
,

,
—— 1*

“Much of the software crisis is self-inflicted, os when a CIO says, "I'd rather have it wrong than hove it late. We con

always fix it later.”

Mark Paulk

The CMMI defines each process area in terms of'specific goals" and the "specific

practices" required to achieve these goals. Specific goals establish the characteristics

that must exist if the activities implied by a process area are to be effective. Specific

practices refine a goal into a set of process-related activities.

CHAPTER 2 A GENERIC VIEW OF PROCESS 61

WebRef
Complete infotmofoi

os well os o

downloodoble version

of the CMMI con be

obtained at

www.sei.cmu.

edu/cmmi/.

For example, project planning is one of eight process areas defined by the CMMI

for the "project management" category. 5 The specific goals (SG) and the associated

specific practices (SP) defined for project planning are [CMM02]

:

SG 1 Establish estimates

SP 1 . 1 - 1 Estimate the scope of the project

SP 1 .2- 1 Establish estimates of work product and task attributes

SP 1.3-1 Define project life cycle

SP 1.4-1 Determine estimates of effort and cost

SG 2 Develop a Project Plan

SP 2.1-1 Establish the budget and schedule

SP 2.2- 1 Identify project risks

SP 2.3-1 Plan for data management

SP 2.4-1 Plan for project resources

SP 2.5-1 Plan for needed knowledge and skills

SP 2.6-1 Plan stakeholder involvement

SP 2.7-1 Establish the project plan

SG 3 Obtain commitment to the plan

SP 3.1-1 Review plans that affect the project

SP 3.2-1 Reconcile work and resource levels

SP 3.3-1 Obtain plan commitment

In addition to specific goals and practices, the CMMI also defines a set of five

generic goals and related practices for each process area. Each of the five generic goals

corresponds to one of the five capability levels. Hence, to achieve a particular capa-

bility level, the generic goal for that level and the generic practices that correspond to

that goal must be achieved. To illustrate, the generic goals (GG) and practices (GP) for

the project planning process area are [CMM02]:

GG 1 Achieve specific goals

GP 1.1 Perform base practices

GG 2 Institutionalize a managed process

GP 2.1 Establish an organizational policy

GP 2.2 Plan the process

GP 2.3 Provide resources

5 Other process areas defined for "project management" include: project monitoring and control,

supplier agreement management, integrated project management for IPPD, risk management, in-

tegrated teaming, integrated supplier management, and quantitative project management.

62 PART ONE THE SOFTWARE PROCESS

GP 2.4 Assign responsibility

GP 2.5 Train people

GP 2.6 Manage configurations

GP 2.7 Identify and involve relevant stakeholders

GP 2.8 Monitor and control the process

GP 2.9 Objectively evaluate adherence

GP 2.10 Review status with higher level management

GG 3 Institutionalize a defined process

GP 3. 1 Establish a defined process

GP 3.2 Collect improvement information

GG 4 Institutionalize a quantitatively managed process

GP 4.1 Establish quantitative objectives for the process

GP 4.2 Stabilize subprocess performance

GG 5 Institutionalize an optimizing process

GP 5. 1 Ensure continuous process improvement

GP 5.2 Correct root causes of problems

The staged CMMI model defines the same process areas, goals, and practices as

the continuous model. The primary difference is that the staged model defines five

maturity levels, rather than five capability levels. To achieve a maturity level, the spe-

cific goals and practices associated with a set of process areas must be achieved. The

relationship between maturity levels and process areas is shown in Figure 2.4.

The CMMI—Should We or Shouldn’t We?
The CMMI is a process mefa-model. It defines

(in over 700 pages) the process characteristics

that should exist if an organization wants to establish o

software process that is complete. The question that hos

been debated for well over a decade is: Is the CMMI
overkill? Like most things in life (and in software), the

answer is not a simple yes or no.

The spirit of the CMMI should always be adopted. At the

risk of oversimplification, it argues that software

development must be taken seriously—it must be planned

thoroughly; it must be controlled uniformly; it must be

tracked accurately; and it must be conducted professionally,

^tanust focus on the needs of project stakeholders, the skills

of the software engineers, and the quality of the end

product. No one would argue with these ideas.

The detailed requirements of the CMMI should be

seriously considered if an organization builds large

complex systems that involve dozens or hundreds of

people over many months or years. It may be that the

CMMI is just right in such situations, if the organizational

culture is amenable to standard process models and

management is committed to making it a success.

However, in other situations, the CMMI may simply be too

much for an organization to successfully assimilate. Does

this mean that the CMMI is bad or overly bureaucratic or

old fashioned? No, it does not. It simply means that what

J

63CHAPTER 2 A GENERIC VIE'/.' OF PROCESS

r.
is right for one company culture may not be rigfr for

another.

The CMMI is o significant achievement in software

engineering. It provides a comprehensive discussion of the

activities and actions that should be present when an

organizct on builds computer software. Even if a sodware

organization chooses not to adopt its details, every

software team should emDrace its spirit and gam insight

from its discussion of software engineering process and

practice. .

Process areas

required to

achieve a
maturity level

Optimizing
Continuous
process

improvement

Organizational Innovation and Deployment
Causal Analysis and Resolution

Quantitatively

managed
Quantitative

management
Organizational Process Performance
Quantitative Project Management

Defined
Process

standardization

Requirements Development
Technical Solution

Product Integration

Verification

Validation

Organizational Process Focus

Organizational Process Definition

Organizational Training

Integrated Project Management
Integrated Supplier Management
Risk Management
Decision Analysis and Resolution
Organizational Environment for Integration

Integrated Teaming

Managed
Basic

project

management

Requirements Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

Performed

vvhat is a
Ttle s°ftware process can be defined as a collection of patterns that define a set of

• process activities, actions, work tasks, work products and/or related behaviors [AMB981 re-

pattern? quired to develop computer software. Stated in more general tenns, a process pat-

tern provides us with a template—a consistent method for describing an important

characteristic of the software process. By combining patterns, a software team can

construct a process that best meets the needs of a project.

64 PART ONE THE SOFTWARE PROCESS

"The repetition of patterns is quite a different thing than the repetition of parts. Indeed, the different parts will be

unique because the patterns are the same.”

Christopher Alexander

Patterns can be defined at any level of abstraction. 6
In some cases, a pattern might

be used to describe a complete process (e.g., prototyping). In other situations, pat-

terns can be used to describe an important framework activity (e.g., planning) or a

task within a framework activity (e.g., project-estimating).

Ambler [AMB98] has proposed the following template for describing a process

pattern:

POINT
A pattern template

provides a consistent

means for describing a

pattern.

Pattern Name. The pattern is given a meaningful name that describes its function

within the software process (e.g., customer-communication).

Intent. The objective of the pattern is described briefly. For example, the intent of

customer-communication is "to establish a collaborative relationship with the

customer in an effort to define project scope, business requirements, and other

project constraints." The intent might be further expanded with additional explana-

tory' text and appropriate diagrams if required.

Type. The pattern type is specified. Ambler [AMB98] suggests three types:

• Task patterns define a software engineering action or work task that is part of

the process and relevant to successful software engineering practice (e.g.,

requirements gathering is a task pattern).

• Stage patterns define a framework activity for the process. Since a framework

activity encompasses multiple work tasks, a stage pattern incorporates

multiple task patterns that are relevant to the stage (framework activity). An

example of a stage pattern might be communication. This pattern would

incorporate the task pattern requirements gathering and others.

• Phase patterns define the sequence of framework activities that occur with

the process, even when the overall flow of activities is iterative in nature. An

example of a phase pattern might be a spiral model or prototyping 7

Initial Context. The conditions under which the pattern applies are described.

Prior to the initiation of the pattern, we ask (1) what organizational or team-

related activities have already occurred, (2) what is the entry state for the

process, and (3) what software engineering information or project information

already exists.

6 Patterns are applicable to many software engineering activities. Analysis, design, and testing pat-

terns are discussed in Chapters 7, 9, 10, 12, and 14, Patterns and "antipatterns" for project man-

agement activities are discussed in Part 4 of this book.

7 These phase patterns are discussed in Chapter 3.

CHAPTER 2 A GENERIC VIEW OF PROCESS 65

For example, the planning pattern (a stage pattern) requires that (1) customers

and software engineers have established a collaborative communication; (2) suc-

cessful completion of a number of task patterns (specified) for the customer-

comniunication pattern has occurred; and (3) project scope, basic business

requirements, and project constraints are known.

Problem. The problem to be solved by the pattern is described. For example, the

problem to be solved by customer-communication might be described in the fol-

lowing manner: Communication between the developer and the customer is often in-

adequate because an effectiveformatfor eliciting information is not established, a

useful mechanismfor recording it is not created, and meaningful review is not con-

ducted.

Solution. The implementation of the pattern is described. This section discusses

how the initial state of the process (that exists before the pattern is implemented)

is modified as a consequence the initiation of the pattern. It also describes how
software engineering information or project information that is available before the

initiation of the pattern is transformed as a consequence of the successful execu-

tion of the pattern.

Resulting Context. The conditions that will result once the pattern has been suc-

cessfully implemented are described. Upon completion of the pattern we ask

(1) what organizational or team-related activities must have occurred, (2) what is

the exit state for the process, and (3) what software engineering information or

project information has been developed

Related Patterns. A list of all process patterns that are directly related to this one

are provided—as a hierarchy or in some other diagrammatic form. For example,

the stage pattern communication encompasses the task patterns project-team

assembly, collaborative-guideline definition, scope-isolation, require-

ments gathering, constraint-description, and mini-spec/model creation.

Known Uses/Examples. The specific instances in which the pattern is applicable

are indicated. For example, communication is mandatory at the beginning of

every software project; it is recommended throughout the software project; and it

is mandatory once the deployment activity is underway.

WebRef

Comprehensive

resources on process

patterns con he found

at

www.ambysoft.

com/process

PatternsPoge.html.

Process patterns provide an effective mechanism for describing any software

process. The patterns enable a software engineering organization to develop a hier-

archical process description that begins at a high-level of abstraction (a phase pat-

tern). The description is refined into a set of stage patterns that describe framework

activities and then further refined in hierarchical fashion into more detailed task pat-

terns for each stage pattern. Once process patterns have been developed, they can

be reused for the definition of process variants—that is, a customized process model

can be defined by a software team using the patterns as building blocks for the

process model.

66 PART ONE THE SOFTWARE PROCESS

An Example Process Pattern

The following abbreviated process pattern

describes an approach that may be applicable

when stakeholders have a general idea of what must be

done, but are unsure of specific software requirements.

Pattern name. Prototyping.

Intent. The objective of the pattern is to build a model

(a prototype) that can be assessed iteratively by

stakeholders in an effort to identify or solidify

software requirements.

Type. Phase pattern.

Initial context. The following conditions must be met prior

to the initiation of this pattern: (1)
stakeholders have been

identified; (2) a mode of communication between

stakeholders and the software team has been established;

(3) the overriding problem to be solved has been

identified by stakeholders; (4) an initial understanding of

project scope, basic business requirements, and project

constraints has been developed.

Problem. Requirements are hazy or nonexistent, yet there

is dear recognition that there is a problem, and the

problem must be addressed with a software solution.

Stakeholders are unsure of what they want; that is, they

cannot describe software requirements in any detail.

Solution. A description of the prototyping process is

presented here. See Chapter 3 for details.

Resulting context. A software prototype that identifies

basic requirements (e.g., modes of interaction,

computational features, processing functions) is

approved by stakeholders. Following this, (1)
the

prototype may evolve through a series of increments to

become the production software or (2) the prototype

may be discarded and the production software built

using some other process pattern.

Related patterns. The following patterns are related to

this pattern: customer-communication; iterative

design; iterative development, customer

assessment; requirement extraction.

Known uses/examples. Prototyping is recommended

when requirements are uncertain.

J

2.5 Process Assessment

POINT
Assessment attempts

to understand the

current state of the

software process with

the intent of

improving it.

The existence of a software process is no guar antee that software will be delivered on

time, that it will meet the customer's needs, or that it will exhibit the technical charac-

teristics that will lead to long-term quality characteristics (Chapter 26) . Process patterns

must be coupled with solid software engineering practice (Part 2 of this book). In addi-

tion, the process itself should be assessed to ensure that it meets a set of basic process

criteria that have been shown to be essential for a successful software engineering. 8

The relationship between the software process and the methods applied for assess-

ment and improvement is shown in Figure 2.5. A number of different approaches to

softwareprocess assessment have been proposed over the past few decades:

What formal

• techniques

are availabe for

assessing the

software process?

Standard CMMI Assessment Method for Process Improvement (SCAMPI)

provides a five-step process assessment model that incorporates initiating, diagnos-

ing, establishing, acting, and learning. The SCAMPI method uses the SE1 CMMI

(Section 2.3) as the basis for assessment [SEI00]

.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI) pro-

vides a diagnostic technique for assessing the relative maturity of a software or-

8 The SETs CMMI [CMM02J describes the characteristics of a software process and the criteria for a

successful process in voluminous detail.

CHAPTER 2 A GENERIC VIEW OF PROCESS 67

ganization, using the SEI CMM (a precursor to the CMMI discussed in Section 2.3)

as the basis for the assessment [DUN01].

SPICE (ISO/IECI5504) standard defines a set of requirements for software

process assessment. The intent of the standard is to assist organizations in develop-

ing an objective evaluation of the efficacy of any defined software process [SPI99]

ISO 9001 :2000 for Software is a generic standard that applies to any organi-

zation that wants to improve the overall quality of the products, systems, or services

that it provides. Therefore, the standard is directly applicable to software organiza-

tions and companies.

Because ISO 9001:2000 is widely used on an international scale, we examine it

briefly in the paragraphs that follow.

"Software organizations hove exhibited significant shortcomings in their ability to capitalize on the experiences

gained from completed projects.'

NASA

The International Organization for Standardization (ISO) has developed the ISO

9001:2000 standard [ISOOO] to define the requirements for a quality management

system (Chapter 26) that will serve to produce higher quality products and thereby

improve customer satisfaction.9

9 Software quality assurance (SQA). an important element of quality management, has been defined

as a umbrella activity that is applied across the entire process framework it is discussed in detail

in Chapter 26.

68 PART ONE THE SOFTV/ARE PROCESS

WebRef
An excellent summay

of ISO 9001:2000 con

be found ot

kttp://praxiom.

com/iso-

9001.htm.

The underlying strategy' suggested by ISO 9001:2000 is described in the following

manner [1SO01]:

ISO 9001 :2000 stresses the importance for an organization to identify, implement, man-

age, and continually improve the effectiveness of the processes that are necessary for the

quality management system, and to manage the interactions of these processes in order

to achieve the organization's objectives . .

.

ISO 900 1 :2000 has adopted a "plan-do-check-act" cycle that is applied to the quality

management elements of a software project. Within a software context, "plan"

establishes the process objectives, activities, and tasks necessary' to achieve high-

quality software and resultant customer satisfaction. "Do" implements the software

process (including both framework and umbrella activities). "Check" monitors and

measures the process to ensure that all requirements established for quality man-

agement have been achieved "Act" initiates software process improvement activi-

ties that continually work to improve the process.

For a detailed discussion of ISO 9001:2000 interested readers should see the

ISO standards themselves or [C1A01], [KET01], or [MON01] for comprehensive

information.

Ul

WebRef
A wide array of

resources for PSP coo

be found at

www.ipd.uka.de/

PSP/.

Personal and Team PROCESS MODELS

The best software process is one that is close to the people who will be doing the

work. If a software process model has been developed at a corporate or organiza-

tional level, it can be effective only if it is amenable to significant adaptation to meet

the needs of the project team that is actually doing software engineering work, in an

ideal setting, each software engineer would create a process that best fits his or her

needs, and at the same time meets the broader needs of the team and the organiza-

tion. Alternatively, the team itself would create its own process, and at the same time

meet the narrower needs of individuals and the broader needs of the organization.

Watts Humphrey ([HUM97] and [HUMOO]) argues that it is possible to create a "per-

sonal software process" and/or a "team software process." Both require hard work,

training and coordination, but both are achievable. 10

'A person who is successful hos simply formed the hobil of doing things that unsuccessful people will not do.

Dexter Yager

2.6.1 Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be

haphazard or ad hoc, may change on a daily basis, may not be efficient, effective or

even successful, but a process does exist. Watts Humphrey' [HUM97] suggests that in

10 It's worth noting that the proponents of agile software development (Chapter 4) also argue that the

process should remain close to the team. They propose an alternative method for achieving this.

CHAPTER 2 A GENERIC VIEW OF PROCESS 69

order to change an ineffective personal process, an individual must move through

four phases, each requiring training and careful instrumentation. The personal soft-

ware process (PSP) emphasizes persona! measurement ofboth the work product that

is produced and the resultant quality of the work product. In addition, PSP makes the

practitioner responsible for project planning (e.g., estimating and scheduling) and

empowers the practitioner to control the quality of all software work products that

are developed.

The PSP process model defines five framework activities: planning, high-level de-

sign, high-level design review, development, and postmortem.

9 What

• framework

activities are used

during PSP?

Planning. This activity isolates requirements and. based on these, develops both

size and resource estimates. In addition, a defect estimate (the number of defects

projected for the work) is made. All metrics are recorded on worksheets or tem-

plates. Finally, development tasks are identified and a project schedule is created.

High-level design. External specifications for each component to be con-

structed are developed and a component design is created. Prototypes are built

when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 26) are ap-

plied to uncover errors in the design. Metrics are maintained for all important tasks

and work results.

Development. The component level design is refined and reviewed. Code is

generated, reviewed, compiled, and tested. Metrics are maintained for all impor-

tant tasks and work results.

Postmortem. Using the measures and metrics collected (a substantial amount

of data that should be analyzed statistically), the effectiveness of the process is de-

termined. Measures and metrics should provide guidance for modifying the process

to improve its effectiveness.

POINT
PSP emphasizes the

need to record and

analyze the types of

errors you moke, so

you can develop

strategies to eliminate

them.

PSP stresses the need for each software engineer to identify errors early and, as im-

portant, to understand the types of errors that he is likely to make. This is accomplished

through a rigorous assessment activity performed on all work products produced by the

software engineer.

PSP represents a disciplined, metrics-based approach to software engineering that

may lead to culture shock for many practitioners. However, when PSP is properly in-

troduced to software engineers [HUM96], the resulting improvement in software en-

gineering productivity and software quality are significant [FER97] . However, PSP has

not been widely adopted throughout the industry. The reasons, sadly, have more to

do with human nature and organizational inertia than they do with the strengths and

weaknesses of the PSP approach. PSP is intellectually challenging and demands a

level of commitment (by practitioners and their managers) that is not always possi-

ble to obtain. Training is relatively lengthy, and training costs are high. The required

level of measurement is culturally difficult for many software people.

70

WebBel
Informolim on building

higlvperforirance

teams using TSP ond

PSP con bo obtained at

www.sei.ami.

edu/lsp/.

To form o self-directed

team, you must collab-

orate well internally

and communicate well

externally.

*2

POINT
TSP scripts define

elements of the team

process and activities

that occur within the

process.

PART ONE THE SOFTWARE PROCESS

Can PSP be used as an effective software process at a personal level? The answer

is an unequivocal yes. But even if PSP is not adopted in its entirety, many of the per-

sonal process improvement concepts that it introduces are well worth learning.

2.6.2 Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team ol practition-

ers, Watts Humphrey extended the lessons learned from the introduction of PSP and

proposed a team software process (TSP). The goal ot TSP is to build a "selt-directed" proj-

ect team that organizes itself to produce high-quality software. Humphrey [HUM 98] de-

fines the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, and

own their processes and plans. These can be pure software teams or inte-

grated product teams (1PT) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help

them sustain peak performance.

• Accelerate software process improvement by making CMM level 5 behavior

normal and expected.

• Provide improvement guidance to high-maturity organizations

• Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives.

It defines roles and responsibilities for each team member; tracks quantitative project

data (about productivity and quality); identifies a team process that is appropriate for

the project and a strategy for implementing the process; defines local standards that

are applicable to the team's software engineering work; continually assesses risk and

reacts to it; and tracks, manages, and reports project status.

"Finding good players is easy. Getting them to ploy as a team is another story.”

Casey Stengel

TSP defines the following framework activities: launch, high-level design, imple-

mentation, integration and test, and postmortem. Like their counterparts in PSP

(note that terminology is somewhat different), these activities enable the team to

plan, design, and construct software in a disciplined manner while at the same time

quantitatively measuring the process and the product, The postmortem sets the

stage for process improvements.

TSP makes use of a wide variety of scripts, forms, and standards that serve to

guide team members in their work. Scripts define specific process activities (i.e., proj-

ect launch, design, implementation, integration and testing, and postmortem) and

other more detailed work functions (e.g., development planning, requirements de-

velopment, software configuration management, and unit test) that are part of the

team process. To illustrate, consider the initial process activity-project launch.

CHAPTER 2 A GENERIC VIEW OF PROCESS 71

Each project is "launched" using a sequence of tasks (defined as a script) that en-

ables the team to establish a solid basis for starting the project: The following launch

script (outline only) is recommended [HUMOO]:

WebRef
Inhumation on the

softwore process

dashhoord—n PSP

end ISP support

tool—con be found ot

processdash.

sourceforge.net.

• Review project objectives with management and agree on and document

team goals.

• Establish team roles.

• Define the team's development process.

• Make a quality plan and set quality targets.

• Plan for the needed support facilities.

• Produce an overall development strategy.

• Make a development plan for the entire project.

• Make detailed plans for each engineer for the next phase.

• Merge the individual plans into a team plan.

• Rebalance team workload to achieve a minimum overall schedule.

• Assess project risks and assign tracking responsibility for each key risk.

it should be noted that the launch activity can be applied prior to each TSP frame-

work activity noted earlier. This accommodates the iterative nature of many projects

and allows the team to adapt to changing customer needs and lessons learned from

previous activities.

TSP recognizes that the best software teams are self-directed. Team members set

project objectives, adapt the process to meet their needs, have control over sched-

ule, and through measurement and analysis of the metrics collected, work continu-

ally to improve the team's approach to software engineering.

Like PSP, TSP is a rigorous approach to software engineering that provides dis-

tinct and quantifiable benefits in productivity and quality'. The team must make a full

commitment to the process and must undergo thorough training to ensure that the

approach is properly applied.

2.7 Process Technology

The generic process models discussed in the preceding sections must be adapted for

use by a software project team. To accomplish this, process technology tools have been

developed to help software organizations analyze their current process, organize

work tasks, control and monitor progress, and manage technical quality [NEG99].

Process technology tools allow a software organization to build an automated

model of the common process framework, task sets, and umbrella activities dis-

cussed in Section 2.2. The model, normally represented as a network, can then be

analyzed to determine typical workflow and examine alternative process structures

that might lead to reduced development time or cost.

72 PART ONE THE SOFTWARE PROCESS

Once an acceptable process has been created, other process technology tools can

be used to allocate, monitor, and even control all software engineering tasks defined

as part of the process model. Each member of a software team can use such tools to

develop a checklist of work tasks to be performed, work products to be produced,

and quality assurance activities to be conducted. The process technology tool can

also be used to coordinate the use of other computer-aided software engineering

tools that are appropriate for a particular work task.

Process Modeling Tools

Objective: If an organization works to

improve a business (or software) process, it must

first understand it. Process modeling tools (also called

process technology or process management tools
)
are used

to represent the key elements of a process so that it can be

better understood. Such tools can also provide links to

process descriptions that help those involved in the process

to understand the actions and work tasks that are required

to perform it. Process modeling tools provide links to other

tools that provide support to defined process activities.

Mechanics: Tools in this category allow a team to define

the elements of a unique process model (actions, tasks,

work products, QA points), provide detailed guidance on

Software Tools
\

the content or description of each process element, and

then manage the process as it is conducted. In some cases,

the process technology tools incorporate standard project

management tasks such as estimating, scheduling, tracking

and control.

Representative Tools:"

igrafx Process Tools, distributed by Corel Corporation

(www.igrafx.com/products/process), is a set of tools

that enable a team to map, measure, and model the

software process

Objexis Team Portal, developed by Objexis Corporation

(www.objexis.com), provides full process workflow

definition and control. J

2.8 Product and Process _
If the process is weak, the end product will undoubtedly suffer. But an obsessive

over-reliance on process is also dangerous, In a brief essay, Margaret Davis [DAV95]

comments on the duality of product and process:

About every ten years give or take five, the software community redefines "the problem"

by shifting its focus from product issues to process issues. Thus, we have embraced struc-

tured programming languages (product) followed by structured analysis methods

(process) followed by data encapsulation (product) followed by the current emphasis on

the Software Engineering institute's Software Development Capability Maturity Model

(process) (followed by object-oriented methods, followed by agile software development)

.

While the natural tendency of a pendulum is to come to rest at a point midway be-

tween two extremes, the software community's locus constantly shifts because new force

is applied when the last swing fails These swings are harmful in and of themselves be-

cause they confuse the average software practitioner by radically changing what it means

1 1 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 2 A GENERIC VIEW OF PROCESS 73

to perform the job, let alone perform it well The swings also do not solve "the problem,"

for they are doomed to fail as long as product and process are treated as forming a di-

chotomy instead of a duality.

There is precedence in the scientific community to advance notions of duality when con-

tradictions in observations cannot be fully explained by one competing theory or another.

The dual nature of light, which seems to be simultaneously particle and wave, has been ac-

cepted since the 1920s when Louis de Broglie proposed it. I believe that the observations we

can make on the artifacts of software and its development demonstrate a fundamental du-

ality between product and process. You can never derive or understand the full artifact, its

context, use, meaning, and worth ifyou view it as only a process or only a product. . .

All of human activity may be a process, but each of us derives a sense of self-worth

from those activities that result in a representation or instance that can be used or ap-

preciated either by more than one person, used over and over, or used in some other con-

text not considered. That is, we derive feelings of satisfaction from reuse of our products

by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development potentially

increases the satisfaction software practitioners derive from their work, it also increases

the urgency for acceptance of the duality of product and process. Thinking ofa reusable ar-

tifact as only product or only process either obscures the context and ways to use it or ob-

scures the fact that each use results in product that will, in turn, be used as input to some

other software development activity. Taking one view over the other dramatically reduces

the opportunities for reuse and, hence, loses the opportunity for increasing job satisfaction.

"Ho doubt the ideol system, if it were attainable, would be o code at once so flexible and minute, as to supply in

advance for every conceivable situation a just and fitting rule. But life is too complex to bring the attainment of this

idea within the compass of human power,''

Benjamin Cardozo

People derive as much (or more) satisfaction from the creative process as they do

from the end-product. An artist enjoys the brush strokes as much as the framed re-

sult. A writer enjoys the search for the proper metaphor as much as the finished

book. A creative software professional should also derive as much satisfaction from

the process as the end-product.

The work of software people will change in the years ahead. The duality of prod-

uct and process is one important element in keeping creative people engaged as the

transition from programming to software engineering is finalized.

2.9 Summary

Software engineering is a discipline that integrates process, methods, and tools for the

development ofcomputer software. A number of different process models for software

engineering have been proposed, but all define a set of framework aclivities, a collec-

tion of tasks that are conducted to accomplish each activity, work products produced

74 PART ONE THE SOFTWARE PROCESS

as a consequence of the tasks, and a set of umbrella activities that span the entire

process. Process patterns can be used to define the characteristics of a process.

The Capability Maturity Model Integration (CMMI) is a comprehensive process

meta-model that describes the specific goals, practices, and capabilities that should

be present in a mature software process. SPICE and other standards define the re-

quirements for conducting an assessment of software process, and the ISO 9001:

2000 standard examines quality management within a process.

Personal and team models for the software process have been proposed. Both

emphasize measurement, planning, and self-direction as key ingredients for a suc-

cessful software process.

The principles, concepts, and methods that enable us to perform the process that

we call software engineering are considered throughout the remainder of this book.

References

|AMB98] Ambler, S., Process Patterns: Building Large-Scale Systems Using Object Technology,

Cambridge University Press/SiCS Books, 1998.

[BAE98] Baetjer, Jr., H., Software as Capital, IEEE Computer Society Press, 1998, p. 85.

[C1A01] Cianfrani, C., et al„ ISO 9001: 2000 Explained, American Society of Quality, 2001.
[CMM02] Capability Maturity Model Integration (CMMI), Version 1.1, Software Engineering Insti-

tute, March 2002, available at http://www.sei.cmu.edu/cmmi/.
[DAV95] Davis, M„ "Process and Product: Dichotomy or Duality," Software Engineering Notes,

ACM Press, vol. 20, no. 2, April, 1995, pp. 17-18.

fDUNOl) Dunaway, D., and S. Masters, CMM-Based Appraisalfor Internal Process Improvement (CBA
IPl Version 1.2 Method Description, Software Engineering institute, 2001, can be downloaded at

httpy/www.sei.cmu.edu/pubiications/documents/O I .reports/01 tr033.html.

[ELE98] El Emam, K„ J. Drouin, and W. Meio (eds.), SPICE: The Theory and Practice ofSoftware
Process Improvement and Capability Determination, IEEE ComputerSociety Press, i 998

[FER971 Ferguson, P„ et al„ “Results of applying the personal software process," IEEE Computer,
vol. 30 , no. 5, May 1997, pp. 24-3

1

|HUM96] Humphrey, W., "Using a Defined and Measured Personal Software Process," IEEE Soft-
ware, vol. 13, no. 3, May/June 1996, pp. 77-88.

|HUM97] Humphrey, W., Introduction to the Personal Software Process, Addison-Wesley, 1997.
[HUM98] Humphrey, W„ “The Three Dimensions of Process Improvement. Part 111: The Team

Process," Crosstalk, April 1998. Available at http://www.stsc.hill.af.mil/ crosstalk/ 1 998/apr/
dimensions.asp

[HUM00J Humphrey, W„ Introduction to the Team Software Process, Addison-Wesley, 2000
[IEE93] IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990, IEEE, 1993.

IISOOO) ISO 9001:2000 Document Set, International Organization for Standards, 2000,
http://www.iso.ch/iso/en/iso9000-l4000/iso9000/iso9000index.html.

[1SOO
1 1 "Guidance on the Process Approach to Quality Management Systems," Document 1SO/TC

1 76/SC 2/N544R, International Organization for Standards, May 2001

.

[KETOl
|
Ketoia, J„ and K. Roberts , ISO 9001 : 2000 in a Nutshell, 2ed„ Raton Press, 2001.

[MONO
1 1 Monnich, H., jr„ and H. Monnich, ISO 900 1 : 2000 for Small- and Medium-Sized Busi-

nesses, American Society of Quality, 2001

.

[NAU69I Naur, P.
,
and B. Randall (eds.)

, Software Engineering: A Report on a Conference Sponsored
by the NATO Science Committee, NATO, 1 969.

[NEG99I Negele, H., "Modeling of Integrated Product Development Processes," Proc. 9lh Annual
Symposium ofINCOSE, United Kingdom, 1999.

[PAU93J Paulk, M., et a!.. Capability Maturity Modelfor Software, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 1993.

CHAPTER 2 A GENERIC VIEW OF PROCESS 75

[PHI02) Phillips, M„ "CM Ml VI .1 Tutorial," April 2002, available at http://www.sei. cmu.edu/

cmmi/.

ISEI00] SCAMPI, VI. 0 Standard CMMI ® Assessment Methodfor Process Improvement: Method De-

scription, Software Engineering institute, Technical Report CMU/SEI-2000-TR-009, download-

able from http://www.sei.cmu.edu/publications/documents/00.reports/00tr009. html.

[SPI991 "SPICE: Software Process Assessment, Part 1: Concepts and Introduction," Version 1.0,

JSO/1EC JTC1 ,
1999.

Problems and Points tq PPNCEfi

2 . 1 . Consider the framework activity communication. Develop a complete process pattern (this

would be a stage pattern) using the template presented in Section 2.4.

2 .2 . What is the purpose of process assessment? Why has SPICE been developed as a standard

for process assessment?

2.3. Download the CMMI documentation from the SEI Web site and select a process area other

than project planning. Make a list of specific goals (SG) and the associated specific practices (SP)

defined for the area you have chosen.

2 .4 . Try to develop a task set for the communication activity.

2 .5 . Research the CMMI in a bit more detail and discuss the pros and cons of both the contin-

uous and staged CMMI models.

2 .6 . Describe a process framework in your own words. When we say that framework activities

are applicable to all projects, does this mean that the same work tasks are applied for all proj-

ects, regardless of size and complexity? Explain.

2 . 7 . Umbrella activities occur throughout the software process. Do you think they are applied

evenly across the process, or are some concentrated in one or more framework activities?

2.8. is there ever a case when the generic activities of the software engineering process don't ap-

ply? If so, describe it.

2 .9 . In the introduction to this chapter, Baetjer notes: "The process provides interaction between

users and designers, between users and evolving tools, and between designers and evolving tools

[technology!." List five questions that (a) designers should ask users: (b) users should ask de-

signers; (cfusers should ask themselves about the software product that is to be built; and (d) de-

signers should ask themselves about the software product that is to be built and the process that

will be used to build it.

2 . 10 . Figure 2.
1
places the three software engineering layers on top of a layer entitled "a quality

focus." This implies an organization-wide quality program such as Total Quality Management. Do

a bit of research and develop an outline ol the key tenets of a Total Quality Management program.

2 . 11 . The use of "scripts" (a required mechanism in TSP) is not universally praised within the soft-

ware community. Make a list ofpros and cons regarding scripts and suggest at least two situations

in which they would be useful and another two situations where they might provide less benefit.

2 . 12 . Do some research on PSP and present a brief presentation that indicates the quantitative

benefits of the process.

Further Readings and Information Sour.C£S

The current state of software engineering and the software process can best be determined from

monthly publications such as IEEE Software, Computer, and IEEE Transactions on Softwaie Engi-

neering. Industry periodicals such as Application Development Trends and Cutler IT lournal often

76 PART ONE THE SOFTWARE PROCESS

contain articles on software engineering topics. The discipline is "summarized" every year in the
Proceeding of the Internationa! Conference on Software Engineering, sponsored by the IEEE and
ACM, and is discussed in depth in Journals such as ACM Transactions on Software Engineering
and Methodology. ACM Software Engineering Notes, and Annals ofSoftware Engineering. Thousands of
Web pages are dedicated to software engineering and the software process.

Many books addressing the software process and software engineering have been published
in recent years. Some present an overview of the entire process, while others delve into a few
important topics to the exclusion of others. Among the more popular offerings (in addition to
this book!) are:

Abran, A., and J. Moore, SWEBQK: Guide to the Software Engineering Body ofKnowledge, IEEE,

Ahem, D., et al., CMMI Distilled, Addison-Wesley, 2001

.

Chrisis, B., et al., CMMI: Guidelinesfor Process Integration and Product Improvement, Addison-
Wesley 2003.

Christensen, M., and R. Thayer, A Project Manager's Guide to Software Engineering Best Prac-
tices, IEEE-CS Press (Wiley), 2002.

Glass, R
,
Fact and Fallacies ofSoftware Engineering, Addison-Wesley, 2002.

Hunter, R„ and R. Thayer (eds), So_ftware Process Improvement, IEEE-CS Press (Wiley), 2001.

Persse , Implementing the Capability Maturity Model, Wiley, 200 1

.

Pfleeger, S., Software Engineering: Theory and Practice, 2nd ed,, Prentice-Hail, 2001.

Potter, N„ and M Sakry, Making Process Improvement Work, Addison-Wesley, 2002.

Sommerville, I., Software Engineering, 6th ed., Addison-Wesley, 2000.

On the lighter side, a book by Robert Glass (Software Conflict, Yourdon Press, 1991) presents
amusing and controversial essays on software and the software engineering process. Yourdon
(Death March Projects, Prentice-Hall, 1997) discusses what goes wrong when major software
projects fail and how to avoid these mistakes.

Garmus [Measuring the Software Process, Prentice-Hall, 1995) and Florae and Carlton [Mea-
suring the Software Process, Addison-Wesley, 1 999) discuss the use of mea-surement as a means
for statistically assessing the efficacy of any software process.

A wide variety of software engineering standards and procedures have been published over
the past decade. The IEEE Software Engineering Standards contains many different standards
that cover almost every important aspect of the technology. The ISO 9001 :2000 document set
provides guidance for software organizations that want to improve their quality management
activities. Other software engineering standards can be obtained from the Department of De-
fense, the FAA, and other government and nonprofit agencies. Fairclough (Software Engineering
Guides, Prentice-Hall, 1996) provides a detailed reference to software engineering standards
produced by the European Space Agency (ESA).

A wide variety of information sources on software engineering and the software process are
available on the internet- An up -to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Key
Concepts
AOSD model

CBD model

concurrent

development

evolutlonaryprocess

formal methods

incremental process

prescriptive models

prototyping

RAD model

spiral model

Unified Process

waterfall model

Process
Models

P
rescriptive process models were originally proposed to bring order to the

chaos of software development. History has indicated that these conven-

tional models have brought a certain amount of useful structure to soft-

ware engineering work and have provided a reasonably effective roadmap for

software teams. However, software engineering work and the product that it pro-

duces remain on "the edge of chaos" [NOGOO],

In an intriguing paper on the strange relationship between order and chaos in

the software world, Nogueira and his colleagues [NOGOO] state:

The edge of chaos is defined as "a natural state between order and chaos, a grand

compromise between structure and surprise" [KAU95], The edge of chaos can be vi-

sualized as an unstable, partially structured state. ... It is unstable because it is con-

stantly attracted to chaos or to absolute order.

We have the tendency to think that order is the ideal slate of nature. This could be

a mistake. Research . . . supports the theory that operation away from equilibrium gen-

erates creativity, self-organized processes, and increasing returns [R00961- Absolute

order means the absence of variability, which could be an advantage under unpre-

dictable environments. Change occurs when there is some structure so that the

change can be organized, but not so rigid that it cannot occur. Too much chaos, on

the other hand, can make coordination and coherence impossible. Lack of structure

does not always mean disorder.

® What is it? Prescriptive process

models define a distinct set of activi-

ties, actions, tasks, milestones, and

work products that are required to

engineer high-quality software. These process

models are not perfect, but they do provide a

useful roadmap for software engineering work.

Who does it? Software engineers and their man-

agers adapt a prescriptive process model to their

needs and then follow it. In addition, the people

who have requested the software have a role to

play as the process model is followed.

Why is it important? Because it provides sta-

bility, control, and organization to an activity

that can, if left uncontrolled, become quite

chaotic. Some have referred to prescriptive

process models as "rigorous process models"

because they often encompass the capabilities

suggested by the CMMI (Chapter 2). However,

every process model must be adapted so that it

is used effectively for a specific software project.

What are the steps? The process guides a soft-

ware team through a set of framework activities

that are organized into a process flow that may

be linear, incremental, or evolutionary. The ter-

minology and details of each process model dif-

fer, but the generic framework activities remain

reasonably consistent.

77

78 PART ONE THE SOFTWARE PROCESS

What is the work product? From the point of

view of a software engineer, the work products

are the programs, documents, and data that are

produced as a consequence of the activities and
tasks defined by the process.

How do I ensure that I've done it right?
There are a number of software process assess-

ment mechanisms that enable organizations to

determine the "maturity" of their software

process. However, the quality, timeliness, and
long-term viability of the product you build are

the best indicators of the efficacy of the process

that you use.

The philosophical implications of this argument are significant for software engi -

neering. If prescriptive process models 1

strive for structure and order, are they inap-

propriate for a software world that thrives on change? Yet, if we reject conventional

process models (and the order they imply) and replace them with something less

structured, do we make it impossible to achieve coordination and coherence in soft-

ware work?

There are no easy answers to these questions, but there are alternatives available

to software engineers. In this chapter we examine the prescriptive process approach
in which order and project consistency are dominant issues. In Chapter 4 we exam-
ine the agile process approach in which self-organization, collaboration, communi-
cation, and adaptability dominate the process philosophy.

3.1 Prescriptive Models

POINT
A prescriptive process

model populates o

process framework

with explicit task

sets for software

engineering actions'

Every software engineering organization should describe a unique set of framework
activities (Chapter 2) for the software process(es) it adopts. It should populate each

framework activity with a set of software engineering actions, and define each ac-

tion in terms of a task set that identifies the work (and work products) to be accom-
plished to meet the development goals. It should then adapt the resultant process

model to accommodate the specific nature of each project, the people who will do
the work, and the environment in which- the work will be conducted. Regardless of

the process model that is sejected, software engineers have traditionally chosen a

generic process framework that encompasses the following framework activities:

communication, planning, modeling, construction, and deployment.

"There ore many woys of going forward, but only one way of standing still."

Franklin 0. koosevelt

In the sections that follow, we examine a number ofprescriptive software process

models. We call them "prescriptive" because they prescribe a set ofprocess elements—
framework activities, software engineering actions, tasks, work products, quality as-

1 Prescriptive process models are often referred to as “conventional" process models.

CHAPTER 3 PROCESS MODELS 79

Even though o process

is prescriptive, don't

assume that it is static.

Prescriptive models

should be adapted to

the people, the

problem, and the

project.

surance, and change control mechanisms for each project. Each process model also

prescribes a workflow—that is, the manner in which the process elements are inter-

related to one another.

All software process models can accommodate the generic framework activities

that have been described in Chapter 2, but each applies a different emphasis to these

activities and defines a workflow that invokes each framework activity (as well as

software engineering actions and tasks) in a different manner.

The Waisreali Model

^ Why does

• the water-

fall model

sometimes foil?

There are times when the requirements of a problem are reasonably well understood—

when work flows from communication through deployment in a reasonably linear

fashion. This situation is sometimes encountered when well-defined adaptations or

enhancements to an existing system must be made (e.g., an adaptation to account-

ing software that has been mandated because of changes to government regula-

tions). it may also occur in a limited number of new development efforts, but only

when requirements are well-defined and reasonably stable.

The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach2 to software development that begins with customer specifica-

tion of requirements and progresses through planning, modeling, construction, and

deployment, culminating in on-going support of the completed software.

The waterfall model is the oldest paradigm for software engineering. However,

over the past two decades, criticism of this process model has caused even ardent

supporters to question its efficacy [HAN95] . Among the problems that are sometimes

encountered when the waterfall model is applied are:

1 . Real projects rarely follow the sequential flow that the model proposes. Al-

though the linear model can accommodate iteration, it does so indirectly. As

a result, changes can cause confusion as the project team proceeds.

The waterfall model

2 Although the original waterfall model proposed by Winston Royce IROY70] made provision for

"feedback loops," the vast majority of organizations that apply this process model treat it as if it

were strictly linear.

80 PART ONE THE SOFTWARE PROCESS

2. It is often difficult for the customer to state all requirements explicitly. The

waterfall model requires this and has difficulty accommodating the natural

uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will

not be available until late in the project time-span. A major blunder, if unde-

tected until the working program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac [BRA94] found that the linear na-

ture of the waterfall model leads to "blocking states" in which some project team mem-

bers must wait for other members of the team to complete dependent tasks. In fact, the

time spent waiting can exceed the time spent on productive work! The blocking state

tends to be more prevalent at the beginning and end of a linear sequential process.

Today, software work is fast-paced and subject to a never-ending stream of changes

(to features, functions, and information content). The waterfall model is often inappro-

priate for such work. However, it can serve as a useful process model in situations

where requirements are fixed and work is to proceed to completion in a linear manner.

,3 ..3- . lMC.ftEMEN,IAL PROCESS MODELS

There are many situations in which initial software requirements are reasonably

well-defined, but the overall scope of the development effort precludes a purely lin-

ear process. In addition, there may be a compelling need to provide a limited set of

software functionality to users quickly and then refine and expand on that function-

ality in later software releases. In such cases, a process model that is designed to

produce the software in increments is chosen.

Too often, software work follows the first law of bicycling: No matter where you're going, it's uphill and against

the wind."

Author unknown

3.3.1 The Incremental Model

The incremental model combines elements of the waterfall model applied in an iterative

fashion. Referring to Figure 3.2, the incremental model applies linear sequences in a

staggered fashion as calendar time progresses. Each linear sequence produces de-

liverable "increments" of the software [MCD93]. For example, word-processing soft-

ware developed using the incremental paradigm might deliver basic file management,

editing, and document production functions in the first increment; more sophisticated

editing, and document production capabilities in the second increment; spelling and

grammar checking in the third increment; and advanced page layout capability in the

fourth increment. It should be noted that the process flow for any increment may incor-

porate the prototyping paradigm discussed in Section 3.4. 1

.

When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed, but many supplementary features (some

POINT
The incrementol model

delivers a series of

releases, called

increments, that

provide progressively

more functkmolity for

the customer as each

increment is delivered.

The
Incremental

model

Ifyour customer .

demands delivery by a

date that is impossible

to meet, suggest deliv-

ering one or more

increments by that dote

and the rest of the

software (additional

increments) later

CHAPTER 3 PROCESS MODELS 81

known, others unknown) remain undelivered. The core product is used by the cus-

tomer (or undergoes detailed evaluation). As a result of use and/or evaluation, a

plan is developed for the next increment. The plan addresses the modification of the

core product to better meet the needs of the customer and the delivery of additional

features and functionality. This process is repeated following the delivery of each in-

crement, until the complete product is produced.

The incremental process moder, like prototyping and other evolutionary ap-

proaches, is iterative in nature.' But unlike prototyping, the incremental model fo-

cuses on the delivery of an operational product with each increment. Early

increments are "stripped down" versions of the final product, but they do provide ca-

pabilitythat Serves the user and also provides a platform for evaluation by the user .

3

Incremental development- is particularly useful when staffing, is unavailable for a

complete implementation by the business deadline that has been established for the

project. Early increments can be implemented with fewer people. If the core prod-

uct is well received, additional staff (if required) can be added to implement the next

increment. In addition, increments can be planned to manage technical risks. For

example, a major system might require the availability of new hardware that is un-

der development and whose delivery date is uncertain. It might be possible to plan

early increments in a way that avoids the use of this hardware, thereby enabling

partial functionality to be delivered to end-users without inordinate delay.

3.3.2 The RAD Model

Rapid Application Development (RAD) is an incremental software process model that

emphasizes a short development cycle. The RAD model is a "high-speed" adaptation

3 It is important to note that an incremental philosophy is also used for ail “agile'' process models dis-

cussed in Chapter 4.

82 PART ONE THE SOFTWARE PROCESS

of the waterfall model, in which rapid development is achieved by using a component-

based construction approach. If requirements are well understood and project scope

is constrained, 4 the RAD process enables a development team to create a "fully func-

tional system" within a very short time period (e.g., 60 to 90 days) [MAR91 1.

Like other process models, the RAD approach maps into the generic framework

activities presented earlier. Communication works to understand the business prob-

lem and the information characteristics that the software must accommodate. Plan-

ning is essential because multiple software teams work in parallel on different system

functions. Modeling encompasses three major phases—business modeling, data

modeling and process modeling—and establishes design representations that serve

as the basis for RAD's construction activity. Construction emphasizes the use of pre-

existing software components and the application of automatic code generation. Fi-

nally, deployment establishes a basis for subsequent iterations, if required [KER94]

.

The RAD process model is illustrated in Figure 3.3. Obviously, the time constraints

imposed on a RAD project demand "scalable scope" [KER94] . If a business applica-

tion can be modularized in a way that enables each major function to be completed

The RAD model

Team # n

4 These conditions are by no means guaranteed. In fact, many software projects have poorly defined

requirements at the start. In such cases prototyping or evolutionary approaches (Section 3.4) are

much better process options. See (REI95J.

CHAPTER 3 PROCESS MODELS 83

*) What are the

• drawbacks of

the RAD model?

AJL

POINT
Evolutionary process

models produce on

increasingly more

complete version of

the software with each

iteration.

When your customer

has o legitimate need

hut is clueless about

the details, develop o

prototype as o first

step.

in less than three months (using the approach described above), it is a candidate for

RAD. Each major function can be addressed by a separate RAD team and then inte-

grated to form a whole.

Like all process models, the RAD approach has drawbacks [BUT94]
:

(l) for large, but

scalable projects, RAD requires sufficient human resources to create the right number
of RAD teams; (2) if developers and customers are not committed to the rapid-fire ac-

tivities necessary to complete the system in a much abbreviated time frame, RAD proj-

ects will fail; (3) if a system cannot be properly modularized, building the components
necessaiy for RAD will be problematic; (4) if high performance is an issue, and per-

formance is to be achieved through tuning the interfaces to system components, the

RAD approach may not work; and (5) RAD may not be appropriate when technical risks

are high (e.g., when a new application makes heavy use of new technology).

^YQIUTIONARY PROCESS MODELS

Software, like all complex systems, evolves over a period of time [GIL88], Business

and product requirements often change as development proceeds, making a

straight-line path to an end product unrealistic; tight market deadlines make com-
pletion of a comprehensive software product impossible, but a limited version must
be introduced to meet competitive or business pressure; a set of core product or sys-

tem requirements is well understood, but the details ofproduct or system extensions

have yet to be defined. In these and similar situations, software engineers need a

process model that has been explicitly designed to accommodate a product that

evolves over time.

Evolutionary models are iterative. They are characterized in a manner that en-

ables software engineers to develop increasingly more complete versions of the

software.

3.4.1 Prototyping

Often, a customer defines a set of general objectives for software, but does not iden-

tify detailed input, processing, or output requirements. In other cases, the developer

may be unsure of the efficiency of an algorithm, the adaptability of an operating sys-

tem, or the form that human-machine interaction should take. In these, and many
other situations, a prototyping paradigm may offer the best approach.

Although prototyping can be used as a standalone process model, it is more com-
monly used as a technique that can be implemented within the context of any one
of the process models noted in this chapter. Regardless of the manner in which it is

applied, the prototyping paradigm assists the software engineer and the customer to

better understand what is to be built when requirements are fuzzy.

The prototyping paradigm (Figure 3.4) begins with communication. The software

engineer and customer meet and define the overall objectives for the software, iden-

tify whatever requirements are known, and outline areas where further definition is

84 PART ONE THE SOFTWARE PROCESS

mandatory. A prototyping iteration is planned quickly and modeling (in the form of

a "quick design") occurs. The quick design focuses on a representation of those as-

pects of the software that will be visible to the customer/end-user (e.g., human in-

terface layout or output display formats). The quick design leads to the construction

- of a prototype. The prototype is deployed and then evaluated by the customer/user.

Feedback is used to refine requirements for the software. Iteration occurs as the pro-

totype is tuned to satisfy the needs of the customer, while at the same time en-

abling the developer to better understand what needs to be done.

Ideally the prototype serves as a mechanism for identifying software require:

ments. If a working prototype is built, the developer attempts to make use of exist-

ing program fragments or applies tools (e.g., report generators, window managers,

etc.) that enable working programs to be generated quickly.

But what do we do with the prototype when it has served the purpose described

above? Brooks [BR075] provides one answer:

in most projects, the first system built is barely usable, it may be too slow, too big. awk-

ward in use or all three. There is no alternative but to start again, smarting but smarter,

and build a redesigned version in which these problems are solved. when a new sys-

tem concept or new technology is used, one has to build a system to throw away, for even

the best planning is not so omniscient as to get it right the first time. The management

question, therefore, is not whether to build a pilot system and throw it away. You will do

that. The only question is whether to plan in advance to build a throwaway, or to prom-

ise to deliver the throwaway to customers.

The prototype can serve as "the first system," the one that Brooks recommends

we throw away. But this may be an idealized view. It is true that both customers and

developers like the prototyping paradigm. Users get a feel for the actual system, and

CHAPTER 3 PROCESS MODELS 85

developers get to build something immediately. Yet, prototyping can be problematic

for the following reasons:

Resist pressure to

extend a rough

prototype into o

production product.

Ouolity almost olways

suffers os a result.

1 . The customer sees what appears to be a working version of the software, un-

aware that the prototype is held together "with chewing gum and baling wire,"

unaware that in the rush to get it working we haven't considered overall soft-

ware quality or long-term maintainability. When informed that the product

must be rebuilt so that high-levels of quality can be maintained, the customer

cries foul and demands that "a few fixes" be applied to make the prototype a

working product. Too often, software development management relents.

2. The developer often makes implementation compromises in order to get a

prototype working quickly. An inappropriate operating system or program-

ming language may be used simply because it is available and known; an in-

efficient algorithm may be implemented simply to demonstrate capability.

After a time, the developer may become comfortable with these choices and

forget all the reasons why they were inappropriate. The less-than-ideal

choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-

ware engineering. The key is to define the rules of the game at the beginning; that is,

the customer and developer must both agree that the prototype is built to serve as a

mechanism for defining requirements. It is then discarded (at least in part), and the

actual software is engineered with an eye toward quality.

SafeHome

Selecting a Process Model, Part 1

The scene: Meeting room for the

software engineering group at CPI Corporation, a

(fictional) company that makes consumer products for

home and commercial use.

The players: tee Warren, engineering manager; Doug

Miller, software engineering manager; Jamie Lazar,

software team member; Vinod Raman, software team

member, and Ed Robbins, software team member.

The conversation:

Lee: So let's recapitulate. I've spent some time discussing

the SafeHome product line as we see it at the moment.

No doubt, we've got a lot of work to do to simply define

the thing, but I'd like you guys to begin thinking about

how you're going to approach the software part of this

project.

Doug: Seems like we've been pretty disorganized in our

approach to software in the past.

Ed: I don't know, Doug. We always got product out the

door.

Doug: True, but not without a lot of grief, and this

project looks like it's bigger and more complex than

anything we've done in the past.

Jamie: Doesn't look that hard, but I agree . . . our ad

hoc approach to past projects won't work here,

particularly if we have a very tight timeline.

Doug (smiling): I want to be a bit more professional

in our approach. I went to a short course last week and

learned a lot about software engineering . . . good stuff.

We need a process here.

Jamie (with a frown): My job is to build computer

programs, not push paper around.

Doug: Give it a chance before you go negative on me.

Here's what I mean. [Doug proceeds to describe the

86 PART ONE THE SOFTWARE PROCESS

process framework described in Chapter 2 and the

prescriptive process models presented to this point.]

Doug: So anyway, it seems to me that a linear model is

not for us . . . assumes we have all requirements up front

and knowing this place, that's not likely.

Vinod: Yeah, and that RAD model sounds way too IT-

oriented .
.
probably good for building an inventory

control system or something, but it's just not right for

SafeHome.

Doug: I agree.

Ed: That prototyping approach seems OK. A lot like

what we do here anyway.

Vinod: That's a problem. I'm worried that it doesn't

provide us with enough structure.

Doug: Not to worry. We've got plenty of other options,

and I want you guys to pick what's best for the team and

best for the project.

3.4.2 The Spiral Model

The spiral model, originally proposed by Boehm [BOE88] , is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled

and systematic aspects of the waterfall model. It provides the potential for rapid de-

velopment of increasingly more complete versions of the software. Boehm [BOEO
1]

describes the model in the following manner:

POINT
The spiral model con

be adapted to apply

throughout the entire

life cycle of an

application, from

concept development

to maintenance.

The spiral development model is a risk-driven process model generator that is used to

guide multi-stakeholder concurrent engineering of software intensive systems. It has two

main distinguishing features. One is a cyclic approach for incrementally growing a sys-

tem's degree of definition and implementation while decreasing its degree of risk. The

other is a set of anchor point milestones for ensuring stakeholder commitment to feasible

and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. Dur-

ing early iterations, the release might be a paper model or prototype. During later it-

erations, increasingly more complete versions of the engineered system are produced.

A spiral model is divided into a set of framework activities defined by the software

engineering team. For illustrative purposes, we use the generic framework activities

discussed earlier.
5 Each of the framework activities represent one segment of the spi-

ral path illustrated in Figure 3.5. As this evolutionary process begins, the software

team performs activities that are implied by a circuit around the spiral in a clockwise

direction, beginning at the center. Risk (Chapter 25) is considered as each revolution

is made. Anchor point milestones—a combination of work products and conditions

that are attained along the path of the spiral—are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a pro-

totype and then progressively more sophisticated versions of the software. Each pass

5 The spiral model discussed in this section is a variation on the model proposed by Boehm. For fur-

ther information on the original spiral model, see 1BOE881. More recent discussion of Boehm's spi-

ral model can be found in [BOE981.

CHAPTER 3 PROCESS MODELS 87

A typical

spiral model

WebRef
Useful infornwliw

con be obtained at

www.sei.cmu.

edu/cbs/

spira!2000 /.

If your management

demands fixedbudget

development

(generally a bod ideo),

Ihe spiral can be a

problem: as each

circuit is completed,

project cost is revisited

and revised.

Planning

estimation

scheduling

risk analysis

Modeling
analysis

design

through the planning region results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback derived from the customer after delivery.

In addition, the project manager adjusts the planned number of iterations required

to complete the software.

Unlike other process models that end when software is delivered, the spiral model

can be adapted to apply throughout the life of the computer software. Therefore, the first

circuit around the spiral might represent a "concept development project” which starts

at the core of the spiral and continues for multiple iterations
6
until concept development

is complete. If the concept is to be developed into an actual product, the process pro-

ceeds outward on the spiral and a "new product development project" commences. The

new product will evolve through a number of iterations around the spiral. Later, a cir-

cuit around the spiral might be used to represent a "product enhancement project." In

essence, the spiral, when characterized in this way, remains operative until the software

is retired. There are times when the process is dormant, but whenever a change is ini-

tiated, the process starts at the appropriate entry point (e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale systems

and software. Because software evolves as the process progresses, the developer

and customer better understand and react to risks at each evolutionary level. The

spiral model uses prototyping as a risk reduction mechanism but, more importantly,

enables the developer to apply the prototyping approach at any stage in the evolu-

tion of the product. It maintains the systematic stepwise approach suggested by the

classic life cycle but incorporates it into an iterative framework that more realistically

reflects the real world. The spiral model demands a direct consideration of technical

6 The arrows pointing inward along the axis separating the deployment region from the communion
tion region indicate a potential for local iteration along the same spiral path.

88 part one the software process

risks at all stages of the project and, if properly applied, should reduce risks before

they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to

convince customers (particularly in contract situations) that the evolutionary ap-

proach is controllable. It demands considerable risk assessment expertise and relies

on this expertise for success. If a major risk is not uncovered and managed, prob-

lems will undoubtedly occur.

The concurrent model

is often more appro-

priate for system engi-

neering projects

(Chapter 6) where

different engineering

teams are involved.

3.4.3 The Concurrent Development Model

The concurrent development model, sometimes called concurrent engineering, can be

represented schematically as a series of framework activities, software engineering

actions and tasks, and their associated states. For example, the modeling activity de-

fined for the spiral model is accomplished by invoking the following actions: proto-

typing and/or analysis modeling and specification and design.
7

Figure 3.6 provides a schematic representation of one software engineering task

within the modeling activity for the concurrent process model. The activity—modeling-

may be in any one of the states8 noted at any given time. Similarly, other activities or

tasks (e.g., communication or construction) can be represented in an analogous

manner. All activities exist concurrently but reside in different states. For example,

early in a project the communication activity (not shown in the figure) has completed

its first iteration and exists in the awaiting changes state. The modeling activity

which existed in the none state while initial communication was completed, now

makes a transition into the under development state. If, however, the customer in-

dicates that changes in requirements must be made, the modeling activity moves

from the under development state into the awaiting changes state.

The concurrent process model defines a series of events that will trigger transi-

tions from state to state for each of the software engineering activities, actions, or

tasks. For example, during early stages of design (a software engineering action that

occurs during the modeling activity), an inconsistency in the analysis model is un-

covered. This generates the event analysis model correction which will trigger the

analysis action from the done state into the awaiting changes state.

The concurrent process model is applicable to all types of software development

and provides an accurate picture of the current state of a project. Rather than con-

fining software engineering activities, actions, and tasks to a sequence of events, it

defines a network of activities. Each activity, action, or task on the network exists

simultaneously with other activities, actions, or tasks. Events generated at one point

in the process network trigger transitions among the states.

7 It should be noted that analysis and design are complex actions that require substantial discussion.

Part 2 of this book considers these topics in detail.

8 A state is some externally observable mode of behavior

.

CHAPTER 3 PROCESS MODELS 89

One element ot

the concurrent

process model

3.4.4 A Final Comment on Evolutionary Processes

We have already noted that modern computer software is characterized by con-

tinual change, by very tight timelines, and by an emphatic need for customer/user

satisfaction. In many cases, time-to-market is the most important management

requirement. If a market window is missed, the software project itself may be

meaningless .

9

"I'm only this far and only tomorrow leads my way."

Dave Matthews Band

Evolutionary process models were conceived to address these issues, and yet, as

a general class ofprocess models, they too have weaknesses. These are summarized

by Nogueira and his colleagues [NOGOO]:

9 It is important to note, however, that being the first to reach a market is no guarantee of success.

In fact, many very successful software products have been second or even third to reach the mat -

ket (learning from the mistakes of their predecessors).

90 PART ONE THE SOFTWARE PROCESS

Despite the unquestionable benefits of evolutionary software processes, we have some

concerns. The first concern is that prototyping [and other more sophisticated evolution-

ary processes] poses a problem to project planning because of the uncertain number of

cycles required to construct the product. Most project management and estimation tech-

niques are based on linear layouts of activities, so they do not fit completely.

Second, evolutionary software processes do not establish the maximum speed of the

evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that

the process will fall into chaos On the other hand, if the speed is too slow then produc-

tivity could be affected. . .

.

Third, software processes should be focused on flexibility and extensibility rather than

on high quality. This assertion sounds scary. However, we should prioritize the speed of

the development over zero defects. Extending the development in order to reach high

quality could result in a late delivery of the product, when the opportunity niche has dis-

appeared. This paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of de-

velopment over high quality does sound scaty. And yet, this idea has been proposed

by a number of well-respected software engineering experts (e.g., [YOU95], [BAC97]).

The intent of evolutionary models is to develop high-quality software 10
in an iter-

ative or incremental manner. However, it is possible to use an evolutionary process

to emphasize flexibility, extensibility, and speed of development. The challenge for

software teams and their managers is to establish a proper balance between these

critical project and product parameters and customer satisfaction (the ultimate ar-

biter of software quality).

SafeHome

Selecting a Process Model, Part 2

The scene: Meeting room for the

software engineering group at CPI Corporation, a

company that makes consumer products for home and

commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Ed and Vinod,

members of the software engineering team.

The conversation:

(Doug describes evolutionary process options.)

Ed: Now I see something I like. An incremental

approach makes sense and I really like the flow of that

spiral model thing. That's keepin' it real.

Vinod: I agree. We deliver an increment, learn from

customer feedback, replan, and then deliver another

increment. It also fits Into the nature of the product. We
can have something on the market fast and then add

functionality with each version, er, increment.

Lee: Wait a minute, did you say that we regenerate the

plan with eoch tour around the spiral, Doug? That's not so

great, we need one plan, one schedule, and we've got to

stick to it.

Doug: That's old school thinking, Lee. Like Ed said,

we've got to keep it real. I submit that it's better to tweak

the plan as we learn more and as chonges are requested.

1 0 In this context
,
software quality is defined quite broadly to encompass not only customer satisfac-

tion. but also a variety of technical criteria discussed in Chapter 26.

CHAPTER 3 PROCESS MODELS 91

It's way more realistic. What's the point of a plan if it Doug (smiling): Then you'll have to reeducate them,

doesn't reflect reality? buddy.

Lee (frowning): I suppose so, but senior management's

not going to like this . . . they want a fixed plan.

3.5 Specialized Process Models

Special process models take on many of the characteristics of one or more of the con-

ventional models presented in the preceding sections. However, specialized models

tend to be applied when a narrowly defined software engineering approach is chosen."

WebRef

Useful infomoiim on

component-bosed

development ton be

obtained ot

www.cW-Kq.tiHn.

3.5.1 Component-Based Development

Commercial off-the-shelf (COTS) software components, developed by vendors who

offer them as products, can be used when software is to be built. These components

provide targeted functionality with well-defined interfaces that enable the compo-

nent to be integrated into the software.

The component-based development model (Chapter 30) incorporates many of the

characteristics of the spiral model. It is evolutionary in nature [NIE92], demanding an

iterative approach to the creation of software. However, the model composes appli-

cations from prepackaged software components.

Modeling and construction activities begin with the identification of candidate com-

ponents. These components can be designed as either conventional software modules

or object-oriented classes or packages 12 of classes. Regardless of the technology that

is used to create the components, the component-based development model incorpo-

rates the following steps (implemented using an evolutionary approach):

• Available component-based products are researched and evaluated for the

application domain in question.

• Component integration issues are considered.

• A software architecture (Chapter 10) is designed to accommodate the

components.

• Components (Chapter 1 1) are integrated into the architecture.

• Comprehensive testing (Chapters 13 and 14) is conducted to ensure proper

functionality.

1 1 In some cases, these specialized process models might better be characterized as a collection of

techniques or a methodology for accomplishing a specific software development goal. However,

they do imply a process.

1 2 Object-oriented technology is discussed through Part 2 of this book. In this context, a class encap-

sulates a set of data and the procedures that process the data. A package of classes is a collection

of related classes that work together to achieve some end result.

92 PART ONE THE SOFTWARE PROCESS

The component-based development model leaas to software reuse, and reusabil-

ity provides software engineers with a number of measurable benefits. Based on

studies of reusability, QSM Associates, Inc. reports that component-based develop-

ment leads to a 70 percent reduction in development cycle time; an 84 percent re-

duction in project cost; and a productivity index of 26.2, compared to an industry

norm of 16.9 [YOU94J. Although these results are a function of the robustness of the

component library, there is little question that the component-based development

model provides significant advantages for software engineers.

3.5.2 The Formal Methods Model

Theformal methods model (Chapter 28) encompasses a set of activities that leads to

formal mathematical specification of computer software. Formal methods enable a

software engineer to specify, develop, and verify a computer-based system by ap-

plying a rigorous, mathematical notation. A variation on this approach, called clean-

room software engineering [MIL87, DYE92], is currently applied by some software

development organizations and is discussed in Chapter 29.

"It is easier to write an incorrect program than understand a correct one.”

Alan Perils

When formal methods are used during development, they provide a mechanism

for eliminating many of the problems that are difficult to overcome using other soft-

ware engineering paradigms. Ambiguity, incompleteness, and inconsistency can be

discovered and corrected more easily—not through ad hoc review, but through the

application of mathematical analysis. When formal methods are used during design,

they serve as a basis for program verification and therefore enable the software en-

gineer to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the prom-

ise of defect-free software. Yet, concern about its applicability in a business envi-

ronment has been voiced:

^ If formal

• methods can

demonstrate

software

correctness, why

is it they are not

widely used?

• The development of formal models is currently quite time-consuming and

expensive.

• Because few software developers have the necessary background to apply

formal methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for techni-

cally unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained ad-

herents among software developers who must build safety-critical software (e.g., de-

velopers of aircraft avionics and medical devices) and among developers who would

suffer severe economic hardship should software errors occur.

CHAPTER 3 PROCESS MODELS 93

WefaRef

A wide omy c-f

resources and

informofion on AOP

coo be tod or

oosd.net.

POINT
AOSD defines

"ospects" that express

customer concerns to

cut across multiple

system functions,

features, and

information.

3.5.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software in-

variably implement a set of localized features, functions, and information content.

These localized software characteristics are modeled as components (e.g., object-

oriented classes) and then constructed within the context of a system architecture. As

modem computer-based systems become more sophisticated (and complex), certain

"concerns"—customer required properties or areas of technical interest—span the en-

tire architecture. Some concerns are high-level properties of a system (e.g., security,

fault tolerance). Other concerns affect functions (e.g., the application of business

rules), while others are systemic (e.g., task synchronization or memory management)

.

When concerns cut across multiple system functions, features, and information,

they are often referred to as crosscutting concerns. Aspectual requirements define

those crosscutting concerns that have impact across the software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides

a process and methodological approach for defining, specifying, designing, and con-

structing aspects—’mechanisms beyond subroutines and inheritance for localizing

the expression of a crosscutting concern" [ELR01],

Grundy [GRU02] provides further discussion of aspects in the context of what he

calls aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software com-

ponents, called "aspects," to characterize cross-cutting functional and non-functional

properties of components. Common, systemic aspects include user interfaces, collabora-

tive work, distribution, persistency, memory management, transaction processing, secu-

rity, integrity and so on. Components may provide or require one or more "aspect details"

relating to a particular aspect, such as a viewing mechanism, extensible affordance and in-

terface kind (user interface aspects); event generation, transpbrt and receiving (distribu-

tion aspects); data store/retrieve and indexing (persistency aspects); authentication,

encoding' and access rights (security aspects); transaction atomicity, concurrency control

and logging strategy' (transaction aspects); and so on. Each aspect detail has a number of

properties, relating to functional and/or non-functional characteristics of the aspect detail.

Adistinct aspect-oriented process has not yet matured. However, it is likely that such

a process will adopt characteristics of both the spiral and concurrent process models

(Sections 3.4.2 and 3.4.3). The evolutionary' nature ofthe spiral is appropriate as aspects

are identified and then constructed. The parallel nature of concurrent development is

essential because aspects are engineered independently of localized software compo-

nents and yet, aspects have a direct impact on these components. Hence, it is essential

to instantiate asynchronous communication between the software process activities

applied to the engineering and construction of aspects and components.

A detailed discussion of aspect-oriented software development is best left to books

dedicated to the subject. The interested reader should see [GRA03], [KIS02], or [ELR01],

PART ONE THE SOFTWARE PROCESS94

Process Management
Objective: To assist in the definition,

execution, and management of prescriptive

process models.

Mechanics: Process management tools allow a software

organization or team to define a complete software

process model (framework activities, actions, tasks, QA
checkpoints, milestones, and work products). In addition,

the tools provide a roadmap as software engineers do
technical work and a template for managers who must

track and control the software process.

Representative Tools ' 3

GDPA, a research process definition tool suite, developed

at Bremen University in Germany (www.informatik.

uni-bremen.de/uniform/gdpa/home.htm), provides a

Software Tools

wide array of process modeling and management

functions.

SpeeDev, developed by SpeeDev Corporation

(www.speedev.com), encompasses a suite of tools for

process definition, requirements management, issue

resolution, project planning, and tracking.

Step Gate Process, developed by Objexis

(www.objexis.com), encomposses many tools that assist

in workflow automation.

A worthwhile discussion of the methods and notation that

can be used to define and describe a complete process

model can be found at

http://205.252.62.38/English/

D-ProcessNotation.htm.

)

3.6 The Unified Process

in their seminal book on the Unified Process, Ivar Jacobson, Grady Booch, and James
Rumbaugh UAC99] discuss the need for a "use-case driven, architecture-centric, it-

erative and incremental" software process when they state:

Today, the trend in software is toward bigger, more complex systems. That is due in part

to the fact that computers become more powerful every year, leading users to expect

more from them. This trend has also been influenced by the expanding use of the Inter-

net for exchanging all kinds of information— Our appetite for ever-more sophisticated

software grows as we learn from one product release to the next how the product could

be improved. We want software that is better adapted to our needs, but that, in turn,

merely makes the software more complex. In short, we want more.

In some ways the Unified Process (UP) is an attempt to draw on the best features

and characteristics of conventional software process models, but characterize

them in a way that implements many of the best principles of agile software de-

velopment (Chapter 4). The Unified Process recognizes the importance of customer

communication and streamlined methods for describing the customer's view of a

system (i.e., the use-case 14
). It emphasizes the important role of software architec-

1 3 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category

In most cases, tool names are trademarked by their respective developers.

1 4 A use-case (Chapters 7 and 8) is a text narrative or template that describes a system function or fea-

ture from the user s point of view. A use-case is written by the user and serves as a basis for the

creation of a more comprehensive analysis model.

CHAPTER 3 PROCESS MODELS 95

ture and "helps the architect focus on the right goals, such as understandability, re-

liance to future changes, and reuse" [JAC991- It suggests a process (low that is iter-

ative and incremental, providing the evolutionary fee! that is essential in modern

software development.

In this section we present an overview of the key elements of the Unified Process.

In Part 2 ofthis book, we discuss the methods that populate the process and the com-

plementary UML15 modeling techniques and notation that are required as the Unified

Process is applied in actual software engineering work.

3.6.1 A Brief History

During the 1980s and into the early 1990s, object-oriented (OO) methods and pro-

gramming languages 16 gained a widespread audience throughout the software en-

gineering community. A wide variety of object-oriented analysis (OOA) and design

(OOD) methods were proposed during the same time period, and a general pur-

pose object-oriented process model (similar to the evolutionary models presented

in this chapter) was introduced. Like most "new" paradigms for software engi-

neering, adherents of each ofthe OOA and OOD methods argued about which was

best, but no individual method or language dominated the software engineering

landscape.

During the early 1990s James Rumbaugh [RUM91], Grady Booch [B0094|, and

Ivar Jacobson [JAC92] began working on a "unified method" that would combine the

best features of each of their individual methods and adopt additional features pro-

posed by other experts (e.g., [WIR90]) in the OO field. The result was UML—a unified

modeling language that contains a robust notation for the modeling and development

ofOO systems. By 1997, UML became an industry standard for object-oriented soft-

ware development. At the same time, the Rational Corporation and other vendors

developed automated tools to support UML methods.

UML provides the necessary technology to support object-oriented software en-

gineering practice, but it does not provide the process framework to guide project

teams in their application of the technology. Over the next few years. Jacobson,

Rumbaugh, and Booch developed the Unified Piocess, a framework for object-oriented

software engineering using UML. Today, the Unified Process and UML are widely

used on OO projects of all kinds. The iterative, incremental model proposed by the

UP can and should be adapted to meet specific project needs.

An array of work products (e.g., models and documents) can be produced as a

consequence of applying UML. However, these are often pared down by software en-

gineers to make development more agile and more responsive to change.

15 UML (the Unified Modeling Language) has become the most widely used notation for analysis and

design modeling, it represents a marriage of three important object-oriented notations.

16 Ifyou are unfamiliar with object-oriented methods, a brief overview is presented in Chapters 8 and

9. For a more detailed presentation see [REE02], (STIOl), or [FOW99|.

96

WebRef
Useful white popeis on

the UP ton be fount) ot

www.rotional.

com/products/

rap/whitepapers,

jsp.

%
POINT

UP phases ore similar

in intent to the generic

framework activities

defined in this book.

WebRef
iHuminattng discussion

and tommentuty on

the UP con be found ot

WWW.

unifiedprocess.

org.

PART ONE THE SOFTWARE PROCESS

3.6.2 Phases of the Unified Process 17

We have discussed five generic framework activities and argued that they may be

used to describe any software process model. The Unified Process is no exception.

Figure 3.7 depicts the "phases" of the Unified Process (UP) and relates them to the

generic activities that have been discussed in Chapter 2.

The inception phase of the UP encompasses both customer communication and

planning activities. By collaborating with the customer and end-users, business re-

quirements for the software are identified, a rough architecture for the system is pro-

posed, and a plan for the iterative, incremental nature of the ensuing project is

developed. Fundamental business requirements are described through a set of pre-

liminary use-cases that describe what features and functions are desired by each

major class of users, in general, a use-case describes a sequence of actions that are

performed by an actor (e g., a person, a machine, another system) as the actor inter-

acts with the software. Use-cases help to identify the scope of the project and pro-

vide a basis for project planning.

Architecture at this point is nothing more than a tentative outline of major sub-

systems and the function and features that populate them. Later, the architecture will

be refined and expanded into a set of models that will represent different views of

the system. Planning identifies resources, assesses major risks, defines a schedule,

and establishes a basis for the phases that are to be applied as the software incre-

ment is developed.

The elaboration phase encompasses the customer communication and modeling

activities of the generic process model (Figure 3.7). Elaboration refines and expands

the preliminary use-cases that were developed as part of the inception phase and

expands the architectural representation to include five different views of the soft-

ware—the use-case model, the analysis model, the design model, the implementa-

tion model, and the deployment model. In some cases, elaboration creates an

"executable architectural baseline" [ARL02] that represents a “first cut" executable

system. 18 The architectural baseline demonstrates the viability of the architecture but

does not provide all features and functions required to use the system. In addition,

the plan is carefully reviewed at the culmination of the elaboration phase to ensure

that scope, risks, and delivery dates remain reasonable. Modifications to the plan

may be made at this time.

The construction phase of the UP is identical to the construction activity defined

for the generic software process. Using the architectural model as input, the con-

struction phase develops or acquires the software components that will make each

17 The Unified Process is sometimes called the Rational Unified Process (RUP) after the Rational Cor-

poration, a primary contributor to the development and refinement of the process and a builder of

complete environments (tools and technology) that support the process

18 It is important to note that the architectural baseline is not a prototype (Section 3.4.1) in that it is

not thrown away. Rather, the baseline is fleshed out during the next UP phase.

CHAPTER 3 PROCESS MODELS 97

The Unified

Process

Elaboration

use-case operational for end-users. To accomplish this, analysis and design models

that were started during the elaboration phase are completed to reflect the final ver-

sion of the software increment. All necessary and required features and functions of

the software increment (i.e.. the releasei are then implemented in source code. As

components are being implemented, unit tests are designed and executed for each.

In addition, integration activities (component assembly and integration testing) are

conducted. Use-cases are used to derive a suite ofacceptance tests that are executed

prior to the initiation of the next UP phase.

The transition phase of the UP encompasses the latter stages of the generic con-

struction activity and the first part of the generic deployment activity. Software is

given to end-users for beta testing 19
,
and user feedback reports both defects and nec-

essary changes. In addition, the software team creates the necessary support infor-

mation (e.g., user manuals, trouble-shooting guides, and installation procedures)

that is required for the release. At the conclusion of the transition phase, the soft-

ware increment becomes a usable software release.

The production phase of the UP coincides with the deployment activity of the

generic process. During this phase, the on-going use of the software is monitored,

support for the operating environment (infrastructure) is provided, and defect reports

and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production

phases are being conducted, work may have already begun on the next software in-

crement. This means that the five UP phases do not occur in a sequence, but rather

with staggered concurrency.

19 Beta testing is a controlled testing action (Chapter 13) in which the software is used by actual end

users with the intent of uncovering defects and deiiciencies. A formal defect/deficiency reporting

scheme is established, and the software team assesses feedback.

98 PART ONE THE SOFTWARE PROCESS

A software engineering workflow is distributed across all UP phases. In the con-

text of UP, a workflow is analogous to a task set (defined in Chapter 2). That is, a

workflow identifies the tasks required to accomplish an important software engi-

neering action and the work products that are produced as a consequence of suc-

cessfully completing the tasks. It should be noted that not every task identified for a

UP workflow is conducted for every software project. The team adapts the process

(actions, tasks, subtasks, and work products) to meet its needs.

3.6.3 Unified Process Work Products

Figure 3.8 illustrates the key work products produced as a consequence of the four

technical UP phases. During the inception phase, the intent is to establish an overall

"vision" for the project, identify a set ofbusiness requirements, make a business case

for the software, and define project and business risks that may represent a threat to

success. From the software engineer's point of view, the most important work prod-

uct produced during the inception is the use-case model—a collection of use-cases

that describe how outside actors (human and nonhuman "users" of the software) in-

teract with the system and gain value from it. In essence, the use-case model is a col-

lection of usage scenarios described with standardized templates that imply

software features and functions by describing a set of preconditions, a flow ofevents

or a scenario, and a set of post-conditions for the interaction that is depicted. Ini-

tially, use-cases describe requirements at the business domain level (i.e., the level of

abstraction is high). However, the use-case model is refined and elaborated as each

UP phase is conducted and serves as an important input for the creation of subse-

quent work products. During the inception phase only 1 0 to 20 percent of the use-

case model is completed. After elaboration, between 80 and 90 percent of the model

has been created.

The elaboration phase produces a set of work products that elaborate require-

ments (including nonfunctional20 requirements) and produce an architectural

description and a preliminary design. As the software engineer begins object-oriented

analysis, the primary objective is to define a set of analysis classes that adequately

describe the behavior of the system. The UP analysis model is the work product that

is developed as a consequence of this activity. The classes and analysis packages

(collections of classes) defined as part of the analysis model are refined further into

a design model which identifies design classes, subsystems, and the interfaces be-

tween subsystems. Both the analysis and design models expand and refine an evolv-

ing representation of software architecture. In addition, the elaboration phase

revisits risks and the project plan to ensure that each remains valid.

The construction phase produces an implementation model that translates design

classes into software components that will be built to realize the system, and a de-

ployment model maps components into the physical computing environment. Finally,

20 Requirements that cannot be discerned from the use-case model

CHAPTER 3 PROCESS MODELS 99

Major work
products

produced for

each UP phase

Inception phase

Vision document

Initial use-case model

Initial project glossary

Initial business case

Initial risk assessment

Project plan

phases and iterations

Business model

if necessary

One or more prototypes

Elaboration phase

Use-case mode1

Supplementary

requirements

including non-fuactional

Analysis model

Software architecture

description

Executable architectural

prototype

Preliminary design model

Revised risk list

Project pion including

iteration plan

adopted wofkHows

milestones

technical work products

Preliminary user manual

Construction phase

Design model

Software components

Integrated software

increment

Test plan ond procedure

Test cases

Support documentation

user manuals

installation manuals

description of current

increment

Transition phase

Delivered software

increment

Beta test reports

General user feedback

a test model describes tests that are used to ensure that use-cases are properly re-

flected in the software that has been constructed.

The transition phase delivers the software increment and assesses work products

that are produced as end-users work with the software. Feedback from beta testing

and qualitative requests for change are produced at this time.

.3,7 Summary

Prescriptive software process models have been applied for many years in an effort

to bring order and structure to software development. Each of these conventional

models suggests a somewhat different process flow, but all perform the same set of

generic framework activities: communication, planning, modeling, construction,

and deployment.

The waterfall model suggests a linear progression of framework activities that is

often inconsistent with modern realities (e.g., continuous change, evolving systems,

tight timelines) in the software world. It does, however, have applicability in situa-

tions where requirements are well-defined and stable.

Incremental software process models produce software as a series of increment

releases. The RAD model is designed for larger projects that must be delivered in

tight time frames.

Evolutionary process models recognize the iterative nature of most software en-

gineering projects and are designed to accommodate change. Evolutionary models,

such as prototyping and the spiral model, produce incremental work products (or

working versions of the software) quickly. These models can be adopted to apply

100 PART ONE THE SOFTY/ARE PROCESS

across all software engineering activities—from concept development to long term

system maintenance.

The component-based model emphasizes component reuse and assembly. The

formal methods model encourages a mathematically based approach to software de-

velopment and verification. The aspect-oriented model accommodates cross-cutting

concerns that span the entire system architecture,

The Unified Process is a "use-case driven, architecture-centric, iterative and in-

cremental" software process designed as a framework for UML methods and tools.

The Unified Process is an incremental model in which five phases are defined: (1) an

inception phase that encompasses both customer communication and planning ac-

tivities and emphasizes the development and refinement ot use-cases as a primary

model; (2) an elaboration phase that encompasses the customer communication and

modeling activities focusing on the creation of analysis and design models with an

emphasis on class definitions and architectural representations; (3) a construction

phase that refines and then translates the design model into implemented software

components; (4) a transition phase that transfers the software from the developer to

the end-user for beta testing and acceptance; and (5) a production phase in which

on-going monitoring and support are conducted.

References —

—

(AMB02! Ambler, S., and L. Constantine, The Unified Process inception Phase, CMP Books, 2002.

1ARL02] ArSow, and t. Neustadt, UML and the Unified Process. Addison-Weslev, 2002.

|BAC97] Bach,)., “Good Enough Quality: Beyond the Buzzword,” IEEE Computer, vol. 30, no. 8,

August 1997, pp. 96-98

IBOE88] Boehm, B„ "A Spiral Model for Software Development and Enhancement," Computer,

vol. 21, no. 5, May 1988, pp. 61-72.

[BOE98] Boehm, B„ "Using the WINWIN Spiral Model; A Case Study,” Computer, vol. 31. no 7.

)uly 1998. pp. 33-44.

[BOE01]
Boehm, B„ “The Spiral Model as a Tool for Evolutionary Software Acquisition," CrossTaik,

May 2001, available at http://www.stsc.hill.af.mil/crosstalk/ 2001/05/boehm.html.

|B0094] Booch, G., Object Oiiented Analysis and Design, 2nd ed„ Benjamin Cummings, 1994.

|BRA94) Bradac, M., D. Perry, and L. Votta, "Prototyping a Process Monitoring Experiment," IEEE

Trans. Software Engineering, vol 20, no. 10, October 1994, pp. 774-784,

|BR075| Brooks, F., The Mythical Man-Month. Addison-Wesley, 1975.

[BUT94] Butler, J., "Rapid Application Development in Action," Managing System Development.

Applied Computer Research, vol. 14, no. 5, May 1994, pp. 6-8

|DYE92| Dyer, M„ The Cleanroom Approach to Quality Software Development, Wiley, 1992.

IELR0I] El’rad, T„ R. Filman. and A. Bader (eds,), "Aspect-Oriented Programming," Comm ACM,

vol 44, no. 1 0, October 2001 ,
special issue.

[FOW991 Fowler, M„ and K. Scott. UML Distilled, 2nd ed., Addison-Weslev, 1999

[GIL88] Gilb, T., Principles ofSoftware Engineering Management. Addison-Wesley, 1988

(GRA031 Gradecki, I., and N. Lesiecki. Masteting Aspectj: Aspect-Oiiented Programming in java.

Wiley, 2003.

[GRU021 Grundy, J., "Aspect-Oriented Component Engineering," 2002, http:// www.cs.auck-

land ac nz/'john-g/aspects.html.

(HAN951 Hanna, M., "Farewell to Waterfalls," Software Magazine. May 1995, pp. 38-46.

[HES961 Hesse. W„ Theory and Practice of the Software Process—A Field Study and its Impli-

cations for Project Management," Software Process Technology: 5th European Workshop,

EWSPT 96, Springer LNCS 1 149. 1996. pp, 241-256.

CHAPTER 3 PROCESS MODELS 101

|HES0
1] Hesse, W., "Dinosaur Meets Archaeopteryx? Seven Theses on Rational's Unified Process

(RUP)," Proc, 8th Inti. Workshop on Evaluation ofModeling Methods in System Analysis and De-
sign. Ch. vil. Interlaken, 2001

.

IJAC92) Jacobson, I
, Object-Oriented Sojhvare Engineering, Addison-Wesley, 1992

[JAC99] Jacobson, I., Booch, G., and J. Rumbaugh, The Unified Software Development Process. Ad-

dison-Wesley, 1999.

IJAC99I Jacobson, l„ G. Booch, and J. Rumbaugh, The Unified Software Development Process, Ad-

dison-Wesley, 1999.

[KAU95] Kauffman, S .
At Home in the Universe, Oxford, 1995

[KER94] Kerr.J , and R. Hunter, Inside RAD. McGraw-Hill, 1994.

[KIS02] Kiselev, I
,
Aspect Oriented Programming with Aspect], Sams Publishers. 2002.

[MAR9I] Martin, J., Rapid Application Development. Prentice-Hall, 1991.

|McDE93| McDermid, J., and P. Rook, "Software Development Process Models," in Software En
gineer's Reference Book. CRC Press, 1993, pp. 15/26-15/28

|M!L87] Mills. H. D,, M. Dyer, and R. Linger, "Cleanroom Software Engineering," IEEE Software,

September, 1987. pp. 19-25.

[NIE921 Nierstrasz, O., S. Gibbs, and D Tsichritzis, "Component-Oriented Software Develop-

ment," CACM, vol. 35, no. 9, September 1992, pp. 160-165.

INOG00] Nogueira, J„ C. Jones, and Luqi, "Surfing the Edge of Chaos: Applications to Software

Engineering," Command and Control Research and Technology Symposium. Naval Post

Graduate School, Monterey, CA, June 2000, download from http://www.dodccip.org/

2000CCRTS/cd/html/pdf_papers/Track_4/075.pdf.

|REE02| Reed, P„ Developing Applications with Java and UML. Addison-Wesley, 2002.

[REI95] Reilly, J. P, "Does RAD Live Up to the Hype," IEEE Software. September 1995, pp. 24-26.

[R0096] Roos, J , 'The Poised Organization: Navigating Effectively on Knowledge Landscapes,"

1996, available at http://www.imd.ch/fac/roos/paper_po.htmi.

|ROY70| Royce, W. W., "Managing the Development of Large Software Systems: Concepts and
Techniques," Proc WESCON, August 1970.

|RUM9 1 1
Rumbaugh

, J. , et ai , Object-Oriented Modeling and Design. Prentice-Hall ,1991.

[ST101 J
Stiller, E., and C. LeBianc, Project-Based Software Engineering: An Object-Oriented Ap-

proach, Addison-Wesley, 2001

.

[WIR90] Wirfs-Brock, R., B. Wiikerson, and L. Weiner, Designing Object-Oriented Software, Pren-

tice-Hall, 1990.

IYOU94] Yourdon, E.. "Software Reuse," Application Development Strategies, vol. 6, no 12 De-

cember, t994, pp. 1-16.

|YOU95] Yourdon, E., "When Good Enough is Best," IEEE Software, vol. 12, no. 3, Mav 1995,

pp. 79-81.

Problems and Points to Ponder
3 . 1 . Provide three examples of software projects that would be amenable to the incremental

model. Be specific.

3 .2 . Provide three examples of software projects that would be amenable to the prototyping

model. Be specific

3 .3 . What process adaptations are required if the prototype will evolve into a deliverable sys-

tem or product?

3.4. To achieve rapid development, the RAD model assumes the existence of one thing What
is it, and why is the assumption not always true?

3 .5 . Provide three examples of software projects that would be amenable to the waterfall

model. Be specific.

3 .6 . Read (NOG00] and write a two- or three-page paper that discusses the impact of "chaos"

on software engineering.

102 PART ONE THE SOFTWARE PROCESS

3.7. Is it possible to combine process models? If so, provide an example

3.8. What is the difference between a UP phase and a UP workflow?

3.9. The concurrent process model defines a set of "states," Describe what these states repre-

sent in your own words, and then indicate how they come into play within the concurrent

process model.

3.10. What are the advantages and disadvantages ofdeveloping software in which quality is “good

enough"? That is, what happens when we emphasize development speed over product quality?

3. 1 1 . It is possible to prove that a software component and even an entire program is correct.

So why doesn't everyone do this?

3.12. Provide three examples of software projects that would be amenable to the component-

based model. Be specific.

3. 1 3. Discuss the meaning of ’ cross-cutting concerns” in your own words. The literature ofAOP

is expanding rapidly. Do some research and write a brief paper on the current state-of-the-art.

3. 14. Are the Unified Process and UML the same thing? Explain your answer.

3. 1 5. As you move outward along the spiral process flow, what can you say about the software

that is being developed or maintained?

Further Readings and Information Sq.u&ses

Most software engineering textbooks consider prescriptive process models in some detail.

Books by Sommerville (Software Engineering, sixth edition, Addison-Wesley, 2000), Pfieeger

(Software Engineering: Theoty and Practice, Prentice-Hall, 2001), and Schach (Object-Oriented

and Classical Software Engineering, McGraw-Hill, 2001) consider conventional paradigms and

discuss their strengths and weaknesses. Although not specifically dedicated to process, Brooks

{The Mythical Man-Month, second edition, Addison-Wesley, 1995) presents age-old project wis-

dom that has everything to do with process. Firesmith and Henderson-Sellers (TheOPEN Process

Framework: An Introduction, Addison-Wesley, 2001) present a general template for creating

"flexible, yet disciplined software processes” and discuss process attributes and objectives.

Sharpe and McDermott [WorkflowModeling: ToolsforProcess Improvement andApplication De-

velopment, Artech House, 2001) present tools for modeling both software and business

processes. Jacobson, Griss, and lonsson (Software Reuse, Addison-Wesley, 1997) and McClure

[Software Reuse Techniques, Prentice-Hall, 1997) present much useful information on compo-

nent-based development. Heineman and Council (
Component-Based Software Engineering, Addi-

son-Wesley, 2001) describe the process required to implement component-based systems.

Kenett and Baker [Software Process Quality: Management and Control, Marcel Dekker, 1999) con-

sider how quality management and process design are intimately connected to one another.

Ambriola [Software Process Technology, Springer-Verlag, 2001), Derniame and his colleagues

[Sofhvare Process: Principles, Methodology, and Technology, Springer-Verlag, 1999), and Gruhn and

Hartmanis (Software Process Technology, Springer-Verlag, 1999) present edited conference pro-

ceedings that cover many research and theoretical issues that are relevant to the software process.

Jacobson, Booch, and Rumbaugh have written the seminal book on the Unified Process [IAC99J.

However, books by Arlow and Neustadt [ARL02] and a three-volume series by Ambler and Con-

stantine [AMB02] provide excellent complementary information. Krutchen (The Rational Unified

Process, second edition, Addison-Wesley, 2000) has written a worthwhile introduction to the UP.

Project management within the context of the UP is described in detail by Royce (Software Project

Management: A Unified Framework, Addison-Wesley, 1 998) . The definitive description of the UP has

been developed by the Rational Corporation and is available on-line at www.rational.com.

A wide variety of information sources on software engineering and the software process are

available on the internet. An up-to-date list of World Wide Web references that are relevant to

the software process can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Key
Concepts
agile manifesto

agile modeling

agile process models

agility

agility principles

ASD

Crystal

DSOM

Extreme

Programming

FDD

pair programming

politics

refactoring

Scrum

team characteristics

An Agile View
of Process

I
n 2001 ,

Kent Beck and 16 other noted software developers, writers, and con-

sultants [BECOla] (referred to as the "Agile Alliance") signed the "Manifesto

for Agile Software Development." It staled:

We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value.

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more.

A manifesto is normally associated with an emerging political movement—one

that attacks the old guard and suggests revolutionary change (hopefully for the

better). In some ways, that's exactly what agile development is all about.

Although the underlying ideas that guide agile development have been with

us for many years, it has only been during the past decade that these ideas have

crystallized into a "movement." In essence, agile 1 methods were developed in

an effort to overcome perceived and actual weaknesses in conventional soft-

ware engineering. Agile development can provide important benefits, but it is

not applicable to all projects, products, people, and situations. It is also not

What is it? Agile software engi-

neering combines a philosophy and

a set of development guidelines. The

philosophy encourages customer sat-

isfaction and eqrly incremental delivery of soft-

ware; small, highly motivated project teams;

informal methods; minimal software engineer-

ing work products; and overall development

simplicity. The development guidelines stress de-

livery over analysis and design (although these

activities are not discouraged), and active and

continuous communication between developers

and customers.

Who does it? Software engineers and other proj-

ect stakeholders (managers, customers, end-users)

work together on an agile team—a team that is

self-organizing and in control of its own destiny.

An agile team fosters communication and collab-

oration among all who serve on it.

Why is it important? The modern business

environment that spawns computer-based sys-

tems and software products is fast-paced and

I Agile methods are sometimes referred to as light or lean methods.

103

104 PART ONE THE SOFTWARE PROCESS

ever-changing. Agile software engineering

represents a reasonable alternative to conven-

tional software engineering for certain classes

of software and certain types of software proj-

ects. It has been demonstrated to deliver suc-

cessful systems quickly.

What are the steps? Agile development might

best be termed "software engineering life." The

basic framework activities—customer communi-

cation, planning, modeling, construction, deliv-

ery and evaluation—remain. But they morph

into a minimal task set that pushes the project

team toward construction and delivery (some

would argue that this is done at the expense of

problem analysis and solution design).

What is the work product? Customers and

software engineers who have adopted the agile

philosophy have the same view—the only really

important work product is an operational "soft-

ware increment" that is delivered to the customer

on the appropriate commitment date.

How do I ensure that I've done it right? If

the agile team agrees that the process works and

the team produces deliverable software incre-

ments that satisfy the customer, you've done it

right.

antithetical to solid software engineering practice and can be applied as an over-

riding philosophy for all software work.

In the modern economy, it is often difficult or impossible to predict how a

computer-based system (e.g., a Web-based application) will evolve as time passes.

Market conditions change rapidly, end-user needs evolve, and new competitive

threats emerge without warning. In many situations, we no longer are able to define

requirements fully before the project begins. Software engineers must be agile

enough to respond to a fluid business environment.

Does this mean that a recognition of these modern realities causes us to discard

valuable software engineering principles, concepts, methods, and tools? Absolutely

not! Like all engineering disciplines, software engineering continues to evolve. It can

be adapted easily to meet the challenges posed by a demand for agility.

"Agility: 1, everything eke: 0."

Tom DeMarco

In a thought-provoking book on agile software development, Alistair Cockburn

[COC02a] argues that the prescriptive process models introduced in Chapter 3 have

a major failing: they forget the frailties of the people who build computer software.

Software engineers are not robots. They exhibit great variation in working styles and

significant differences in skill level, creativity, orderliness, consistency, and spon-

taneity. Some communicate well in written form, others do not. Cockburn argues

that process models can "deal with people’s common weaknesses with [either] dis-

cipline or tolerance" [COC02a] and that most prescriptive process models choose

discipline. He states: "Because consistency in action is a human weakness, high dis-

cipline methodologies are fragile" [COC02a].

If process models are to work, they must provide a realistic mechanism for en-

couraging the discipline that is necessary, or they must be characterized in a man-

ner that shows "tolerance" for the people who do software engineering work.

Invariably, tolerant practices are easier for software people to adopt and sustain, but

CHAPTER 4 AN AGILE VIEW OF PROCESS 105

(as Cockburn admits) they may be less productive. Like most things in life, trade-offs

must be considered

Just what is agility in the context of software engineering work? Ivar Jacobson

[JAC021 provides a useful discussion:

Agility has become today's buzzword when describing a modern software process. Every-

one is agile. An agile team is a nimble team able to appropriately respond to changes.

Change is what software development is very much about Changes in the software be-

ing built, changes to the team members, changes because ofnew technology, changes of

all kinds that may have an impact on the product they build or the project that creates the

product. Support for changes should be built-in everything we do in software, something

we embrace because it is the heart and soul of software. An agile team recognizes that

software is developed by individuals working in teams and that the skills of these peopie,

their ability to collaborate is at the core for the success of the project.

In Jacobson's view, the pervasiveness of change is the primary' driver for agility. Soft-

ware engineers must be quick on their feet if they are to accommodate the rapid

changes that Jacobson describes.

Don't make (tie

mistake ofassuming

that agility gives you

kense to hock out

solutions. A process is

required, and discipline

is essential.

But agility is more than an effective response to change. It also encompasses the

philosophy espoused in the manifesto noted at the beginning of this chapter. It en-

courages team structures and attitudes that make communication (among team

members, between technologists and business people, between software engineers

and their managers) more facile. It emphasizes rapid delivery of operational soft-

ware and de-emphasizes the importance of intermediate work products (not always

a good thing); it adopts the customer as a part of the development team and works

to eliminate the "us and them ' attitude that continues to pervade many software

projects; it recognizes that planning in an uncertain world has its limits and that a

project plan must be flexible.

The Agile Alliance [AGI03) defines 12 principles for those who want to achieve

agility:

1 . Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

106 PART ONE THE SOFTWARE PROCESS

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances

agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

1 1 . The best architectures, requirements, and designs emerge from self-

organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Agility can be applied to any software process. However, to accomplish this, it

is essential that the process be designed in a way that allows the project team to

adapt tasks and to streamline them, conduct planning in a way that understands

the fluidity of an agile development approach, eliminate all but the most essential

work products and keep them lean, and emphasize an incremental delivery strat-

egy that gets working software to the customer as rapidly as feasible for the prod-

uct type and operational environment.

.4 .,2 What Is am Agile Process?

Any agile software process is characterized in a manner that addresses three key as-

sumptions [FOW02] about the majority of software projects:

1 . it is difficult to predict in advance which software requirements will persist

and which will change. It is equally difficult to predict how customer priori-

ties will change as a project proceeds.

2. For many types of software, design and construction are interleaved. That is,

both activities should be performed in tandem so that design models are

proven as they are created. It is difficult to predict how much design is neces-

sary before construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable (from a

planning point of view) as we might like.

CHAPTER 4 AN AGILE VIEW OF PROCESS 107

WebRef
A comprehensive

collection of articles on

the ogile process con

be found at

www.oonpo.org/

ortides/index.

You don't hove to

choose between agility

end software engi-

neering. Instead,

define a software engi

neering approach thot

is ogile.

Given these three assumptions, an important question arises: How do we create a

process that can manage unpredictability? The answer, as we have already noted,

lies in process adaptability (to rapidly changing project and technical conditions). An

agile process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little. Therefore,

an agile software process must adapt incrementally. To accomplish incremental

adaptation, an agile team requires customer feedback (so that the appropriate adap-

tations can be made). An effective catalyst for customer feedback is an operational

prototype or a portion of an operational system. Hence, an incremental development

strategy should be instituted. Software increments (executable prototypes or a portion

of an operational system) must be delivered in short time periods so that adaptation

keeps pace with change (unpredictability). This iterative approach enables the cus-

tomer to evaluate the software increment regularly, provide necessary feedback to

the software team, and influence the process adaptations that are made to accom-

modate the feedback.

"There is no substitute for rapid feedbock, both on the development process ond on the product itself."

Martin Fowler

4.2.1 The Politics of Agile Development

There is considerable debate (sometime's strident) about the benefits and applicability

of agile software development as opposed to more conventional software engineering

processes. Jim Highsmith [HIG02a] (facetiously) states the extremes when he charac-

terizes the feeling of the pro-agility camp ("agilists") . "Traditional methodologists are

a bunch of stick-in-the-muds who'd rather produce flawless documentation than a

working system that meets business needs." As a counterpoint, he states (again, face-

tiously) the position of the traditional software engineering camp: “Lightweight, er,

'agile' methodologists are a bunch of glorified hackers who are going to be in for a

heck of a suiprise when they tty to scale up their toys into enterprise-wide software."

Like all software technology arguments, this methodology debate risks degener-

ating into a religious war. If warfare breaks out, rational thought disappears and be-

liefs rather than facts guide decision-making.

No one is against agility. The real question is: What is the best way to achieve it?

As important, how do we build software that meets customers' needs today and ex-

hibits the quality characteristics that will enable it to be extended and scaled to meet

customers' needs over the long term?

There are no absolute answers to either of these questions. Even within the agile

school itself, there are many proposed process models (Section 4.3), each with a sub-

tly different approach to the agility problem. Within each model there is a set of

“ideas" (agilists are loath to call them "work tasks") that represent a significant de-

parture from conventional software engineering. And yet, many agile concepts are

simply adaptations of good software engineering concepts. Bottom line: there is

108 PART ONE THE SOFTWARE PROCESS

^ What key

W* traits must

exist among the

people on an

effective software

team?

much that can be gained by considering the best of both schools and virtually noth-

ing to be gained by denigrating either approach.

The interested reader should see [HIG01 1, [HIG02a], and [DEM02| for an enter-

taining summary of the important technical and political issues.

4.2.2 Human Factors

Proponents of agile software development take great pains to emphasize the im-

portance of "people factors" in successful agile development. As Cockburn and

Highsmith [COCOl] state, "Agile development focuses on the talents and skills of

individuals, molding the process to specific people and teams." The key point in

this statement is that the process molds to the needs ofthe people and team, not the

other way around. 2

"What counts as barely sufficient for one team is either overly sufficient or insufficient for another.'

Alistair Cockburn

Ifmembers of the software team are to drive the characteristics of the process that

is applied to build software, a number of key traits must exist among the people on

an agile team and the team itself:

Competence. In an agile development (as well as conventional software engi-

neering) context, "competence” encompasses innate talent, specific software re-

lated skills, and overall knowledge of the process that the team has chosen to

apply. Skill and knowledge of process can and should be taught to all people who
serve as agile team members.

Common focus. Although members of the agile team may perform different

tasks and bring different skills to the project, all should be focused on one goal—to

deliver a working software increment to the customer within the time promised. To

achieve this goal, the team will also focus on continual adaptations (small and

large) that will make the process fit the needs of the team.

Collaboration. Software engineering (regardless of process) is about assessing,

analyzing, and using information that is communicated to the software team; cre-

ating information tha’t will help the customer and others understand the work of

the team; and building information (computer software and relevant databases)

that provides business value for the customer. To accomplish these tasks, team

members must collaborate—with one another, with the customer, and with busi-

ness managers.

Decision-making ability. Any good software team (including agile teams)

must be allowed the freedom to control its own destiny. This implies that the

2 Most successful software engineering organizations recognize this reality regardless of the process

model they choose.

CHAPTER 4 AN AGILE VIEW OF PROCESS 109

POINT
A self-organizing team

is in control of the

woik it performs. The

team makes its own

commitments and

defines plans to

achieve them.

team is given autonomy—decision-making authority tor both technical and proj-

ect issues.

Fuzzy problem-solving ability. Software managers should recognize that

the agile team will continually have to deal with ambiguity and will continually

be buffeted by change. In some cases, the team must accept the fact that the

problem they are solving today may not be the problem that needs to be solved

tomorrow. However, lessons learned from any problem solving activity (includ-

ing those that solve the wrong problem) may be of benefit to the team later in

the project.

Mutual trust and respect. The agile team must become what DeMarco and

Lister [DEM98] call a "jelled" team (see Chapter 2 1) A jelled team exhibits the trust

and respect that are necessary to make them "so strongly knit that the whole is

greater than the sum of the parts" [DEM98]

,

Self-organization, m the context of agile development, self-organization im-

plies three things: (1) the agile team organizes itself for the work to be done; (2) the

team organizes the process to best accommodate its local environment; (3) the

team organizes the work schedule to best achieve delivery of the software incre-

ment. Self-organization has a number of technical benefits, but more importantly it

serves to improve collaboration and boost team morale. In essence, the team

serves as its own management. Ken Schwaber (SCH02] addresses these issues

when he writes: "The team selects how much work it believes it can perform

within the iteration, and the team commits to the work. Nothing demotivates a

team as much as someone else making commitments for it. Nothing motivates a

team as much as accepting the responsibility for fulfilling commitments that it

made itself."

4.3 Agile Process Models

The history of software engineering is littered with dozens of obsolete process

descriptions and methodologies, modeling methods and notations, tools, and tech-

nology. Each flared in notoriety and was then eclipsed by something new and (pur-

portedly) better. With the introduction of a wide array of agile process models—each

contending for acceptance within the software development community—the agile

movement is following the same historical path.
3

“Our profession goes through methodologies like a 1 4-yeor-old goes through clothing."

Stephen Hawrysh and Jim Ruprecht

3 This is not a bad thing. Before one or more models or methods are accepted as a de facto standard,

all must contend for the hearts and minds of software engineers. The "winners" evolve into best

practice while tire "losers" either disappear or merge with the winning models.

no PART ONE THE SOFTWARE PROCESS

in the sections that follow, we present an overview of a number of different agile

process models. There are many similarities (in philosophy and practice) among
these approaches. Our intent will be to emphasize those characteristics of each

method that make it unique. It is important to note that all agile models conform (to

a greater or lesser degree) to the Manifestofor Agile Software Development and the

principles noted in Section 4.1.

WebRef

An excellent overview

of "rules" for XP con

be found at

www.extreawpro

gramnring.org/

rules.html.

4.3.1 Extreme Programming (XP)

Although early work on the ideas and methods associated with Extreme Program-

ming (XP) occurred during the late 1 980s, the seminal work on the subject, written

by Kent Beck [BEC991 was published in 1 999. Subsequent books by Jeffries et al

[JEF01] on the technical details of XP, and additional work by Beck and Fowler

[BECOlb] on XP planning, flesh out the details of the method.

XP uses an object-oriented approach (Part 2 of this book) as its preferred devel-

opment paradigm. XP encompasses a set of rules and practices that occur within the

context of four framework activities: planning, design, coding, and testing. Figure 4.

1

illustrates the XP process and notes some of the key ideas and tasks that are associ-

ated with each framework activity. Key XP activities are summarized in the para-

graphs that follow.

Planning. The planning activity begins with the creation of a set of stories (also

called user stories) that describe required features and functionality for software to

be built. Each story (similar to use-cases described in Chapters 7 and 8) is written by

the customer and is placed on an index card. The customer assigns a value (i.e., a

The Extreme
Programming
process

simple design

CRC cards

spike solutions

prototypes

acceptance testing

CHAPTER 4 AN AGILE VIEW OF PROCESS 111

O What is an

• XP "story"?

WebRef

AworthwiieXP

'planning gome" con

be toond ot

c2.com/cgi/wiki?

plonningGome.

priority) to the story based on the overall business value of the feature or function.4

Members of the XP team then assess each story and assign a cost—measured in de-

velopment weeks—to it. If the story will require more than three development weeks,

the customer is asked to split the story into smaller stories, and the assignment of

value and cost occurs again. It is important to note that new stories can be written

at any time.

Customers and the XP team work together to decide how to group stories into the

next release (the next software increment) to be developed by the XP team. Once a

basic commitment (agreement on stories to be included, delivery date, and other

project matters) is made for a release, the XP team orders the stories that will be de-

veloped in one of three ways: (l) all stories will be implemented immediately (within

a few weeks); (2) the stories with highest value will be moved up in the schedule and

implemented first; or (3) the riskiest stories will be moved up in the schedule and im-

plemented first.

After the first project release (also called a software increment) has been deliv-

ered, the XP team computes project velocity. Stated simply, project velocity is the

number ofcustomer stories implemented during the first release. Project velocity can

then be used to (l) help estimate delivery dates and schedule for subsequent

releases, and (2) determine whether an over-commitment has been made for all sto-

ries across the entire development project. If an over-commitment occurs, the con-

tent of releases is modified or end-delivery dates are changed.

As development work proceeds, the customer can add stories, change the value

of an existing story, split stories, or eliminate them. The XP team then reconsiders all

remaining releases and modifies its plans accordingly.

"Extreme Programming is a discipline of software development based on values of simplicity, communication,

feedback, and courage.”

Ron Jeffries

Design. XP design rigorously follows the KIS (keep it simple) principle. A simple de-

sign is always preferred over a more complex representation. In addition, the design

provides implementation guidance for a story as it is written—nothing less, nothing

more. The design of extra functionality (because the developer assumes it will be re-

quired later) is discouraged.5

XP encourages the use of CRC cards (Chapter 8) as an effective mechanism for

thinking about the software in an object-oriented context. CRC (class-responsibility

collaborator) cards identify and organize the object-oriented classes6 that are relevant

to the current software increment. The XP team conducts the design exercise using a

4 The value of a story may also depend on the presence of another story.

5 These design guidelines should be followed in evety software engineering method, although there

are times when sophisticated design notation and terminology may get in the way of simplicity.

6 Object-oriented classes are discussed in detail in Chapter 8 and throughout Part 2 of this book.

112 PART ONE THE SOFTWARE PROCESS

WebRef
Rotating techniques

and tools con be found

ot

www.refactoring.

com.

process similar to the one described in Chapter 8 (Section 8.7.4). The CRC cards are

the only design work product produced as part of the XP process.

If a difficult design problem is encountered as part of the design of a story, XP rec-

ommends the immediate creation of an operational prototype of that portion of the

design. Called a spike solution, the design prototype is implemented and evaluated.

The intent is to lower risk when true implementation starts and to validate the orig-

inal estimates for the story containing the design problem.

XP encourages refactoring—a construction technique that is also a design tech-

nique. Fowler [FOWOO] describes refactoring in the following manner:

Refactoring is the process of changing a software system in such a way that it does not

alter the external behavior of the code yet improves the internal structure. It is a disci-

plined way to clean up code [and modify/simplify the internal design] that minimizes the

chances of introducing bugs. In essence, when you refactor you are improving the design

of the code after it has been written

WebRef
Useful infomiotion on

XP tan be obtoaied at

www.xprogrommi

ng.com.

^ What is

• pair

programming?

Because XP design uses virtually no notation and produces few, if any work products

other than CRC cards and spike solutions, design is viewed as a transient artifact that

can and should be continually modified as construction proceeds. The intent of

refactoring is to control these modifications by suggesting small design changes that

"can radically improve the design" [FOWOO] . It should be noted, however, that effort

required for refactoring can grow dramatically as the size of an application grows.

A central notion in XP is that design occurs both before and after coding com-

mences. Refactoring means that design occurs continuously as the system is con-

structed. In fact, the construction activity itself will provide the XP team with

guidance on how to improve the design.

Coding. XP recommends that after stories are developed and preliminary design

work is done, the team should not move to code, but rather develop a series of unit

tests that will exercise each of the stories that is to be included in the current release

(software increment). 7 Once the unit test has been created, the developer is better

able to focus on what must be implemented to pass the unit test. Nothing extrane-

ous is added (K1S). Once the code is complete, it can be unit tested immediately,

thereby providing instantaneous feedback to the developers.

A key concept during the coding activity (and one of the most talked about aspects

of XP) is pair programming. XP recommends that two people work together at one

computer workstation to create code for a story. This provides a mechanism for real-

time problem solving (two heads are often better than one) and real-time quality as-

surance. It also keeps the developers focused on the problem at hand. In practice,

each person takes on a slightly different role. For example, one person might think

about the coding details of a particular portion of the design while the other ensures

7 This approach is analogous to knowing the exam questions before you begin to study. It makes

studying much easier by focusing attention only on the questions that will be asked

CHAPTER 4 AN AGILE VIEW OF PROCESS 113

POINT
XP occeptonce tests

ore derived from user

stories.

that coding standards (a required part of XP) are being followed and the code that is

generated will "fit" into the broader design for the story.

As pair programmers complete their work, the code they develop is integrated with

the work of others. In some cases this is performed on a daily basis by an integration

team. In other cases, the pair programmers have integration responsibility. This "con-

tinuous integration" strategy helps to avoid compatibility and interfacing problems and

provides a "smoke testing” environment (Chapter 1 3) that helps to uncover errors early.

Testing. We have already noted that the creation of a unit test
8 before coding

commences is a key element of the XP approach. The unit tests that are created

should be implemented using a framework that enables them to be automated

(hence, they can be executed easily and repeatedly). This encourages a regression

testing strategy (Chapter 13) whenever code is modified (which is often, given the XP
refactoring philosophy).

As the individual unit tests are organized into a "universal testing suite" [WEL99],

integration and validation testing of the system can occur on a daily basis. This pro-

vides the XP team with a continual indication of progress and also can raise warn-

ing flags early if things are going awry. Wells |WEL99] states: "Fixing small problems

evew few hours takes less time than fixing huge problems just before the deadline."

XP acceptance tests, also called customer tests, are specified by the customer and

focus on overall system features and functionality that are visible and reviewable by

the customer. Acceptance tests are derived from user stories that have been imple-

mented as part of a software release.

SafeHome

Considering Agile Software Development

The scene: Doug Miller's office.

The players: Doug Miller, software engineering

manager; Jamie Lazar, software team member; Vinod

Raman, software team member.

The conversation:

(A knock on the door)

Jamie: Doug, you got a minute?

Doug: Sure Jamie, what's up?

Jamie: We've been thinking about our process

discussion yesterday . .
. you know, what process we're

going to choose for this new SafeHome project.

Doug: And?

Vinod: I was talking to o friend at another company,

and he was telling me about Extreme Programming. It's

an agile process model, heard of it?

Doug: Yeah, some good, some bad.

Jamie: Well, it sounds pretty good to us. Lets you

develop software really fast, uses something called pair

programming to do real-time quality checks ... it's pretty

cool, I think.

Doug: It does have a lot of really good ideas. I like the

pair programming concept, for instance, and the idea

that stakeholders should be part of the team.

8 Unit testing, discussed in detail in Chapter 13, focuses on an individual software component, exer-

cising the component's interface, data structures, and functionality in an effort to uncover errors

that are local to the component.

114 PART ONE THE SOFTWARE PROCESS

Jamie: Huh? You mean that marketing will work on the

project team with us?

Doug (nodding): They're a stakeholder, aren't they?

Jamie: Jeez . . . they'll be requesting changes every five

minutes.

Vinod: Not necessarily. My friend said that there are

ways to "embrace" changes during an XP project.

Doug: So you guys think we should use XPS

Jamie: It's definitely worth considering.

Doug I agree. And even if we choose an incremental

model as our approach
,
there's no reason why we can't

incorporate much of what XP has to offer.

Vinod: Doug, before you said "some good, some bad.”

What was the "bad"?

Doug: The thing I don't like is the way XP downplays

analysis and design . . . sort of says that writing code is

where the action is.

(The team members look at one another and smile.)

Doug: So you agree with the XP approach?

Jamie (speaking for both): Writing code is what

we do, Boss!

Doug (laughing): True, but I'd like to see you spend a

little less time coding and then re-coding and a little more

time analyzing what has to be done and designing a

solution that works.

Vinod: Maybe we can hove it both ways, agility with a

little discipline.

Doug: I think we can, Vinod. In fact. I'm sure of it.

4.3.2 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith [HIGOO]

as a technique for building complex software and systems. The philosophical under-

pinnings of ASD focus on human collaboration and team self-organization. High-

smith [HIG98] discusses this when he writes:

Self-organization is a property of complex adaptive systems similar to a collective "aha,"

that moment of creative energy when the solution to some nagging problem emerges.

Self-organization arises when individual, independent agents (cells in a body, species in

an ecosystem, developers in a feature team) cooperate (collaborate! to create emergent

outcomes. An emergent outcome is a property beyond the capability of any individual

agent. For example, individual neurons in the brain do not possess consciousness, but

collectively the property of consciousness emerges. We tend to view this phenomena of

collective emergence as accidental, or at least unruly and undependable. The study of

self-organization is proving that view to be wrong.

Highsmith argues that an agile, adaptive development approach based on collabo-

Usefut resources for ration is "as much a source of order in our complex interactions as discipline and en-

ASD ton he found ot gineering." He defines an ASD "life cycle" (Figure 4.2) that incorporates three phases:

www.adoptrvesd.
speculation, collaboration, and learning.

com. r

Speculation . During speculation, the project is initiated and adaptive cycle planning

is conducted. Adaptive cycle planning uses project initiation information—the cus-

tomer's mission statement, project constraints (e.g., delivery dates or user descrip-

WebRef

Adaptive
software

development

9 What are

• the

characteristics of

ASD adaptive

cycles?

Effective collaboration

with your customer will

only occur if you

jettison any 'us and

them' attitudes.

CHAPTER 4 AN AGILE VIEW OF PROCESS 115

adaptive cycle planning

mission statement

project constraints

basic requirements

time-boxed release plan

Requirements gathering

JAD
mini-specs

software increment

adjustments for subsequent cycles
components implemented/tested

focus groups for feedback

formal technical reviews

postmortems

tions), and basic requirements—to define the set of release cycles (software incre-

ments) that will be required for the project. 9

Collaboration. Motivated people work together in a way that multiplies their tal-

ent and creative output beyond their absolute numbers. This collaborative approach

is a recurring theme in all agile methods. But collaboration is not easy. It is not sim-

ply communication, although communication is a part of it. It is not only a matter of

teamwork, although a "jelled" team (Chapter 2 1) is essential for real collaboration to

occur. It is not a rejection of individualism, because individual creativity plays an im-

portant role in collaborative thinking. It is, above all, a matter of trust. People work-

ing together must trust one another to (1) criticize without animosity; (2) assist

without resentment; (3) work as hard or harder as they do; (4) have the skill set to

contribute to the work at hand; and (5) communicate problems or concerns in a way

that leads to effective action.

"I like to listen. I hove learned o great deal from listening carefully. Most people never listen."

Ernest Hemingway

9 Note that the adaptive cycle plan can and probably will be adapted to changing project and busi-

ness conditions.

116 PART ONE THE SOFTWARE PROCESS

Learning. As members of an ASD team begin to develop the components that are

part of an adaptive cycle, the emphasis is on learning as much as it is on progress to-

ward a completed cycle. In fact, Highsmith [HIGOO] argues that software developers

often overestimate their own understanding (of the technology, the process, and the

project) and that learning will help them to improve their level of real understand-

ing. ASD teams learn in three ways:

1 . Focus groups. The customer and/or end-users provide feedback on soft-

ware increments that are being delivered. This provides a direct indicatiomof

whether or not the product is satisfying business needs.

2. Formal technical reviews. ASD team members review the software com-

ponents that are developed, improving quality and learning as they proceed.

3. Postmortems. The ASD team becomes introspective, addressing its own

performance and process (with the intent of learning and then improving its

approach).

It is important to note that the ASD philosophy has merit regardless of the process

model that is used. ASD's overall emphasis on the dynamics of self-organizing

teams, interpersonal collaboration, and individual and team learning yield software

project teams that have a much higher likelihood of success.

WebRef
Useful resources for

SOM can be found at

www.dsdm.org.

WebRef
ft useful oven/tew of

DSDM con be found at

www.cs3inc.com/

DSDM.htm.

4.3.3 Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) [STA97] is an agile software devel-

opment approach that "provides a framework for building and maintaining systems

which meet tight time constraints through the use of incremental prototyping in a con-

trolled project environment" [CCS02]. Similar in some respects the RAD process dis-

cussed in Chapter 3, DSDM suggests a philosophy that is borrowed from a modified

version of the Pareto principle. In this case, 80 percent ofan application can be delivered

in 20 percent of the time it would take to deliver the complete (100 percent) application.

Like XP and ASD, DSDM suggests an iterative software process. However, the

DSDM approach to each iteration follows the 80 percent rule. That is, only enough

work is required for each increment to facilitate movement to the next increment.

The remaining detail can be completed later when more business requirements are

known or changes have been requested and accommodated.

The DSDM Consortium (www.dsdm.org) is a worldwide group of member com-

panies that collectively take on the role of "keeper" of the method. The consortium

has defined an agile process model, called the DSDM life cycle. The DSDM life cycle

defines three different iterative cycles, preceded by two additional life cycle

activities:

Feasibility study—establishes the basic business requirements and constraints

associated with the application to be built and then assesses whether the applica-

tion is a viable candidate for the DSDM process.

CHAPTER 4 AN AGILE VIEW OF PROCESS 117

Business study—establishes the functional and information requirements that will

allow the application to provide business value; also, defines the basic application

architecture and identifies the maintainability requirements for the application.

Functional model iteration—produces a set of incremental prototypes that

demonstrate functionality for the customer (note: all DSDM prototypes are in-

tended to evolve into the deliverable application). The intent during this iterative

cycle is to gather additional requirements by eliciting feedback from users as they

exercise the prototype.

Design and build iteration—revisits prototypes built during the functional model

iteration to ensure that each has been engineered in a manner that will enable it to

provide operational business value for end-users. In some cases, the functional

model iteration and the design and build iteration occur concurrently.

Implementation—places the latest software increment (an "operationalized" pro-

totype) into the operational environment. It should be noted that (1) the increment

may not be 1 00 percent complete or (2) changes may be requested as the incre-

ment is put into place. In either case, DSDM development work continues by re-

turning to the function model iteration activity.

DSDM can be combined with XP to provide a combination approach that defines

a solid process model (the DSDM life cycle) with the nuts and bolts practices (XP) that

are required to build software increments. In addition, the ASD concepts of collabo-

ration and self-organizing teams can be adapted to a combined process model.

4.3.4 Scrum

Scrum (the name derived from an activity
10

that occurs during a rugby match) is an

agile process model that was developed by Jeff Sutherland and his team in the early

1990s. In recent years, further development of the Scrum methods has been per-

formed by Schwaber and Beedle [SCH01]. Scrum principles [ADM96] are consistent

with the agile manifesto:

• Small working teams are organized to "maximize communication, minimize

overhead, and maximize sharing of tacit, informal knowledge."

• The process must be adaptable to both technical and business changes "to

ensure the best possible product is produced."

• The process yields frequent software increments "that can be inspected,

adjusted, tested, documented, and built on."

• Development work and the people who perform it are partitioned "into clean,

low coupling partitions, or packets."

• Constant testing and documentation is performed as the product is built.

10 A group of players forms around the ball and the teammates work together (sometimes violently!)

to move the ball downfield.

118 PART ONE THE SOFTWARE PROCESS

WebRef

Useful Saum

information ond

resources con be

found ot

www.controkhaos.

com.

• The Scrum process provides the "ability to declare a product 'done' whenever

required (because the competition just shipped, because the company needs

the cash, because the user/customer needs the functions, because that was

when it was promised. .
.

[ADM96].

Scrum principles are used to guide development activities within a process that in-

corporates the following framework activities: requirements, analysis, design, evo-

lution, and delivery. Within each framework activity, work tasks occur within a

process pattern (discussed in the following paragraph) called a sprint. The work con-

ducted within a sprint (the number of sprints required for each framework activity

will vary depending on product complexity and size) is adapted to the problem at

hand and is defined and often modified in real-time by the Scrum team. The overall

flow of the Scrum process is illustrated in Figure 4.3.

"Strum allows us to build softer software."

Mike Beetle et al.

Scrum emphasizes the use of a set of "software process patterns" [NOY02] that have

proven effective for projects with tight timelines, changing requirements, and business

criticality. F.ach of these process patterns defines a set of development activities:

Scrum process

flow

Sprint Backlog:

Feature(s)

assigned

to sprint

Scrum: 15 minute daily meeting.

Team members respond to basics:

What did you do since last Scrum

meeting?

2) Do you have any obstacles?

3) What will you do before next

meeting?

New functionality

is demonstrated
at end of sprint

Product Backlog:

Prioritized product features desired by the customer

CHAPTER 4 AN AGILE VIEW OF PROCESS 119

*5

POINT
Scram incorporates a

set of process patterns

that emphasize project

priorities,

compartmentalized

work units,

communication, ond

frequent customer

feedback.

Backlog—a prioritized list of project requirements or features that provide busi-

ness value for the customer. Items can be added to the backlog at any time (this is

how changes are introduced). The product manager assesses the backlog and up-

dates priorities as required.

Sprints—consist of work units that are required to achieve a requirement de-

fined in the backlog that must be fit into a predefined time-box (typically 30 days).

During the sprint, the backlog items that the sprint work units address are frozen

(i.e., changes are not introduced during the sprint). Hence, the sprint allows team
members to work in a short-term, but stable environment.

Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum
team. Three key questions are asked and answered by all team members [NOY02]:

• What did you do since the last team meeting?

• What obstacles are you encountering?

• What do you plan to accomplish by the next team meeting?

A team leader, called a "Scrum master," leads the meeting and assesses the re-

sponses from each person. The Scrum meeting helps the team to uncover potential

problems as early as possible. Also, these daily meetings lead to "knowledge so-

cialization" [BEE99] and thereby promote a self-organizing team structure.

Demos—deliver the software increment to the customer so that functionality that

has been implemented can be demonstrated and evaluated by the customer. It is im-

portant to note that the demo may not contain ail planned functionality, but rather

those functions that can be delivered within the time-box that was established.

Beedle and his colleagues [BEE99] present a comprehensive discussion of these pat-

terns in which they state: "SCRUM assumes up-front the existence of chaos. . .

." The
Scrum process patterns enable a software development team to work successfully in

a world where the elimination of uncertainty is impossible.

4.3.5 Crystal

Alistair Cockburn [COC02a] and Jim Highsmith [HIG02b] created the Crystalfamily

ofagile methods" in order to achieve a software development approach that puts

a premium on "maneuverability” during what Cockburn characterizes as "a

resource-limited, cooperative game of invention and communication, with a

primary goal of delivering useful, working software and a secondary goal of set-

ting up for the next game" [COC02b],

To achieve maneuverability, Cockburn and Highsmith have defined a set of

methodologies, each with core elements that are common to all, and roles, process

1 1 The name "crystal" is derived from the characteristics of geological crystals, each with its own
color, shape, and hardness.

120 PART ONE THE SOFTWARE PROCESS

WebRef
A comprehensive

discussion ol Crystal

can be fGund ot

www.crystolmetli

odologies.org.

WebRel 1

A wide variety of

articles and

presentations on FDD

con be found ot

www.thecood

letter.com.

patterns, work products, and practice that are unique to each. The Crystal family is

actually a set of agile processes that have been proven effective for different types of

projects. The intent is to allow agile teams to select the member of the crystal fam-

ily that is most appropriate for their project and environment.

4.3.6 Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his

colleagues [COA99] as a practical process mode! for object-oriented software engi-

neering. Stephen Palmer and John Felsing [PAL02] have extended and enhanced

Coad's work, describing an adaptive, agile process that can be applied to moderately

sized and larger software projects.

in the context of FDD, a feature "is a client-valued function that can be imple-

mented in two weeks or less" [COA99]. The emphasis on the definition ot features

provides the following benefits:

• Because features are small blocks ot deliverable functionality, users can

describe them more easily, understand how they relate to one another more

readily, and better review them for ambiguity, error, or omissions.

• Features can be organized into a hierarchical business-related grouping.

. Since a feature is the FDD deliverable software increment, the team develops

operational features every two weeks.

• Because features are small, their design and code representations are easier

to inspect effectively.

• Project planning, scheduling, and tracking are driven by the feature

hierarchy, rather than an arbitrarily adopted software engineering task set.

Coad and his colleagues [COA99] suggest the following template for defining a feature:

<action> the <result> <by I for I of I to> a(n) <object>

where an <object> is "a person, place, or thing (including roles, moments in time or

intervals of time, or catalog-entry-like descriptions)." Examples of features for an

e-commerce application might be:

Add the product to a shopping cart.

Display the technical specifications ofa product.

Store the shipping-informationfor a customer.

A feature set groups related features into business-related categories and is defined

[COA99] as:

<actionx-ing> a(n) <object>

For example: Making a product sale is a feature set that would encompass the fea-

tures noted earlier and others.

CHAPTER 4 AN AGILE VIEW OF PROCESS 121

Feature Driven

Development
[COA99] (used

with permis-

sion)

(more shape A list of features A development plan A design Completed

than content) grouped into sets Class owners package client-value

and subject areas Feature Set Owners (sequences) function

The FDD approach defines five "collaborating'' [COA99) framework activities (in

FDD these are called "processes") as shown in Figure 4.4.

FDD provides greater emphasis on project management guidelines and tech-

niques than many other agile methods. As projects grow in size and complexity, ad

hoc project management is often inadequate. It is essential for developers, their

managers, and the customer to understand project status—what accomplishments

have been made and problems have been encountered. If deadline pressure is sig-

nificant, it is critical to determine if software increments (features) are properly

scheduled. To accomplish this, FDD defines six milestones during the design and im-

plementation of a feature: "design walkthrough, design, design inspection, code,

code inspection, promote to build" (COA99).

WebRef
Comprehensive

information on agile

modeling con be

found at

www.ogilemodel

ing.com.

4.3.7 Agile Modeling (AM)

There are many situations in which software engineers must build large, business-

critical systems. The scope and complexity of such systems must be modeled so

that (1) all constituencies can better understand what needs to be accomplished;

(2) the problem can be partitioned effectively among the people who must solve

it; and (3) quality can be assessed at every step as the system is being engineered

and built.

Over the past 30 years, a wide variety of software engineering modeling methods

and notation have been proposed for analysis and design (both architectural and

component-level). These methods have significant merit, but they have proven dif-

ficult to apply and challenging to sustain (over many projects) . Part of the problem is

the "weight" of these modeling methods. By this we mean the volume of notation re-

quired, the degree of formalism suggested, the size of the models for large projects,

and the difficulty’ in maintaining the model as changes occur. Yet analysis and design

modeling have substantial benefit for large projects—if for no other reason than to

make these projects intellectually manageable. Is there an agile approach to soft-

ware engineering modeling that might provide an alternative?

122 PART ONE THE SOFTWARE PROCESS

^ADVICE

^

“Traveling light" is an

appropriate philosophy

for all software engi-

neering work. Build

,
only those models that

provide value—no

more, no less.

At "The Official Agile Modeling Site," Scott Ambler [AMB02] describes Agile Mod-

eling (AM) in the following manner:

Agile Modeling (AM) is a practice-based methodology for effective modeling and docu- !

mentation of software based systems. Simply put, Agile Modeling is a collection of val-

ues, principles, and practices for modeling software that can be applied on a software
;

development project in an effective and light-weight manner. Agile models are more ef-

fective than traditional models because they are just barely good, they don't have to be

perfect.

In addition to the values that are consistent with the agile manifesto, Ambler sug-

gests courage and humility. An agile team must have the courage to make decisions

that may cause it to reject a design and refactor. It must have the humility to recog

nize that technologists do not have all the answers, that business experts and other

stakeholders should be respected and embraced.

Although AM suggests a wide array of "core" and "supplementary" modeling prin-

ciples, those that make AM unique are [AMB02):

Model with a purpose. A developer who uses AM should have a specific goal

(e.g., to communicate information to the customer or to help better understand

some aspect of the software) in mind before creating the model. Once the goal for

the model is identified, the type of notation to be used and level of detail required

will be more obvious.

Use multiple models. There are many different models and notations that can be

used to describe software. Only a small subset is essential for most projects. AM
suggests that to provide needed insight, each model should present a different as-

pect of the system and only those models that provide value to their intended audi-

ence should be used.

Havel light. As software engineering work proceeds, keep only those models

that will provide long-term value and jettison the rest. Every work product that is

kept must be maintained as changes occur. This represents work that slows the

team down. Ambler [AMB021 notes that "every time you decide to keep a model

you trade-off agility for the convenience of having that information available to

your team in an abstract manner (hence potentially enhancing communication

within your team as well as with project stakeholders)."

Content is more important than representation. Modeling should impart informa-

tion to its intended audience. A syntactically perfect model that imparts little useful

content is not as valuable as a model with flawed notation that nevertheless pro-

vides valuable content for its audience.

Know the models and the toolsyou use to create them. Understand the strengths

and weaknesses of each model and the tools that are used to create it.

Adapt locally. The modeling approach should be adapted to the needs of the ag-

ile team.

CHAPTER 4 AN AGILE VIEW OF PROCESS 123

Agile Development

Objective: The objective of agile development

tools is to assist in one or more aspects of agile

development with an emphasis on facilitating the rapid

generation of operational software. These tools con also

be used when prescriptive process models (Chapter 3) are

applied.

Mechanics: Tool mechanics vary. In general, agile tool

sets encompass automated support for project planning,

use-case development and requirements gathering, rapid

design, code generation, and testing.

Representative Tools :
12

Note: Because agile development is a hot topic, most

^
software tools vendors purport to sell tools that support

Software Tools

the agile approach. The tools noted below have

characteristics that make them particularly useful for

agile projects.

Actif Extreme, developed by Microtool

(www.microtool.com), provides agile process

management support for various technical activities

within the process.

Ideogramic UML, developed by Ideogramic

(www.ideogramic.com), is a UML toolset specifically

developed for use within an agile process.

Together Tool Set, distributed by Borland

(www.borland.com or www.togethersoft.com), provides

a tools suite that supports many technical activities

within XP and other agile processes.

\A Summary.

An agile philosophy for software engineering stresses four key issues: the impor-

tance of self-organizing teams that have control over the work they perform; com-

munication and collaboration between team members and between practitioners

and their customers; a recognition that change represents an opportunity; and an

emphasis on rapid delivery of software that satisfies the customer. Agile process

models have been designed to address each of these issues.

Extreme Programming (XP) is the most widely used agile process. Organized as

four framework activities—planning, design, coding, and testing—XP suggests a

number of innovative and powerful techniques that allow an agile team to create fre-

quent software releases delivering features and functionality that have been de-

scribed and then prioritized by the customer.

Adaptive Software Development (ASD) stresses human collaboration and team

self-organization. Organized as three framework activities—speculation, collabora-

tion, and learning—ASD uses an iterative process that incorporates adaptive cycle

planning, relatively rigorous requirements gathering methods, and an iterative de-

velopment cycle that incorporates customer focus groups and formal technical re-

views as real-time feedback mechanisms. The Dynamic Systems Development

Method (DSDM) defines three different iterative cycles—functional model iteration,

design and build iteration, and implementation—preceded by two additional life cy-

cle activities—feasibility study and business study. DSDM advocates the use of time-

12 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category

In most cases, tool names are trademarked by their respective developers.

124 PART ONE THE SOFTWARE PROCESS

box scheduling and suggests that only enough work is required for each software in-

crement to facilitate movement to the next increment.

Scrum emphasizes the use of a set of software process patterns that have

proven effective for projects with tight timelines, changing requirements, and busi-

ness criticality. Each process pattern defines a set of development tasks and allows

the Scrum team to construct a process that is adapted to the needs of the project.

Crystal is a family of agile process models that can be adopted to the specific char-

acteristics of a project. Like other agile approaches, Ciystal adopts an iterative strat-

egy but adjusts the rigor of the process to accommodate projects of different sizes

and complexities.

Feature Driven Development (FDD) is somewhat more "formal'' than other agile

methods, but still maintains agility by focusing the project team on the development

of features—client-valued functions that can be implemented in two weeks or less.

FDD provides greater emphasis on project and quality management than other agile

approaches. Agile Modeling (AM) suggests that modeling is essential for all systems,

but that the complexity, type, and size of the model must be tuned to the software to

be built. By proposing a set of core and supplementary modeling principles, AM pro-

vides useful guidance for the practitioner during analysis and design tasks.

References

|ADM96| Advanced Development Methods, Inc., "Origins of Scrum," 1996, http://www.

controlchaos.com/.

[AGI03] The Agile Alliance Home Page, http://www.agileailiance.org/home.

|AMB02| Ambler, S., "What Is Agile Modeling (AM)?" 2002, http://www.agilemodeling.com/

index.htm.

[BEC99] Beck, K., Extreme Programming Explained. Embrace Change. Addison -Wesley, 1999

[BECOla] Beck, K., et al„ "Manifesto for Agile Software Development," http://www.

agiiemanifesto. org/.

(BECO I bl Beck, K., and M. Fowler, Planning Extreme Programming, Addison-Wesley, 200!

.

[BEE99] Beedle, M., et al., "SCRUM: An extension pattern language for hyperproductive soft-

ware development," included in: Pattern Languages ofProgram Design 4, Addison-Wesley

Longman, Reading, MA, 1999. Download at http://jeffsutherland.com/scrum/scrum_

plop.pdf.

[BUSOO] Buschmann, F., el al., Pattern-Oriented Software Architecture, 2 volumes, Wiley, 1996,2000

[COA991 Coad, P., E. Lefebvre, and J. DeLuca, Java Modeling in Color with UML, Prentice-Hall, 1999.

[COCO 1 1
Cockbum, A., and J. Highsmith, "Agile Software Development: The People Factor," IEEE

Computer, vol. 34, no. 11, November 2001
,
pp. 131-133.

[COC02aj Cockburn, A., Agile Software Development, Addison-Wesley, 2002.

[COC02b] Cockburn, A., "What Is Agile and What Does it imply?” presented at the Agile Devel-

opment Summit at Westminster College in Salt Lake City, March 2002, http://

crystalmethodoiogies.org/.

[CCS02] CS3 Consulting Services, 2002, http://www.cs3inc.com/DSDM.htm.

[DEM98J DeMarco, T„ and T. Lister, Peopleware, 2nd ed., Dorset House, 1998.

[DEM02] DeMarco, T., and B. Boehm, "The Agile Methods Fray," IEEE Computer, vol. 35, no. 6,

June 2002, pp. 90-92.

[FOWOO] Fowler, M., et al.. Refactoring: Improving the Design ofExisting Code, Addison-Wesley, 2000.

[FOWOl
|
Fowler M., and J. Highsmith, "The Agile Manifesto," Software Development Magazine,

August 2001
,
http://www.sdmagazine.com/documents/s=844/ sdmO 1 08a/0 108a.htm.

CHAPTER 4 AN AGILE VIEW OF PROCESS 125

[FOW02] Fowler. M
,
"The New Methodology," June 2002, http://www.martintbwler.com/

artic!es/newMethodology.html#N8B.

[HIG98] Highsmith,)., "Life—The Artificial and the Real," Software Development. 1998, at

http://www.adaptivesd.com/articles/order.html.

IH1G00] Highsmith, J., Adaptive Software Development: An Evolutionary Approach to Managing

Complex Systems, Dorset House Publishing. 1998.

IHIG01] Highsmith, J., ed., "The Great Methodologies Debate: Part i," Cutter IT Journal, vol. 14,

no. 12, December 200 1

.

!HlG02a] Highsmith, J., ed., "The Great Methodologies Debate: Part 2," Cutter IT Journal, vol 1 5,

no. 1, January 2002.

[HlG02b] Highsmith, J., Agile Software Development Ecosystems, Addison -Wesley, 2002.

[JAC02] Jacobson, I., "A Resounding 'Yes' to Agile Processes—But Also More," Cutter IT Journal,

vol. 15, no. I , January' 2002, pp. 18-24.

(JEF01J Jeffries, R, et al„ Extreme Programming Installed, Addison-Wesley, 2001.

[NOY02] Noyes, B., "Rugby, Anyone?" Managing Development (an on-line publication of

Fawcette Technical Publications), June 2002, http://www.fawcette.com/resources/

managingdev/methodologies/scrum/.

IPAL02] Palmer, S„ and J. Felsing, A Practical Guide to Feature Driven Development, Prentice-Hall,

2002 .

1SCH01] Schwaber, K„ and M. Beedle, Agile Software Development witlt SCRUM, Prentice-Hall, 2001

.

[SCH021 Schwaber, K., "Agile Processes and Self-Organization," Agile Alliance, 2002,

http://www.aanpo.org/articles/index.

[STA97J Stapleton. J., DSDM—Dynamic System Development Method: The Method in Practice,

Addison-Wesley, 1997.

[WEL99J Wells, d’., "XP—Unit Tests," 1999, http://www.extremeprogramming.org/ rules/

unittests.html.

Problems and Points to Pqndeb

4.1. Select one agility principle noted in Section 4. 1 and tty to determine whether each of the

process models presented in this chapter exhibits the principle.

4.2. Try to come up with one more “agility principle" that would help a software engineering

team become even more maneuverable.

4.3. Could each of the agile processes be described using the generic framework activities

noted in Chapter 2? Build a table that maps the generic activities into the activities defined for

each agile process.

4.4. Why does an iterative process make it easier to manage change? Is every agile process dis-

cussed in this chapter iterative? Is it possible to complete a project in just one iteration and still

be agile? Explain your answers.

4.5. Describe agility (for software projects) in your own words.

4.6. Reread "The Manifesto for Agile Software Development" at the beginning of this chapter.

Can you think of a situation in which one or more of the four "values" could get a software team

into trouble?

4.7. Why do requirements change so much? After all, don't people know what they want?

4.8. Most agile process models recommend face-to-face communication. Yet today, members

of a software team and their customers may be geographically separated from one another. Do

you think this implies that geographical separation is something to avoid? Can you think of ways

to overcome this problem?

4.9. Consider the seven traits noted in Section 4.2.2. Order the traits based on your perception

of which is most important to which is least important.

126 PART ONE THE SOFTWARE PROCESS

4 . 10 . Write an XP user story that describes the "favorite places" or "favorites" feature available
on most Web browsers.

4 . 11 . Visit the Official Agile Modeling Site and make a complete list of all core and supple-
mentary AM principles.

4 . 12 . Describe the XP concepts of refactoring and pairprogramming in your own words.

4 . 1

3

. Why is Ciystal called afamily ofagile methods?

4 . 14 . Using the process pattern template presented in Chapter 2, develop a process patterns
for any one of the Scrum patterns presented in Section 4.3.4.

4 . 15 . Using the FDD feature template described in Section 4.3.6, define a feature set for a Web
browser. Now develop a set of features for the feature set.

4.

1

6 . What is a spike solution in XP?

..Further Readings and Information Sources
The overall philosophy and underlying principles of agile software development are considered
in depth in books by Ambler {Agile Modeling, Wiley, 2002), Beck (BEC991, Cockburn [COC02], and
Highsmith [HIG02b|.

Books by Beck [BEC99], Jeffries and his colleagues {Extreme Programming installed, Addison-
Wesley, 2000), Sued and Marchesi (Extreme Programming Examined, Addison-Wesley, 2001),
Newkirk and Martin (Extreme Programming in Practice, Addison-Wesley, 2001), and Auer and his

colleagues {Extreme Programming Applied: Play to Win, Addison-Wesley, 2001) provide a nuts
and bolts discussion of XP along with guidance on how best to apply it. McBreen (Questioning
Extreme Programming, Addison-Wesley, 2003) takes a critical look at XP, defining when and
where it is appropriate. An in-depth consideration of pair programming is presented by McBreen
(Pair Programming Illuminated, Addison-Wesley, 2003).

Fowler and his colleagues
(Refactoring: Improving the Design of Existing Code, Addison-

Wesley, 1999) address the important XP concept of refactoring in considerable detail. McBreen
(Software Craftsmanship: The New Imperative, Addison-Wesley. 2001) discusses software crafts-

manship and argues for agile alternatives to traditional software engineering

ASD is addressed in depth by Highsmith [HIGOOJ. A worthwhile treatment of DSDM has been
written by Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997). Palmer and Felsing

[PAL02] present a detailed treatment of FDD. Carmichael and Haywood (Better Software Faster,

Prentice-Hall, 2002) presents another useful treatment of FDD that includes a step-by-step jour-
ney through the mechanics of the process. Schwaber and his colleagues (Agile Software Devel-
opment with SCRUM, Prentice-Hall, 2001) present a detailed treatment of Scrum.

Martin {Agile Software Development, Prentice-Hall, 2003) discusses agile principles, patterns,

and practices with an emphasis on XP. Poppendieck and Poppendieck (Lean Development: An Ag-
ile Toolkitfor Software Development Managers, Addison-Wesley, 2003) provide guidelines for man-
aging and controlling agile projects. Highsmith (Agile Software Development Ecosystems,
Addison-Wesley, 2002) presents a worthwhile survey of agile principles, processes, and practices.

A wide variety of information sources on agile software development are available on the

Internet. An up-to-date list of World Wide Web references that are relevant to the agile process
can be found at the SEPA Web site:

http://www.mhhe.com/ pressman.

PART

Two
Software Engineering

Practice

I
n this part of Software Engineering: A Practitioner's Approach

you'll learn about the principles, concepts, and methods that

comprise software engineering practice. These questions are

addressed in the chapters that follow:

• What concepts and principles guide software engineering

practice?

; How does system engineering lead to effective software

engineering?

• What is requirements engineering, and what are the underly-

ing concepts that lead to good requirements analysis?

• How is the analysis model created, and what are its elements?

• What is design engineering, and what are the underlying con-

cepts that lead to good design?

• What concepts, models, and methods are used to create ar-

chitectural, interface, and component-level designs?

• What strategies are applicable to software testing?

• What methods are used to design effective test cases?

• What measures and metrics can be used to assess the quality

of analysis and design models, source code, and test cases?

Once these questions are answered you'll be better prepared to

apply software engineering practice.

127

CHAPTER

Software
Engineering Practice

Key
Concepts

principles of:

agile modeling

analysis

coding

communication

deployment

design

planning

software

engineering

testing

problem solving

WSHH questions

I
n a book that explores the lives and thoughts of software engineers, Ellen Ull-

tnan [ULL97] depicts a slice of life as she relates the thoughts of practitioner

under pressure:

I have no idea what time it is. There are no windows in this office and no clock, only

the blinking red LED display of a microwave, which flashes 12:00, 12:00, 12:00, 12:00.

Joel and I have been programming for days. We have a bug. a stubborn demon of a

bug. So the red pulse no-time feels right, like a read out of our brains, which have

somehow synchronized themselves at the same blink rate.

What are we working on? ... The details escape me just now. We may be helping

poor sick people or tuning a set of low-level routines to verify bits on a distributed

database protocol—I don't care. I should care: in another part ofmy being—later, per-

haps when we emerge from this room full of computers—! will care very much why

and for whom and for what purpose 1 am writing software. But just now: no. (have

passed through a membrane where the real world and its uses no longer matter. I am

a software engineer.

A dark image of software engineering practice to be sure, but upon reflection,

many of the readers of this book will be able to relate to it.

What is it? Practice is o broad

array of concepts, principles, meth-

ods, and tools that you must consider

as software is planned and devel-

oped. It represents the details—the technical

considerations and how to's—that are below the

surface of the software process: the things that

you'll need to actually build high-quality com-

puter software.

Who does it? The practice of software engineer-

ing is applied by software engineers and their

managers.

Why is it important? The software process

provides everyone involved in the creation of a

computer-based system or product with a road

map for getting to a destination successfully.

Practice provides you with the detail you'll need

to drive along the road. It tells you where the

bridges, the roadblocks, and the forks are lo-

cated. It helps you understand the concepts and

principles that must be understood and fol-

lowed to drive safely and rapidly. It instructs

you on how to drive, where to slow down, and

where to speed up. In the context of software

engineering, practice is what you do day in

and day out as software evolves from an idea

to a reality.

What are the steps? Three elements of prac-

tice apply regardless of the process model that is

chosen. They are: concepts, principles, and

methods. A fourth element of practice—tools—
supports the application of methods.

What is the work product? Practice encom-

passes the technical activities that produce all

work products that are defined by the software

process model that has been chosen.

128

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 129

How do I ensure that I've done it right?

First, have a firm understanding of the concepts

and principles that apply to the work (e.g., de-

sign) that you're doing at the moment. Then, be

certain that you've chosen an appropriate

method for the work; be sure that you understand

how to apply the method and use automated tools

when they're appropriate for the task, and be

adamant about the need for techniques to ensure

the quality of work products that are produced.

People who create computer software practice the art or craft or discipline 1 that is

software engineering. But what is software engineering ''practice'? In a generic

sense, practice is a collection of concepts, principles, methods, and tools that a soft-

ware engineer calls upon on a daily basis. Practice allows managers to manage soft-

ware projects and software engineers to build computer programs. Practice populates

a software process model with the necessary technical and management how-to's to

get the job done. Practice transforms a haphazard unfocused approach into some-
thing that is more organized, more effective, and more likely to achieve success.

5*.

L

WebRef
A vtuieFy of thought-

provoking quotes on

the practice of software

engineering con be

found ot

www.literote

programming.

com.

You might argue that

Polya's approach is

simply common sense,

hie. But it's amazing

how often common

sense is uncommon in

the software wotitl.

Software Engineering Practice

In Chapter 2, we introduced a generic software process model composed of a set of

activities that establish a framework for software engineering practice. Generic

framework activities—communication, planning, modeling, construction, and

deployment—and umbrella activities establish a skeleton architecture for software

engineering work. All of the software process models presented in Chapters 3 and 4

can be mapped into this skeleton architecture. But how does the practice ofsoftware

engineering fit in? In the sections that follow, we consider the generic concepts and

principles that apply to framework activities.

2

5.1.1 The Essence ol Practice

In a classic book, How to Solve It, written before modern computers existed, George

Polya [POL45| outlined the essence of problem solving, and consequently, the

essence of software engineering practice:

1 . Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation)

.

4. Examine the resultfor accuracy (testing and quality assurance)

.

1 Some writers argue for one of these terms to the exclusion of the others. In reality, software engi-

neering is all three.

2 The reader is encouraged to revisit relevant sections within this chapter as specific software engi-

neering methods and umbrella activities are discussed later in this book

130 PART TWO SOFTWARE ENGINEERING PRACTICE

In the context of software engineering, these common sense steps lead to a series of

essential questions [adapted from POL45]:

Understand the problem.

• Who has a stake in the solution to the problem

?

That is, who are the stake-

holders?

• What are the unknowns? What data, functions, features, and behavior are

required to properly solve the problem?

• Can the problem be compartmentalized? Is it possible to represent smaller

problems that may be easier to understand?

• Can the problem be represented graphically? Can an analysis model be

created?

Plan the solution.

• Haveyou seen similar problems before? Are there patterns that are recogniz-

able in a potential solution? Is there existing software that implements the

data, functions, features, and behavior that are required?

• Has a similar problem been solved? If so, are elements of the solution

reusable?

• Can subproblems be defined? If so, are solutions readily apparent for the

subproblems?

• Canyou represent a solution in a manner that leads to effective implementation?

Can a design model be created?

Carry out the plan.

• Does the solution conform to the plan? Is source code traceable to the design

model?

• Is each component part of the solution probably correct? Has the design and

code been reviewed, or better, have correctness proofs been applied to the

algorithm?

Examine the result.

• Is it possible to test each component part ofthe solution? Has a reasonable

testing strategy been implemented?

• Does the solution produce results that conform to the data, Junctions, features,

and behavior that are required? Has the software been validated against all

stakeholder requirements?

"There is a groin of discovery in the solution of ony problem."

George Polya.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 131

5. 1 .2 Core Principles

Before beginning a

software project, be

sure the software has

o business purpose and

that users perceive

value in it.

The dictionary defines the word principle as "an important underlying law or as-

sumption required in a system of thought.” Throughout this book we discuss princi-

ples at many different levels of abstraction. Some focus on software engineering as

a whole, others consider a specific generic framework activity (e.g., customer com-
munication), and still others focus on software engineering actions (e.g., architec-

tural design) or technical tasks (e.g., write a usage scenario). Regardless of their level

of focus, principles help us establish a mind set for solid software engineering prac-

tice. They are important for that reason.

David Hooker [H0096] has proposed seven core principles that focus on software

engineering practice as a whole. They are reproduced below:3

The First Principle: The Reason ft All Exists

A software system exists for one reason: to provide value to its users. All decisions

should be made with this in mind. Before specifying a system requirement, before

noting a piece of system functionality, before determining the hardware platforms or

development processes, ask yourself questions such as: Does this add real value to

the system? if the answer is no, don’t do it. All other principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to consider

in any design effort. All design should be as simple as possible, but no simpler. This

facilitates having a more easily understood, and easily maintained system This is

not to say that features, even internal features, should be discarded in the name of

simplicity. Indeed, the more elegant designs are usually the simple ones. Simple
also does not mean "quick and dirty." In fact, it often takes a lot of thought and
work over multiple iterations to simplify. The pay-off is software that is more main-
tainable and less error-prone.

"There is a certain majesty in simplicity which is far above all the quaintness of wit."

Alexander Pope (1 688- 1744)

The Third Principle: Maintain the Vision

A clear vision is essential to the success ofa software project. Without one, a proj-

ect almost unfailingly ends up being "of two (or more] minds” about itself. Without
conceptual integrity, a system threatens to become a patchwork of incompatible

designs, held together by the wrong kind of screws. . .

.

Compromising the architectural vision of a software system weakens and will

eventually break even a well-designed system. Having an empowered architect

3 Reproduced with permission of the author (H00961. Hooker defines patterns for these principles

at: http://c2.com/cgi/wiki7SevenPrinciplesOfSoftwareDevelopment.

PART TWO SOFTWARE ENGINEERING PRACTICE132

POINT
if software has value,

it will change over its

useful life. For that

reason, software must

be built to be

maintainable.

who can hold the vision and enforce compliance helps ensure a very successful

software project.

The Fourth Principle: What You Produce, Others Will Consume

Seldom is an industrial-strength software system constructed and used in a vac-

uum. In some way or other, someone else will use, 'maintain, document, or other-

wise depend on being able to understand your system. So, always specify, design,

and implement knowing someone else will have to understand whatyou are doing.

The audience for any product of software development is potentially large. Specify

with an eye to the users. Design, keeping the implementers in mind. Code with

concern for those who must maintain and extend the system. Someone may have

to debug the code you write, and that makes them a user of your code Making

their job easier adds value to the system.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. In today's computing environ-

ments, where specifications change on a moment's notice and hardware platforms

are obsolete after just a few months, software lifetimes are typically measured in

months instead of years. However, true "industrial-strength" software systems

must endure far longer. To do this successfully, these systems must be ready to

adapt to these and other changes. Systems that do this successfully are those that

have been designed this way from the start. Never designyourselfinto a corner. Al-

ways ask "what if," and prepare for all possible answers by creating systems that

solve the general problem, not just the specific one.'* This could very possibly lead

to the reuse of an entire system.

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort .

5 Achieving a high level of reuse is arguably the

hardest goal to accomplish in developing a software system. The reuse of code and

designs has been proclaimed as a major benefit of using object-oriented technolo-

gies. However, the return on this investment is not automatic. To leverage the

reuse possibilities that object-oriented [or conventional) programming provides re-

quires forethought and planning. There are many techniques to realize reuse at

ever/ level of the system development process. Those at the detailed design and

code level are well known and documented. New literature is addressing the reuse

of design in the form of software patterns. However, this is just part of the battle.

4 Author's note: This advice can be dangerous if it is taken to extremes. Designing for the "general

problem" sometimes requires performance compromises and can require more project effort.

5 Author's note: Although this is true for those who reuse the software on future projects, reuse can

be expensive for those who must design and build reusable components. Studies indicate that de-

signing and building reusable components can cost between 25 to 200 percent more than targeted

software. In some cases, the cost differential cannot be justified

CHAPTER S SOFTWARE ENGINEERING PRACTICE 133

Communicating opportunities for reuse to others in the organization is paramount.

How can you reuse something that you don’t know exists? Planning aheadfor reuse

reduces the cost and increases the value ofboth the reusable components and the sys-

tems into which they are incorporated.

The Seventh Principle: Think!

This last Principle is probably the most overlooked. Placing clear, complete

thought before action almost always produces better results. When you think about

something, you are more likely to do it right. You also gain knowledge about

how to do it right again. If you do think about something and still do it wrong, it

becomes valuable experience. A side effect of thinking is learning to recognize

when you don't know something, at which point you can research the answer.

When clear thought has gone into a system, value comes out. Applying the first

six Principles requires intense thought, for which the potential rewards are

enormous.

If every software engineer and eveiy software team simply followed Hooker's seven
principles, many of the difficulties we experience in building complex computer-

based systems would be eliminated.

5,2 Communication Practices

Before customer requirements can be analyzed, modeled, or specified they must be

gathered through a communication (also called requirements elicitation) activity. A
customer has a problem that may be amenable to a computer-based solution. A de-

veloper responds to the customer's request for help. Communication has begun. But

the road from communication to understanding is often full of potholes.

Effective communication (among technical peers, with the customer and other

stakeholders, and with project managers) is among the most challenging activities

that confront a software engineer. In this context, we discuss communication prin-

ciples and concepts as they apply to customer communication. However, many of

the principles apply equally to all forms of communication that occur within a soft-

ware project.

Before communicating

be sure you iinber-

stand the point of view

of the other party,

know a bit about his or

her needs, and then

listen.

Principle # 1 : Listen. Try to focus on the speaker's words, rather than formu-

lating your response to those words. Ask for clarification if something is unclear,

but avoid constant interruptions. Never become contentious in your words or ac-

tions (e g., rolling your eyes or shaking your head) as a person is talking.

Principle #2: Prepare before you communicate. Spend the time to under-

stand the problem before you meet with others. If necessary, do some research to

understand business domain jargon. If you have responsibility for conducting a

meeting, prepare an agenda in advance of the meeting.

134 PART TWO SOFTWARE ENGINEERING PRACTICE

Principle #3: Someone should facilitate the activity. Every communication

meeting should have a leader (facilitator) to keep the conversation moving in a

productive direction; (2) to mediate any conflict that does occur; (3) to ensure than

other principles are followed.

Principle #4: Face-to-face communication is best. But it usually works bet-

ter when some other representation of the relevant information is present. For ex-

ample, a participant may create a drawing or a "strawman" document that serves

as a focus for discussion.

"Plain questions and plain answers moke the shortest road to most perplexities."

Mark Twain

Principle #5: Take notes and document decisions. Things have a way of

falling into the cracks. Someone participating in the communication should serve

as a "recorder" and write down all important points and decisions.

Principle #6: Strivefor collaboration. Collaboration and consensus occur

when the collective knowledge of members of the team is combined to describe

product or system functions or features. Each small collaboration serves to build

trust among team members and creates a common goal for the team.

Principle #7: Stayfocused, modularizeyour discussion. The more people

involved in any communication, the more likely that discussion will bounce from

one topic to the next. The facilitator should keep the conversation modular, leaving

one topic only after it has been resolved (however, see Principle #9)

The Difference Between Customers

Software engineers communicate with many

different stakeholders, but customers and end-

users have the most significant impact on the technical

work that follows. In some cases the customer ond the end-

user are one in the same, but for many projects, the

customer and the end-user are different people, working

for different managers in different business organizations.

A customer is the person or group who: (1)
originally

requested the software to be built; (2) defines overall

business objectives for the software; (3) provides

and End-Users

basic product requirements; and (4) coordinates funding

for the project. In a product or system business, the

customer is often the marketing department. In an IT

environment, the customer might be a business component

or department.

An end-user is the person or group who: (1)
will

actually use the software that is built to achieve some

business purpose, ond (2) will define operational

details of the software so the business purpose can be

achieved.

Principle #8: Ifsomething is unclear, draw a picture. Verbal communica-

tion goes only so far. A sketch or drawing can often provide clarity when words fail

to do the job.

Principle #9: (a) Once you agree to something, move on; (b) Ifyou can't

agree to something, move on; (c) Ifa feature orfunction is unclear and can-

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 135

9 Whot

* happens if I

can't come to an

agreement with

the customer on

some project-

related issue?

not be clarified at the moment, move on. Communication, like any software

engineering activity, takes time. Rather than iterating endlessly, the people who
participate should recognize that many topics require discussion (see Principle #2)

and that "moving on" is sometimes the best way to achieve communication agility.

Principle #10: Negotiation is not a contest or a game. It works best when

both parties win. There are many instances in which the software engineer and

the customer must negotiate functions and features, priorities, and delivery dates.

If the team has collaborated well, all parties have a common goal. Therefore, nego-

tiation will demand compromise from all parties.

SafeHome

Generic Task Set for Communication

Identify primary customer and other

stakeholders (Section 7.3.1).

Meet with primary customer to

address "context free questions"

(Section 7.3.4) that define:

Business need and business values.

End-users' choraderistics/needs.

Required user-visible outputs.

Business constraints.

V /

136 PART TWO SOFTWARE ENGINEERING PRACTICE

r
3. Develop a one-page written statement of project scope

that is subject to revision (Sections 7.4.1 and 21 .3.1).

4. Review statement of scope with stakeholders and

amend as required.

5. Collaborate with customer/end-users to define:

• Customer visible usage scenarios using standard

format6 (Section 7.5).

V

• Resulting outputs and inputs.

• Important software features, functions, and

behavior.

• Customer-defined business risks (Section 25.3).

A
6. Develop a brief written description (e.g., a set of

lists) of scenarios, output/inputs, features/functions

and risks.

7. Iterate with customer to refine scenarios,

output/inputs, features/functions and risks.

8. Assign customer-defined priorities to each user

scenario, feature, function, and behavior.

(Section 7.4.2).

9. Review all information gathered during the

communication activity with the customer and other

stakeholders and amend as required.

1

0.

Prepare for planning activity (Chapters 23 and 24).

5.3 Planning Practices

The communication activity helps a software team to define its overall goals and

objectives (subject, of course, to change as time passes). However, understanding

these goals and objectives is not the same as defining a plan for getting there. The

planning activity encompasses a set ofmanagement and technical practices that en-

able the software team to define a road map as it travels toward its strategic goal

and tactical objectives.

"In preparing for battle I have always found that plans are useless, but planning is indispensable."

Dwight D. Eisenhower

WebRef

An excellent repository

of planning and project

management

information con be

found at

www.4pm.com/

reposilory.htm.

There are many different planning philosophies. Some people are "minimalists,"

arguing that change often obviates the need for a detailed plan. Others are "tradi-

tionalists," arguing that the plan provides an effective road map, and the more detail

it has, the less likely the team will become lost. Still others are "agilists," arguing that

a quick "planning game" may be necessary, but that the road map will emerge as

"real work" on the software begins.

What to do? On many projects, overplanning is time consuming and fruitless (too

many things change), but underplanning is a recipe for chaos. Like most things in

life, planning should be conducted in moderation, enough to provide useful guidance

for the team—no more, no less.

Regardless of the rigor with which planning is conducted, the following principles

always apply.

Principle #1: Understand the scope of the project. It 's impossible to use a

road map if you don't know where you're going. Scope provides the software team

with a destination.

6 Formats for usage scenarios are discussed in Chapter 8.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 137

Principle #2: Involve the customer in the planning activity. The customer

defines priorities and estabiishes project constraints. To accommodate these reali-

ties, software engineers must often negotiate order of delivery, timelines, and other

project related issues.

Principle #3: Recognize that planning is iterative. A project plan is never

engraved in stone. As work begins, it is very' likely that things will change. As a

consequence, the plan must be adjusted to accommodate these changes. In addi-

tion, iterative, incremental process models dictate replanning (after the delivery of

each software increment) based on feedback received from users.

Principle #4: Estimate based on whatyou know. The intent of estimation is

to provide an indication of effort, cost, and task duration, based on the team's cur-

rent understanding of the work to be done. If information is vague or unreliable,

estimates will be equally unreliable.

Principle #5: Consider risk as you define the plan. If the team has defined

risks that have high impact and high probability, contingency planning is neces-

sary. In addition, the project plan (including the schedule) should be adjusted to ac-

commodate the likelihood that one or more of these risks will occur.

Principle #6: Be realistic. People don't work 100 percent of every day. Noise

always enters into any human communication. Omissions and ambiguity are facts

of life. Change will occur. Even the best software engineers make mistakes. These

and other realities should be considered as a project plan is established.

POINT
The term gmulaiit

y

refers to the detail with

which some element of

planning is represented

or conducted.

Principle #7: Adjust granularity asyou define the plan. Granularity refers

to the level of detail that is introduced as a project plan is developed. A "fine gran-

ularity plan provides significant work task detail that is planned over relatively

short time increments (so that tracking and control occur frequently). A "coarse

granularity'" plan provides broader work tasks that are planned over longer time

periods. In general, granularity moves from fine to coarse as the project timeline

moves away from the current date. Over the next few weeks or months, the project

can be planned in significant detail. Activities that won't occur for many months do

not require fine granularity (too much can change).

Principle #8: Define how you intend to ensure quality. The plan should

identify how the software team intends to ensure quality. If formal technical re-

views 7 are to be conducted, they should be scheduled. If pair programming

(Chapter 4) is to be used during construction, it should be explicitly defined within

the plan

7 Formal technical reviews are discussed in Chapter 26.

138 PART TWO SOFTWARE ENGINEERING PRACTICE

^ What

• questions

must be asked

and answered to

develop a realistic

project plan?

Principle #9: Describe howyou intend to accommodate change. Even the

best planning can be obviated by uncontrolled change. The software team should

identify how changes are to be accommodated as software engineering work pro-

ceeds. For example, can the customer request a change at any time? If a change is

requested, is the team obliged to implement it immediately? How is the impact and

cost of the change assessed?

Principle #10: Track the plan frequently and make adjustments as re-

quired. Software projects fall behind schedule one day at a time. Therefore, it

makes sense to track progress on a daily basis, looking for problem areas and situ-

ations in which scheduled work does not conform to actual work conducted. When
slippage is encountered, the plan is adjusted accordingly.

To be most effective, everyone on the software team should participate in the plan-

ning activity. Only then will team members "sign up" to the plan.

In an excellent paper on software process and projects, Barry Boehm [BOE96J

states: "You need an organizing principle that scales down to provide simple [proj-

ect] plans for simple projects.' Boehm suggests an approach that addresses project

objectives, milestones and schedules, responsibilities, management and technical

approaches, and required resources. He calls it the WSHH principle, after a series of

questions that lead to a definition of key project characteristics and the resultant

project plan:

Why is the system being developed? All parties should assess the validity of

business reasons for the software work. Stated in another way, does the business

purpose justify the expenditure of people, time, and money?

What will be done? Identify the functionality to be built, and by implication,

the tasks required to get the job done.

When will it be accomplished? Establish a workflow and timeline for key

project tasks and identify the milestones required by the customer.

Who is responsible for a function? The role and responsibility of each mem-
ber of the software team must be defined.

Where are they organizationally located? Not all roles and responsibilities

reside within the software team itself. The customer, users, and other stakeholders

also have responsibilities.

How will the job be done technically and managerially? Once product

scope is established, a management and technical strategy for the project must be

defined.

How much of each resource is needed? The answer to this question is de-

rived by developing estimates (Chapter 23) based on answers to earlier questions.

The answers to Boehm's W5HH questions are important regardless of the size or

complexity of a software project. But how does the planning process begin?

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 139

"We think that software developers are missing o vital truth: most organizations don't know what they do. They think

they know, but they don't know.”

Tom DeMarco

4.

Generic Task Set for Planning

1 . Reevaluate project scope (Sections

7.4 and 21.3).

2. Assess risks (Section 25.4).

Develop and/or refine user scenarios (Sections 7.5

and 8.5).

Extract functions and features from the scenarios

5.

6 .

7.

(Section 8.5).

Define technical functions and features that enable

software infrastructure .

Group functions and features (scenarios) by

customer priority

Create a coarse granularity project plan (Chapters

23 and 24).

Define the number of projected software

increments.

Establish an overall project schedule (Chapter 24).

Establish projected delivery dates for each

increment.

(BSIn

8. Create a fine granularity plan for the current

iteration (Chapters 23 and 24).

Define work tasks for each function feature

(Section 23.6).

Estimate effort for each work task (Section 23.6).

Assign responsibility for each work task

(Section 23.4).

Define work products to be produced.

Identify quality assurance methods to be used

(Chapter 26).

Describe methods for managing change

(Chapter 27).

9. Track progress regularly (Section 24.5.2).

Note problem areas (e.g., schedule slippage).

Make adjustments as required.

5.4 Modeling Practice

POINT
Analysis models

represent customet

requirements. Design

models provide o

concrete specification

for the construction of

the software.

We create models to gain a better understanding of the actual entity to be built. When

the entity is a physical thing (e.g., a building, a plane, a machine), we can build a model

that is identical in form and shape but smaller in scale. However, when the entity is

software, our model must take a different form. It must be capable of representing the

information that software transforms, the architecture and functions that enable

the transformation to occur, the features that the users desires, and the behavior of the

system as the transformation is taking place. Models must accomplish these objectives

at different levels of abstraction—first depicting the software from the customer's

viewpoint and later representing the software at a more technical level.

In software engineering work, two classes of models are created: analysis

models and design models. Analysis models represent the customer requirements

by depicting the software in three different domains: the information domain, the

functional domain, and the behavioral domain. Design models represent charac-

teristics of the software that help practitioners to construct it effectively: the archi-

tecture (Chapter 10), the user interface (Chapter 12), and component-level detail

(Chapter 1 1).

140 PART TWO SOFTWARE ENGINEERING PRACTICE

In the sections that follow we present basic principles and concepts that are rel-

evant to analysis and design modeling. The technical methods and notation that al-

low software engineers to create analysis and design models are presented in later

chapters.

"The engineer's first problem in any design situation is to discover what the problem really is."

Author unknown

5.4.1 Analysis Modeling Principles

Over the past three decades, a large number of analysis modeling methods have

been developed. Investigators have identitled analysis problems and their causes

and have developed a variety of modeling notations and corresponding sets of

heuristics to overcome them. Each analysis method has a unique point of view. How-
ever, all analysis methods are related by a set of operational principles:

POINT
Analysis modeling

focuses on three

attributes of software:

information to be

processed, function to

be delivered, ond

behavior to be

exhibited.

Principle # 1 : The information domain ofa problem must be represented

and understood. The information domain encompasses the data that flow into the

system (from end-users, other systems, or external devices), the data that flow out

of the system (via the user interface, network interfaces, reports, graphics, and

other means) and the data stores that collect and organize persistent data objects

(i.e., data that are maintained permanently).

Principle #2: The functions that the software performs must be defined.

Software functions provide direct benefit to end-users and also provide internal

support for those features that are user visible. Some functions transform data

that flow into the system. In other cases, functions effect some level of control

over internal software processing or external system elements. Functions can be

described at many different levels of abstraction, ranging from a general state-

ment of purpose to a detailed description of the processing elements that must be

invoked.

Principle #3: The behavior of the software (as a consequence ofexternal

events) must be represented. The behavior of computer software is driven by its

interaction with the external environment. Input provided by end-users, control

data provided by an external system, or monitoring data collected over a network

all cause the software to behave in a specific way.

Principle #4: The models that depict information, Junction, and behavior

must be partitioned in a manner that uncovers detail in a layered (or hierar-

chical)fashion. Analysis modeling is the first step in software engineering problem

solving. It allows the practitioner to better understand the problem and establishes a

basis for the solution (design). Complex problems are difficult to solve in their entirety.

For this reason, we use a divide and conquer strategy. A large, complex problem is di-

vided into subproblems until each subproblem is relatively easy to understand. This

concept is called partitioning, and it is a key strategy in analysis modeling.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 141

Principle #5: The analysis task should movefrom essential information

toward implementation detail. Analysis modeling begins by describing the prob-

lem from the end-user's perspective. The "essence" of the problem is described

without any consideration of how a solution will be implemented. For example, a

video game requires that the player "instruct" its protagonist on what direction to

proceed as she moves into a dangerous maze. That is the essence of the problem.

Implementation detail (normally described as part of the design model) indicates

how the essence will be implemented. For the video game, voice input might be

used. Alternatively, a keyboard command might be typed or a joystick (or mouse)

might be pointed in a specific direction.

5.4.2 Design Modeling Principles

The software design model is the equivalent of an architect's plans for a house. It be-

gins by representing the totality of the thing to be built (e.g. , a three-dimensional ren-

dering of the house) and slowly refines the thing to provide guidance for constructing

each detail (e.g., the plumbing layout). Similarly, the design model that is created for

software provides a variety of different views of the system.

"See first that the design is wise and just: that ascertained, pursue it resolutely; do not for one repulse forego the

purpose that you resolved to effect.”

William Shakespeare

142 PART TWO SOFTWARE ENGINEERING PRACTICE

There is no shortage of methods for deriving the various elements of a software

design. Some methods are data-driven, allowing the data structure to dictate the

program architecture and the resultant processing components. Others are pattern-

driven, using information about the problem domain (the analysis model) to develop

architectural styles and processing patterns. Still others are object-oriented, using

problem domain objects as the driver for the creation of data structures and the

methods that manipulate them. Yet all embrace a set of design principles that can be

applied regardless of the method that is used:

WebRef
Insightful comments on

the design process,

olong with o discussion

of deign oeslhelks,

con be found ot

(S.wwc.edu/

oobyon/

Design/.

Principle # I : Design should be traceable to the analysis model. The analy-

sis model describes the information domain of the problem, user visible functions,

system behavior, and a set of analysis classes that package business objects with

the methods that service them. The design model translates this information into

an architecture: a set of subsystems that implement major functions, and a set of

component-level designs that are the realization of analysis classes. With the ex-

ception of design associated with the software infrastructure, the elements of the

design model should be traceable to the analysis model.

Principle #2: Always consider the architecture of the system to be built.

Software architecture (Chapter 10) is the skeleton of the system to be built. It af-

fects interfaces, data structures, program control flow and behavior, the manner in

which testing can be conducted, the maintainability of the resultant system, and

much more. For all of these reasons, design should start with architectural consid-

erations. Only after the architecture has been established should component-level

issues be considered.

Principle #3: Design ofdata is as important as design ofprocessingfunc-
tions. Data design is an essential element of architectural design. The manner in

which data objects are realized within the design cannot be left to chance. A well-

structured data design helps to simplify program flow, makes the design and imple-

mentation of software components easier, and makes overall processing more
efficient.

Principle #4: Interfaces (both internal and external) must be designed

with care. The manner in which data flows between the components of a system

has much to do with processing efficiency, error propagation, and design simplic-

ity. A well-designed interface makes integration easier and assists the tester in val-

idating component functions.

Principle #5: User interface design should be tuned to the needs of the

end-user. However, in every case, it should stress ease ofuse. The user interface is

the visible manifestation of the software. No matter how sophisticated its internal

functions, no matter how comprehensive its data structures, no matter how well-

designed its architecture, a poor interface design often leads to the perception that

the software is "bad."

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 143

Principle #6: Component-level design should befunctionally independ-

ent. Functional independence is a measure of the "single-mindedness'' of a soft-

ware component. The functionality that is delivered by a component should be

cohesive—that is, it should focus on one and only one function or subfunction.8

Principle #7: Components should be loosely coupled to one another and

to the external environment. Coupling is achieved in many ways—via a compo-

nent interface, by messaging, through global data. As the level of coupling in-

creases, the likelihood or error propagation also increases and the overall

maintainability of the software decreases. Therefore, component coupling should

be kept as low as is reasonable.

Principle #8: Design representations (models) should be easily under-

standable. The purpose of design is to communicate information to practitioners

who will generate code, to those who will test the software, and to others who
may maintain the software in the future. If the design is difficult to understand, it

will not serve as an effective communication medium.

Principle #9: The design should be developed iteratively. With each itera-

tion, the designer should strivefor greater simplicity. Like almost all creative

activities, design occurs iteratively. The first iterations work to refine the design

and correct errors, but later iterations should strive to make the design as simple

as is possible.

When these design principles are properly applied, the software engineer creates a de-

sign that exhibits both external and internal quality factors. External qualityfactors are

those properties of the software that can be readily observed by users (e.g., speed, reli-

ability, correctness, usability) . Internal qualityfactois are of importance to software engi-

neers. They lead to a high-quality design from the technical perspective. To achieve

internal quality factors, the designer must understand basic design concepts (Chapter 9).

Agile Modeling

In his book on agile modeling, Scott Ambler

[AMB02] defines a set of principles
9
that are

applicable when analysis and design are conducted within

the context of the agile software development philosophy

(Chapter 4):

V

Principle #1 : The primary goal of the software team is to

build software, not create models.

Principle #2: Travel light—don't create more models thon

you need.

Principle #3: Strive to produce the simplest model that will

describe the problem or the software.

Principle #4: Build models in a way that makes them

amenable to change.

Principle #5: Be able to state an explicit purpose for each

model that is created.

J

8 Additional discussion of cohesion can be found in Chapter 9.

9 The principles noted in this section have been abbreviated and rephrased for the purposes of this

book.

144 PART TWO SOFTWARE ENGINEERING PRACTICE

Principle #6: Adapt the models you develop to the system

at hand.

Principle #7: Try to build useful models, but forget about

building perfect models.

Principle #8: Don't become dogmatic about the syntax of

the model. If it communicates content successfully,

representation is secondary.

Principle #9: If your instincts tell you a model isn't right

Principle #10: Get feedback as soon as you can.

Regardless of the process model that is chosen or the

specific software engineering practices that are applied,

every software team wants to be agile. Therefore, these

principles can and sh'ould be opplied regardless of the

software process model that is chosen.

A

even though it seems okay on paper, you probably

have reason to be concerned.)

agj / Generic Task Set for Design

1 . Using the analysis model, select an Review results of task analysis.

architectural style (pattern) that is Specify action sequence based on user

appropriate for the software scenarios.

(Chapter 10). Create behavioral model of the interface.

2. Partition the analysis model into design subsystems Define interface objects, control mechanisms.

and allocate these subsystems within the architecture Review the interface design and revise as required

(Chapter 10). (Section 26.4).

Be certain that eoch subsystem is functionolly 4. Conduct component-level design (Chapter 1 1).

cohesive. Specify all algorithms at a relatively low level of

Design subsystem interfaces. abstraction.

Allocate analysis classes or functions to each Refine the interface of each component.

subsystem. Define component level data structures.

Using the information domain model, design Review the component level design

appropriate data structures. (Section 26.4).

3. Design the user interface (Chapter 1 2). 5. Develop a deployment model (Section 9.4.5).

5.5 Construction Practice

The construction activity encompasses a set of coding and testing tasks that lead to

operational software that is ready for delivery to the customer or end-user. In mod-

ern software engineering work, coding may be: (1) the direct creation of program-

ming language source code; (2) the automatic generation of source code using an

intermediate design-like representation of the component to be built; (3) the auto-

matic generation of executable code using a fourth generation programming lan-

guage (e.g., Visual C++).

“For much of my life, I hove been o softwore voyeur, peeking furtively ot other people’s dirty code. Occasionolly, I

find a real jewel, a well-structured progrom written in o consistent style, free of kludges, developed so that eoch

component is simple ond organized, ond designed so that the product is easy to change."

David Parnos

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 145

Avoid developing an

elegant program that

solves the wrong

problem. Pay particular

attention to the first

preparation principle.

WebRef
A wide variety of links

to coding standards con

be found nt

www.literateprog

ramming.com/

fpstyle.html.

The initial focus of testing is at the component level, often called unit testing.

Other levels of testing include: (1) integration testing (conducted as the system is

constructed); (2) validation testing that assesses whether requirements have been

met for the complete system (or software increment); and (3) acceptance testing

that is conducted by the customer in an effort to exercise all required features and

functions.

A set of fundamental principles and concepts are applicable to coding and test-

ing. They are considered in the sections that follow.

5.5. 1 Coding Principles and Concepts

The principles and concepts that guide the coding task are closely aligned program-

ming style, programming languages, and programming methods. However, there are

a number of fundamental principles that can be stated:

Preparation principles: Beforeyou write one line ofcode, be sureyou.

1 . Understand the problem you're trying to solve.

2. Understand basic design principles and concepts.

3. Pick a programming language that meets the needs of the software to be

built and the environment in which it will operate.

4. Select a programming environment that provides tools that will make your

work easier.

5. Create a set of unit tests that will be applied once the component you code is

completed.

Coding principles: Asyou begin writing code, be sureyou:

1 . Constrain your algorithms by following structured programming [BOHOO]

practice.

2. Select data structures that will meet the needs of the design.

3. Understand the software architecture and create interfaces that are consis-

tent with it.

4. Keep conditional logic as simple as possible.

5. Create nested loops in a way that makes them easily testable.

6. Select meaningful variable names and follow other local coding standards.

7. Write code that is self-documenting.

8. Create a visual layout (e.g., indentation and blank lines) that aids under-

standing.

Validation principles: Afteryou've completedyourfirst coding pass, be sureyou:

1 . Conduct a code walkthrough when appropriate.

146 PART TWO SOFTWARE ENGINEERING PRACTICE

2. Perform unit tests and correct errors you've uncovered.

3. Refactor the code.

Books on coding and the principles that guide it include early works on program-

ming style [KER78], practical software construction [MCC93], programming pearls

(BEN99], the art of programming [KNU99], pragmatic programming issues

[HUN99], and many, many others.

Generic Task Set for Construction

Build architectural infrastructure

(Chapter 1 0).

Review the architectural design.

Code and test the components that enable

architectural infrastructure.

Acquire reusable architectural patterns.

Test the infrastructure to ensure interface

integrity.

Build a software component (Chapter 1 1).

Review the component-level design.

Create a set of unit tests for the component

(Sections 13.3.1 and 14.7).

Code component data structures and interface.

©SESfrx

Code internal algorithms and related processing

functions.

Review code as it is written (Section 26.4).

Look for correctness.

Ensure that coding standards have been

maintained.

Ensure that the code is self-documenting.

Unit test the component.

Conduct all unit tests.

Correct errors uncovered.

Reapply unit tests.

Integrate completed component into the architectural

infrastructure. .

5.5.2 Testing Principles

In a classic book on software testing, Glen Myers [MYE79] states a number of rules

that can serve well as testing objectives-.

Whot are the

• objectives of

software testing?

• Testing is a process of executing a program with the intent of finding an error.

• A good test case is one that has a high probability of finding an as-yet undis-

covered error.

• A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint for some software devel-

opers. They move counter to the commonly held view that a successful test is one

in which no errors are found. Our objective is to design tests that systematically

uncover different classes of errors and to do so with a minimum amount of time

and effort.

Davis (DAV95) suggests a set of testing principles 10 that have been adapted for use

in this book:

1 0 Only a small subset of Davis's testing principles are noted here. For more information, see 1DAV951.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 14'

In c brooder software

design context, recall

that we begin "in the

large" by focusing on

softwore architecture

and end "in the small"

focusing on compo-

nents. For testing, we

simply reverse the focus

and test oui way out.

Principle # 1 : All tests should be traceable to customer requirements. 1

1

The objective of software testing is to uncover errors, it follows that the most se-

vere defects (from the customer's point of view) are those that cause the program

to fail to meet its requirements.

Principle #2: Tests should be planned long before testing begins. Test

planning (Chapter 13) can begin as soon as the analysis model is complete. De-

tailed definition of test cases can begin as soon as the design model has been so-

lidified. Therefore, all tests can be planned and designed before any code has been

generated.

Principle #3: The Pareto principle applies to software testing. Stated sim-

ply, the Pareto principle implies that 80 percent of all errors uncovered during test-

ing will likely be traceable to 20 percent of all program components. The problem,

of course, is to isolate these suspect components and to thoroughly test them.

Principle #4: Testing should begin "in the small" and progress toward
testing "in the large." The first tests planned and executed generally focus on in-

dividual components. As testing progresses, focus shifts in an attempt to find er-

rors in integrated clusters of components and ultimately in the entire system.

Principle #5: Exhaustive testing is not possible. The number of path permu-
tations for even a moderately sized program is exceptionally large. For this reason,

it is impossible to execute every combination of paths during testing. It is possible,

however, to adequately cover program logic and to ensure that all conditions in

the component-level design have been exercised (Chapter 14).

Generic Task Set for Testing

1 . Design unit tests for each software

component (Section 13.3.1).

Review each unit test to ensure proper

coverage.

Conduct the unit test.

Correct errors uncovered.

Reapply unit tests.

Develop an integration strategy (Section 13.3.2).

Establish order of and strategy to be used for

integration.

Define "builds" and the tests required to

exercise them.

Conduct smoke testing on a daily basis.

Conduct regression tests as required.

3. Develop validation strategy (Section 1 3.5).

Establish validation criteria.

Define tests required to validate software.

4. Conduct integration and validation tests.

Correct errors uncovered.

Reapply tests as required.

5. Conduct high-order tests.

Perform recovery testing (Section 13.6.1).

Perform security testing (Section 1 3.6.2).

Perform stress testing (Section 13.6.3).

Perform performance testing (Section 13.6.4) .

6. Coordinate acceptance tests with customer (Section

13.5.3).

J
1 1 This principle refers tofunctional tests, i.e., tests that focus on requirements. Structural tests (tests

that focus on architectural or logical detail) may not address specific requirements directly

148 PART TWO SOFTWARE ENGINEERING PRACTICE

Be sure that your

customer knows what

to expect before o

software increment is

delivered. Otherwise,

you can bet the

customer will expect

more than you deliver.

Deployment -

As we noted in Chapter 2, the deployment activity encompasses three actions: de-

livery, support, and feedback. Because modern software process models are evo-

lutionary in nature, deployment happens not once, but a number of times as

software moves toward completion. Each delivery cycle provides the customer

and end-users with an operational software increment that provides usable func-

tions and features. Each support cycle provides documentation and human assis-

tance for all functions and features introduced during all deployment cycles to

date. Each feedback cycle provides the software team with important guidance

that results in modifications to the functions, features, and approach taken for the

next increment.

The delivery of a software increment represents an important milestone for any

software project. A number of key principles should be followed as the team pre-

pares to deliver an increment:

Principle #1: Customer expectations for the software must be managed.

Too often, the customer expects more than the team has promised to deliver and

disappointment occurs immediately. This results in feedback that is not productive

and ruins team morale. In her book on managing expectations, Naomi Karten

[KAR94] states: "The starting point for managing expectations is to become more

conscientious about what you communicate and how." She suggests that a soft-

ware engineer must be careful about sending the customer conflicting messages

{e.g. promising more than you can reasonably deliver in the time frame provided

or delivering more than vou promise for one software increment and then less

than promised for the next).

Principle #2: A complete delivery package should be assembled and

tested. A CD-ROM or other media containing all executable software, support data

files, support documents, and other relevant information must be assembled and

thoroughly beta-tested with actual users. All installation scripts and othei opera-

tional features should be thoroughly exercised in all possible computing configuia-

tions (i.e„ hardware, operating systems, peripheral devices, networking

arrangements).

Principle #3: A support regime must be established before the software is

delivered. An end-user expects responsiveness and accurate information when a

question or problem arises. If support is ad hoc, or worse, nonexistent, the cus-

tomer will become dissatisfied immediately. Support should be planned, support

material should be prepared, and appropriate record keeping mechanisms should

be established so that the software team can conduct a categorical assessment of

the kinds of support requested.

Principle #4: Appropriate instructional materials must be provided to

end-users. The software team delivers more than the software itself. Appropriate

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 149

training aids (if required) should be developed, trouble-shooting guidelines should

be provided, and a "what's-different-about-this-software-increment" description

should be published, 12

Principle #5: Buggy software should befixed first, delivered later. Under

time pressure, some software organizations deliver low-quality increments with

a warning to the customer that bugs "will be fixed in the next release." This is a

mistake. There's a saying in the software business: "Customers will forget you

delivered a high-quality product a few days late, but they will never forget the

problems that a low-quality product caused them. The software reminds them

every day."

The delivered software provides benefit for the end-user, but it also provides useful

feedback for the software team. As the increment is put into use, the end-users

should be encouraged to comment on features and functions, ease of use, reliability,

and any other characteristics that are appropriate. Feedback should be collected and

recorded by the software team and used to (1) make immediate modifications to the

delivered increment (if required); (2) define changes to be incorporated into the next

planned increment; (3) make necessary design modifications to accommodate
changes; and (4) revise the plan (including delivery schedule) for the next increment

to reflect the changes.

Generic Task Set for Deployment

1 . Create delivery media.

Assemble and test all executable

files.

Assemble and test all data files.

Create and test all user documentation.

2

V

Implement electronic (e.g., pdf) versions.

Implement hypertext "help" files.

Implement a troubleshooting guide.

Test delivery media with a small group of

representative users.

Establish human support person or group.

Create documentation and/or computer support

tools.

Establish contact mechanisms (e.g., Web site,

phone, e-mail).

Establish problem-logging mechanisms.

3.

4 .

5.

6 .

~€3SE51\

Establish problem-reporting mechanisms.

Establish problem/error reporting database.

Establish user feedback mechanisms.

Define feedback process.

Define feedback forms (paper and electronic).

Establish feedback database.

Define feedback assessment process.

Disseminate delivery media to all users.

Conduct on-going support functions.

Provide installation and start-up assistance.

Provide continuing troubleshooting assistance.

Collect user feedback.

Log feedback.

Assess feedback.

Communicate with users on feedback.

- J

12 During the communication activity, the software team should determine what types of help mate-

rials users want.

150 PART TWO SOFTWARE ENGINEERING PRACTICE

5.7 Summary —
Software engineering practice encompasses concepts, principles, methods, and

tools that software engineers apply throughout the software process. Every software

engineering project is different, yet a set of generic principles and tasks apply to each

process framework activity regardless of the project or the product.

A set of technical and management essentials are necessary if good software en-

gineering practice is to be conducted. Technical essentials include the need to un-

derstand requirements and prototype areas of uncertainty, and the need to explicitly

define software architecture and plan component integration. Management essen-

tials include the need to define priorities and define a realistic schedule that reflects

them, the need to actively manage risk, and the need to define appropriate project

control measures for quality and change.

Customer communication principles focus on the need to reduce noise and im-

prove bandwidth as the conversation between developer and customer progresses.

Both parties must collaborate for the best communication to occur.

Planning principles all focus on guidelines for constructing the best map for the

journey to a completed system or product. The plan may be designed solely for a

single software increment, or it may be defined lor the entire project. Regardless,

it must address what will be done, who will do it, and when the work will be

completed.

Modeling encompasses both analysis and design, describing representations of

the software that progressively become more detailed. The intent of the models is to

solidify understanding of the work to be done and to provide technical guidance to

those who will implement the software.

Construction incorporates a coding and testing cycle in which source code for a

component is generated and tested to uncover errors. Integration combines individ-

ual components and involves a series of tests that focus on overall function and lo-

cal interfacing issues. Coding principles define generic actions that should occur

before code is written, while it is being created, and after it has been completed. Al-

though there are many testing principles, only one is dominant: testing is a process

of executing a program with the intent of finding an error.

During evolutionary software development, deployment happens for each soft-

ware increment that is presented to the customer. Key principles for delivery con-

sider managing customer expectations and providing the customer with

appropriate support information for the software. Support demands advance

preparations. Feedback allows the customer to suggest changes that have busi-

ness value and provide the developer with input for the next iterative software en-

gineering cycle.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 151

B£E£R£KCSS
[AMB021 Ambler, S., and R. Jeffries, Agile Modeling, Wiley, 2002.

[BEN99! Bentley, J., Programming Pearls, 2nd ed., Addison-Wesley, 1999.

[BOE96] Boehm, B.. "Anchoring the Software Process," IEEE Software, vol. 13, no. 4, July 1 996.

pp. 73-82.

[BOHOO] Bohl, M., and M. Rynn, Tools for Structured Design An Introduction to Programming
Logic, 5th ed., Prentice-Hall, 2000.

[DAV95| Davis, A., 201 Principles ofSoftware Development, McGraw-Hill, 1995.

[FOW99] Fowler, M., et ai., Refactoring: Improving the Design ofExisting Code, Addison-Wesley, 1999.

[GAR95] Garlan, D., and M. Shaw, "An Introduction to Software Architecture," Advances in Soft-

ware Engineering and Knowledge Engineering, vol. I (V. Ambriola and G. Tortora, eds.), World
Scientific Publishing Company, 1995.

[HIG001 Highsmith, J., Adaptive Software Development: An Evolutionary Approach to Managing
Complex Systems, Dorset House Publishing, 2000.

[H0096] Hooker, D., "Seven Principles of Software Development," September 1996, available at

http://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment.

[HUN95] Hunt, D., A. Bailey, and B. Taylor, The Art ofFacilitation, Perseus Book Group, 1995.

[HUN99] Hunt, A., D. Thomas, and W. Cunningham, The Pragmatic Programmer, Addison-

Wesley, 1999.

[IUS991 Justice, T., et a!.. The Facilitator's Fieldbook, AMACOM, 1999

[KAN93] Kaner, C., J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd ed., Van Nostrand-

Reinhold, 1993.

[KAN96] Kaner, S. , et al.. The Facilitator's Guide to Preparatory Decision Making, New Society Pub
lishing, 1996.

[KAR94] Karten, N., Managing Expectations, Dorset House, 1994.

[KER781 Kernlghan, B„ and P. Plauger, The Elements ofProgramming Style, 2nd ed., McGraw-Hill,

1978.

[KNU98J Knuth, D., The Art ofComputer Programming, 3 volumes, Addison-Wesley, 1998.

[MCC931 McConnell, S., Code Complete, Microsoft Press, 1993.

[MCC97] McConnell, S., "Software's Ten Essentials," IEEE Software, vol. 14, no. 2, March/April,

1997, pp. 143-144.

[MYE78] Myers, G., Composite Structured Design, Van Nostrand, 1978.

[MYE791 Myers, G., The Art ofSoftware Testing, Wiley, 1979,

IPAR72] Parnas, D. L., "On Criteria to Be Used in Decomposing Systems into Modules." CACM,
vol. 14, no. 1 , April 1972, pp. 221-227.

[POL45] Polya, G.. How to Solve It, Princeton University Press, 1945.

|ROS75) Ross, D., J. Goodenough, and C. Irvine, "Software Engineering: Process, Principles and
Goals ,"JEEE Computer, vol. 8, no. 5, May 1975.

[SHA95aj Shaw, M., and D. Garlan, "Formulations and Formalisms in Software Architecture,” Vol-

ume 1000—Lecture Notes in Computer Science, Springer-Verlag, 1995.

[SHA95b] Shaw, M., et al„ "Abstractions for Software Architecture and Tools to Support Them,"

IEEE Trans. Software Engineering, vol. SE-2I
,
no. 4, April 1995, pp. 314-335.

|STE74) Stevens, W., G. Myers, and L. Constantine, "Structured Design," IBM Systems Journal,

vol. 13, no. 2, 1974, pp."l 15-139.

[TAY90] Taylor, D. A., Object-Oriented Technology: A Manager's Guide, Addison-Wesley, 1990.

[ULL97] Ullman, E., Close to the Machine: Tcchnophilia and its Discontents, City Lights Books, 1 997.

[W1R71] Wirth, N., "Program Development by Stepwise Refinement," CACM, vol. 14, no, 4, 1971,

pp. 221-227.

[W0095] Wood, J., and D. Silver, Joint Application Design, Wiley, 1995.

[ZAH90] Zahniser, R. A., "Building Software in Groups," American Programmer, vol. 3, nos. 7-8,

July-August 1990.

152 PART TWO SOFTWARE ENGINEERING PRACTICE

5.1.

Do some research of "facilitation" for the communication activity (use the references pro-

vided or others) and prepare a set of guidelines that focus solely on facilitation.

5.2. Are there other technical "essentials" that might be recommended for software engineer-

ing? State each and explain why you've included it.

5.3. Are there other management "essentials" that might be recommended for software engi-

neering? State each and explain why you've included it.

5.4. An important communication principle states "prepare before you communicate." How
should this preparation manifest itself in the early work that you do? What work products might

result as a consequence of early preparation?

5.5. What three "domains" are considered during analysis modeling?

5.6. Do some research on "negotiation" for the communication activity, and prepare a set of

guidelines that focus solely on negotiation.

5.7. Describe what granularity means in the context of a project schedule.

5.8. How does agile communication differ from tradition software engineering communica-

tion? How is it similar?

5.9. Why is it necessary to "move on"?

5.10. Why are models important in software engineering work? Are they always necessaiy?

Are there qualifiers to your answer about necessity?

5.11. Try to summarize David Hooker's "Seven Principles for Software Development" (Section

5. 1) in a brief paragraph. Try to distill his guidance into just a few sentences without using his

words.

5.12. Try to add one additional principle to those stated for coding in Section 5.6.

5.13. Why is feedback important to the software team?

5.14. Do you agree or disagree with the following statement: "Since we deliver multiple incre-

ments to the customer, why should we be concerned about quality in the early increments—we
can fix problems in later iterations"? Explain your answer.

5.15. What is a successful test?

i

Customer communication is a critically important activity in software engineering, yet few prac-

titioner's spend anytime reading about it. Books by Pardee (To Satisfyand Delight Your Customer,

Dorset House. 1996) and Karten [KAR94J provide much insight into methods for effective cus-

tomer interaction. Communication and planning concepts and principles are considered in

many project management books. Useful project management offerings include: Hughs and

Cotterell (Sofhvare Project Management, second edition, McGraw-Hill, 1999), Phillips (The Soft-

ware Project Manager's Handbook, IEEE Computer Society Press, 1998), McConnell (Software

Project Suntival Guide, Microsoft Press, 1998), and Gilb (Principles ofSoftware Engineering Man-

agement, Addison-Wesley, 1988).

Virtually every book on software engineering contains a useful discussion on concepts and

principles for analysis, design and testing. Among the better offerings are books by Endres and

his colleagues (Handbook of Software and Systems Engineering, Addison-Wesley, 2003), Som-

merville (Software Engineering, sixth edition, Addison Wesley. 2000), Pfteeger (Software Engi-

neering: Theory and Practice, Prentice-Hall, 2001) and Schach (
Object-Oriented and Classical

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 153

Software Engineering, McGraw-Hill, 2001). An excellent collection of software engineering prin

ciples has been compiled by Davis (DAV95],

Modeling concepts and principles are considered in many books dedicated to requirements

analysis and/or software design. Young {Effective Requirements Practices, Addison-Wesley, 2001

)

emphasizes a "joint team" of customers and developers who develop requirements collabora-

tively. Weigers (Software Requirements, Microsoft Press, 1 999) presents many key requirements

engineering and requirements management practices. Somerville and Kotonya (Requirements

Engineering: Processes and Techniques, Wiley, 1998) discuss "elicitation" concepts and tech

niques and other requirements engineering principles,

Norman's (The Design ofBeryday Things, Currency/Doubleday, 1990) is must reading for

every software engineer who intends to do design work. Winograd and his colleagues (Bringing

Design to Software, Addison-Wesley, 1 996) have edited an excellent collection of essays that ad-

dress practical issues for software’ design. Constantine and Lockwood (Softwarefor Use, Addi-

son-Wesley, 1 999) present the concepts associated with “user-centered design." Tognazzini (
Tog

on Software Design, Addison-Wesley, 1995) presents a worthwhile philosophical discussion of

the nature of design and the impact of decisions on quality and a team's ability to produce soft-

ware that provides great value to its customer.

Hundreds of books address one or more elements of the construction activity. Kernighan and

Plauger [KER78] have written a classic text on programming style, McConnell [MCC93| presents

pragmatic guidelines for practical software construction, Bentley [BEN991 suggests a wide vari-

ety of programming pearls, Knuth [KNU98] has written a classic three-volume series on the art

of programming, and Hunt [HUN99] suggests pragmatic programming guidelines. The testing

literature has blossomed over the past decide. Myers [MYE79] remains a classic. Books by Whit-

taker (How to Break Software, Addison-Wesley, 2002) ,
Kaner and his colleagues (Lessons Learned

in Software Testing. Wiley, 2001), and Marick (The Craft ofSoftware Testing, Prentice-Hall, 1997)

each present important testing concepts and principles and much pragmatic guidance.

A wide variety of information sources on software engineering practice are available on the

internet. An up-to-date list of World Wide Web references that are relevant to software engi-

neering practice can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

System
Engineering

Key
Concepts
8PE

macro elements

product engineering

system:

architecture

characteristics

elements

hierarchy

modeling

simulation

templates

UML models

A lmost 500 years ago, Machiavelli said, "There is nothing more difficult to

take in hand, more perilous to conduct or more uncertain in its success,

than to take the lead in the introduction of a new order of things.” Dur-

ing the past 50 years, computer-based systems have introduced a new order. Al-

though technology has made great strides since Machiavelli spoke, his words
continue to ring true.

Software engineering occurs as a consequence of a process called system en-

gineering. Instead of concentrating solely on software, system engineering fo-

cuses on a variety of elements, analyzing, designing, and organizing those

elements into a system that can be a product, a service, or a technology for the

transformation of information or control.

The system engineering process takes on different forms depending on the

application domain in which it is applied. Business process engineering is con-
ducted when the context of the work focuses on a business enterprise. When a

product (in this context, a product includes everything from a wireless tele-

phone to an air traffic control system) is to be built, the process is called prod
uct engineering.

Both business process engineering and product engineering attempt to bring

order to the development of computer-based systems. Although each is applied

in a different application domain, both strive to put software into context. That is,

What is it? Before software can be

engineered, the "system" in which it

resides must be understood. To ac-

complish this, the overall objective of

the system must be determined; the role of hard-

ware, software, people, database, procedures,

and other system elements must be identified;

and operational requirements must be elicited,

analyzed, specified, modeled, validated, and
managed. These activities are the foundation of

system engineering.

Who does it? A system engineer works to under-

stand system requirements by working with the

customer, future users, and other stakeholders.

Why is it important? There’s an old saying:

"You can't see the forest for the trees." In this con-

text, the "forest" is the system, and the trees are

the technology elements (including software) that

are required to realize the system. If you rush to

build technology elements before you understand

the system, you'll undoubtedly make mistakes

that will disappoint your customer. Before you
worry about the trees, understand the forest.

What are the steps? Objectives and more de-

tailed operational requirements are identified by
eliciting information from the customer; require-

ments are analyzed to assess their clarity, com-
pleteness, and consistency; a specification, often

incorporating a system model, is created and then

validated by both practitioners and customers. Fi-

nally, system requirements are managed to ensure

that changes are properly controlled.

154

CHAPTER 6 SYSTEM ENGINEERING 155

What is the work product? An effective rep-

resentation of the system must be produced as a

consequence of system engineering. This can be

a prototype, a specification or even a symbolic

model, but it must communicate the operational,

functional, and behavioral characteristics of the

system to be built and provide insight into the

system architecture.

How do I ensure that I've done it right?

Review all system engineering work products for

clarity, completeness, and consistency. As im-

portant, expect changes to the system require-

ments and manage them using solid change

management (Chapter 27) methods.

both business process engineering and product engineering 1 work to allocate a role

for computer software and, at the same time, to establish the links that tie software

to other elements of a computer-based system.

In this chapter, we focus on the management issues and the process-specific ac-

tivities that enable a software organization to ensure that it does the right things at

the right time in the right way.

6.1 Computer-Based Systems —
The word system is possibly the most overused and abused term in the technical lex-

icon. We speak of political systems and educational systems, of avionics systems and

manufacturing systems, of banking systems and subway systems. The word tells us

little. We use the adjective describing system to understand the context in which the

word is used. Webster's Dictionary defines system in the following way:

l . a set or arrangement of things so related as to form a unity or organic whole; 2. a set

of facts, principles, rules, etc., classified and arranged in an orderly form so as to show a

logical plan linking the various parts; 3. a method or plan of classification or arrange-

ment; 4. an established way of doing something; method; procedure

Five additional definitions are provided in the dictionary, yet no precise synonym is

suggested. System is a special word. Borrowing from Webster's definition, we define

a computer-based system as

A set or arrangement ofelements that are organized to accomplish some predefined goal

by processing information.

The goal may be to support some business function or to develop a product that can

be sold to generate business revenue. To accomplish the goal, a computer-based

system makes use of a variety of system elements;

Software. Computer programs, data structures, and related work products that

serve to effect the logical method, procedure, or control that is required.

1 In reality, the term system engineering is often used in this context. However, for the purposes of

this book system engineering is generic and is used to encompass both business process engi-

neering and product engineering.

156 PART TWO SOFTWARE ENGINEERING PRACTICE

Don't be lured into

toking a "software-

centric" view. Begin by

considering oil

elements of a system

before you concentrate

on software.

POINT
Complex systems ore

actually a hierarchy of

macro elements that

are themselves

systems.

Hardware. Electronic devices that provide computing capability, the intercon-

nectivity devices (e.g., network switches, telecommunications devices) that enable

the flow of data, and electromechanical devices (e.g., sensors, motors, pumps) that

provide external world function.

People. Users and operators of hardware and software.

Database. A large, organized collection of information that is accessed via

software and persists over time.

Documentation. Descriptive information (e.g., models, specifications, hard-

copy manuals, on-line help files, Web sites) that portrays the use and/or operation

of the system.

Procedures. The steps that define the specific use of each system element or

the procedural context in which the system resides.

These elements combine in a variety of ways to transform information. For ex-

ample, a marketing department transforms raw sales data into a profile of the typi-

cal purchaser of a product; a robot transforms a command file containing specific

instructions into a set of control signals that cause some specific physical action.

Creating an information system to assist the marketing department and control soft-

ware to support the robot both require system engineering.

One complicating characteristic of computer-based systems is that the elements

constituting one system may also represent one macro element of a still larger system.

The macro element is a computer-based system that is one part of a larger computer-

based system. As an example, we consider afactory automation system that is essen-

tially a hierarchy of systems. At the lowest level of the hierarchy we have a numerical

control machine, robots, and data entry devices. Each is a computer-based system in

its own right. The elements of the numerical control machine include electronic and
electromechanical hardware (e.g., processor and memory, motors, sensors), software

(for communications and machine control), people (the machine operator), a database

(the stored NC program), documentation, and procedures. A similar decomposition

could be applied to the robot and data entry device. Each is a computer-based system.

At the next level in the hierarchy, a manufacturing cell is defined. The manufac-
turing ceil is a computer-based system that may have elements of its own (e.g., com-
puters, mechanical fixtures) and also integrates the macro elements that we have
called numerical control machine, robot, and data entry device.

To summarize, the manufacturing cell and its macro elements each are composed
of system elements with the generic labels: software, hardware, people, database,

procedures, and documentation. In some cases, macro elements may share a

generic element. For example, the robot and the NC machine both might be managed

CHAPTER 6 SYSTEM ENGINEERING 157

by a single operator (the people element). In other cases, generic elements are ex-

clusive to one system.

The role of the system engineer is to define the elements for a specific computer-

based system in the context of the overall hierarchy of systems (macro elements). In

the sections that follow, we examine the tasks that constitute computer system en-

gineering.

6.2 The System Engineering Hierarchy

WebRef
The International

Council of System

Engineering (INCOSE)

provides many useful

resources ot

www.incose.org

POINT
Good system

engineering begins

with o dear

understanding of

context—the world

view—and then

progressively narrows

focus until technical

detoil is understood.

Regardless of its domain of focus, system engineering encompasses a collection of

top-down and bottom-up methods to navigate the hierarchy illustrated in Figure 6. 1

.

The system engineering process usually begins with a "world view." That is, the en-

tire business or product domain is examined to ensure that the proper business or

technology context can be established. The world view is refined to focus more fully

on a specific domain of interest. Within a specific domain, the need for targeted sys-

tem elements (e.g., data, software, hardware, people) is analyzed. Finally, the analy-

sis, design, and construction of a targeted system element is initiated. At the top of

the hierarchy, a very broad context is established and, at the bottom, detailed tech-

nical activities, performed by the relevant engineering discipline (e.g., hardware or

software engineering), are conducted.2

Stated in a slightly more formal manner, the world view (WV) is composed of a set

of domains (D,), which can each be a system or system of systems in its own right.

WV = |D,, D2, D_, Dn)

Each domain is composed of specific elements (E;)
each of which serves some role in

accomplishing the objective and goals of the domain or component:

D, = (£,, E2, E2 ,

,

Em]

Finally, each element is implemented by specifying the technical components (Ck)

that achieve the necessary function for an element:

£/ = 1C,, C2, C, Ck }

In the software context, a component could be a computer program, a reusable pro-

gram component, a module, a class or object, or even a programming language

statement.

"Alwoys design o thing by considering il in its next larger context—a chair in a room, a room in o house, o house in

on environment, an environment in o city plan."

Eliel Soorinen

2 In some situations, however, system engineers must first consider individual system elements, us-

ing this approach, subsystems are described bottom-up by first considering constituent detailed

components of the subsystem.

158 PART TWO SOFTWARE ENGINEERING PRACTICE

The system
engineering

hierarchy

It is important to note that the system engineer narrows the focus of work as

she moves downward in the hierarchy just described. However, the world view

portrays a clear definition of overall functionality that will enable the engineer to

understand the domain, and ultimately the system or product, in the proper

context.

6.2.1 System Modeling

System modeling is an important element of the system engineering process.

Whether the focus is on the world view or the detailed view, the engineer creates

models that [MOT92]:

^ What does a

• system

engineering model

accomplish?

• Define the processes that serve the needs of the view under consideration.

• Represent the behavior of the processes and the assumptions on which the

behavior is based.

• Explicitly define both exogenous and endogenous input3 to the model.

• Represent all linkages (including output) that will enable the engineer to

better understand the view.

3 Exogenous inputs link one constituent of a given view with other constituents at the same level or

other levels; endogenous input links individual components of a constituent at a particular view.

CHAPTER 6 SYSTEM ENGINEERING 159

To construct a system model, the engineer should consider a number of restraining

factors:

<5£

POINT
A system engineer

considers the following

factors when

determining alternative

solutions: assumptions,

simplifications,

limitations, constraints,

and customer

preferences.

1 . Assumptions that reduce the number of possible permutations and variations,

thus enabling a model to reflect the problem in a reasonable manner. As an ex-

ample, consider a three-dimensional rendering product used by the entertain-

ment industry to create realistic animation. One domain of the product enables

the representation of3D human forms. Input to this domain encompasses the

ability to specify movement from a live human actor, from video, or by the cre-

ation of graphical models. The system engineer makes certain assumptions

about the range of allowable human movement (e g., legs cannot be wrapped

around the torso) so that the range of inputs and processing can be limited.

2 . Simplifications that enable the mode! to be created in a timely manner. To il-

lustrate, consider an office products company that sells and services a broad

range of copiers, scanners, and related equipment. The system engineer is

modeling the needs of the service organization and is working to understand

the flow of information that spawns a service order. Although a service order

can be derived from many origins, the engineer categorizes only two

sources: internal demand and external request. This enables a simplified par-

titioning of input that is required to generate the service order.

3 . Limitations that help to bound the system. For example, an aircraft avionics

system is being modeled for a next generation aircraft. Since the aircraft has a

two-engine design, the monitoring domain for propulsion will be modeled to

accommodate a maximum of two engines and associated redundant systems.

4. Constraints that will guide the manner in which the model is created and the

approach taken when the model is implemented. For example, the technol-

ogy infrastructure for the three-dimensional rendering system described pre-

viously uses dual G5- based processors. The computational complexity of

problems must be constrained to fit within the processing bounds imposed

by these processors.

5 . Preferences that indicate the preferred architecture for all data, functions, and

technology. The preferred solution sometimes comes into conflict with other

restraining factors. Yet, customer satisfaction is often predicated on the de-

gree to which the preferred approach is realized.

The resultant system model (at any view) may call for a completely automated solu-

tion, a semiautomated solution, or a nonautomated approach. In fact, it is often pos-

sible to characterize models of each type that serve as alternative solutions to the

problem at hand. In essence, the system engineer simply modifies the relative influ-

ence of different system elements (people, hardware, software) to derive models of

each type.

PART TWO SOFTWARE ENGINEERING PRACTICE160

‘Simple things should be simple. Complex things should be possible.'

Alan Kay

Ifsimulation capability

is unavailable for a

reactive system,

project risk increases.

Consider using an

incremental process

model that wili enable

you to deliver a

working product in the

first iteration and then

use other iterations to

tune performance.

6.2.2 System Simulation

Many computer-based systems interact with the real world in a reactive fashion.

That is, real-world events are monitored by the hardware and software that form the

computer-based system, and based on these events, the system imposes control on

the machines, processes, and even people who cause the events to occur. Real-time

and embedded systems often fall into the reactive systems category.

Many systems in the reactive category control machines and/or processes

(e.g., commercial aircraft or petroleum refineries) that must operate with an

extremely high degree of reliability. If the system fails, significant economic or

human loss could occur. For this reason, system modeling and simulation tools

are used to help eliminate surprises when reactive, computer-based systems are

built. These tools are applied during the system engineering process, while the

role of hardware and software, databases, and people is being specified. Model-

ing and simulation tools enable a system engineer to "test drive" a specification of

the system.

Software Tools
System Simulation Tools

Objective: System simulation tools provide

the software engineer with the ability to predict

the behavior of a real-time system prior to the time that

it is built. In addition, these tools enable the software

engineer to develop mock-ups of the real-time system,

allowing the customer to gain insight into the function,

operation, and response prior to actual

implementation.

Mechanics: Tools in this category allow a team to define

the elements of a computer-based system and then

execute a variety of simulations to better understand

the operating characteristics and overall performance

of the system. Two broad categories of system

simulation tools exist: (1
)
general purpose tools that

can model virtually any computer-based system, and

(2) special purpose tools that are designed to address

a specific application domain (e.g., aircraft avionics

systems, manufacturing systems, electronic-systems).

Representative Tools4

CSIM, developed by Lockheed Martin Advanced

Technology Labs (www.atl.external.lmco.com), is a

general purpose discrete-event simulator for block

diagram-oriented systems.

Simics, developed by Virtutech (www.virtutech.com), is a

system simulation platform that can model and analyze

both hardware and software-based systems.

SLX, developed by Wolverine Software

(www.wolverinesoftware.com), provides general

purpose building blocks for modeling the performance

of a wide variety of systems.

A useful set of links to a wide array of system simulation

resources can be found at

http://www.idsia.ch/~andrea/simtools.html.

\

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 6 SYSTEM ENGINEERING 161

*Ll

9 What

• architectures

are defined and

developed as part

of BPE?

4s a software

engineer, you moy

never get involved in

ISPorBM. however,

if it's clear that these

activities haven't been

done, inform stake-

holders that project

risk is very high.

Business Process Engineering: An Overview

The goal of business process engineering (BPE) is to define architectures that will en-

able a business to use information effectively. When taking a world view of a com-

pany's information technology needs, there is little doubt that system engineering is

required. Not only is the specification of the appropriate computing architecture re-

quired, but the software architecture that populates the organization's unique con-

figuration of computing resources must be developed. Business process engineering

is one approach for creating an overall plan for implementing the computing archi-

tecture [SPE93].

Three different architectures must be analyzed and designed within the context

of business objectives and goals:

• Data architecture

• Applications architecture

• Technology infrastructure

The data architecture provides a framework for the information needs of a business

or business function. The individual building blocks of the architecture are the data

objects that are used by the business. A data object contains a set of attributes that

define some aspect, quality, characteristic, or descriptor of the data that are being

described.

Once a set of data objects is defined, their relationships are identified. A relation-

ship indicates how objects are connected to one another. As an example, consider

the objects: customer and productA. The two objects can be connected by the re-

lationship purchases that is, a customer purchases productA or productA is pur

chased by customer. The data objects (there may be hundreds or even thousands

for a major business activity) flow between business functions, are organized within

a database, and are transformed to provide information that serves the needs of the

business.

The application architecture encompasses those elements of a system that

transform objects within the data architecture for some business purpose. In the

context of this book, we consider the application architecture to be the system of

programs (software) that performs this transformation. However, in a broader

context, the application architecture might incorporate the role of people (who are

information transformers and users) and business procedures that have not been

automated.

The technology infrastructure provides the foundation for the data and application

architectures. The infrastructure encompasses the hardware and software that are

used to support the applications and data. This includes computers, operating sys-

tems, networks, telecommunication links, storage technologies, and the architec-

ture (e g., client/server) that has been designed to implement these technologies.

162 PART TWO SOFTWARE ENGINEERING PRACTICE

The business

process

engineering

hierarchy

[MAR90]

The concurrentprocess

model (Chapter 3) is

often used in this

context. Cadi engi-

neen'ng discipline

works in parallel. Be

certain that communi-

cation is encouraged as

each discipline

performs its work.

To model these system architectures, a hierarchy ofbusiness process engineering

activities is defined and illustrated in Figure 6.2.

Product Ensineerinsi An QYSRY.is.fl

The goal of product engineering is to translate the customer's desire for a set of de-

fined capabilities into a working product. To achieve this goal, product engineering-

like business process engineering—must derive architecture and infrastructure. The

architecture encompasses four distinct system components: software, hardware,

data (and databases), and people. A support infrastructure is established and in-

cludes the technology required to tie the components together and the information

(e.g., documents, CD-ROM, video) that is used to support the components.

Referring to Figure 6.3, the world view is achieved through requirements engineer-

ing (Chapter 7). The overall requirements of the product are elicited from the customer.

These requirements encompass information and control needs, product function and

behavior, overall product performance, design and interfacing constraints, and other

special needs. Once these requirements are known, the job of requirements engineer-

ing is to allocate function and behavior to each of the four components noted earlier.

Once allocation has occurred, system component engineering commences. Sys-

tem component engineering is actually a set of concurrent activities that address

each of the system components separately: software engineering, hardware engi-

neering, human engineering, and database engineering. Each of these engineering

CHAPTER 6 SYSTEM ENGINEERING 163

The product

engineering

hierarchy

disciplines takes a domain-specific view, but it is important to note that the engi-

neering disciplines must establish and maintain active communication with one an-

other. Part of the role of requirements engineering is to establish the interfacing

mechanisms that will enable this to happen.

The element view for product engineering is the engineering discipline itself ap-

plied to an allocated component. For software engineering, this means analysis and

design modeling activities (covered in detail in later chapters) and construction and

deployment activities that encompass code generation, testing, and support tasks.

The analysis task models allocated requirements into representations of data, func-

tion, and behavior. Design maps the analysis model into data, architectural, inter-

face, and software component-level designs.

SafeHome

;:i
Preliminary System Engineering

The scene: Software engineering The conversation:
team workspace after the SafeHome kickoff meeting has

occurred.

The players: Jamie Lazar, software team member;

Vinod Raman, software team member; Ed Robbins,

software team member.

Ed: I think it went pretty well.

Vinod: Yeah . . . but all we did was look at the overall

system—we've got plenty of requirements gathering work

left to do for the software.

164 PART TWO SOFTWARE ENGINEERING PRACTICE

Jamie: That's why we have additional meetings

scheduling for the next five days. By the way, I suggested

that two of the "customers* move over here for the next

few weeks. You know, live with us so we can really

communicate, er, collaborate.

Vinod: How did that go?

Jamie: Well, they looked at me like I was crazy, but

Doug [the software engineering manager] likes the

idea—it's agile—so he's talking to them.

Ed: I was taking notes using my PDA during the meeting,

and I came up with a list of basic functions.

Jamie: Cool, let's see.

Ed: I've already e-mailed both of you a copy. Take a

look and we'll talk.

Vinod: How about after lunch?

(Jamie and Vinod received the following from Ed)

Preliminary notes of the structure/functionalily of

SafeHome:

• The system will make use of one or more PCs, various

wall-mounted and/or handheld control panels, various

sensors, and applicance/device controllers.

• All will communicate via wireless protocols (e.g.,

802. 1 1 b) and will be designed for new-home

construction and for application within existing homes

• All hardware with the exception of our new wireless

box will be off the shelf.

Basic software functionality that I could glean from our kick-

off conversation.

Home security functions:

• Standard window/door/motion sensor monitoring for

unauthorized access (break-ins).

• Monitoring for fire, smoke, and CO levels.

• Monitoring for water levels in basement (e.g., Rood or

broken water heater).

• Monitoring for outside movement.

• Change security setting via the Internet.

Home surveillance functions:

• Connect to one or more video cameras placed

inside/outside house.

• Control pan/zoom for cameras.

• Define camera monitoring zones.

« Display camera views on PC.

• Access camera views via the Internet.

• Selectively record camera output digitally.

• Replay camera output.

Home management functions:

• Control lighting.

• Control appliances.

• Control HVAC.

• Control video/audio equipment throughout house.

• Ability to set house for "vocation /travel mode" with

one button sets.

• Set appliances/lighting/HVAC accordingly.

• Set answering machine message

• Contacts vendors to stop paper, mail, etc.

Communication management functions:

• Answering machine functions.

• List of callers via caller ID.

• Messages, time-stamped.

• Message text via voice recognition system.

• E-mail functions (all standard e-mail functions).

• Standard e-mail display.

• Voice read of e-mail via phone access.

• Personal phone book.

• Link to PDA.

Other functions:

As yet undefined.

All functions ore accessible via the Internet with appro-

priate password protection.

6.5 System Modeling

Because a system can be represented at different levels of abstraction (e.g., the

world view, the domain view, the element view), system models tend to be hierar-

chical or layered in nature. At the top of the hierarchy, a model of the complete

system is presented (the world view). Major data objects, processing functions,

CHAPTER 6 SYSTEM ENGINEERING 165

and behaviors are represented without regard to the system component that will

implement the elements of the world view model. As the hierarchy is refined or

layered, component-level detail (in this case, representations of hardware, soft-

ware, and so on) is modeled. Finally system models evolve into engineering mod-

els (which are further refined) that are specific to the appropriate engineering

discipline.

POINT
The Hctley-Pirbhai

model depicts input,

processing, and output

olong with the user

interface and

mointenance/self-test.

6.5.1 Hatley-Pirbhai Modeling

Every computer-based system can be modeled as an information transform using an

input-processing-output template. Hatley and Pirbhai [HAT87] have extended this

view to include two additional system features—user interface processing and main-

tenance and self-test processing. Although these additional features are not present

for every computer-based system, they are very common, and their specification

makes any system model more robust.

Using a representation of input, processing, output, user interface processing, and

self-test processing, a system engineer can create a model of system components

that sets a foundation for later steps in each of the engineering disciplines.

To develop the system model, a system model template [HAT87] is used. The sys-

tem engineer allocates system elements to each of five processing regions within the

template: (l) user interface, (2) input, (3) system function and control, (4) output, and

(5) maintenance and self-test.

Like nearly all modeling techniques used in system and software engineering, the

system model template enables the analyst to create a hierarchy of detail. A system

context diagram (SCD) resides at the top level of the hierarchy. The context diagram

"establishes the information boundary between the system being implemented and

the environment in which the system is to operate" [HAT87]. That is, the SCD defines

all externa! producers of information used by the system, all external consumers of

information created by the system, and all entities that communicate through the in-

terface or perform maintenance and self-test.

To illustrate the use of the SCD, consider a conveyor line sorting system (CLSS)

described with the following (somewhat nebulous) statement of objectives:

CLSS must be developed such that boxes moving along a conveyor line will be identified

and sorted into one of six bins at the end of the line. The boxes will pass by a sorting sta-

tion where they will be identified. Based on an identification number printed on the side

ofthe box and a bar code, the boxes will be shunted into the appropriate bins. Boxes pass

in random order and are evenly spaced. The line is moving slowly.

A desk-top computer located at the sorting station executes all CLSS software, inter-

acts with the bar-code reader to read part numbers on each box, interacts with the con-

veyor line monitoring equipment to acquire conveyor line speed, stores all part numbers

sorted, interacts with a sorting station operator to produce a variety of reports and diag-

nostics, sends control signals to the shunting hardware to sort the boxes, and communi-

cates with a central factory automation system.

166 PART TWO SOFTWARE ENGINEERING PRACTICE

System context

diagram for

CLSS

The SCD for CLSS is shown in Figure 6.4. The diagram is divided into five major

segments. The top segment represents user interface processing, and the left and

right segments depict input and output processing, respectively. The central seg-

ment contains process and control functions, and the bottom segment focuses on

maintenance and self-test. Each box shown in the figure represents an external en-

tity—that is, a producer or consumer of system information. For example, the bar-

code reader produces information that is input to the CLSS system. The symbol for

the entire system (or, at lower levels, major subsystems) is a rectangle with

rounded corners. Hence, CLSS is represented in the processing and control region

at the center of the SCD. The labeled arrows shown in the SCD represent infor-

mation (data and control) as it moves from the external environment into the CLSS

system. The external entity bar-code reader produces input information that is la-

beled bar code. In essence, the SCD places any system into the context of its ex-

ternal environment.

The system engineer refines the system context diagram by considering the

shaded rectangle in Figure 6.4 in more detail. The major subsystems that enable the

conveyor line sorting system to function within the context defined by the SCD are

identified. The major subsystems are defined in a systemflow diagram (SFD) that is

derived from the SCD. Information flow across the regions of the SCD is used to guide

the system engineer in developing the SFD—a more detailed "schematic" for CLSS.

The system flow diagram shows major subsystems and important lines of informa-

CHAPTER 6 SYSTEM ENGINEERING 167

Building an
SFD hierarchy

Top-level orchectecture flow diagram (AFD)

tion (data and control) flow. In addition, the system template partitions the subsys-

tem processing into each of the five regions discussed earlier. At this stage, each of

the subsystems can contain one or more system elements (e g., hardware, software,

people) as allocated by the system engineer.

The initial system flow diagram becomes the top node of a hierarchy of SFDs. Each

rounded rectangle in the original SFD can be expanded into another architecture tem-

plate dedicated solely to it. This process is illustrated schematically in Figure 6.5. Each

of the SFDs for the system can be used as a starting point for subsequent engineering

steps for the subsystem that has been described.

Subsystems and the information that flows between them can be specified

(bounded) for subsequent engineering work. A narrative description of each subsys-

tem and a definition of all data that flow between subsystems become important el-

ements of the System Specification.

6.5.2 System Modeling with UML

UML provides a wide array of diagrams that can be used for analysis and design at both

the system and the software level.
5 For the CLSS system, four important system elements

5 A more detailed discussion of UML diagrams is presented in Chapters 8 through 11 . For a compre-

hensive discussion of UML, the interested reader should see [SCH02], [LAROIJ, or (BEN99).

168 PART TWO SOFTWARE ENGINEERING PRACTICE

Deployment
diagram
iorCLSS

hardware

WebRef
A complete

specification of the

syntax and semantics

of the UML (tfsajssed

in later chapters) con

be found ot

www.rationol.com

/oml/index.jsp.

are modeled: (1) the hardware that enables CLSS; (2) the software that implements data-

base access and sorting; (3) the operator who submits various requests to the system;

and (4) the database that contains relevant bar code and destination information.

CLSS hardware can be modeled at the system level using a UML deployment dia-

gram as illustrated in Figure 6.6. Each 3 -D box depicts a hardware element that is

part of the physical architecture of the system. In some cases, hardware elements

will have to be designed and built as part of the project. In many cases, however,

hardware elements can be acquired off-the-shelf. The challenge for the engineering

team is to properly interface the hardware elements.

Software elements for CLSS can be depicted in a variety of ways using UML.

Procedural aspects of CLSS software can be represented using an activity diagram

(Figure 6.7). This UML notation is similar to the flowchart and is used to represent

what happens as the system performs its functions. Rounded rectangles imply a spe-

cific system function; arrows imply flow through the system; the decision diamond

represents a branching decision (each arrow emanating from the diamond is la-

beled); solid horizontal lines imply that parallel activities are occurring.

Another UML notation that can be used to model software is the class diagram

(along with many class-related diagrams discussed later in this book). At the sys-

tem engineering level, classes6 are extracted from a statement of the problem. For

6 In earlier chapters we noted that a class represents a set of entities that is part of the system do-

main. These entities can be transformed or stored by the system or can serve as a producer or con-

sumer of information produced by the system.

CHAPTER 6 SYSTEM ENGINEERING 169

Activity

diagram
for CLSS

the CLSS, candidate classes might be: Box, ConveyorLine, Bar-codeReader,

ShuntController, OperatorRequest, Report, Product, and others. Each class

encapsulates a set of attributes that depict all necessary information about the

class. A class description also contains a set of operations that are applied to the

class in the context of the CLSS system. A UML class diagram for Box is shown in

Figure 6.8.

The CLSS operator can be modeled with a UML use-case diagram as shown in

Figure 6.9. The use-case diagram illustrates the manner in which an actor (in this

case, the operator, represented by a stick figure) interacts with the system. Each la-

beled oval inside the box (which represents the CLSS system boundary) represents

one use-case—a text scenario that describes an interaction with the system.

170 PART TWO SOFTWARE ENGINEERING PRACTICE

UML class

diagram for

Box class

barcode

forwardSpeed

conveyorLocafion

height

width

depth

weight

contents

readBarcode)

)

updateSpeed(
)'

readSpeedf

)

updatelocation)

)

readLocationj

)

getDimensions(

)

getWeightf

)

checkContents(
|

Class name

Attributes

Operations

(parentheses at end

of name indicate the

list of attributes that the

operation requires)

CHAPTER 6 SYSTEM ENGINEERING 171

Software Tools

System Modeling Tools

Objective: System modeling tools provide the

software engineer with the ability to model all

elements of o computer-based system using a notation

that is specific to the tool.

Mechanics: Tool mechanics vary. In general, tools in this

category enable a system engineer to model (1)
the

structure of all functional elements of the system; (2) the

static and dynamic behavior of the system; and (3) the

human-machine interface.

Representative Tools7

Describe, developed by Embarcadero Technologies

(www.embarcadero.com), is a suite of UML-based

A
modeling fools that can represent software or complete

systems.

Rational XDE and Rose

,

developed by Rational

Technologies (www.rational.com), provide a widely used,

UML-based suite of modeling and development tools for

computer-based systems.

Real-Time Studio, developed by Artisan Software

(www.artisansw.com), is a suite of modeling and

development tools that support real-time system development.

Telelogic Tau, developed by Teielogic (www.telelogic.

com), is a UML-based tool suite that supports analysis and

design modeling as well as links to software construction

features.

6.6 Summary ;

—

;——
V

A high-technology system encompasses,a numberof elements: software, hardware,

- people, database, documentation, and procedures. System engineering helps to

translate a customer's needs into a model of a system that makes use of one or more

of these elements.

System engineering begins by taking a "world view." A business domain or prod;

uct is analyzed to establish all basic business requirements. Focus is then narrowed

to a "domain view," where each of the system elements is analyzed individually. Each

element is allocated to one or more engineering components, which are then ad-

dressed by the relevant engineering discipline.

Business process engineering is a system engineering approach that is used to de-

fine architectures that enable a business to use information effectively. The intent of

business process engineering is to derive comprehensive data architecture, applica-

tion architecture, and technology infrastructure that will meet the needs of the busi-

ness strategy and the objectives and goals of each business area.

Product engineering is a system engineering approach that begins with system

analysis. The system engineer identifies the customer's needs, determines economic

and technical feasibility, and allocates function and performance to software, hard-

ware, people, and databases—the key engineering components.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

172 PART TWO SOFTWARE ENGINEERING FRACTICE

[BEN99] Bennett, S„ S. McRobb, and R. Farmer, Object-Oriented Systems Analysis and Design Us-
ing (/ML. McGraw-Hill, 1 999.

IHAR93] Hares, J. S., Information Engw,eermgfor theAdvanced Practitioner, Wiley, 1993, pp 12-13,
[HAT87] Hatley. D. J., and I. A. Pirbhai, Strategiesfor RealTime System Specification, Dorset House

1987.

[LARO
I]
Larman, C , Applying l!ML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process, 2nd ed., Prentice-Hall, 2001

.

[MAR90] Martin Information Engineering: Book!!—Planning and Analysis, Prentice-Hall, 1990.
[MOT92] Motamarri, S., "Systems Modeling and Description.'' Software Engineering Notes vol

17. no 2, April 1992. pp. 57-63.

[SCH02] Schmuller, J.. Teach YourselfUML in 24 Hours, 2nd ed., Sams Publishing, 2002.
[SPE93] Spewak, S., Enterprise Architecture Planning, QED Publishing, 1993.
[THA97| Thayer. R. H., and M. Dorfman, Soflwaic Requirements Engineering, 2nd ed, IEEE Com-

puter Society Press, 1997.

6.1. Select any large system or product with which you are familiar Deline the set ofdomains that
describe the world view ol the system or product. Describe the set of elements that make up one
or two domains. For one element, identify the technical components that must be engineered.

6.2. Build a hierarchical "system of systems" for a system, product, or service with which you
are familiar. Your hierarchy should extend down to simple system elements (hardware, soft-
ware, etc.) along at least one branch of the 'tree."

6.3. Although information at this point is very sketchy, try to develop one UML deployment di-
agram, activity diagram, class diagram, and use-case diagram for the SafeHome product.

6.4. Business process engineering strives to define data and application architecture as well as
technology infrastructure. Describe what each of these terms means and provide an example.

6.5. A system engineer can come from one of three sources; the system developer, the cus-
tomer, or some outside organization. Discuss the pros and cons that apply to each source. De-
scribe an "ideal" system engineer.

6.6. Your instructor will distribute a high-level description ofa computer-based system or product:

a Develop a set of questions that you should ask as a system engineer,
b Propose at least two different allocations for the system based on answers to your

questions.

c. In class, compare your allocation to those of fellow students.

6.7. Select any large system or product with which you are familiar Stale the assumptions,
simplifications, limitations, constraints, and preferences that would have to be made to build an
effective (and realizable) system model

6.8. Research the literature and write a brief paper describing how modeling and simulation
tools work. Alternate: Collect literature from two or more vendors that sell modeling and sim-
ulation tools and assess their similarities and differences.

6.9. Find as many single-word synonyms for the word system as you can. Good luck!

6.10. Are there characteristics of a system that cannot be established during system engineer
ing activities? Describe the characteristics, if any, and explain why a consideration of them must
be delayed until later engineering steps.

6. 1 1 . Develop a system context diagram for the computer-based system ofyour choice (or one
assigned by your instructor).

CHAPTER 6 SYSTEM ENGINEERING 173

6 . 12 . Are there situations in which formal system specification can be abbreviated or elimi-

nated entirely? Explain.

Books by Hatley and his colleagues (Processfor Systems Architecture and Requirements Engineering,

Dorset House, 2000), Buede (The Engineering Design of Systems: Models and Methods, Wiley, 1999),

Weiss and his colleagues (Sofivare Pnxlucl-Une Engineering, Addison-Wesley, 1 999), Blanchard and

Fabrycky (System Engineering and Analysis, third edition, Prentice-Hall, 1998), Armstrong and Sage

tintroduction to Systems Engineering, Wiley, 1997), and Martin {Systems Engineering Guidebook, CRC

Press 1996) present the system engineering process (with a distinct engineering emphasis) and

provide worthwhile guidance. Blanchard (System Engineering Management, second edition, Wiley,

1997) and Lacy {System Engineering Management, McGraw-Hill, 1992) discuss system engineering

management issues.

Chorafas {Enterprise Architectureand New Generation Systems, St. Lucie Press, 2001
)
presents

information engineering and system architectures for "next generation ' IT solutions including

internet-based systems, wallnau and his colleagues [Building Systemsfrom Commercial Compo-

nents, Addison-Wesley, 2001) addresses component-based systems engineering issues for in-

formation systems and products. Lozinsky [Enterpnse-V/ide Software Solutions: integration

Strategies and Practices. Addison-Wesley, 1 998) addresses the use of software packages as a so-

lution that allows a company to migrate from legacy systems to modem business processes. A

worthwhile discussion of risk and system engineering Is presented by Bradley {Elimination of

Risk in Systems. Tharsis Books, 2002),

Davis (Business Process Modeling with Aris: A Practical Guide, Springer-Verlag, 200 1) ,
Bustard

and his colleagues (System Modelsfor Business Process Improvement, Artech House, 2000), and

Scheer (
Business Process Engineering: Reference Modelsfor industrial Enterprises, Springer-Verlag,

1998) describe business process modeling methods for enterprise-wide information systems.

Davis and Yen (The Information System Consultant's Handbook: Systems Analysis and Design,

CRC Press, 1 998) present encyclopedic coverage of system analysis and design issues in the in-

formation systems domain. An excellent IEEE tutorial by Thayer and Dorfman 1T1IA97 dis-

cusses the interrelationship between system and software-level requirements analysis issues.

Law and his colleagues (Simulation Modeling and Analysis, McGraw-Hill, 1999) discuss sys-

tem simulation and modeling techniques for a wice variety ol app.tcation domains.

For those readers actively involved in systems work or interested in a more sophisticated

treatment of the topic, Gerald Weinberg's books (/In Introduction to General System Thinking,

Wiley-Interscience, 1 976 and On the Design ofStable Systems, wiley-lnterscience, 1979) have be-

come classics and provide an excellent discussion of "genera! systems thinking" that implicitly

leads to a general approach to system analysis and design. More recent books by Weinberg

(General Principles ofSystems Design. Dorset House, 1988 and Rethinking Systems Analysis and

Design, Dorset House, 1988) continue in the tradition of his earlier work.

A wide variety of information sources on system engineering and related subjects is avail-

able on the internet. An up-to-date list of World Wide Web references that are relevant to sys

tern engineering, information engineering, business process engineering, and product

engineering can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Requirements
Engineering

Key
Concepts
analysis model

elements

analysis patterns

elaboration

elicitation

inception

mini-specs

negotiation

QFD

requirements

management

spedficotion

traceability

use-cases

validation

U nderstanding the requirements of a problem is among the most difficult

tasks that face a software engineer. When you first think about it, re-

quirements engineering doesn't seem that hard. After all, doesn't the cus-

tomer know what is required? Shouldn’t the end-users have a good
understanding of the features and functions that will provide benefit? Surprisingly,

in many instances the answer to these questions is no. And even if customers and
end-users are explicit in their needs, those needs will change throughout the proj-

ect. Requirements engineering is hard.

In the forward to a book by Ralph Young [YOUOl] on effective requirements

practices, I wrote:

It's your worst nightmare. A customer walks into your office, sits down, looks you

straight in the eye, and says, "I know you think you understand what I said, but what

you don't understand is what I said is not what I mean." Invariably, this happens late

in the project, after deadline commitments have been made, reputations are on the

line, and serious money is at stake.

All of us who have worked in the systems and software business for more than a

few years have lived this nightmare, and yet, few of us have learned to make it go away

We struggle when we try to elicit requirements from our customers. We have trouble

understanding the information that we do acquire. We often record requirements in a

What is it? Requirements engi-

neering helps software engineers to

better understand the problem they

will work to solve. It encompasses the

set of tasks that lead to an understanding of what

the business impact of the software will be, what
the customer wants, and how end-users will in-

teract with the software.

Who does it? Software engineers (sometimes re-

ferred to as system engineers or analysts in the

IT world) and other project stakeholders (man-

agers, customers, end-users) all participate in

requirements engineering.

Why is it important? Designing and building

an elegant computer program that solves the

wrong problem serves no one's needs. That's

why it is important to understand what the cus-

tomer wants before you begin to design and
build a computer-based system.

What are the steps? Requirements engineering

begins with inception—a task that defines the

scope and nature of the problem to be solved. If

moves onward to elicitation—a task that helps

the customer to define what is required, and then

elaboration—where basic requirements are re-

fined and modified. As the customer defines the

problem, negotiation occurs—what are the pri-

orities, what is essential, when is it required? Fi-

nally, the problem is specified in some manner
and then reviewed or validated to ensure that

your understanding of the problem and the cus-

tomers' understanding of the problem coincide.

174

CHAPTER 7 REQUIREMENTS ENGINEERING 175

What is the work product? The intent of the

requirements engineering process is to provide

all parties with a written understanding of the

problem. This can be achieved though a num-

ber of work products: user scenarios, functions

and features lists, analysis models, or a speci-

fication.

How do I ensure that I've done it right?

Requirements engineering work products are re-

viewed with the customer and end-users to en-

sure that what you have learned is what they

really meant. A word of warning: even after all

parties agree, things will change, and they will

continue to change throughout the project.

disorganized manner, and we spend far too little time verifying what we do record. We al-

low change to control us, rather than establishing mechanisms to control change. In short,

we fail to establish a solid foundation for the system or software. Each of these problems

is challenging. When they are combined, the outlook is daunting for even the most expe-

rienced managers and practitioners. But solutions do exist.

It would be dishonest to call requirements engineering the "solution" to the chal-

lenges noted above. But it does provide us with a solid approach for addressing these

challenges.

7.1 A Bridge to Design and Construction

Designing and building computer software is challenging, creative, and just plain

fun. In fact, building software is so compelling that many software developers want

to jump right in before they have a clear understanding of what is needed. They ar-

gue that things will become clear as they build; that project stakeholders will be able

to better understand need only after examining early iterations of the software; that

things change so rapidly that requirements engineering is a waste of time; that the

bottom line is producing a working program and that all else is secondary. What

makes these arguments seductive is that they contain elements of truth. 1 But each is

flawed, and all can lead to a failed software project.

"The hardest single pari of building a software system is deciding what to build. No part of the work so cripples the

resulting system if done wrong. No other part is more difficult to rectify later.'

Fred Brooks

Requirements engineering, like all other software engineering activities, must be

adapted to the needs of the process, the project, the product, and the people doing

the work. From a software process perspective, requirements engineering (RE) is a

software engineering action that begins during the communication activity and con-

tinues into the modeling activity.

In some cases, an abbreviated approach may be chosen. In others, every task de-

fined for comprehensive requirements engineering must be performed rigorously.

1 This is particularly true for small projects (less than one month) and smaller, relatively simple soft-

ware efforts. As software grows in size and complexity, these arguments begin to break down.

PART TWO SOFTWARE ENGINEERING PRACTICE176

POINT
Requirements

engineering estobiishes

a solid base for design

ond construction.

Without it, the

resulting software has

a high probability of

not meeting

customers' needs.

Overall, the software team must adapt its approach to RE. But adaptation does not

mean abandonment. It is essential that the software team make a real effort to under-

stand the requirements of a problem before the team attempts to solve the problem.

Requirements engineering builds a bridge to design and construction. But where

does the bridge originate? One could argue that it begins at the feet of the project

stakeholders (e.g., managers, customers, end-users), where business need is defined,

user scenarios are described, functions and features are delineated, and project con-

straints are identified. Others might suggest that it begins with a broader system defi-

nition, where software is but one component (Chapter 6) of the larger system domain.

But regardless of the starting point, the journey across the bridge takes us high above

the project, allowing the software team to examine the context of the software work

to be performed; the specific needs that design and construction must address; the pri-

orities that guide the order in which work is to be completed; and the information,

functions, and behaviors that will have a profound impact on the resultant design.

7.2 Requirements Engineering Tasks

Expect to do a bit of

design during require-

ments work and o bit

of requirements work

doting design.

Requirements engineering provides the appropriate mechanism for understanding

what the customer wants, analyzing need, assessing feasibility, negotiating a rea-

sonable solution, specifying the solution unambiguously, validating the specifica-

tion, and managing the requirements as they are transformed into an operational

system [THA97]. The requirements engineering process is accomplished through the

execution of seven distinct functions: inception, elicitation, elaboration, negotiation,

specification, validation, and management.

it is important to note that some of these requirements engineering functions oc-

cur in parallel and all are adapted to the needs of the project. All strive to define what

the customer wants, and all serve to establish a solid foundation for the design and

construction of what the customer gets.

7.2.1 Inception

How does a software project get started? Is there a single event that becomes the cat-

alyst for a new computer-based system or product, or does the need evolve over

time? There are no definitive answers to these questions.

'The seeds of major software disasters are usually sown in the first three months of commencing the software

project.'’

Capers Jones

In some cases, a casual conversation is all that is needed to precipitate a major

software engineering effort. But in general, most projects begin when a business

need is identified or a potential new market or sendee is discovered. Stakeholders

from the business community (e.g., business managers, marketing people, product

CHAPTER 7 REQUIREMENTS ENGINEERING
177

9 Why is it

• difficult

to gain a clear

understanding

of what the

customer wants?

managers) define a business case for the idea, try to identify the breadth and depth
of the market, do a rough feasibility analysis, and identify a working description of
the project's scope. All of this information is subject to change (a likely outcome), but
it is sufficient to precipitate discussions with the software engineering organization.

2

At project inception,* software engineers ask a set of context-free questions dis-
cussed in Section 7.3.4. The intent is to establish a basic understanding of the prob-
lem, the people who want a solution, the nature of the solution that is desired, and
the effectiveness of preliminary communication and collaboration between the cus-
tomer and the developer.

7.2.2 Elicitation

It certainly seems simple enough—ask the customer, the users, and others what the
objectives for the system or product are, what is to be accomplished, how the sys-
tem or product fits into the needs of the business, and finally, how the system or
product is to be used on a day-to-day basis. But it isn't simple—it's very hard.

Christel and Kang [CRI92] identify a number of problems that help us understand
why requirements elicitation is difficult:

• Problems of scope. The boundary of the system is ill-defined or the
customers/users specify unnecessary technical detail that may confuse,
rather than clarify, overall system objectives.

• Problems of understanding. The customers/users are not completely sure
of what is needed, have a poor understanding of the capabilities and limita-
tions of their computing environment, don't have a full understanding of the
problem domain, have trouble communicating needs to the system engineer,
omit information that is believed to be "obvious," specify requirements that
conflict with the needs of other customers/users, or specify requirements
that are ambiguous or untestable.

• Problems of volatility. The requirements change over time.

To help overcome these problems, requirements engineers must approach the re-
quirements gathering activity in an organized manner.

7.2.3 Elaboration

The information obtained from the customer during inception and elicitation is ex-
panded and refined during elaboration. This requirements engineering activity fo-
cuses on developing a refined technical model of software functions, features and
constraints.

2 If a computer-based system is to be developed, discussions begin with system engineering, an ac-
tivity that defines the world-view and domain view (Chapter 6) for the system

3 Readers of Chapter 3 will recall that the Unified Process defines a more comprehensive “inception
phase that encompasses the inception, elicitation, and elaboration tasks discussed in this chapter.

178 PART TWO SOFTWARE ENGINEERING PRACTICE

Elaboration is a good

thing, but you have to

know when to stop.

The key is to describe

the problem in a way

that establishes o firm

hose for design, if you

work beyond thot

point, you're doing

design.

Elaboration is an analysis modeling action (Chapter 8) that is composed of a num-

ber of modeling and refinement tasks. Elaboration is driven by the creation and re-

finement of user scenarios that describe how the end-user (and other actors) will

interact with the system. Each user scenario is parsed to extract analysis classes-

business domain entities that are visible to the end-user. The attnbutes of each

analysis class are defined and the services
4 that are required by each class are iden-

tified. The relationships and collaboration between classes are identified and a vari-

ety of supplementary UML diagrams are produced.

The end-result of elaboration is an analysis model that defines the informational,

functional, and behavioral domain of the problem.

Analysis Modeling

. Assume for a moment that you have been

_ asked to specify all requirements for the

construction of a gourmet kitchen. You know the

dimensions of the room, the location of doors and

windows, and the available wall space.

In order to fully specify what is to be built, you might

list all cabinets and appliances (their manufacturer, model

number, dimensions). You would then specify the

countertops (laminate, granite, etc.), plumbing fixtures,

flooring, and the like. These lists would provide a useful

specification, but they do not provide a complete model of

what you wont. To complete the model, you might create a

three-dimensional rendering that shows the position of the

cabinets and appliances and their relationship to one

another. From the model, it would be relatively easy to

assess the efficiency of workflow (a requirement for all

kitchens), and the aesthetic "look" of the •'oom (a personal,

but very important requirement).

We build analysis models for much the same reason

that we would develop a blueprint or 3D rendering for the

kitchen. It is important to evaluate the system's components

in relationship to one another, to determine how

requirements fit into this picture, and to assess the

"aesthetics" of the system as it has been conceived.

There should be no

winner and no loser in

on effective negotio-

hon. Both sides win

because c 'deal" thot

both con live with is

solidified.

7.2.4 Negotiation

It isn't unusual for customers and users to ask for more than can be achieved, given

limited business resources. It is also relatively common for different customers or

users to propose conflicting requirements, arguing that their version is "essential for

our special needs."

The requirements engineer must reconcile these conflicts through a process of

negotiation. Customers, users, and other stakeholders are asked to rank require-

ments and then discuss conflicts in priority. Risks associated with each require-

ment are identified and analyzed (see Chapter 25 for details). Rough "guestimates

of development effort are made and used to assess the impact of each requirement

on project cost and delivery time. Using an iterative approach, requirements are

eliminated, combined, and/or modified so that each party achieves some measure

of satisfaction.

4 The terms operations and methods are also used

CHAPTER 7 REQUIREMENTS ENGINEERING
179

K
POINT
The formality ond

format of o

specification vories

with the size and the

complexity of the

software to be built.

lADVICel

A key concern during

requirements validation

is consistency. Use the

analysis model to

ensure that require-

ments have been

consistently stated.

7.2.5 Specification

m the context of computer-based systems (and software), the term specification
means different things to different people. A specification can be a written docu-
ment, a set of graphical models, a formal mathematical model, a collection of usage
scenarios, a prototype, or any combination of these.

Some suggest that a "standard template" [SOM97] should be developed and used for
a specification, arguing that this leads to requirements that are presented in a consis-
tent and therefore more understandable manner. However, it is sometimes necessary
to remain flextble when a specification is to be developed. For large systems, a written
ocument, combining natural language descriptions and graphical models may be the

best approach. However, usage scenarios may be all that are required for smaller prod-
ucts or systems that reside within well-understood technical environments.

The specification is the final work product produced by the requirements engi-
neer, it serves as the foundation for subsequent software engineering activities. It
escnbes the function and performance of a computer-based system and the con-

straints that will govern its development.

7.2.6 Validation

The work products produced as a consequence of requirements engineering are as-
sessed for quality during a validation step. Requirements validation examines the
speci ication to ensure that all software requirements have been stated unambigu-
ously; that inconsistencies, omissions, and errors have been detected and corrected-
and that the work products conform to the standards established for the process the
project, and the product.

The primary requirements validation mechanism is the formal technical review
(Chapter 26). The review team that validates requirements includes software engi-
neers, customers, users, and other stakeholders who examine the specification look-
ing or errors in content or interpretation, areas where clarification may be required
missing information, inconsistencies (a major problem when large products or sys-
tems are engineered), conflicting requirements, or unrealistic (unachievable)
requirements.

Requirements Validation
Checklist

It IS often useful to examine each requirement
against a set of checklist questions. Here is a small subset
of those that might be asked:

• Are requirements stated clearly? Can they be
misinterpreted?

• Is the source (e.g., a person, a regulation, o document)
of the requirement identified? Has the final statement of
the requirement been examined by or against the
original source?

• Is the requirement bounded in quantitative terms?
• What other requirements relate to this requirement?

Are they cleady noted via a cross-reference matrix or
other mechanism?

J

180 PART TWO SOFTWARE ENGINEERING PRACTICE

Generic trace-

ability table »ment >v
AOl M>2jA03 A04l AOS

I

Aii

R01

—
R02

R03

R04 X
R05

V"

Rnn V'

formal.

CHAPTER 7 REQUIREMENTS ENGINEERING
181

When a system is

large and complex,

determining the

connections between

requirements can be a

daunting task. Use

traceability tables to

make the job a bit

easier.

Source traceability table. Identifies the source of each requirement.

Dependency traceability table. Indicates how requirements are related to

one another.

Subsystem traceability table. Categorizes requirements by the subsystem(s)

that they govern.

interface traceability table. Shows how requirements relate to both internal

and external system interfaces.

In many cases, these traceability tables are maintained as part of a requirements

database so that they can be quickly searched to understand how a change in one

requirement will affect different aspects of the system to be built.

Requirements Engineering

Objective: Requirements engineering tools

assist in requirements gathering, requirements

modeling, requirements management, and requirements

validation.

Mechanics: Tool mechanics vary. In general, requirements

engineering tools build a variety of graphical (e.g., UML)

models that depict the informational, functional, and

behavioral aspects of a system. These models form the basis

for all other activities in the software process.

Representative Tools6

A reasonably comprehensive (and up-to-date) listing of

requirements engineering tools has been prepared by The

Atlantic Systems Guide, Inc. and can be found at http:/

/

www.systemsguild.com/GuildSite/Robs/retools.html.

Requirements modeling tools are discussed in Chapter 8.

Tools noted below focus on requirements management.

EasyRM, developed by Cybernetic Intelligence GmbH

^
(www.easy-rm.com), builds a project-specific

Software Tools
\

dictionary/glossary that contains detailed requirements

descriptions and attributes.

OnYourMark Pro, developed by Omni-Vista (www.

omni-vista.com), builds a requirements

database, establishes relationships between

requirements, and allows users to analyze the

relationship between requirements and

schedules/costs.

Rational RequisitePro, developed by Rational Software

(www.rational.com), allow users to build a requirements

database, represent relationships among requirements,

and organize, prioritize, and trace requirements.

RTM, developed by Integrated Chipware

(www.chipware.com), is a requirements description

and traceability tool that also supports certain aspects

of change control and test management.

It should be noted that many requirements management

tasks can be performed using a simple spreadsheet or a

small database system.

7 3 Initiating thf Requirements ENGINEERING PROCESS

In an ideal setting, customers and software engineers work together on the same

team .

7 In such cases, requirements engineering is simply a matter ol conducting

meaningful conversations with colleagues who are well-known members of the

team. But reality is often quite different.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers

7 This approach is recommended for all projects and is an integral part of the agile software devel-

opment philosophy.

182

*k
POINT

A stakeholder is

onyone who has a

direct interest in ot

benefits from the

system that is to be

developed.

PART TWO SOFTWARE ENGINEERING PRACTICE

Customer(s) may be located in a different city or country, may have only a vague
idea of what is required, may have conflicting opinions about the system to be built,

may have limited technical knowledge, and limited time to interact with the require-
ments engineer. None of these things are desirable, but all are fairly common, and the
software team is often forced to work within the constraints imposed by this situation.

In the sections that follow, we discuss the steps required to initiate requirements
engineering—to get the project started in a way that will keep it moving forward to-

ward a successful solution.

7.3. 1 Identifying the Stakeholders

Sommerville and Sawyer [SOM97] define a stakeholder as "anyone who benefits in a
direct or indirect way from the system which is being developed." We have already
identified the usual suspects: business operations managers, product managers,
marketing people, internal and external customers, end-users, consultants, product
engineers, software engineers, support and maintenance engineers, and others.
Every stakeholder has a different view of the system, achieves different benefits
when the system is successfully developed, and is open to different risks if the de-
velopment effort should fail.

At inception, the requirements engineer should create of list of people who will

contribute input as requirements are elicited (Section 7.4). The initial list will grow
as stakeholders are contacted because every stakeholder will be asked: "Who else
do you think 1 should talk to?"

7.3.2 Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will be
explored from many different points of view. For example, the marketing group is in-

terested in functions and features that will excite the potential market, making the
new system easy to sell. Business managers are interested in a feature set that can
be built within budget and that will be ready to meet defined market windows. End-
users may want features that are familiar to them and that are easy to learn and use.

Software engineers may be concerned with functions that enable the infrastructure

supporting more marketable functions and features. Support engineers may focus on
the maintainability of the software.

"Put three stakeholders in a room and osk them whot kind of system they wont. You're likely to get four or more
different opinions."

Author unknown

Each of these constituencies (and others) will contribute information to the re-

quirements engineering process. As information from multiple viewpoints is col-

lected, emerging requirements may be inconsistent or may conflict with one another.

The job of the requirements engineer is to categorize all stakeholder information (in-

CHAPTER 7 REQUIREMENTS ENGINEERING
183

eluding inconsistent and conflicting requirements) in a way that will allow decision

makers to choose an internally consistent set of requirements for the system

7.3.3 Working toward Collaboration

Throughout earlier chapters, we have noted that customers (and other stakeholders)

should collaborate among themselves (avoiding petty turf battles) and with software

engineering practitioners if a successful system is to result. But how is this collabo-

ration accomplished?

The job of the requirements engineer is to identify areas of commonality (i.e., re-

quirements on which all stakeholders agree) and areas of conflict or inconsistency

(i.e., requirements that are desired by one stakeholder but conflict with the needs of

another stakeholder). It is, of course, the latter category that presents a challenge.

Using "Priority Points"

One way of resolving conflicting

requirements ond at the same time better

understanding the relative importance of all

requirements is to use a "voting" scheme based on

priority points. All stakeholders are provided with some

number of priority points that can be "spent" on any

number of requirements. A list of requirements is

presented and each stakeholder indicates the relative

importance of each (from his or her viewpoint) by

spending one or more priority points on it. Points spent

cannot be reused. Once a stakeholder's priority points

are exhausted, no further action on requirements can be

taken by that person. Overall points spent on each

requirement by all stakeholders provide an indication of

the overall importance of each requirement.

J
Collaboration does not necessarily mean that requirements are defined by com-

mittee. In many cases, stakeholders collaborate by providing their view of require-

ments, but a strong "project champion" (e.g., a business manager or a senior

technologist) may make the final decision about which requirements make the cut.

7.3.4 Asking the First Questions

Earlier in this chapter, we noted that the questions asked at the inception o. the proj-

ect should be "context free" [GAU89]. The first set of context-free questions focuses

on the customer and other stakeholders, overall goals, and benefits. For example,

the requirements engineer might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the soft-

ware to be built. In addition, the questions identify the measurable benefit of a suc-

cessfuPimplementation and possible alternatives to custom software development.

184 PART TWO SOFTWARE ENGINEERING PRACTICE

The next set of questions enables the software team to gain a better understand-
ing of the problem and allows the customer to voice his or her perceptions about a
solution:

• How would you characterize "good" output that would be generated by a
successful solution?

• What problem (s) will this solution address?

• Can you show me (or describe) the business environment in which the
solution will be used?

• Will special performance issues or constraints affect the way the solution is

approached?

The final set of questions focuses on the effectiveness of the communication ac-
tivity itself. Cause and Weinberg [GAU89) call these "meta-questions" and propose
the following (abbreviated) list:

• Are you the right person to answer these questions? Are your answers
"official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

"He who asks a question is a fool for five minutes; he who does not osk a question is o fool forever."

Chinese proverb

These questions (and others) will help to "break the ice" and initiate the communi-
cation that is essential to successful elicitation. But a question and answer meeting
format is not an approach that has been overwhelmingly successful. In fact, the Q&A
session should be used for the first encounter only and then replaced by a require-

ments elicitation format that combines elements of problem solving, negotiation,

and specification. An approach of this type is presented in Section 7.4.

2^4 Eliciting. Requirements

The question and answer format described in Section 7.3.4 is useful at inception, but
it is not an approach that has been overwhelmingly successful for more detailed elic-

itation of requirements. In fact, the Q&A session should be used for the first en-
counter only and then replaced by a requirements elicitation format that combines

7 Whot

• questions

will help you gain

a preliminary

understanding of

the problem?

CHAPTER 7 REQUIREMENTS ENGINEERING 185

^ What are

• the basic

guidelines (or

conducting a

collaborative

requirements

gathering

meeting?

elements of problem solving, elaboration, negotiation, and specification. An ap-

proach of this type is presented in the next section.

7.4. 1 Collaborative Requirements Gathering

in order to encourage a collaborative, team-oriented approach to requirements gath-

ering, a team of stakeholders and developers work together to identify the problem,

propose elements of the solution, negotiate different approaches, and specify a pre-

liminary set of solution requirements [ZAH90].8

Many different approaches to collaborative requirements gathering have been pro-

posed. Each makes use of a slightly different scenario, but all apply some variation

on the following basic guidelines:

• Meetings are conducted and attended by both software engineers and

customers (along with other interested stakeholders).

• Rules for preparation and participation are established.

• An agenda is suggested that is formal enough to cover all important points

but informal enough to encourage the free flow of ideas.

• A "facilitator" (can be a customer, a developer, or an outsider) controls the

meeting.

• A "definition mechanism" (can be work sheets, flip charts, or wall stickers or

an electronic bulletin board, chat room, or virtual forum) is used.

• The goal is to identify the problem, propose elements of the solution,

negotiate different approaches, and specify a preliminary set of solution

requirements in an atmosphere that is conducive to the accomplishment of

the goal.

To better understand the flow of events as they occur, we present a brief scenario

that outlines the sequence ofevents that lead up to the requirements gathering meet-

ing, occur during the meeting, and follow the meeting.

"We spend a lot of time—the majority of project effort—not implementing or testing, but trying to decide whot

to build."

Brian Lawrence

During inception (Section 7.3) basic questions and answers establish the scope of

the problem and the overall perception of a solution. Out of these initial meetings,

the stakeholders write a one- or two-page "product request." A meeting place, time,

and date are selected and a facilitator is chosen. Members of the software team and
other stakeholder organizations are invited to attend. The product request is distrib-

uted to all attendees before the meeting date.

8 This approach is sometimes called facilitated application specification techniques (FAST).

186 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
Joint Application

Development (IkD) is

o popular technique

for requirements

gathecing. A good

description con

be found at

www. carotin.

com/wp-jadJitm.

If a system or product

will serve many users,

be absolutely certain

that requirements are

elicited from o repre-

sentative cross-section

of users. If only one

user defines oil require-

ments, acceptance risk

is high.

While reviewing the product request in the days before the meeting, each attendee

is asked to make a list of objects that are part of the environment that surrounds the

system, other objects that are to be produced by the system, and objects that are used

by the system to perform its functions. In addition, each attendee is asked to list ser-

vices (processes or functions) that manipulate or interact with the objects. Finally, lists

of constraints (e.g., cost, size, business rules) and performance criteria (e.g., speed, ac-

curacy) are also developed. The attendees are informed that the lists are not expected

to be exhaustive but are expected to reflect each person's perception of the system.

As an example
,

9 consider an excerpt from a premeeting document written by a

marketing person involved in the SafeHome project. This person writes the following

narrative about the home securityfunction that is to be part of SafeHome:

- Our research indicates that the market for home management systems is growing at a

rate of 40 percent per year. The first SafeHome function we bring to market should be the

home security function. Most people are familiar with "alarm systems so this would be

an easy sell.

The home security function would protect against and/or recognize a variety of un-

desirable "situations" such as illegal entry, fire, flooding, carbon monoxide levels, and

others. It'll use. our wireless sensors to detect each situation, can be programmed by the

homeowner, and will automatically telephone a monitoring agency when a situation is

detected.

In reality, others would contribute to this narrative during the requirements gath-

ering meeting, and considerably more information would be available. But even with,

additional information, ambiguity would be present, omissions would likely exist,

and errors might occur. For now, the preceding "functional description will suffice.

The requirements gathering team is composed of representatives from marketing,

software and hardware engineering, and manufacturing. An outside facilitator is to

be used.

Each person develops the lists described previously. Objects described for Safe-

Home might include the control panel, smoke detectors, window and door sensors,

motion detectors, an alarm, an event (a sensor has been activated), a display, a PC,

telephone numbers, a telephone call, and so on. The list of services might include

configuring the system, setting the alarm, monitoring the sensors, dialing the phone,

programming the control panel, and reading the display (note that sendees act on ob-

jects). In a similar fashion, each attendee will develop lists of constraints (e.g., the

system must recognize when sensors are not operating, must be user-friendly, must

interface directly to a standard phone line) and performance criteria (e.g., a sensor

event should be recognized within one second; an event priority scheme should be

implemented).

9 The SafeHome example (with extensions and variations) is used to illustrate important software en-

gineering methods in many of the chapters that follow. As an exercise, it would be worthwhile to

conduct your own requirements gathering meeting and develop a set of lists for it.

CHAPTER 7 REQUIREMENTS ENGINEERING 187

"Facts do not tease to exist because they ore ignored-"

Aldous Huxley

Avoid the impulse to

shoot down o

customer's idea as

"too costly'' or

‘'impractical.'' Jhe idea

here is to negohate a

list that is acceptable

to all. Jo do this, you

must keep an open

mind.

As the requirements gathering meeting begins, the first topic of discussion is the

need and justification for the new product—everyone should agree that the product

is justified. Once agreement has been established, each participant presents his lists

for discussion. The lists can be pinned to the walls of the room using large sheets of

paper, stuck to the walls using adhesive backed sheets, or written on a wall board.

Alternatively, the lists may have been posted on an electronic bulletin board, at an

internal Web site, or posed in a chat room environment for review prior to the meet-

ing. Ideally, each listed entry should be capable of being manipulated separately so

that lists can be combined, entries can be deleted, and additions can be made. At this

stage, critique and debate are strictly prohibited.

After individual lists are presented in one topic area, a combined list is created by

the group. The combined list eliminates redundant entries, adds any new ideas that

come up during the discussion, but does not delete anything. After combined lists

for all topic areas have been created, the facilitator coordinates discussion. The
combined list is shortened, lengthened, or reworded to properly reflect the product/

system to be developed. The objective is to develop a consensus list in each topic

area (objects, services, constraints, and performance). The lists are then set aside for

later action.

Once the consensus lists have been completed, the team is divided into smaller

subteams; each works to develop mini-specifications for one or more entries on each

of the lists .

10 Each mini-specification is an elaboration of the word or phrase con-

tained on a list. For example, the mini-specification for the SafeHome object Control
Panel might be:

The Control Panel is a wall-mounted unit that is approximately9x5 inches in size. The

control panel has wireless connectively to sensors and a PC. User interaction occurs

through a keypad containing 12 keys. A 2 x 2 inch LCD display provides user feedback.

Software provides interactive prompts, echo, and similar functions.

Each subteam then presents its mini-specs to all attendees for discussion. Additions,

deletions, and further elaboration are made. In some cases, the development of

mini-specs will uncover new objects, services, constraints, or performance require-

ments that will be added to the original lists. During all discussions, the team may
raise an issue that cannot be resolved during the meeting. An issues list is maintained

so that these ideas will be acted on later.

After the mini-specs are completed, each attendee makes a list of validation cri-

teria for the product/system and presents her list to the team. A consensus list of

10 Rather than creating mmi-specitications, many software teams elect to develop user scenarios

called use-cases. These are considered in detail in Section 7.5.

188 PART TWO SOFTWARE ENGINEERING PRACTICE

validation criteria is then created. Finally, one or more participants (or outsiders) is

assigned the task of writing a complete draft specification using all inputs from the

meeting.

SafeHome

Conducting a Requirements Gathering Meeting

Jamie: It does, both technical and legal.
_ The scene: A meeting room. The first

requirements gathering meeting is in progress.

The players: Jamie Lazar, software team member;

Vinad Raman, software team member; Ed Robbins,

software team member; Doug Miller, software

engineering manager; three members of marketing; a

product engineering representative; and a facilitator.

The conversation:

Facilitator (pointing at white board): So that's

the current list of objects and services for the home

security function.

Marketing person: That about covers it from our

point of view.

Vinod: Didn't someone mention that they wanted all

SafeHome functionality to be accessible via the Internet?

That would include the home security function, no?

Marketing person: Yes, that's right . . . we'll have to

add that functionality and the appropriate objects.

Facilitator: Does that also add some constraints?

Production rep: Meaning?

Jamie: We better make sure an outsider can't hack into

the system, disarm it, and rob the place or worse. Heavy

liability on our part.

Doug: Very true.

Marketing: But we still need Internet connectivity . . .

just be sure to stop an outsider from getting in.

Ed: That's easier said than done and. . . .

Facilitator (interrupting): I don't want to debate this

issue now. Let's note it as an action item and proceed.

(Doug, serving as the recorder for the meeting, makes an

appropriate note.)

Facilitator: I have a feeling there's still more to consider

here.

(The group spends the next 45 minutes refining and ex-

panding the details of the home security function.)

POINT
QFO defines

requirements in o wav

tfiot maximizes

customer satisfaction.

7.4.2 Quality Function Deployment

QualityJunction deployment (QFD) is a technique that translates the needs of the cus-

tomer into technical requirements for software. QFD "concentrates on maximizing

customer satisfaction from the software engineering process [ZUL92]. To accom-

plish this, QFD emphasizes an understanding of what is valuable to the customer and

then deploys these values throughout the engineering process. QFD identifies three

types of requirements (ZUL92)

:

Normal requirements. These requirements reflect objectives and goals stated

for a product or system during meetings with the customer. If these requirements

are present, the customer is satisfied. Examples of normal requirements might be

requested types of graphical displays, specific system functions, and defined levels

of performance.

Expected requirements. These requirements are implicit to the product or

system and may be so fundamental that the customer does not explicitly state

CHAPTER 7 REQUIREMENTS ENGINEERING
189

^ADVICE^

Everyone wants to

implement lots of

exciting requirements,

but be careful. Tbot's

how "requirements

creep" sets in. On the

other bond, exciting

requirements lead to a

breakthrough product!

WebRef

Useful infoimnlion on

QFD con be obtoM or

www.qfdi.org.

them Their absence will be a cause for significant dissatisfaction. Examples of ex-

pected requirements are ease of human/machine interaction, overall operational

correctness and reliability, and ease of software installation.

Exciting requirements. These requirements reflect features that go beyond

the customer's expectations and prove to be very satisfying when present. For ex-

ample, word processing software is requested with standard features. The deliv-

ered product contains a number of page layout capabilities that are quite pleasing

and unexpected.

In actuality, QFD spans the entire engineering process [PAR96] However, many QFD

concepts are applicable to the requirements elicitation activity. We present an

overview of only these concepts (adapted for computer software) in the paragraphs

that follow.

"Oh expectation fails, and most oft there where most it promises.
H

William Shakespeare

In meetings with the customer,/unction deployment is used to determine the value

of each function that is required for the system. Information deployment identifies

both the data objects and events that the system must consume and produce. These

are tied to the functions. Finally, task deployment examines the behavior of the sys-

tem or product within the context of its environment. Value analysis is conducted to

determine the relative priority of requirements determined during each of the three

deployments.

QFD uses customer interviews and observation, surveys, and examination of his-

torical data (e.g., problem reports) as raw data for the requirements gathering activ-

ity. These data are then translated into a table of requirements-called the customer

voice table-that is reviewed with the customer. A variety of diagrams, matrices, and

evaluation methods are then used to extract expected requirements and to attempt

to derive exciting requirements |BOS91].

7.4.3 User Scenarios

As requirements are gathered, an overall vision of system functions and features be-

gins to materialize. However, it is difficult to move into more technical software en-

gineering activities until the software team understands how these functions and

features will be used by different classes of end-users. To accomplish this, develop-

ers and users can create a set of scenarios that identify a thread of usage for the sys-

tem to be constructed. The scenarios, often called use-cases [JAC92J, provide a

description ofhow the system will be used. Use-cases are discussed in greater detail

in Section 7.5.

190 PART TWO SOFTWARE ENGINEERING PRACTICE

SafeHome

la

Developing a Preliminary

The scene: A meeting room,
continuing the first requirements gathering meeting.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software

engineering manager; three members of marketing; a
product engineering representative; and a facilitator.

The conversation:

Facilitator: We've been talking about security for

access to SafeHome functionality that will be accessible

via the Internet. I'd like to try something.

Let's develop a user scenario for access to the home
security function.

Jamie: How?

Facilitator: We can do it a couple of different ways,
but for now, I'd like to keep things really informal. Tell us
(he points at a marketing person) how you envision

accessing the system.

Marketing person: Urn. . .

,

well, this is the kind of
thing I'd do if I was away from home and I had to let

someone into the house, say a housekeeper or repair guy,
who didn't have the security code.

Facilitator (smiling): That's the reason you'd do it . . .

tell me how you'd actually do this.

Marketing person: Urn ... the first thing I'd need
is a PC. I d log on to a Web site we'd maintain for all

users of SafeHome. I'd provide my user id and

Vinod (interrupting): The Web page would have
to be secure, encrypted, to guarantee that we're sale

and. . . .

User Scenario

Facilitator (interrupting): That's good information,

Vinod, but it's technical. Let's just focus on how the end-
user will use this capability, OK?

Vinod: No problem.

Marketing person: So, as I was saying, I'd log on to

a Web site and provide my user id and two levels of

passwords.

Jamie: What if I forget my password?

Facilitator (interrupting): Good point, Jamie, but
let's not address that now. We'll make a note of that and
call it an “exception." I'm sure there'll be others.

Marketing person: After I enter the passwords, a
screen representing all SafeHome functions will appear.
I'd select the home security function. The system might
request that I verify who I am, say by asking for my
address or phone number or something. It would then

display a picture of the security system control panel
along with a list of functions that I can perform—arm the

system, disarm the system, disarm one or more sensors. I

suppose it might also allow me to reconfigure security

zones and other things like that, but I'm not sure.

(As the marketing person continues talking, Doug takes co-
pious notes. These form the basis for the first informal use-
case scenario. Alternatively, the marketing person could
have been asked to write the scenario, but this would be
done outside the meeting.)

•) What

• information

is produced as a

consequence of

requirements

gathering?

7.4.4 Elicitation Work Products

The work products produced as a consequence of requirements elicitation will vary
depending on the size of the system or product to be built. For most systems, the
work products include:

• A statement of need and feasibility.

• A bounded statement of scope for the system or product.

• A list of customers, users, and other stakeholders who participated in

requirements elicitation.

CHAPTER 7 REQUIREMENTS ENGINEERING
191

• A description of the system's technical environment.

. A list of requirements (preferably organized by function) and the domain

constraints that apply to each.

• A set of usage scenarios that provide insight into the use of the system or

product under different operating conditions.

• Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in re-

quirements elicitation.

7 5 Devel^p™^ Use-Cases —
In a book that discusses how to write effective use-cases, Alistair Cockburn

[COCOl] notes that "a use-case captures a contract . .
.
[that] describes the system s

behavior under various conditions as the system responds to a request from one of

its stakeholders." In essence, a use-case tells a stylized story about how an end-

user (playing one of a number of possible roles) interacts with the system under a

specific set of circumstances. The story may be narrative text, an outline of tasks

or interactions, a template-based description, or a diagrammatic representation.

Regardless of its form, a use-case depicts the software or system from the end-

user's point of view.

The first step in writing a use-case is to define the set of "actors" that will be in-

volved in the story. Actors are the different people (or devices) that use the system or

product within the context of the function and behavior that is to be described. Ac-

tors represent the roles that people (or devices) play as the system operates. Defined

somewhat more formally, an actor is anything that communicates with the system

or product and that is external to the system itself. Every actor has one or more goals

when using the system.

It is important to note that an actor and an end-user are not necessarily the

same thing. A typical user may play a number of different roles when using a sys-

tem, whereas an actor represents a class of external entities (often, but not always,

people) that play just one role in the context of the use-case. As an example, con-

sider a machine operator (a user) who interacts with the control computer for a

manufacturing cell that contains a number of robots and numerically controlled

machines. After careful review of requirements, the software for the control com-

puter requires four different modes (roles) for interaction: programming mode, test

mode, monitoring mode, and troubleshooting mode. Therefore, four actors can be

defined: programmer, tester, monitor, and troubleshooter. In some cases, the ma-

chine operator can play all of these roles. In others, different people may play the

role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are

identified during the first iteration. It is possible to identify primary actors 0AC92]

POINT
Use-cases ore defined

from on actor's point

of view. An actor is a

role that people

(users) or devices ploy

os they interact wilh

the software.

An excellent paper on

umosescanbe

downloaded from

www.rational.

com/products/

whitepapers/100

622.jsp,

192 PART TWO SOFTWARE ENGINEERING PRACTICE

7 What do I

• need to

know in order to

develop an

effective use-

case?

during the first iteration and secondary actors as more is learned about the system.
Primaiy actors interact to achieve required system function and derive the intended
benefit from the system. They work directly and frequently with the software. Sec-
ondary actors support the system so that primary actors can do their work.

Once actors have been identified, use-cases can be developed. Jacobson [JAC92J
suggests a number of questions' ' that should be answered by a use-case:

• Who is the primary actor(s), the secondary actor(s)?

• What are the actor's goals?

• What preconditions should exist before the story begins?

• What main tasks or functions are performed by the actor?

• What exceptions might be considered as the story is described?

• What variations in the actor’s interaction are possible?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external envi-
ronment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

Recalling basic SafeHome requirements, we define three actors: the homeowner
(a user), a configuration manager (likely the same person as homeowner, but
playing a different role), sensors (devices attached to the system), and the moni-
toring subsystem (the central station that monitors the SafeHome home security
function). For the purposes of this example, we consider only the homeowner ac-
tor. The homeowner interacts with the home security function in a number of differ-

ent ways using either the alarm control panel or a PC:

• Enters a password to allow all other interactions.

• Inquires about the status of a security zone.

• Inquires about the status of a sensor.

• Presses the panic button in an emergency.

• Activates/deactivates the security system.

Considering the situation in which the homeowner uses the control panel, the basic
use-case for system activation follows: 12

1
1 Jacobson s questions have been extended to provide a more complete view of use-case content.

12 Note that this use-case differs from the situation in which the system is accessed via the Internet.

In this case, interaction occurs via the control panel, not the GUI provided when a PC is used.

CHAPTER 7 REQUIREMENTS ENGINEERING 193

SafeHome
control panel

SAFEHOME

ni away

Ul stay

alarm instant

check bypass

fire not ready

\
armed power

O O

off

m
stay

CD
test bypass

0 CD CD
instant code chime

0 0 0
ready BE

I panic '

1 . The homeowner observes the SafeHome control panel (Figure 7.2) to determine if the

system is ready for input. If the system is not ready a not ready message is displayed on

the LCD display, and the homeowner must physically dose windows/doors so that the

not ready message disappears. (A not ready message implies that a sensor is open; i.e.,

that a door or window is open.)

2. The homeowner uses the keypad to key in a four-digit password. The password is

compared with the valid password stored in the system. If the password is incorrect,

the control panel will beep once and reset itself for additional input. If the password is

correct, the control panel awaits further action.

3. The homeowner selects and keys in slay or away (see Figure 7.2) to activate the sys-

tem Stay activates only perimeter sensors (inside motion detecting sensors are deac

tivated). Away activates all sensors.

4. When activation occurs, a red alarm light can be observed by the homeowner.

Use<oses ore often

witten informally.

However use the

template shown here

to ensure that you've

addressed oil key

issues.

The basic use-case presents a high-level story that describes the interaction between

the actor and the system.

In many instances, use-case are further elaborated to provide considerably more

detail about the interaction. For example, Cockburn [COCO 1] suggests the following

template for detailed descriptions of use-cases:

Use-case:

Primary actor:

Goal in context:

Preconditions:

InitiateMonitoring

Homeowner.

To set the system to monitor sensors when the homeowner

leaves the house or remains inside.

System has been programmed for a password and to recognize

various sensors.

194 PART TWO SOFTWARE ENGINEERING PRACTICE

Trigger:

Scenario:

The homeowner decides to ''set'' the system, i.e., to turn on the

alarm functions.

1. Homeowner: observes control panel.

2. Homeowner: enters password.

3. Homeowner: selects "stay" or "away/’

4. Homeowner: observes red alarm light to indicate that Sa/eHome has been armed

Exceptions:

1. Control panel is not ready: homeowner checks all sensors to determine which are

open: closes them.

2

Password is incorrect (control panel beeps once): homeowner reenters correct pass-

word.

3. Password not recognized: monitoring and response subsystem must be contacted to

reprogram password.

4. Stay is selected: control panel beeps twice and a stay light is lit: perimeter sensors are

activated.

5. Away is selected: control panel beeps three times and an away light is lit; ail sensors

are activated.

Priority: Essential, must be implemented.

When available: First increment.

Frequency of use: Many times per day.

Channel to actor: Via control panel interface.

Secondaty actors: Support technician, sensors.

Channels to secondary actors:

Support technician: phone line.

Sensors: hardwired and wireless interfaces.

POINT
Each uswase con

be assessed by

stakeholders, and the

relative priority for

each can be assigned.

Open issues:

I . Should there be a way to activate the system without the use of a password or with an

abbreviated password?

2 Should the control panel display additional text messages?

3 How much time does the homeowner have to enter the password from the

time the first key is pressed?

4 is there a way to deactivate the system before it actually activates?

Use-cases for other homeowner interactions would be developed in a similar man-

ner. It is important to note that each use-case must be reviewed with care. If some

element of the interaction is ambiguous, it is likely that a review of the use-case will

uncover the problem.

CHAPTER 7 REQUIREMENTS ENGINEERING 195

SafeHome

Developing a High-Level Use

The scene: A meeting room,

continuing the requirements gathering meeting.

The players: Jamie Lazar, software team member;

Vinod Raman, software team member; Ed Robbins,

software team member; Doug Miller, software

engineering manager; three members of marketing; a

product engineering representative; and a facilitator.

The conversation:

Facilitator: We've spent a fair amount of time talking

about SafeHome home security functionality. During the

break I sketched a use-case diagram to summarize the

important scenarios that are part of this function. Take

a look.

(All attendees look at Figure 7.3.)

Jamie: I'm just beginning to learn UML notation. So the

home security function is represented by the big box with

the ovals inside it? And the ovals represent use-cases that

we've written in text?

Facilitator: Yep. And the stick figures represent

actors—the people or things that interact with the system

-Case Diagram

as described by the use-case ... oh, I use the labeled

squore to represent an actor that's not a person, in this

case, sensors.

Doug: Is that legal in UML?

Facilitator: Legality isn't the issue. The point is to

communicate information. I view the use of a human-like

stick figure for representing a device to be misleading. So

I've adapted things a bit. I don't think it creates a

problem.

Vinod: Okay, so we have use-case narratives for each

of the ovals. Do we need to develop the more detailed

template-based narratives I've read about?

Facilitator: Probably, but that can wait until we've

considered other SafeHome functions.

Marketing person: Wait, I've been looking at this

diagram, and all of a sudden I realize we missed

something.

Facilitator: Oh really. Tell me what we've missed.

(The meeting continues.)

Use-case

diagram for

SafeHome
home security

function

196 PART TWO SOFTWARE ENGINEERING PRACTICE

Software Tools

Use-Case Development

Objective: Assist in the development of use-

cases by providing automated templates and

mechanisms for assessing clarity and consistency.

Mechanics: Tool mechanics vary. In general, use-case

tools provide fill-in-the-blanks templates for creating

effective use-cases. Most use-case functionality is

embedded into a set of broader requirements engineering

functions.

Representative Tools ' 3

Clear Requirement Workbench, developed by LiveSpecs

Software (www.livespecs.com), provides automated

support for the creation and assessment of use-cases as

well as a variety of other requirements engineering

functions.

The vast majority of UML-based analysis modeling tools

provide both text and graphical support for use-case

development and modeling.

Objects by Design, a source for UML tools (www.objectsby

design.com/tools/umltools_byCompany.html) provides

comprehensive links to tools of this type.

A variety of use-case templates and a database to support

them can be found at UseCases.org (www.usecases.org).

7.6 Building the Analysis Model

The intent of the analysis model is to provide a description of the required informa-

tional, functional, and behavioral domains for a computer-based system. The model

changes dynamically as software engineers learn more about the system to be built,

and stakeholders understand more about what they really require. For that reason, the

analysis model is a snapshot ofrequirements at any given time. We expect it to change.

As the analysis model evolves, certain elements will become relatively stable,

providing a solid foundation for the design tasks that follow. However, other ele-

ments of the model may be more volatile, indicating the customer does not yet fully

understand requirements for the system.

The analysis model and the methods used to build it are presented in detail in

Chapter 8. In the sections that follow, we present a brief overview.

7.6. 1 Elements of the Analysis Model

There are many different ways to look at the requirements for a computer-based sys-

tem. Some software people argue that it's best to select one mode of representation

(e.g., the use-case) and apply it to the exclusion of all other modes. Other practition-

ers believe that it's worthwhile to use a number of different modes of representation

to depict the analysis model. Different modes of representation force the software

team to consider requirements from different viewpoints—an approach that has a

higher probability of uncovering omissions, inconsistencies, and ambiguity.

The specific elements of the analysis model are dictated by the analysis modeling

method (Chapter 8) that is to be used. However, a set of generic elements is common

to most analysis models:

13 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 7 REQUIREMENTS ENGINEERING 197

It always a good idea

to get stakeholders

involved. One of the

best wop to do this is

to hove each stake-

holder write usexases

that describe how the

software will be used.

Activity

diagrams lor

eliciting

requirements

Scenario-based elements. The system is described from the user's point of view

using a scenario-based approach. For example, basic use-cases (Section 7.5) and

their corresponding use-case diagrams (Figure 7.3) evolve into more elaborate

template-based use-cases. Scenario-based elements of the analysis model are often

the first part of the analysis model that is developed. As such, they serve as input for

the creation of other modeling elements.

A somewhat different approach to scenario-based modeling depicts the activities or

functions that have been defined as part of the requirement elicitation task. These func-

tions exist within a processing context. That is, the sequence of activities (the termsJunc-

tions or operations can also be used) that describe processing within a limited context

are defined as part of the analysis model. Like most elements of the analysis model (and

other software engineering models), activities (functions) can be represented at many
different levels of abstraction. Models in this category can be defined iteratively. Each it-

eration provides additional processing detail. As an example, Figure 7.4 depicts a UML
activity diagram for eliciting requirements.'"1 Three levels of elaboration are shown. .

1 4 The activity diagram is quite similar to the flowchart—a graphical diagram for representing control-

flow sequences and logic (Chapter 11).

198 PART TWO SOFTWARE ENGINEERING PRACTICE

Class diagram
for Sensor

Sensor

name/id
type

location

area
characteristics

identify)

)

enable)

)

disable)

)

reconfigure)
]

One way to isolate

classes is to look for

descriptive nouns in o

osocose script. At

least some of the

nouns will be

candidate classes.

Mote on this in

Chapter 8.

POINT
A state is on externally

observable mode of

behavior. External

stimuli cause

transitions between

states.

Class-based elements. Each usage scenario implies a set of "objects" that are

manipulated as an actor interacts with the system. These objects are categorized

into classes—a collection of things that have similar attributes and common be-

haviors. For example, a class diagram can be used to depict a Sensor class for the

SafeHome security function (Figure 7.5). Note that the diagram lists the attributes

of sensors (e.g., name/id, type) and the operations [e.g., identijyO, enablef)] that can

be applied to modify these attributes. In addition to class diagrams, other analysis

modeling elements depict the manner in which classes collaborate with one an-

other and the relationships and interactions between classes. These are discussed

in more detail in Chapter 8.

Behavioral elements. The behavior of a computer-based system can have a pro-

found effect on the design that is chosen and the implementation approach that is

applied. Therefore, the analysis model must provide modeling elements that depict

behavior.

The state diagram (Chapter 8) is one method for representing the behavior ofa sys-

tem by depicting its states and the events that cause the system to change state. A

state is any observable mode of behavior. In addition, the state diagram indicates

what actions (e.g., process activation) are taken as a consequence of a particular

event.

To illustrate a state diagram, consider a reading commands state for an office pho-

tocopier. UML state diagram notation is shown in Figure 7.6. A rounded rectangle

represents a state. The rectangle is divided into three areas: (1) the state name (e.g.,

Reading commands), (2) state variables that indicate how the state manifests itself to

the outside world, and (3) state activities that indicate how the state is entered (entry/)

and actions (do:) that are invoked while in the state.

CHAPTER 7 REQUIREMENTS ENGINEERING 199

UML state

diagram
notation

Reading
commands

System status = "Ready"

Display msg = "enter cmd"

Display status = steady

Entry/subsystems ready

Do: poll user input panel

Do: read user input

Do: interpret user input

State name

State variables

State activities

SafeHome

Preliminary Behavioral Modeling

The scene: A meeting room,

continuing the requirements meeting.

The players: Jamie Lazar, software team member;

Vinod Raman, software team member; Ed Robbins,

software team member; Doug Miller, software

engineering manager; three members of marketing; a

product engineering representative; and a facilitator.

The conversation:

Facilitator: We've just about finished talking about

SafeHome home security functionality. But before we do, I

want to discuss the behavior of the function.

Marketing person: I don't understand what you

mean by behavior.

Ed (laughing): That's when you give the product a

"timeout” if if misbehaves.

Facilitator: Not exactly. Let me explain.

(The facilitator explains the basics of behavioral modeling

to the requirements gathering team.)

Marketing person: This seems a little technical. I'm

not sure I can help here.

Facilitator: Sure you can. What behavior do you

observe from the user's point of view?

Marketing person: Uh. . . ,
well the system will be

monitoring the sensors. It'll be reading commands from

the homeowner. It'll be displaying its status.

Facilitator: See, you can do it.

Jamie: It'll also be polling the PC to determine if there is

any input from it, for example Internet-based access or

configuration information.

Vinod: Yeah, in fact, configuring the system is a state in

its own right.

Doug: You guys are rolling. Let's give this a bit more

thought ... Is there a way to diagram this stuff?

Facilitator: There is, but let's postpone that until after

the meeting.

Flow-oriented elements. Information is transformed as it flows through a

computer-based system. The system accepts input in a variety of forms; applies func-

tions to transform it; and produces output in a variety of forms. Input may be a control

signal transmitted by a transducer, a series of numbers typed by a human operator, a

packet of information transmitted on a network link, or a voluminous data file retrieved

from secondary storage. The transform (s) may comprise a single logical comparison, a

200 PART TWO SOFTWARE ENGINEERING PRACTICE

complex numerical algorithm, or a rule-inference approach of an expert system. Out-

put may light a single LED or produce a 200-page report. In effect, we can create a flow

model for any computer-based system, regardless of size and complexity. A more de-

tailed discussion of flow modeling is presented in Chapter 8.

WebRef
A useful patterns library

and many other

patterns tesources con

be obtained at

hiilsicle.net/

patterns.

^ is there a

• recommended

template for

describing

patterns?

7.6.2 Analysis Patterns

Anyone who has done requirements engineering on more than a few software proj-

ects begins to notice that certain things reoccur across all projects within a specific

application domain. 15 These can be called analysis patterns [FOW97] and represent

something (e.g., a class, a function, a behavior) within the application domain that

can be reused when modeling many applications.

Geyer-Schulz and Hahsler [GEY01] suggest two benefits that can be associated

with the use of analysis patterns:

First, analysis patterns speed up the development of abstract analysis models that cap-

ture the main requirements of the concrete problem by providing reusable analysis mod-

els with examples as well as a description ofadvantages and limitations. Second, analysis

patterns facilitate the transformation of the analysis model into a design model by sug-

gesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to the pattern

name. They are also stored in a repository so that requirements engineers can use

search facilities to find and reuse them.

Information about an analysis pattern is presented in a standard template that

takes the form [GEY01]: 16

Pattern name: A descriptor that captures the essence of the pattern. The descriptor

is used within the analysis model when reference is made to the pattern.

Intent: Describes what the pattern accomplishes or represents and/or what problem

is addressed within the context of an application domain.

Motivation: A scenario that illustrates how the pattern can be used to address the

problem.

Forces and context: A description of external issues (forces) that can affect how the

pattern is used and also the external issues that will be resolved when the pattern is ap-

plied. External issues can encompass business-related subjects, external technical con-

straints, and people-related matters.

Solution: A description ofhow the pattern is applied to solve the problem with an em-

phasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what

trade-offs exist during its application.

15 In some cases, things reoccur regardless of the application domain. For example, the features and

functions ofuser interfaces are common regardless of the application domain under consideration.

1 6 A variety of patterns templates have been proposed in the literature. Interested readers should see

[FOW97J, [BUS96], and IGAM95] among many sources.

CHAPTER 7 REQUIREMENTS ENGINEERING 201

Design: Discusses how the analysis pattern can be achieved through the use of

known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: One or more analysis patterns that are related to the named pat-

tern because the analysis pattern (1) is commonly used with the named pattern, (2) is

structurally similar to the named pattern, (3) is a variation of the named pattern.

Examples of analysis patterns and further discussion of this topic are presented in

Chapter 8.

Patterns

We see patterns in virtually everything we

encounter in everydcy life.

Consider action-adventure movies—more specifically

action-adventure detective movies with comic overtones.

We can define patterns for Hero&Sidekick,

CaplainWhoManagesHero, CriminalwilbaHeart, and

many more.

For example, CaptainWhoManogesHero is invariably

older, wears a tie (Hero doesn't), yells at Hero&Sidekick

constantly, usually provides comic relief, or may be used in

a more malevolent role to put bureaucratic or self-serving

roadblocks in the way of Hero&Sidekick. A dramatic

pattern is being established,

For a somewhat more technical example, consider a

mobile phone. The following patterns are obvious:

MakeCall, LookUpNumber, and Get/Messages among

many. Each of these patterns can be described once and

then reused in software for any mobile phone.

7.7 Negotiating Re&uiremenis

In an ideal requirements engineering context, the inception, elicitation, and elabo-

ration tasks determine customer requirements in sufficient detail to proceed to sub-

sequent software engineering steps. Unfortunately, this rarely happens. In reality, the

customer and the developer enter into a process of negotiation,
where the customer

may be asked to balance functionality, performance, and other product or system

characteristics against cost and time to market. The intent of this negotiation is to

develop a project plan that meet's the needs of the customer while at the same time

reflecting the real-world constraints (e.g., time, people, budget) that have been

placed on the software team.

"A compromise is the art of dividing a cake in such a way that everyone believes he has the biggest piece.

Ludwig Erhard

The best negotiations strive for a "win-win" result.
17 That is, the customer wins

by getting the system or product that satisfies the majority of the customer's needs,

and the software team wins by working to realistic and achievable budgets and

deadlines.

1 7 Dozens of books have been written on negotiating skills (eg.. |LEWOO], [FAR97), |DON96)). It is one

of the more important things that a young (or old) software engineer or manager can learn. Read one

202 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
A brief popei on

negotiation for

software requirements

con be downloaded

from

sunset.ost.edu/

oegyed/publico

tions/Softwore_

Requirements^

Negotiation-

Some lessons_

Learned,html.

Boehm [BOE98] defines a set of negotiation activities at the beginning of each
software process iteration. Rather than a single customer communication activity,

the following activities are defined:

1 . Identification of the system or subsystem's key stakeholders.

2. Determination of the stakeholders' "win conditions."

3. Negotiate of the stakeholders' win conditions to reconcile them into a set of

win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which becomes
the key criterion for proceeding to subsequent software engineering activities.

The Art ot Negotiation

Learning how to negotiate effectively can serve

you well throughout your personal and
technical life. The following guidelines are well worth

considering:

1 .

2 .

3.

v_

Recognize that it's not a competition. To be

successful, both parties have to feel they've won or

achieved something. Both will hove to compromise.

Map out a strategy. Decide what you'd like to

achieve; what the other parly wants to achieve, and
how you'll go about making both happen.

Listen actively. Don't work on formulating your

response while the other party is talking. Listen. It's

likely you'll gain knowledge that will help you to

better negotiate your position.

4. Focus on the other party's interests. Don't take hard

positions if you want to avoid conflict.

5. Don't let it get personal. Focus on the problem that

needs to be solved.

6. Be creative. Don't be afraid to think out of the box if

you're at an impasse.

7 . Be ready to commit. Once an agreement has been

reached, don't waffle: commit to it and move on.

J
SafeHome

The Start ofa Negotiation

"*JT8[H The scene: Lisa Perez's office, after

the first requirements gathering meeting

The players: Doug Miller, software engineering

manager and Lisa Perez, marketing manager.

The conversation:

Lisa: So, I hear the first meeting went really well.

Doug: Actually, it did. You sent some good people to the

meeting . . . they really contributed.

Lisa (smiling): Yeah, they actually told me they got

into it, and it wasn't a propeller head activity.

Doug (laughing): I'll be sure to take off my techie

beanie the next time I visit . . . Look, Lisa, I think we

may have a problem with getting all of the functionality

for the home security function out by the dates your

management is talking about. It's early, I know, but I've

already been doing a little back of the envelope

planning and. . . .

Lisa: We've got to have it by that date, Doug. What
functionality are you talking about?

Doug: I figure we can get full home security functionality

out by the drop-dead date, but we'll have to delay

Internet access till the second release.

Lisa: Doug, it's the Internet access that gives SafeHome

"gee whiz" appeal. We're going to build our entire

marketing campaign around it. We've gotta have it!

CHAPTER 7 REQUIREMENTS ENGINEERING 203

Doug: I understand your situation, I really do. The

problem is that in order to give you Internet access, we'll

need a fully secure Web site up and running. That takes

time and people. We'll also have to build a lot of

additional functionality into the first release ... I don't

think we can do it with the resources we've got.

Lisa (frowning): I see, but you've got to figure out a

way to get it done. It's pivotal to home security functions

and to other functions as well ... the other functions can

wait until the next releases . . . I'll agree to that

Lisa and Doug appear to be at an impasse, and yet they

must negotiate a solution to this problem. Gan they both

"win" here? Playing the role of a mediator, what would you

suggest?

When I

• review

requirements,

what questions

should I ask?

Validating Requirements

As each element of the analysis model is created, it is examined for consistency,

omissions, and ambiguity. The requirements represented by the model are priori-

tized by the customer and grouped within requirements packages that will be

implemented as software increments and delivered to the customer. A review ot the

analysis model addresses the following questions:

• Is each requirement consistent with the overall objective for the

system/product?

• Have all requirements been specified at the proper level of abstraction’ That

is, do some requirements provide a level of technical detail that is inappro-

priate at this stage?

• is the requirement really necessary or does it represent an add-on feature

that may not be essential to the objective of the system?

• Is each requirement bounded and unambiguous?

• Does each requirement have attribution? That is, is a source (generally, a

specific individual) noted for each requirement?

• Do any requirements conflict with other requirements?

• Is each requirement achievable in the technical environment that will house

the system or product?

• Is each requirement testable, once implemented?

• Does the requirements model properly reflect the information, function, and

behavior of the system to be built?

• Has the requirements model been "partitioned" in a way that exposes

progressively more detailed information about the system?

• Have requirements patterns been used to simplify the requirements model?

Have all patterns been properly validated? Are all patterns consistent with

customer requirements?

204 PART TWO SOFTWARE ENGINEERING PRACTICE

These and other questions should be asked and answered to ensure that the re-

quirements model is an accurate reflection of the customer's needs and that it pro-

vides a solid foundation for design.

2*9 Summary

It is necessary to understand requirements before design and construction of a

computer-based system can begin. To accomplish this, a set of requirements engi-

neering tasks are conducted. Requirements engineering occurs during the customer

communication and modeling activities that we have defined for the generic soft-

ware process. Seven distinct requirements engineering functions—inception, elici-

tation, elaboration, negotiation, specification, validation, and management—are
conducted by members of the software team

At project inception, the developer and the customer (as well as other stake-

holders) establish basic problem requirements, define overriding project constraints,

and address major features and functions that must be present for the system to

meet its objectives. This information is refined and expanded during elicitation—

a

requirements gathering activity that makes use of facilitated meetings, QFD, and the

development of user scenarios.

Elaboration further expands requirements into an analysis model—a collection of

scenario-based, activity-based, class-based, behavioral, and flow-oriented model el-

ements. A variety of modeling notations may be used to create these elements. The

model may reference analysis patterns—characteristics of the problem domain that

have been seen to reoccur across different applications.

As requirements are identified and the analysis model is created, the software

team and other project stakeholders negotiate the priority, availability, and relative

cost of each requirement. The intent of this negotiation is to develop a realistic proj-

ect plan, in addition, each requirement and the analysis model as a whole are vali-

dated against customer need to ensure that the right system is to be built.

References

|BOE98) Boehm, B., and A. Egyed, "Software Requirements Negotiation: Some Lessons
Learned." Proc. Inti, Con/. Software Engineering, ACM/IEEE, i 998. pp. 50.3-506.

[BOS911 Bossert, J. L., Quality Function Deployment: A Practitioner's Approach. ASQC Press, 1991

IBUS96] Buschmann, F., el al, Pattern Oriented Software Architecture: A System ofPattern. Wiley,

1996.

(COCO 1] Cockbum, A., Writing Effective Use Cases, Addison-Wesley, 2001.

[CR192] Christel, M. G., and K. C. Kang, "Issues in Requirements Elicitation," Software Engi-

neering institute, CMU/SEI-92-TR- 12 7, September 1992.

[DON961 Donaldson, M. C., and M. Donaldson, NegotiatingforDummies, IDG Books Worldwide,
1996.

[FAR97] Farber, D. C., Common Sense Negotiation: The Art of Winning Gracefully, Bay Press, 1997.

(FOW97) Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.

[GAM95] Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

CHAPTER 7 REQUIREMENTS ENGINEERING 205

IGAU891 Gause, D. C„ and G. M. Weinberg, Exploring Requirements: Quality Before Design, Dorset

House, 1989.

[GEYOl
J
Geyer-Schulz, A„ and M. Hahsler, Software Engineering with Analysis Patterns, Techni-

cal Report 01/2001, Institut fur informationsverarbeilung und-wirtschaft, Wirschaftsuniver-

sitat Wien, November 2001, downloaded from: http://wwwai.wu-wien.ac.at/~hahsler/

research/virlib_working200 1 /virlib/.

1JAC921 Jacobson, l„ Object-Oriented Software Engineering, Addison-Wesley, 1992.

ILEW00] Lewicki, R, D. Saunders, andj. Minton, Essentials ofNegotiation, McGraw-Hill, 2000.

[PAR961 Pardee, W„ To Satisfy and Delight Your Customer. Dorset House, 1 996.

ISOM971 Somerville, I., and P. Sawyer. Requirements Engineering, Wiley, 1997.

|THA97| Thayer, R. H., and M. Dorfman, Software Requirements Engineering, 2nd ed„ IEEE Com-

puter Society Press, 1997.

[YOUOl] Young” R., Effective Requirements Practices, Addison-Wesley, 2001

.

[ZAH90] Zahniser, R. A
,
Building Software in Groups," American Programmer vol. 3, nos. 7-8,

July-August 1 990.

[ZUL92] Zuitner, R„ "Quality Function Deployment for Software; Satisfying Customers," Amen

can Programmer February 1992, pp. 28-41.

Problems and Points tq P.qnjbeb

7.1. Develop a complete use case for one of the following activities:

a. Making a withdrawal at an ATM.

b. Using your charge card for a meal at a restaurant.

c. Buying a stock using an on-line brokerage account.

d. Searching for books (on a specific topic) using an on-line bookstore.

e. An activity specified by your instructor.

7.2. Discuss some of the problems that occur when requirements must be elicited from three

or four different customers.

7.3. What does "feasibility analysis" imply when it is discussed within the context of the incep-

tion function?

7.4. You have been given the responsibility to elicit requirements from a customer who tells

you he is too busy to meet with you. What should you do?

7.5. Why is it that many software developers don't pay enough attention to requirements engi-

neering? Are there ever circumstances where you can skip it?

7.6. Develop a facilitated requirements gathering "kit." The kit should include a set of guide-

lines for conducting a requirements gathering meeting and materials that can be used to facili-

tate the creation of lists and any other items that might help in defining requirements.

7.7. Develop at least three additional "context-free questions" that you might ask a stakeholder

during inception.

7.8. Let’s assume that you've convinced the customer (you're a very good salesperson) to agree

to every demand that you have as a developer. Does that make you a master negotiator? Why?

7.9. Your instructor will divide the class into groups of four or six students. Half of the group will

play the role of the marketing department and half will take on the role of software engineering.

Your job is to define requirements for the SafeHome security function described in this chapter Con-

duct a requirements gathering meeting using the guidelines presented in this chapter.

7.10. Throughout this chapter we refer to the "customer." Describe the "customer" for infor-

mation systems developers, for builders of computer-based products, for systems builders. Be

careful here: there may be more to this problem than you first imagine!

7.11. Why do we say that the analysis model represents a snapshot of a system in time?

206 PART TWO SOFTWARE ENGINEERING PRACTICE

7 . 12 . What do you think happens when requirements validation uncovers an error? Who is in-

volved in correcting the error?

7 . 13 . Using the template presented in Section 7.6.2, suggest one or more analysis patterns for

an application suggested by your instructor.

7 . 14 . Describe an analysis pattern in your own words.

7 . 15 . What do use-case "exceptions" represent?

7 . 16 . What does "win-win” mean in the context of negotiation during the requirements engi-
neering activity?

7 . 17 . Briefly discuss each of the elements of an analysis model. Indicate what each contributes

to the model, how each is unique, and what general information is presented by each.

.Further Readings and Information Sources

Because it is pivotal to the successful creation of any complex computer-based system, require-

ments engineering is discussed in a wide array of books. Hull and her colleagues (Requirements
Engineering, Springer-Verlag, 2002), Bray (/In Introduction to Requirements Engineering, Addison-
Wesley, 2002), Arlow (Requirements Engineering, Addison-Wesley, 2001), Gilb (Requirements En-
gineering, Addison-Wesley, 2000), Graham

(
Requirements Engineering and Rapid Development,

Addison-Wesley, 1999) and Sommerville and Kotonya (Requirement Engineering: Processes and
Techniques, Wiley, 1998) are but a few of many books dedicated to the subject. Dan Berry

(http.//se. uwaterloo.ca/~dberry/bib.html) has published a wide variety of thought provoking
papers on requirements engineering topics.

Lauesen (Software Requirements: Styles and Techniques, Addison-Wesley, 2002) presents a
comprehensive survey of requirements analysis methods and notation. Weigers (Software Re-

quirements, Microsoft Press, 1999) and Leffingwell and his colleagues (Managing Software Re-
quirements: A Unified Approach, Addison-Wesley, 2000) present a useful collection of
requirement best practices and suggest pragmatic guidelines for most aspects of the require-

ments engineering process.

Robertson and Robertson (Mastering the Requirements Process, Addison-Wesley, 1999) pre-

sent a very detailed case study that helps to explain all aspects of the software requirements
analysis and the analysis model. Kovit2 (Practical Sofware Requirements: A Manual of Content
and Style, Manning Publications, 1998) discusses a step-by-step approach to requirements
analysis and a style guide for those who must develop requirements specifications. Jackson
(Software Requirements Analysis and Specifcation: A Lexicon ofPractices, Principles and Prejudices,

Addison-Wesley, 1995) presents an intriguing look at the subject from A to Z (literally). Ploesch
(Assertions. Scenarios and Prototypes, Springer-Verlag, 2003) discusses advanced techniques for

developing software requirements.

Windie and Abreo (Software Requirements Using the Unified Process, Prentice-Hall, 2002) discuss

requirements engineering within the context of the Unified Process and UML notation. Alexander

and Steven (Writing Better Requirements, Addison-Wesley, 2002) present a brief set of guidelines for

writing clear requirements, representing them as scenarios, and reviewing the end result.

Use-case modeling is often the driver for the creation of all other aspects of the analysis

model. The subject is discussed at length by Bittner and Spence (Use-Case Modeling, Addison-
Wesley, 2002), Cockburn [COC0l|, Armour and Miller

(
Advanced Use-Case Modeling: Software

Systems, Addison-Wesley, 2000), Kulak and his colleagues (Use Cases: Requirements in Context,

Addison-Wesley, 2000), and Schneider and Winters
(
Applying Use Cases, Addison-Wesley, 1998).

A wide variety of information sources on requirements engineering and analysis are avail-

able on the Internet. An up-to-date list of World Wide Web references that are relevant to re-

quirements engineering and analysis can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Key
Concepts
analysis modeling

behavioral

class-based

control spec

CRC

data

flow-oriented

scenario-based

classes

data flaw diagram

data objects

domain analysis

structured analysis

roles of thumb

Building the

Analysis Model

A t a technical level, software engineering begins with a series of modeling

tasks that lead to a specification of requirements and a comprehensive

design representation for the software to be built. The analysis model, ac-

tually a set of models, is the first technical representation of a system.

In a seminal book on analysis modeling methods, Tom DeMarco [DEM79] de-

scribes the process in this way:

Looking back over the recognized problems and failings of the analysis phase. I sug-

gest that we need to make the following additions to our set of analysis phase goals:

• The produces of analysis must be highly maintainable. This applies particularly

to the Target Document [software requirements specification],

• Problems of size must be dealt with using an effective method of partitioning.

The Victorian novel specification is out.

• Graphics have to be used whenever possible.

• We have to differentiate between logical [essentiall and physical [implementa-

tion) considerations

At the very least, we need . .

.

• Something to help us partition our requirements and document that partition-

ing before specification

• Some means ot keeping track of and evaluating interfaces . .

.

• New tools to describe logic and policy, something better than narrative text.

Although DeMarco wrote about the attributes of analysis modeling more than a

quarter of a century ago, his comments still apply to modem analysis modeling

methods and notation.

What is it? The written word is a

wonderful vehicle for communication,

but it is not necessarily the best way to

represent the requirements for com-

puter software. Analysis modeling uses a combi-

nation of text and diagrammatic forms to depict

requirements for data, function, and behavior in

a way that is relatively easy to understand, and

more important, straightforward to review for

correctness, cory*pleteness, and consistency.

Who does it? A software engineer (sometimes

called an analyst) builds the model using re-

quirements elicited from the customer.

Why is it important? To validate software re-

quirements, you need to examine them from a

number of different points of view. Analysis

modeling represents requirements in multiple

"dimensions," thereby increasing the probability

that errors will be found, that inconsistency will

surface, and that omissions will be uncovered.

207

208 PART TWO SOFTWARE ENGINEERING PRACTICE

What are the steps? Informational, functional,

and behavioral requirements are modeled using

a number of different diagrammatic formats.

Scenario-based modeling represents the system

from the user's point of view. Flow-oriented mod-

eling provides an indication of how data objects

are transformed by processing functions. Class-

based modeling defines objects, attributes, and

relationships. Behavioral modeling depicts the

states of the system and its classes and the im-

pact of events on these states. Once preliminary

models are created, they are refined and ana-

lyzed to assess their clarity, completeness, and

consistency. The final analysis model is then val-

idated by all stakeholders.

What is the work product? A wide array of

diagrammatic forms may be chosen for the

analysis model. Each of these representations

provides a view of one or more of the model el-

ements.

How do I ensure that I've done it right?

Analysis modeling work products must be re-

viewed for correctness, completeness, and con-

sistency. They must reflect the needs of all

stakeholders and establish a foundation from

which design can be conducted.

8.1 Requirements Analysis

POINT
The onalysis model

and requirements

specification provide o

means for assessing

quality once the

software is built.

Requirements analysis results in the specification of software's operational char-

acteristics; indicates software's interface with other system elements; and estab-

lishes constraints that software must meet. Requirements analysis allows the

software engineer (sometimes called an analyst or modeler in this role) to elabo-

rate on basic requirements established during earlier requirement engineering

tasks and build models that depict user scenarios, functional activities, problem

classes and their relationships, system and class behavior, and the flow of data as

it is transformed.

Requirements analysis provides the software designer with a representation of in-

formation, function, and behavior that can be translated to architectural, interface,

and component-level designs. Finally, the analysis model and the requirements

specification provide the developer and the customer with the means to assess qual-

ity once software is built.

Throughout analysis modeling, the software engineer's primary focus is on what,

not how. What objects does the system manipulate, what functions must the system

perform, what behaviors does the system exhibit, what interfaces are defined, and

what constraints apply? 1

In earlier chapters, we noted that complete specification of requirements may not

oe possible at this stage. The customer may be unsure of precisely what is required.

The developer may be unsure that a specific approach will properly accomplish func-

tion and performance. These realities mitigate in favor of an iterative approach to re-

1 It should be noted that as customers become more technologically sophisticated, there is a trend

toward specification ofhow as well as what. However, the primary focus should remain on what.

CHAPTER 8 BUILDING THE ANALYSTS MODEL 209

The analysis

model as

a bridge

between
the system
description

and the design

model

quirements analysis and modeling. The analyst should model what is known and use

that model as the basis for design of the software increment.2

8.1.1 Overall Objectives and Philosophy

The analysis model must achieve three primary objectives: (1) to describe what the

customer requires, (2) to establish a basis for the creation of a software design, and

(3) to define a set of requirements that can be validated once the software is built. The

analysis model bridges the gap between a system-level description (Chapter 6) that

describes overall system functionality as it is achieved by applying software, hard

ware, data, human, and other system elements and a software design (Chapter 9) that

describes the software's application architecture, user interface, and component-

level structure. This relationship is illustrated in Figure 8. l

.

"Problems worthy of attack prove their worth by hitting bock."

Piet Hein

It is important to note that some elements of the analysis model are present (at a

higher level of abstraction) in the system description and that requirements engi-

neering tasks actually begin as part of system engineering. In addition, all elements

of the analysis model are directly traceable to parts of the design model. A clear di-

vision of design and analysis tasks between these two important modeling activities

is not always possible. Some design invariably occurs as part of analysis, and some

analysis will be conducted during design.

2 Alternatively, the software team may choose to create a prototype (Chapter 3) in an effort to belLer

understand requirements for the system.

210 PART TWO SOFTWARE ENGINEERING PRACTICE

8.1.2 Analysis Rules of Thumb

Arlow and Neustadt (ARL02] suggest a number of worthwhile rules of thumb that

should be followed when creating the analysis model:

• The model shouldfocus on requirements that are visible within the problem or

business domain. The level ofabstraction should be relatively high. "Don't get

bogged down in details" [ARL02] that try to explain how the system will work.

• Each element ofthe analysis model should add to an overall understanding of

software requirements and provide insight into the information domain,

function, and behavior ofthe system.

• Delay consideration ofinfrastructure and other non-functional models until

design. For example, a database may be required, but the classes necessary

to implement it, the functions required to access it, and the behavior that will

be exhibited as it is used should be considered only after problem domain

analysis has been completed.

• Minimize coupling throughout the system. It is important to represent relation-

ships between classes and functions. However, if the level of "interconnect-

edness" is extremely high, efforts should be made to reduce it.

• Be certain that the analysis model provides value to all stakeholders. Each

constituency has its own use for the model. For example, business stake-

holders should use the model to validate requirements; designers should use

the model as a basis for design; QA people should use the model to help plan

acceptance tests.

• Keep the model as simple as it can be. Don't add additional diagrams when

they provide no new information. Don't use complete notational forms, when

a simple list will do.

8.1.3 Domain Analysis

WebRef
Mirny useful lesowtes

fordomoin analysis con

be found at

www.iturls.com/

English/Software

Engineering/

SE mod5.osp.

In our discussion of requirements engineering (Chapter 7), we noted that analysis

patterns often reoccur across many applications within a specific business domain.

If these patterns are defined and categorized in a manner that allows a software en-

gineer or analyst to recognize and reuse them, the creation of the analysis model is

expedited. More important, the likelihood of applying reusable design patterns and

executable software components grows dramatically. This improves time to market

and reduces development costs.

But how are analysis patterns recognized in the first place? Who defines them,

categorizes them, and readies them for use on subsequent projects? The answers to

these questions lies in domain analysis. Firesmith [FIR93] describes domain analysis

in the following way:

Software domain analysis is the identification, analysis, and specification ofcommon re-

quirements from a specific application domain, typically for reuse on multiple projects

CHAPTER 8 BUILDING THE ANALYSIS MODEL 211

Sources of

domain

knowledge

Input and output for domain analysis

Technical literature

Existing applications

Customer surveys

Expert advice

Domain
analysis

Current/future requirements

Class taxonomies

\ Reuse standards
Domain

1 Functional models analysis

modelM Domain languages

f

within that application domain . .
.

[Object-oriented domain analysis is] the identification,

analysis, and specification ofcommon, reusable capabilities within a specific application

domain, in terms of common objects, classes, subassemblies, and frameworks.

The "specific application domain" can range from avionics to banking, from multime-

dia video games to software embedded within medical devices. The goal of domain

analysis is straightforward: to find or create those analysis classes and/or common

functions and features that are broadly applicable, so that they may be reused.3

“The great ort of learning is to understand but little ol a time.'

John Locke

In a way, the role of a domain analyst is similar to the role of a master toolsmith

in a heavy manufacturing environment. The job of the toolsmith is to design and

build tools that may be used by many people doing similar but not necessarily the

same jobs. The role of the domain analyst4
is to discover and define reusable analy-

sis patterns, analysis classes, and related information that may be used by many

people working on similar but not necessarily the same applications.

Figure 8.2 [ARA89] illustrates key inputs and outputs for the domain analysis

process. Sources ofdomain knowledge are surveyed in an attempt to identify objects

that can be reused across the domain.

8.2 Analysis Modeling Approaches

One view of analysis modeling, called structured analysis, considers data and the

processes that transform the data as separate entities. Data objects are modeled in

a way that defines their attributes and relationships. Processes that manipulate data

3 A complementary view of domain analysis "involves modeling the domain so that software engi-

neers and other stakeholders can better learn about it .

.

. not all domain classes necessarily result

in the development of reusable classes" |LET03|.

4 Do not make the assumption that because a domain analyst is at work, a software engineer need

not understand the application domain. Every member of a software team should have some un-

derstanding of the domain in which the software is to be placed.

WebRef
A worthwhile

discussion of domain

engineering and

analysis con be

found at

www.sei.anu.

edu/str/

descriptions/

deda.html.

212 PART TWO SOFTWARE ENGINEERING PRACTICE

objects are modeled in a manner that shows how they transform data as data objects

flow through the system.

A second approach to analysis modeling, called object-oriented analysis, focuses

on the definition of classes and the manner in which they collaborate with one

another to effect customer requirements. UML and the Unified Process (Chapter 3)

are predominantly object-oriented.

"[Ajnolysis is frustrating, full of complex interpersonal relationships, indefinite, and difficult. In a word, it is

fascinating. Once you're hooked, the old easy pleasures of system building are never again enough to satisfy you."

Tom DeMarco

Although the analysis model that we propose in this book combines features of

both approaches, software teams often choose one approach and exclude all repre-

sentations from the other. The question is not which is best, but what combination

of representations will provide stakeholders with the best model of software re-

quirements and the most effective bridge to software design.

Analysis modeling leads to the derivation of each of the modeling elements

shown in Figure 8.3. However, the specific content of each element (i.e., the dia-

grams that are used to construct the element and the model) may differ from project

to project. As we have noted a number of times in this book, the software team must

work to keep it simple. Only those modeling elements that add value to the model

should be used.

"Why should we build models? Why not just build the system itself? The onswer is that we can construct models in

such a way as to highlight, or emphasize, certain critical features of a system, while simultaneously de-emphasizing

other aspects of the system."

Ed Yourdon

Elements of

the analysis

model

CHAPTER 8 BUILDING THE ANALYSIS MODEL 213

WebKef

How does a

• data object

manifest itself

within the context

of an application?

POINT
A doto object is a

representation of any

composite informolion

thor is processec by

software.

Analysis modeling often begins with data modeling. The software engineer or ana-

lyst defines all data objects that are processed within the system, the relationships

between the data objects, and other information that is pertinent to the relationships.

8.3.1 Data Objects

A data object is a representation of almost any composite information that must be

understood by software. By composite information, we mean something that has a

number of different properties or attributes. Therefore, "width" (a single value) would

not be a valid data object, hut dimensions (incorporating height, width, and depth)

could be defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone

call) or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g.,

accounting department), a place (e.g., a warehouse), or a structure (e.g., a file). For

example, a person or a car can be viewed as a data object in the sense that either

can be defined in terms of a set of attributes. The data object description incorpo-

rates the data object and all of its attributes.

A data object encapsulates data only—there is no reference within a data

object to operations that act on the data.
5 Therefore, the data object can be rep-

resented as a table as shown in Figure 8.4. The headings in the table reflect at-

tributes of the object. In this case, a car is defined in terms of make, model, ID

number, body type, color and owner The body of the table represents specific in-

stances of the data object. For example, a Chevy Corvette is an instance of the

data object car.

Tabular repre-

sentation of

data objects

Naming

attributes

Ties one data object to another,

in th s case, owner ^

Identifier

Descriptive

attributes

Referential

attributes

Moke Model ID# Bodv tvoe Color Owner

Lexus LS400 AB123. . Sedan While RSP

Chevy Corvette X456. . . Sports Red CCD
BMW 750iL XZ765. .

.

Coupe White Ul

Ford Taurus Q12A45. . . Sedan Blue BLF

5 ibis distinction separates the data object from the class or object defined as part of the object-

oriented approach.

PART TWO SOFTWARE ENGINEERING PRACTICE214

POINT
Attributes name g dato

object, describe its

characteristics, and, in

some coses, moke

reference to another

object.

WebRef

A concept celled

'nocmalization" is

impormnt to those who

intend to do thorough

date modeling. A

useful introduction am

be found at

www.datomodel.

org.

8.3.2 Data Attributes

Data attributes define the properties of a data object and take on one of three differ-

ent characteristics. They can be used to (1) name an instance of the data object,

(2) describe the instance, or (3) make reference to another instance in another table.

In addition, one or more of the attributes must be defined as an identifier—that is,

the identifier attribute becomes a "key" when we want to find an instance of the data

object. In some cases, values for the identifier(s) are unique, although this is not a re-

quirement. Referring to the data object car, a reasonable identifier might be the ID

number.

The set of attributes that is appropriate for a given data object is determined

through an understanding of the problem context. The attributes for car might

serve well for an application that would be used by a Department of Motor Vehi-

cles, but these attributes would be useless for an automobile company that needs

manufacturing control software. In the latter case, the attributes for car might also

include ID number, body type, and color, but many additional attributes (e.g., interior

code, drive train type, trim package designator, transmission type) would have to be added

to make car a meaningful object in the manufacturing control context.

Data Objects and OO Classes—
Are They the Same Thing?

A common question occurs when data objects

are discussed: Is a data object the same thing as an

object-oriented class? The answer is no.

A data object defines a composite data item; that is, it

incorporates a collection of individual data items

(attributes) and gives the collection of items a name (the

name of the data object). An OO class encapsulates data

attributes but also incorporates the operations that

manipulate the data implied by those attributes. In

addition, the definition of classes implies a comprehensive

infrastructure that is part of the object-oriented software

engineering approach. Classes communicate with one

another via messages; they can be organized into

hierarchies; they provide inheritance characteristics for

objects that are an instance of a class.

POINT
Relationships indicate

the manner in which

data objects are

connected to one

another.

8.3.3 Relationships

Data objects are connected to one another in different ways. Consider the two data

objects, person and car. These objects can be represented using the simple nota-

tion illustrated in Figure 8.5a. A connection is established between person and car

because the two objects are related. But what are the relationships? To determine the

answer, we must understand the role of people (owners, in this case) and cars within

the context of the software to be built. We can define a set of object/relationship

pairs that define the relevant relationships. For example.

A person owns a car.

A person is insured to drive a car.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 215

Relationships

between data
objects

person

(a) A basic connection between data

objects

person

owns

insured to

drive -

(b| Relationships between data

objects

The relationships owns and insured to drive define the relevant connections be-

tween person and car. Figure 8.5b illustrates these object/relationship pairs

graphically. The arrows noted in Figure 8.5b provide important information about

the directionality of the relationship and often reduce ambiguity or misinterpre-

tations.

^ How do I

• handle a

situation in which

one data object is

related to many

occurrences of

another data

object?

8.3.4 Cardinality and Modality

The elements ofdata modeling—data objects, attributes, and relationships—provide

the basis for understanding the information domain of a problem. Flowever, addi-

tional information related to these basic elements must also be understood.

We have defined a set of objects and represented the object/relationship pairs

that bind them. But a simple pair that states that objectX relates to objectY does not

provide enough information for software engineering purposes. We must under-

stand how many occurrences of objectX are related to how many occurrences of

objectY. This leads to a data modeling concept called cardinality.

The data model must be capable of representing the number ofoccurrences of ob-

jects in a given relationship. Tillmann [T1L93] defines the cardinality of an object/re-

lationship pair in the following manner: "Cardinality is the specification of the

number of occurrences of one [object] that can be related to the number of occur-

rences of another [object]." For example, one object can relate to only one other ob-

ject (a 1:1 relationship); one object can relate to many objects (a 1:N relationship);

some number of occurrences of an object can relate to some other number of oc-

currences ofanother object (an M:N relationship).
6 Cardinality also defines "the max-

imum number of objects that can participate in a relationship" [TIL93], It does not,

however, provide an indication of whether or not a particular data object must par-

ticipate in the relationship. To specify this information, the data model adds modal-

ity to the object/relationship pair.

6 For example, an uncle can have many nephews, and a nephew can have many uncles.

216 PART TWO SOFTWARE ENGINEERING PRACTICE

Entity-Relationship Diagrams
The object/relationship pair is the cornerstone of

the data model. These pairs can be represented

graphically using the entity/relationship diagram (ERD).
7
The

ERD was originally proposed by Peter Chen [CHE77] for

the design of relational database systems and has been

extended by others. A set of primary components are

identified for the ERD: data objects, attributes, relationships,

and various type indicators. The primary purpose of the ERD

is to represent data objects and their relationships.

Rudimentary ERD notation has already been

introduced. Data objects are represented by a labeled

rectangle. Relationships are indicated with o labeled line

connecting objects. In some variations of the ERD, the

connecting line contains a diamond that is labeled with the

relationship. Connections between data objects and

relationships are established using a variety of special

symbols that indicate cardinality and modality.

For further information of data modeling and the entity

relationship diagram, the interested reader should see

[THAOO],

J
The modality of a relationship is 0 if there is no explicit need for the relationship

to occur or the relationship is optional. The modality is 1 if an occurrence of the re-

lationship is mandatory.

"For on information system to be useful, reliable, adaptable, and economic, it must be based first on sound data

modeling, and only secondarily on process analysis . . . because the structure of data is inherently about truth,

whereas process is about technique.'

Duncan Dwelle

Data Modeling

Objective: Data modeling tools provide the

software engineer with the ability to represent

data objects, their characteristics and their relationships.

Used primarily for large database applications and other

information systems projects, data modeling tools provide an

automated means for creating comprehensive entity-relation

diagrams, data object dictionaries, and related models.

Mechanics: Tools in this category enable the user to

describe data objects and their relationships. In some

cases, the tools use ERD notation. In others, the tools model

relations using some other mechanism. Tools in this

category enable the creation of a database model by

generating a database schema for common DBMSs.

Software Tools

Representative Tools 8

AllFusion ERWin, developed by Computer Associates

(www3.ca.com), assists in the design of data

objects, proper structure, and key elements for

databases.

ER/Studio, developed by Embarcadero Software

(www.embarcadero.com), supports entity-relationship

modeling.

Oracle Designer, developed by Oracle Systems

(www.oracle.com), models business processes, data

entities and relationships [that] are transformed into

designs from which complete applications and

databases are generated.

J

7 Although the ERD is still used in some database design applications, UML notation is now more

commonly used for data design.

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category'.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 217

r
MetaScope, developed by Madrone Systems

(www.madronesystems.com), is a low cost data

modeling tool that supports the graphical

representation of data.

ModelSphere, developed by Magna Solutions GmbH
(www.magnasoiutions.com), supports a variety of

relational modeling tools.

Visible Analyst, developed by Visible Systems

(www.visible.com), supports a variety of analysis

modeling functions including data modeling.

'N

8.4 Object-Oriented Analysis

Any discussion of object-oriented analysis must begin by addressing the term object-

oriented. What is an object-oriented viewpoint? Why is a method considered to be

object-oriented? What is an object? As OO gained widespread adherents during the

1980s and 1990s, there were many different opinions (e g., [BER93], [TAY90],

(STR88]
,
[BOO86]) about the correct answers to these questions. Today, a coherent

view of 00 has emerged.

The intent of object-oriented analysis (OOA) is to define all classes (and the rela-

tionships and behavior associated with them) that are relevant to the problem to be

solved. To accomplish this, a number of tasks must occur:

1 . Basic user requirements must be communicated between the customer and

the software engineer (Chapter 7).

2 . Classes must be identified (i.e., attributes and methods are defined).

3 . A class hierarchy is defined.

4. Object-to-object relationships (object connections) should be represented.

5 . Object behavior must be modeled.

6. Tasks 1 through 5 are reapplied iteratively until the model is complete.

Instead of examining a problem using a more conventional input-processing-output

(information flow) model or a model derived exclusively from hierarchical informa-

tion structures, OOA builds a class-oriented model that relies on an understanding

of OO concepts.

Object-Oriented Concepts

Object-oriented (OO) concepts have become

well-established in the software engineering

worid. The following are abbreviated descriptions of

important OO concepts that are often encountered during

V

analysis modeling. Additional OO concepts, more closely

aligned with software design, are presented in Chapter 1 0.

Attributes—a collection of data values that describe a

class.

J

218 PART TWO SOFTWARE ENGINEERING PRACTICE

r
Class—encapsulates the data and procedural

abstractions required to describe the content and behavior

of some real worid entity. Stated another way, a class is a

generalized description (e.g., a template, pattern, or

blueprint) that describes a collection of similar objects.

Objects—instances of a specific class. Objects inherit a

class' attributes and operations.

Operations—also colled methods and services, provide

a representation of one of the behaviors of a class.

Subclass—a specialization of the superclass. A
subclass can inherit both attributes and operations from a

superclass.

Superclass—also called a base class, is a

generalization of a set of classes that are related to it.

8.5 Scenario-Based Modeling

Although the success of a computer-based system or product is measured in many
ways, user satisfaction resides at the top of the list. If software engineers under-

stand how end-users (and other actors) want to interact with a system, the soft-

ware team will be better able to properly characterize requirements and build

meaningful analysis and design models. Hence, analysis modeling with UML be-

gins with the creation of scenarios in the form of use-cases, activity diagrams, and

swimlane diagrams.

8.5.1 Writing Use-Cases

In some situations, use

cases become the

dominant requirements

engineering mechanism.

However, this does not

mean that you should

discard the concepts and

techniques discussed in

Chapter 7.

A use-case captures the interactions that occur between producers and consumers

of information and the system itself. In this section, we examine how use-cases are

developed as part of the analysis modeling activity.
9

The concept of a use-case (Chapter 7) is relatively easy to understand—describe

a specific usage scenario in straightforward language from the point of view of a de-

fined actor. 10 But how do we know (1) what to write about, (2) how much to write

about it, (3) how detailed to make our description, and (4) how to organize the de-

scription? These are the questions that must be answered if use-cases are to provide

value as an analysis modeling tool.

"[Use-coses] ore simply on aid to defining whot exists outside the system (odors) ond what should be performed by

the system (use-coses)."

Ivor Jacobson

What to write about? The first two requirements engineering tasks 11—inception

and elicitation—provide us the information we need to begin writing use cases. Re-

quirements gathering meetings, QFD, and other requirements engineering mecha-

9 Use-cases are a particularly important part of analysis modeling for user interfaces Interface analy-

sis is discussed in detail in Chapter 12.

1 0 An actor is not a specific person, but rather a role that a person (or a device) plays within a specific

context. An actor "calls on the system to deliver one of its services" [COCO 1]

.

1 1 These requirements engineering tasks are discussed in detail in Chapter 7.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 219

nisms are used to identify stakeholders, define the scope of the problem, specify

overall operational goals, outline all known functional requirements, and describe

the things (objects) that will be manipulated by the system.

To begin developing a set of use-cases, the functions or activities performed by a

specific actor are listed. These may be obtained from a list of required system func-

tions, through conversations with customers or end-users, or by an evaluation of ac-

tivity diagrams (Section 8.5.2) developed as part of analysis modeling.

SafeHome

Developing Another
Preliminary User Scenario

The scene: A meeting room, during the second

requirements gathering meeting.

The players: Jamie Lazar, software team member; Ed

Robbins, software team member; Doug Miller, software

engineering manager; three members of marketing; a

product engineering representative; and a facilitator.

The conversation:

Facilitator: it's time that we begin talking about the

SafeHome surveillance function. Let's develop a user

scenario for access to the home security function.

Jamie: Who plays the role of the actor on this?

Facilitator: I think Meredith (a marketing person) has

been working on that functionality. Why don't you play

the role.

Meredith: You want to do it the same way we did it last

time, right?

Facilitator: Right . . . same way.

Meredith: Well, obviously the reason for surveillance is

to allow the homeowner to check out the house while he

or she is away, to record and play back video that is

captured . . . that sort of thing.

Ed: Will the video be digital, and will it be stored on disk?

Facilitator: Good question, but let's postpone

implementation issues for now. Meredith?

Meredith: Okay, so basically there are two parts to the

surveillance function ... the first configures the system

including laying out a floor plan—we need tools to help

the homeowner do this—and the second part is the

actual surveillance function itself. Since the layout is part

of the configuration activity, I'll focus on the surveillance

function.

Facilitator (smiling): Took the words right out of my

mouth.

Meredith: Um ... I want to gain access to the

surveillance function either via the PC or via the Internet.

My feeling is that the Internet access would be more

frequently used. Anyway, I want to be able to display

camera views on a PC and control pan and zoom for a

specific camera. I specify the camera by selecting it from

the house floor plan. I want to selectively record camera

output and replay camera output. I also want to be able

to block access to one or more cameras with a specific

password. And I want the option of seeing small windows

that show views from all cameras and then be able to

pick the one I want enlarged.

Jamie: Those are called thumbnail views.

Meredith: Okay, then I want thumbnail views from all

the cameras. I also want the interface to the surveillance

function to have the same look and feel as all other

SafeHome interfaces. I want it to be intuitive, meaning I

don't want to have to read a manual to use it.

Facilitator: Good job, now, let's go into this function in

a bit more detail. . . .

The SafeHome home surveillance function (subsystem) discussed in the sidebar iden

titles the following functions (an abbreviated list) that are performed by the home

owner actor:

• Access camera surveillance via the Internet.

220 PART TWO SOFTWARE ENGINEERING PRACTICE

• Select camera to view.

• Request thumbnails from all cameras.

• Display camera views in a PC window.

• Control pan and zoom for a specific camera.

• Selectively record camera output.

• Replay camera output.

As further conversations with the stakeholder (who plays the role of a homeowner)

progress, the requirements gathering team develops use-cases for each of the functions

noted. In general, use-cases are written first in an informal narrative fashion. If more

formality is required, the same use-case is rewritten using a structured format similar

to the one proposed in Chapter 7 and reproduced later in this section as a sidebar.

To illustrate, consider the function "access camera surveillance—display camera

views (ACS-DCV)." The stakeholder who takes on the role of the homeowner actor

might write the following narrative:

Use-case: Access camera surveillance—display camera views (ACS-DCV)

Actor: homeowner

If I'm at a remote location, I can use any PC with appropriate browser software to log

on to the SafeHome Products Web site. I enter my user ID and two levels of passwords

and, once rm validated, I have access to all functionality for my installed SafeHome sys-

tem. To access a specific camera view, 1 select ''surveillance" from the major function but-

tons displayed. 1 then select "pick a camera," and the floor plan of the house is displayed.

I then select the camera that I'm interested in. Alternatively, I can look at thumbnail snap-

shots from all cameras simultaneously by selecting "all cameras" as my viewing choice.

Once I choose a camera, I select "view," and a one-frame-per-second view appears in a

viewing window that is identified by the camera ID. Ifl want to switch cameras, I select

"pick a camera," and the original viewing window disappears, and the floor plan of the

house is displayed again. I then select the camera that I'm interested in. A new viewing

window appears.

A variation of a narrative use-case presents the interaction as an ordered sequence

of user actions. Each-action is represented as a declarative sentence. Revisiting the

ACS-DCV function, we would write:

Use-case: Access camera surveillance—display camera views (ACS-DCV)

Actor: homeowner

I The homeowner logs on to the SafeHome Products Web site.

2. The homeowner enters his or her user ID.

3. The homeowner enters two passwords (each at least eight characters in length).

4. The system displays all major function buttons.

5. The homeowner selects the "surveillance" from the major function buttons.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 221

6. The homeowner selects "pick a camera."

7 The system displays the floor plan of the house.

8. The homeowner selects a camera icon from the floor plan.

9. The homeowner selects the •view'" button.

10. The system displays a viewing window that is identified by the camera ID.

1 1 . The system displays video output within the viewing window at one frame per

second.

It is important to note that this sequential presentation does not consider any al-

ternative interactions (the narrative is more free-flowing and did represent a few

alternatives). Use-cases of this type are sometimes referred to as primaty scenar-

ios [SCH98].

"Use-case", can be used in many [software] processes. Our favorite is a process that is iterative and risk driven.

Geri Schneider and Jason Winters

Of course, a description of alternative interactions is essential to a complete un-

derstanding of the function that is being described. Therefore, each step in the pri-

maty scenario is evaluated by asking the following questions [SCH98]:

f How do I

• examine

alternative

courses of action

when I develop a

use-case?

• Can the actor take some other action at this point?

• is it possible that the actor will encounter some error condition at this point?

If so, what might it be?

• Is it possible that the actor will encounter some other behavior at this point

te.g., behavior that is invoked by some event outside the actor's control)? If

so, what might it be?

Answers to these questions result in the creation of a set of secondary scenarios that

are part of the original use-case but represent alternative behavior.

For example, consider steps 6 and 7 in the primary scenario presented earlier:

6. The homeowner selects "pick a camera."

7. The system displays the floor plan of the house.

Can the actor take some other action at this point? The answer is yes. Referring to the

free-flow narrative, the actor may choose to view thumbnail snapshots of all cam-

eras simultaneously. Hence, one secondary scenario might be: "View thumbnail

snapshots for all cameras."

Is it possible that the actor will encounter some error condition at this point? Any

number of error conditions can occur as a computer-based system operates. In this

context, we consider only error conditions that are likely as a direct result of the ac-

tion described in step 6 or step 7. Again the answer to the question is yes. A floor

plan with camera icons may have never been configured. Hence, selecting "pick a

222 PART TWO SOFTWARE ENGINEERING PRACTICE

camera" results in an error condition: "No floor plan configured for this house."12 This

error condition becomes a secondary scenario.

Is it possible that the actor will encounter some other behavior at this point p Again

the answer to the question is yes. As steps 6 and 7 occur, the system may encounter

an alarm condition. This would result in the system displaying a special alarm noti-

fication (type, location, system action) and providing the actor with a number of op-

tions relevant to the nature of the alarm. Because this secondary scenario can occur

for virtually all interactions, it will not become part of the ACS-DCV use-case.

Rather, a separate use-case—"Alarm condition encountered"—would be developed

and referenced from other use-cases as required.

Referring to the formal use-case template shown in the sidebar, the secondary sce-

narios are represented as exceptions to the basic sequence described for ACS-DCV.

SafeHome

Use-Case Templatefor Surveillance

Primary actor:

Goal in context:

Preconditions:

Trigger:

Scenario:

Use-case: Access camera

surveillance—display camera views

(ACS-DCV).

Homeowner.

To view output of camera placed

throughout the house from any

remote location via the Internet.

System must be fully configured;

appropriate user ID and passwords

must be obtained.

The homeowner decides to take a

look inside the house while away.

1 . The homeowner logs onto the SafeHome Products

Web site.

2. The homeowner enters his or her user ID.

3. The homeowner enters two passwords (each at least

eight characters in length).

4. The system displays all major function buttons.

5. The homeowner selects "surveillance" from the major

function buttons.

6. The homeowner selects "pick a camera."

7. The system displays the floor plan of the house.

8. The homeowner selects a camera icon from the

floor plan.

9. The homeowner selects the "view" button.

1 0. The system displays a viewing window that is

identified by the camera ID.

1 1 . The system displays video output within the viewing

window at one frame per second.

Exceptions:

1 . ID or passwords are incorrect or not recognized

—

see use-case: "validate ID and passwords."

2. Surveillance function not configured for this system

—

system displays appropriate error message; see use-

case: "configure surveillance function."

3. Homeowner selects "view thumbnail snapshots for all

cameras"—see use-case: "view thumbnail snapshots

for all cameras."

4. A floor plan is not available or has not been

configured—display appropriate error message and

see use-case: "configure floor plan."

5. An alarm condition is encountered—see use-case:

"alarm condition encountered."

Priority:

When available:

Frequency of use.

Moderate priority, to be

implemented after basic

functions.

Third increment.

Infrequent.

12 In this case, another actor, the system administrator, would have to configure the floor plan, in-

stall and initialize (e.g., assign an equipment ID) all cameras, and test to be certain that each is ac-

cessible via the system and through the floor plan.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 223

Channel to actor: Via PC-based browser and

Internet connection to SafeHome

Web site.

Secondary actors: System administrator, cameras.

Channels to secondary actors:

1 . System administrator: PC-based system

2. Cameras: wireless connectivity

Open issues:

1 . What mechanisms protect unauthorized use of this

capability by employees of the company?

2. Is security sufficient? Hacking into this feature would

represent a major invasion of privacy.

3. Will system response via the Internet be acceptable

given the bandwidth required for camera views?

4. Will we develop a capability to provide video at a

higher frames-per-second rate when high bandwidth

connections are available?

WebRef
When ore you finished

writing use-coses? Foi

a worthwhile discussion

of this topic, see

ootips.org/

ose-cases-done.

htmlootips.

org/use-cases-

done.html.

In many cases, there is no need to create a graphical representation of a usage sce-

nario. However, diagrammatic representation can facilitate understanding, particu-

larly when the scenario is complex. As we noted in Chapter 7, UML does provide

use-case diagramming capability. Figure 8.6 depicts a preliminary use-case diagram

for the SafeHome product. Each use-case is represented by an oval. Only the use-

case, ACS-DCV has been discussed in detail in this section.

8.5.2 Developing an Activity Diagram

The UML activity diagram (discussed briefly in Chapters 6 and 7) supplements the use-

case by providing a graphical representation of the flow of interaction within a spe-

cific scenario. Similar to the flowchart, an activity diagram uses rounded rectangles

to imply a specific system function, arrows to represent flow through the system, de-

cision diamonds to depict a branching decision (each arrow emanating from the dia-

mond is labeled), and solid horizontal lines to indicate that parallel activities are

224 PART TWO SOFTWARE ENGINEERING PRACTICE

Activity

diagram for

Access
camera
surveillance

—

display

camera views

function

POINT
A UML activity diagram

represents the actions

end decisions that

occur os some function

is performed.

occurring. An activity diagram for the ACS-DCV function is shown in Figure 8.7. It

should be noted that the activity diagram adds additional detail not directly men-

tioned (but implied) by the use-case. For example, a user may only attempt to enter

userlD and password a limited number of times. This is represented by a decision

diamond below promptfor reentry.

8.5.3 Swimlane Diagrams

The UML swimlane diagram is a useful variation of the activity diagram and allows

the modeler to represent the flow of activities described by the use-case and at the

same time indicate which actor (if there are multiple actors involved in a specific

function) or analysis class has responsibility for the action described by an activity

CHAPTER 8 BUILDING THE ANALYSIS MODEL 225

Swimlane diagram for Access camera surveillance—display camera views function

POINT
A UML swimlane

diagram represents

the flow of actions

and decisions and

indicates which actois

perform each.

rectangle. Responsibilities are represented as parallel segments that divide the dia-

gram vertically, like the lanes in a swimming pool.

Three analysis classes—Homeowner, Interface, and Camera

—

have direct or in-

direct responsibilities in the context of the activity diagram represented in Figure 8.7.

Referring to Figure 8.8, the activity diagram is rearranged so that activities associated

with a particular analysis class fall inside the swimlane for that class. For example, the

Interface class represents the user interface as seen by the homeowner. The activity

diagram notes two prompts that are the responsibility of the interface—prompt for

226 PART TWO SOFTWARE ENGINEERING PRACTICE

Some will suggest that

the DFD is "old

school“ and has no

ploce in modem

practice. That's a view

that excludes a poten-

tially useful mode of

representation at the

anolysis level’. If it con

help, use the DFD.

reentry and prompt for another view. These prompts and the decisions associated with

them fall within the Interface swimlane. However, arrows lead from that swimlane

back to the Homeowner swimlane, where homeowner actions occur.

Flow-Oriented Modeling —
Data flow-oriented modeling continues to be one of the most widely used analysis

notations today. 13 Although the dataflow diagram (DFD) and related diagrams and

information are not a formal part of UML, they can be used to complement UML

diagrams and provide additional insight into system requirements and flow.

The DFD takes an input-process-output view of a system. That is, data objects flow

into the software, are transformed by processing elements, and resultant data objects

flow out of the software. Data objects are represented by labeled arrows and trans-

formations are represented by circles (also called bubbles). The DFD is presented in a

hierarchical fashion. That is, the first data flow model (sometimes called a level 0 DFD

or context diagram) represents the system as a whole. Subsequent data flow diagrams

refine the context diagram, providing increasing detail with each subsequent level.

'The purpose of data flow diagrams is to provide a semantic bridge between users and systems developers."

Kenneth Kozar

8.6.1 Creating a Data Flow Model

The data flow diagram enables the software engineer to develop models of the in-

formation domain and functional domain at the same time. As the DFD is refined into

greater levels of detail, the analyst performs an implicit functional decomposition of

the system. At the same time, the DFD refinement results in a corresponding refine-

ment of data as it moves through the processes that embody the application.

A few simple guidelines can aid immeasurably during derivation of a data flow di-

agram: (1) the level 0 data flow diagram should depict the software/system as a sin-

gle bubble; (2) primary input and output should be carefully noted; (3) refinement

should begin by isolating candidate processes, data objects, and data stores to be

represented at the next level; (4) all arrows and bubbles should be labeled with

meaningful names; (5) information flow continuity must be maintained from level

to level;
14 and (6) one bubble at a time should be refined. There is a natural tendency

to overcomplicate the data flow diagram. This occurs when the analyst attempts to

show too much detail too early or represents procedural aspects of the software in

lieu of information flow.

13 Data flow modeling is a core modeling activity in structured analysis

14 that is, the data objects that flow into the system or any transformation at one level must be the

same data objects (or their constituent parts) that flow into the transformation at a more refined

level.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 227

Context-level

DFD tor the

SafeHome
security

lunction

POINT
Information flow

continuity must be

mointoined os eoch

DFO level is refined.

This means that input

ond output at one level

must be the same as

input ond output at o

refined level.

To illustrate the use of the DFD and related notation, we again consider the Safe-
Home security function. A context-level DFD for the security function is shown in

Figure 8.9. The primary external entities (boxes) produce information for use by the
system and consume information generated by the system. The labeled arrows rep-
resent data objects or data object hierarchies. For example, user commands and
data encompasses all configuration commands, all activation/deactivation com-
mands, all miscellaneous interactions, and all data that are entered to qualify or ex-
pand a command.

The level 0 DFD is now expanded into a level 1 data flow model. But how do we
proceed? A simple, yet effective approach is to perform a "grammatical parse"
[ABB83] on the narrative that describes the context level bubble. That is, we isolate

all nouns (and noun phrases) and verbs (and verb phrases) in a SafeHome processing
narrative 15 derived during the first requirements gathering meeting. To illustrate, con-
sider the following processing narrative text with the first occurrence of all nouns
underlined and the first occurrence of all verbs italicized. 16

T^e SafeHome
,
security lunction enables the homeowner to configure the security M/stem

when it is installed, monitors ail sensors connected to the security system, and interacts

with the homeowner through the internet, a EC, or a control panel

During
insta llation ,

the SafeHome PC is used to program and configure the system.
Each sensor is assigned a number and type, a master password is programmed for arm-
ing and disarming the system, and telephunsLitumberfsl are input for dialing when a sen-
sor event occurs.

15 A processing narrative is similar to the use-case in style but somewhat different in purpose. The
processing narrative provides an overall description of the function to be developed. It is not a see-
nario written from one actor's point of view.

16 It should be noted that nouns or verbs that are synonyms or have no direct bearing on the model-
ing process are omitted It should also be noted that a similar grammatical parse will be used when
we consider class-based modeling in Section 8.7.

228 PART TWO SOFTWARE ENGINEERING PRACTICE

The grammatical parse

is not foolproof, but it

con provide you with

on excellent jump start,

if you're struggling to

define data objects and

the transforms that

operate on them.

Be certain that the

processing narrative

you intend to parse is

written ot the some

level of abstraction

throughout.

When a sensor event is recognized, the software invokes an audible a larm attached to

the system. After a delay time that is specified by the homeowner during system config-

uration activities, the software dials a telephone number of a monitoring service ,
provides

information about the location, reporting the nature of the event that has been detected.

The telephone number will be redialed every 20 seconds until a telephone connection is

obtained.

The homeowner receives security information via a control panel, the PC, or a browser,

collectively called an interface. The interface displays prompting messages and system

status information on the control panel, the PC, or the browser window. Homeowner in-

teraction takes the following form. . .

.

Referring to the grammatical parse, a pattern begins to emerge. Verbs are SafeHome

processes; that is, they may ultimately be represented as bubbles in a subsequent DFD.

Nouns are either external entities (boxes), data or control objects (arrows), 01 data

stores (double lines). Note further that nouns and verbs can be associated with one

another. For example, each sensor is assigned a number and type, therefore number

and type are attributes of the data object sensor therefore, by performing a gram-

matical parse on the processing narrative for a bubble at any DFD level, we can gen-

erate much useful information about how to proceed with the refinement to the next

level. Using this information, a level 1 DFD is shown in Figure 8.10. The context level

process shown in Figure 8.9 has been expanded into six processes derived from an ex-

CHAPTER 8 BUILDING THE ANALYSIS MODEL 229

Level 2 DFD
that retines the

monitor sensors

process

amination of the grammatical parse. Similarly, the information flow between

processes at level 1 has been derived from the parse. In addition, information flow

continuity is maintained between levels 0 and 1

.

The processes represented at DFD level 1 can be further refined into lower levels.

For example, the process monitor sensors can be refined into a level 2 DFD as shown

in Figure 8.11. Note once again that information flow continuity has been maintained

between levels.

The refinement of DFDs continues until each bubble performs a simple function.

That is, until the process represented by the bubble performs a function that would

be easily implemented as a program component, in Chapter 9, we discuss a concept,

called cohesion, that can be used to assess the simplicity of a given function. For now,

we strive to refine DFDs until each bubble is "single-minded."

8.6.2 Creating a Control Flow Model

For many types of applications, the data model and the data flow diagram are all that

is necessary to obtain meaningful insight into software requirements. As we have al-

ready noted, however, a large class of applications are "driven" by events rather than

data, produce control information rather than reports or displays, and process infor-

mation with heavy concern for time and performance. Such applications require the

use of controlflow modeling in addition to data flow modeling.

We have already noted that an event or control item is implemented as a

Boolean value (e g., true or false, on or off, 1 or 0) or a discrete list of conditions

230 PART TWO SOFTWARE ENGINEERING PRACTICE

(empty, jammed, full). To select potential candidate events, the following guide-

lines are suggested:

*% How do

• I select

potential events

for o control flow

diagram, state

diagram, or

CSPEC?

• List all sensors that are "read" by the software.

• List all interrupt conditions.

• List all "switches" that are actuated by an operator.

• List all data conditions.

• Recalling the noun/verb parse that was applied to the processing narrative,

review all "control items" as possible for control flow inputs/outputs.

• Describe the behavior of a system by identifying its states; identify how each

state is reached; and define the transitions between states.

• Focus on possible omissions—a very common error in specifying control; for

example, ask: "Is there any other way I can get to this state or exit from it?"

8.6.3 The Control Specification

The control specification (CSPEC) represents the behavior of the system (at the level

from which it has been referenced) in two different ways. 17 The CSPEC contains a

state diagram that is a sequential specification of behavior. It can also contain a pro-

gram activation table—a combinatorial specification of behavior.

Figure 8.12 depicts a preliminary state diagram 18 for the level I control flow model

for SafeHome. The diagram indicates how the system responds to events as it trav-

erses the four states defined at this level. By reviewing the state diagram, a software

engineer can determine the behavior of the system and, more importantly, can as-

certain whether there are "holes" in the specified behavior.

For example, the state diagram (Figure 8. 12) indicates that the transitions from the

Idle state can occur if the system is reset, activated, or powered off. If the system is

activated (i.e., alarm system is turned on), a transition to the MonitormgSystemStatus

state occurs, display messages are changed as shown, and the process monitorAnd-

ControlSystem is invoked. Two transitions occur out of the MonitoringSystemStacus

state—(1) when the system is deactivated a transition occurs back to the Idle state;

(2) when a sensor is triggered a transition to theActingOnAlarm state occurs. All tran-

sitions and the content of all states are considered during the review.

The CSPEC describes the behavior ofthe system, but it gives us no information about

the inner working of the processes that are activated as a result of this behavior. The

modeling notation that provides this information is discussed in Section 8.6.4.

1 7 Additional behavioral modeling notation is presented later in this chapter.

18 The state diagram notation used here conforms to UML notation. A "state transition diagram" is

available in structured analysis, but the UML format is superior in information content and repre-

sentation.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 231

State diagram for SaieHome security function

sensorTriggered/

restartTimer

SafeHome

,. Data Flow Modeling

JJ The scene: Jamie's cubicle, after (fie

last requirements gathering meeting has concluded.

The players: Jamie, Vinod, and Ed—all members of

the SaieHome software engineering team.

The conversation:

(Jamie has sketched out the models shown in Figures 8.9

through 8.12 and is showing them to Ed and Vinod.)

Jamie: I took a software engineering course in college,

and they taught us this stuff. The prof said it's a bit old

fashioned, but you know what? It helps me to clarify

things.

Ed: That's cool. But I don't see any classes or objects here.

Jamie: No . . . this is just a flow model with a little

behavioral stuff thrown in.

Vinod: So these DFDs represent an l-P-O view of the

software, right?

Ed: l-P-O?

Vinod: Input-process-output. The DFDs are actually

pretty intuitive . . . if you look at 'em for a moment, they

show how data objects flow through the system and get

transformed as they go.

Ed: Looks like we could convert every bubble into an

executable component ... at least at the lowest level of

the DFD.

Jamie: That's the cool part, you can. In fact there's a

way to translate the DFDs into a design architecture.

Ed: Really?

Jamie: Yeah, but first we've got to develop a complete

analysis model, and this isn't it.

232 PART TWO SOFTWARE ENGINEERING PRACTICE

Vinod: Well, it's a first step, but we're going to hove to

address class-based elements and also behavior aspects,

although this state diagram does some of that.

Ed: We've got a lot of work to do and not much time to

do it.

(Doug—the software engineering manager—walks info

the cubical.)

Doug: So the next few days will be spent developing the

analysis model, huh?

Jamie (looking proud): We've already begun.

Doug: Good, we've got a lot of work to do and not

much time to do it.

(The three software engineers look at one another and

smile.)

*2
"V
POINT

The PSPEC is o "mini-

specificotion" for each

transform at the lowest

refined level of a DFO.

8.6.4 The Process Specification

The process specification (PSPEC) is used to describe all flow model processes that ap-

pear at the final level of refinement. The content of the process specification can in-

clude narrative text, a program design language (PDL) description 19 of the process

algorithm, mathematical equations, tables, diagrams, or charts. By providing a

PSPEC to accompany each bubble in the flow model, the software engineer creates

a "mini-spec" that can serve as a guide for design of the software component that

will implement the process.

To illustrate the use of the PSPEC, consider the process password transform repre-

sented in the flow model for SafeHome (Figure 8.10). The PSPEC for this function

might take the form:

PSPEC: process password (at control panel). The process password transform per-

forms password validation at the control panel for the SafeHome security function.

Process password receives a four-digit password from the interact with user function . The

password is first compared to the master password stored within the system. If the mas-

ter password matches, [valid id message = true] is passed to the message and status dis-

play function. If the master password does not match, the four digits are compared to a

table of secondary passwords (these may be assigned to house guests and/or workers

who require entry to the home when the owner is not present). If the password matches

an entry within the table, [valid id message = true] is passed to the message and status

displayfunction. If there is no match, [valid id message = false] is passed to the message

and status display function.

If additional algorithmic detail is desired at this stage, a program design language

representation may also be included as part of the PSPEC. However, many believe

that the PDL version should be postponed until component design commences.

1 9 Program design language (PDL) mixes programming language syntax with narrative text to provide

procedural design detail. PDL is discussed in Chapter 1 1

.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 233

Software Tools

Structured Analysis

Objective: Structured analysis tools allow a

software engineer to create data models, flow

models, and behavioral models in a manner that enables

consistency and continuity checking and easy editing and

extension. Models created using these tools provide the

software engineer with insight into the analysis

representation and help to eliminate errors before they

propagate into design, or worse, into implementation itself.

Mechanics: Tools in this category use a "data

dictionary" as the central database for the description of

all data objects. Once entries in the dictionary are

defined, entity-relationship diagrams can be created and

object hierarchies can be developed. Data flow

diagramming features allow easy creation of this

graphical model and also provide features for the creation

of PSPECs and CSPECs. Analysis tools also enable the

software engineer to create behavioral models using the

state diagram os the operative notation.

\
Representative Tools20

AxiomSys, developed by STG, Inc. (www.stgcase.com),

provides a complete structure analysis tools suite

including Hatley-Pirbhai extensions for the modeling of

real-time systems.

MacA&D, WinA&D developed by Excel Software

(www.excelsoftware.com), provides a set of simple and

inexpensive analysis and design tools for Macs and

Windows machines.

MetaCASE Workbench, developed by MetaCase

Consulting (www.metacase.com), is a metatool used to

define an analysis or design method (including

structured analysis): its concepts, rules, notations, and

generators.

System Architect, developed by Popkin Software

(www.popkin.com), provides a broad range of

analysis and design tools including tools for data

modeling and structured analysis.

8.7 Class-Based Modeling

How do we go about developing the class-based elements of an analysis model-

classes and objects, attributes, operations, packages, CRC models, and collaboration

diagrams? The sections that follow present a series of informal guidelines that will

assist in their identification and representation.

8.7.1 Identifying Analysis Classes

If you look around a room, there is a set of physical objects that can be easily iden-

tified, classified, and defined (in terms of attributes and operations). But when you

"look around" the problem space of a software application, classes (and objects) may

be more difficult to comprehend.

“The really hard problem is discovering what are the right objects [classes] in the first place."

Cart Argila

We can begin to identify classes by examining the problem statement or (using the

terminology applied earlier in this chapter) by performing a "grammatical parse" on

20 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category,

in most cases, tool names are trademarked bv their respective developers.

234 PARI TWO SOFTWARE ENGINEERING PRACTICE

the use-cases or processing narratives developed for the system to be built. Classes

are determined by underlining each noun or noun clause and entering it into a simple

table. Synonyms should be noted. If the class is required to implement a solution, then

it is part of the solution space; otherwise, if a class is necessary only to describe a so-

lution, it is part of the problem space. What should we look for once all of the nouns

have been isolated’ Analysis classes manifest themselves in one of the following ways:

External entities (e.g., other systems, devices, people) that produce or

consume information to be used by a computer-based system.

Things (e.g„ reports, displays, letters, signals) that are part of the information

domain for the problem.

Occurrences or events (e.g., a property transfer or the completion of a series

of robot movements) that occur within the context of system operation.

Roles (e.g., manager, engineer, salesperson) played by people who interact

with the system.

Organizational units (e.g., division, group, team) that are relevant to an

application.

Places (e.g., manufacturing floor or loading dock) that establish the context of

the problem and the overall function of the system.

Shvctures (e.g., sensors, four-wheeled vehicles, or computers) that define a

class of objects or related classes of objects.

This categorization is but one of many that have been proposed in the literature.21

For example, Budd |BUD96] suggests a taxonomy of classes that includes producers

(sources) and consumers (sinks) of data, data managers, view or observer classes,

and helper classes.

It is also important to note what classes or objects are not. In general, a class

should never have an "imperative procedural name" [CAS89] . For example, if the de-

velopers of software for a medical imaging system defined an object with the name

Invertlmage or even Imagelnversion, they would be making a subtle mistake. The

Image obtained from the software could, of course, be a class (it is a thing that is

part of the information domain). Inversion of the image is an operation that is ap-

plied to the class. It is likely that inversionf) would be defined as an operation for the

class Image, but it would not be defined as a separate class to connote "image

inversion." As Cashman [CAS89] states: "the intent of object-orientation is to encap-

sulate, but still keep separate, data and operations on the data."

To illustrate how analysis classes might be defined during the early stages ofmod-

eling, we return to the SafeHome security function. In Section 8.6.1, we performed a

^ How do

• analysis

(lasses manifest

themselves as

elements of the

solution space?

21 Another important categorization—defining entity, boundary, and controller classes—is discussed

in Section 8.7.4.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 235

^ How do I

• determine

whether a

potential (lass

should, in fact,

become an

analysis class?

"grammatical parse" on a processing narrative
22

for the security function. Extracting

the nouns, we can propose a number of potential classes:

Potential class General classification

homeowner role or external entity

sensor extefhal entity

control panel external entity

installation occurrence

system (alios security system) thing

number, type not objects, attributes of sensor

master password thing

telephone number thing

sensor event occurrence

oudible alarm external entity

monitoring service organizational unit or external entity

The list would be continued until all nouns in the processing narrative have been

considered. Note that we call each entry in the list a potential object. We must con-

sider each further before a final decision is made.

'flosses struggle, some dosses triumph, others ore eliminated."

Mao Zedong

Coad and Yourdon [COA91] suggest six selection characteristics that should be

used as an analyst considers each potential class for inclusion in the analysis model:

1 . Retained information. The potential class will be useful during analysis only if

information about it must be remembered so that the system can function.

2. Needed services. The potential class must have a set of identifiable operations

that can change the value of its attributes in some way.

3. Multiple attributes. During requirement analysis, the focus should be on "ma-

jor" information; a class with a single attribute may, in fact, be useful during

design, but is probably better represented as an attribute of another class

during the analysis activity.

4. Common attributes. A set of attributes can be defined for the potential class,

and these attributes apply to all instances of the class.

22 It is important to note that this technique should also be used for every use-case developed as part

of the requirements gathering (elicitation) activity. That is, use-cases can be grammatically parsed

to extract potential analysis classes.

PART TWO SOFTWARE ENGINEERING PRACTICE

5. Common operations. A set of operations can be defined for the potential

class, and these operations apply to all instances of the class.

6. Essential requirements. External entities that appear in the problem space and

produce or consume information essential to the operation of any solution

for the system will almost always be defined as classes in the requirements

model.

To be considered a legitimate class for inclusion in the requirements model, a po-

tential class should satisfy all (or almost all) of these characteristics. The decision for

inclusion of potential classes in the analysis model is somewhat subjective, and later

evaluation may cause a class to be discarded or reinstated. However, the first step of

class-based modeling is the definition of classes, and decisions (even subjective

ones) must be made. With this in mind, we apply the selection characteristics to the

list of potential SafeHome classes:

Potential class

homeowner

sensor

control panel

installation

system (alias security function)

number, type

master possword

telephone number

sensor event

audible alarm

monitoring service

Characteristic number that applies

rejected: 1 , 2 fail even though 6 opplies

accepted: all apply

accepted: all apply

rejected

accepted: all apply

rejected: 3 foils, attributes of sensor

rejected: 3 fails

rejected: 3 fails

accepted: oil apply

accepted: 2, 3. 4 5, 6 apply

rejected: 1
,
2 fail even though 6 opplies

3s

POINT
Attributes are the set

of data objects that

fully define the doss

within the context of

the problem.

It should be noted that (1) the preceding list is not all-inclusive—additional classes

would have to be added to complete the model; (2) some of the rejected potential

classes will become attributes for those classes that were accepted (e g., number and

type are attributes of Sensor, and master password and telephone number may become

attributes of System); (3) different statements of the problem might cause different

"accept or reject" decisions to be made (e.g., if each homeowner had an individual

password or was identified by voice print, the Homeowner class would satisfy char-

acteristics l and 2 and would have been accepted).

8.7.2 Specifying Attributes

Attributes describe a class that has been selected for inclusion in the analysis model.

In essence, it is the attributes that define the class—that clarify what is meant by the

class in the context of the problem space.

CHAPTER 8 BUILDING THE ANALYSIS MODEL
237

To develop a meaningful set of attributes for an analysis class, a software engi-

neer can again study a use-case and select those "things” that reasonably belong

to the class. In addition, the following question should be answered tor each class:

What data items (composite and/or elementary) fully define this class in the context

of the problem at hand?

To illustrate, we consider the System class defined for SafeHome. We have noted that

the homeowner can configure the security function to reflect sensor information, alarm

response information, activation/deactivation information, identification information,

and so forth. We can represent these composite data items in the following manner.

identification information = system ID + verification phone number + system status

alarm response information = delay time + telephone number

activation/deactivation information = master password + number of allowable tnes +

temporary password

Some of the data items to the right of the equal sign could be further refined to an el-

ementary level, but for our purposes, they constitute a reasonable list of attributes

for the System class (shaded portion of Figure 8.13).

Sensors are part of the overall SafeHome system, and yet they are not listed as

data items or as attributes in Figure 8. 1 3 Sensor has already been defined as a class,

and multiple Sensor objects will be associated with the System class. In general,

we avoid defining an item as an attribute if more than one of the items is to be as-

sociated with the class.

8.7.3 Defining Operations

Operations define the behavior of an object. Although many different types of oper-

ations exist, they can generally be divided into three broad categories: (1) operations

System
Class diagram

for the system

class systemID

verificationPhoneNumber

program!

)

display!
1

reset)
j

query!

)

modify!

)

coll(

)

PART TWO SOFTWARE ENGINEERING PRACTICE238

Men you define oper-

ations for on analysis

doss, focus on

problenwriented

behavior rather than

behaviors required lor

implementabon.

that manipulate data in some way (e.g., adding, deleting, reformatting, selecting),

(2) operations that perform a computation, (3) operations that inquire about the state

of an object, and (4) operations that monitor an object for the occurrence of a con-
trolling event. These functions are accomplished by operating on attributes and/or
associations (Section 8.7.5). Therefore, an operation must have "knowledge" of the
nature of the class' attributes and associations.

As a first iteration at deriving a set of operations for an analysis class, the analyst
can again study a processing narrative (or use-case) and select those operations that

reasonably belong to the class. To accomplish this, the grammatical parse is again
studied and verbs are isolated. Some of these verbs will be legitimate operations and
can be easily connected to a specific class. For example, from the SafeHome pro-
cessing narrative presented earlier in this chapter, we see that "sensor is assigned a
number and type" or "a master password is programmed for arming and disarming
the system." These phrases indicate a number of things:

• That an assign() operation is relevant for the Sensor class.

• That a programf) operation is encapsulated by the System class.

• That armf) and disarmo are operations that apply to System class.

Upon further investigation, it is likely that the operation programf) will be divided into
a number of more specific suboperations required to configure the system. For
example, programf) implies specifying phone numbers, configuring system charac-
teristics (e g., creating the sensor table, entering alarm characteristics), and entering
password (s). But for now, we specify programf) as a single operation.

Class Models

- The scene: Ed's cubicle, as analysis

modeling begins.

The players: Jamie, Vinod, and Ed—all members of

the SafeHome software engineering team.

The conversation:

(Ed has been working to extract classes from the use-case

template for Access camera surveillance—display
camera views" [presented in an earlier sidebar in this

chapter] and is presenting the classes he has extracted to

his colleagues.)

Ed: So when the homeowner wants to pick o camera, he
or she has to pick it from a floor plan. I've defined a
FloorPlan class. Here's the diagram.

(They look at Figure 8.14.)

Jamie: So FloorPlan is a class that is put together with

walls that are composed of wall segments, doors and
windows, and also cameras; that's what those labeled

lines mean, right?

Ed: Yeah, they're called "associations." One class

is associated with another according to the associations

I've shown. [Associations are discussed in Section 8.7.5.]

Vinod: So the actual floor plan is made up of walls and
contains cameras and sensors that are placed within

those walls. How does the floor plan know where to put

those objects?

Ed: It doesn't, but the other classes do. See the attributes

under, say, WallSegment, which is used to build a
wall. The wall segment has start and stop coordinates and
the draw

() operation does the rest.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 239

Jamie: And the same goes for windows and doors.

Looks like camera has a few extra attributes.

Ed: Yeah, I need them to provide pan and zoom info.

Vinod: I have a question. Why does the camera have

an ID but the others don't?

Ed: We'll need to identify each camera for display

purposes.

Jamie: Makes sense to me, but I do have a few more

questions.

(Jamie asks questions which result in minor

modifications.)

Vinod: Do you have CRC cards for each of the classes?

If so, we ought to role play through them, just make sure

nothing has been omitted.

Ed:" I'm not quite sure how to do them.

Vinod: It's not hard, and they really pay off. I'll show you.

Class diagram for FloorPlan (see sidebar discussion)

240 PART TWO SOFTWARE ENGINEERING PRACTICE

8.7.4 Class-ResponsibilitY-Collaborcrtor (CRC) Modeling

Class-responsibility-collaborator (CRC) modeling [WIR90] provides a simple means for

identifying and organizing the classes that are relevant to system or product re-

quirements. Ambler |AMB95] describes CRC modeling in the following way:

A CRC model is really a collection of standard index cards that represent classes. The
cards are divided into three sections. Along the top of the card you write the name of the

class. In the body of the card you list the class responsibilities on the left and the collab-

orators on the right.

In reality, the CRC model may make use of actual or virtual index cards. The intent is

to develop an organized representation of classes. Responsibilities are the attributes

and operations that are relevant for the class. Stated simply, a responsibility is "any-
thing the class knows or does" [AMB95J Collaborators are those classes that are re-

quired to provide a class with the information needed to complete a responsibility.

In general, a collaboration implies either a request for information or a request for

some action.

One purpose of CRC cords is to fail eorfy, to foil often, and to foil inexpensively. It is a lot cheaper to tear up o bunch

of cards thon it would be to reorganize a large amount of source code."

C. Horstmann

A simple CRC index card for the FloorPlan class is illustrated in Figure 8. 1 5. The
list of responsibilities shown on the CRC card is preliminary and subject to additions

or modification. The classes Wall and Camera are noted next to the responsibility

that will require their collaboration.

Iff
A CRC model
index card

Class: FloorPlan

Description

Responsibility: Collaborator:
Defines floor plan name/type

Manages floor plan positioning

Scales floor plan for display

Scales floor plan for display

Incorporates walls, doors and windows Wall

Shows position of video cameras Camera

CHAPTER 8 BUILDING THE ANALYSIS MODEL 241

Classes. Basic guidelines for identifying classes and objects have been presented

earlier in this chapter. The taxonomy of class types presented in Section 8.7.1 can be

extended by considering the following categories:

WebRef
An excellent discussion

of these class types

con be found at

www.theumlcafe.

com/a0079.htm.

• Entity classes, also called model or business classes, are extracted directly

from the statement of the problem (e.g., FloorPlan and Sensor). These

classes typically represent things that are to be stored in a database and

persist throughout the duration of the application (unless they are specifically

deleted).

• Boundary classes are used to create the interface (e.g., interactive screen or

printed reports) that the user sees and interacts with as the software is

used. Entity classes contain information that is important to users, but they

do not display themselves. Boundary classes are designed with the respon-

sibility of managing the way entity objects are represented to users. For

example, a boundary class called CameraWindow would have the

responsibility of displaying surveillance camera output for the SafeHome

system.

• Controller classes manage a "unit of work" [UML03] from start to finish. That

is, controller classes can be designed to manage (1) the creation or update of

entity objects; (2) the instantiation of boundary objects as they obtain infor-

mation from entity objects; (3) complex communication between sets of

objects; and (4) validation of data communicated between objects or

between the user and the application. In general, controller classes are not

considered until design has begun.

"Objects con be classified scientifically into three major categories: those that don't work, those that break down, and

those that get lost.”

Russell Baker

What

guidelines

can be applied

for allocating

responsibilities

to classes?

Responsibilities. Basic guidelines for identifying responsibilities (attributes and

operations) have been presented in Sections 8.7.2 and 8.7.3. Wirfs-Brock and her

colleagues [WIR90] suggest five guidelines for allocating responsibilities to classes:

1 . System intelligence should be distributed across classes to best ad-

dress the needs of the problem. Every application encompasses a certain

degree of intelligence, that is, what the system knows and what it can do.

This intelligence can be distributed across classes in a number of different

ways. "Dumb" classes (those that have few responsibilities) can be modeled

to act as servants to a few "smart” classes (those having many responsibili-

ties). Although this approach makes the flow of control in a system straight-

forward, it has a few disadvantages: (a) it concentrates all intelligence within

a few classes, making changes more difficult, and (b) it tends to require more

classes, hence more development effort.

242 PART TWO SOFTWARE ENGINEERING PRACTICE

If system intelligence is more evenly distributed across the classes in an

application, each object knows about and does only a few things (that are

generally well-focused), and the cohesiveness of the system is improved.

This enhances the maintainability of the software and reduces the impact of

side effects due to change.

To determine whether system intelligence is properly distributed, the re-

sponsibilities noted on each CRC model index card should be evaluated to de-

termine if any class has an extraordinarily long list of responsibilities. This

indicates a concentration of intelligence.
2-5

In addition, the responsibilities for

each class should exhibit the same level of abstraction.

2. Each responsibility should be stated as generally as possible. This

guideline implies that general responsibilities (both attributes and operations)

should reside high in the class hierarchy (because they are generic, they will

apply to all subclasses).

3. Information and the behavior related to it should reside within the

same class. This achieves the 00 principle called encapsulation. Data and the

processes that manipulate the data should be packaged as a cohesive unit.

4. Information about one thing should be localized with a single class,

not distributed across multiple classes. A single class should take on the

responsibility for storing and manipulating a specific type of information.

This responsibility should not, in general, be shared across a number of

classes. If information is distributed, software becomes more diflicult to

maintain and more challenging to test.

5. Responsibilities should be shared among related classes, when ap-

propriate. There are many cases in which a variety of related objects must

all exhibit the same behavior at the same time. As an example, consider a

video game that must display the following classes: Player, PlayerBody,

PlayerArms, PlayerLegs, PlayerHead. Each of these classes has its own

attributes (e g., position, orientation, color, speed) and all must be updated and

displayed as the user manipulates a joystick. The responsibilities updated and

display

0

must therefore be shared by each of the objects noted Player

knows when something has changed and updated is required. It collaborates

with the other objects to achieve a new position or orientation, but each ob-

ject controls its own display.

Collaborations. Classes fulfill their responsibilities in one of two ways: (1) a class

can use its own operations to manipulate its own attributes, thereby fulfilling a par-

ticular responsibility, or (2) a class can collaborate with other classes.

23 In such cases, it may be necessary to split the class into multiple classes or complete subsystems

in order to distribute intelligence more effectively.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 243

Wirfs-Brock and her colleagues [WIR90] define collaborations in the following way:

Collaborations represent requests from a client to a server in fulfillment of a client re-

sponsibility. A collaboration is the embodiment of the contract between the client and the

server. . . .We say that an object collaborates with another object if, to fulfill a responsi-

bility, it needs to send the other object any messages. A single collaboration flows in one

direction—representing a request from the client to the server. From the client's point of

view, each of its collaborations are associated with a particular responsibility imple-

mented by the server.

POINT
If d doss connot fulfill

all of its obligations

itself, then o

collaboration is

requited.

Collaborations identify relationships between classes. When a set of classes all col-

laborate to achieve some requirement, they can be organized into a subsystem (a de-

sign issue).

Collaborations are identified by determining whether a class can fulfill each re-

sponsibility itself, if it cannot, then it needs to interact with another class. Hence, a

collaboration.

As an example, consider the SafeHome security function. As part of the activa-

tion procedure, the ControlPanel object must determine whether any sensors

are open. A responsibility named determine-sensor-statusO is defined. If sensors

are open, ControlPanel must set a status attribute to "not ready." Sensor infor-

mation can be acquired from each Sensor object. Therefore, the responsibility

determine-sensor-statusO can be fulfilled only if ControlPanel works in collabo-

ration with Sensor.

To help in the identification of collaborators, the analyst can examine three dif-

ferent generic relationships between classes [W1R90]: (1) the is-part-of relation-

ship, (2) the has-knowledge-ofrelationship, and (3) the depends-upon relationship.

Each of the three generic relationships is considered briefly in the paragraphs that

follow.

All classes that are part ofan aggregate class are connected to the aggregate class

via an is-part-ofrelationship. Consider the classes defined for the video game noted

earlier, the class PlayerBody is-part-of Player, as are PlayerArms, PlayerLegs,

and PlayerHead. In UML, these relationships are represented as the aggregation

shown in Figure 8.16.

When one class must acquire information from another class, the has-knowledge-

of relationship is established. The detennine-sensor-statusO responsibility noted ear-

lier is an example of a has-knowledge-ofrelationship.

The depends-upon relationship implies that two classes have a dependency that

is not achieved by has-knowledge-ofor is-part-of For example, PlayerHead must al-

ways be connected to PlayerBody (unless the video game is particularly violent)
,

yet

each object could exist without direct knowledge of the other. An attribute of the

PlayerHead object called center-position is determined from the center position of

PlayerBody. This information is obtained via a third object, Player, that acquires it

from PlayerBody. Hence, PlayerHead depends-upon PlayerBody.

244 PART TWO SOFTWARE ENGINEERING PRACTICE

A composite

aggregate

class

Player

T
PiayerHead PlayerBody PlayerArms PlayerLegs

In all cases, the collaborator class name is recorded on the CRC model index card

next to the responsibility that has spawned the collaboration. Therefore, the index

card contains a list of responsibilities and the corresponding collaborations that en-

able the responsibilities to be fulfilled (Figure 8.15).

When a complete CRC mode) has been developed, representatives from the cus-

tomer and software engineering organizations can review the model using the fol-

lowing approach [AMB95]:

1 . All participants in the review (of the CRC model) are given a subset of the

CRC model index cards. Cards that collaborate should be separated (i.e., no

reviewer should have two cards that collaborate).

2. All use-case scenarios (and corresponding use-case diagrams) should be or-

ganized into categories.

3. The review leader reads the use-case deliberately. As the review leader

comes to a named class, she passes a token to the person holding the corre-

sponding class index card. For example, a use-case for SafeHome contains

the following narrative:

The homeowner observes the SafeHome control panel to determine if the system is

ready for input. If the system is not ready, the homeowner must physically close

windows/doors so that the ready indicator is present. |A not-ready indicator implies

that a sensor is open, i.e., that a door or window is open.]

When the review leader comes to "control panel," in the use-case narra-

tive, the token is passed to the person holding the ControlPanel index card.

The phrase "implies that a sensor is open" requires that the index card con-

tain a responsibility that will validate this implication (the responsibility

determine- sensor-statusf) accomplishes this). Next to the responsibility on the

CHAPTER 8 BUILDING THE ANALYSIS MODEL 245

index card is the collaborator Sensor. The token is then passed to the Sen-

sor class.

4. when the token is passed, the holder of the class card is asked to describe

the responsibilities noted on the card. The group determines whether one (or

more) of the responsibilities satisfies the use-case requirement.

5. rf the responsibilities and collaborations noted on the index cards cannot ac-

commodate the use-case, modifications are made to the cards. This may in-

clude the definition of new classes (and corresponding CRC index cards) or

the specification of new or revised responsibilities or collaborations on exist-

ing cards.

This modus operandi continues until the use-case is finished. When all use-cases

have been reviewed, analysis modeling continues.

SafeHome

CRC models

1^ The scene: Ed's cubicle, os analysis

modeling continues.

The players: Vinod, and Ed—members of the

SafeHome software engineering team.

The conversation:

{Vinod has. decided to show Ed how to develop CRC
cards by showing him an example.)

Vinod: While you've been working on surveillance and

Jamie has been tied up with security, I've been working

on the home management function.

Ed: Whafs the status of that? Marketing kept changing

its mind.

Vinod: Here's the first cut use-case for the whole

function . . . we've refined it a bit, but it should give you

an overall view.

Use-case: SafeHome home management function

Narrative: We want to use the home management

interface on a PC or an Internet connection to control

electronic devices that have wireless interface

controllers. The system should allow me to turn specific

lights on and off, to control appliances that are

connected to a wireless interface, to set my heating and

air conditioning system to temperatures that I define. To

do this, I want to select the devices from a floor plan of

the house. Each device must be identified on the floor

plan. As an optional feature, I want to control all audio-

visual devices—audio, television, DVD, digital

recorders, and so forth.

With a single selection, I want to be able to set the

entire house for various situations. One is home, another

is away, a third is overnight travel, and a fourth is

extended travel. All of these situations will have settings

that will be applied to all devices. In the overnight travel

and extended travel states, the system should turn lights

on and off at random intervals (to moke it look like

someone is home) and control the heating and air

conditioning system. I should be able to override these

settings via the Internet with appropriate password

protection.

Ed: The hardware guys have got all the wireless

interfacing figured out?

Vinod (smiling): They're working on it, say it's no

biggy. Anyway, I extracted a bunch of classes for home

management, and we can use one as an example. Let's

use the HomeManagementlnterface class.

Ed: Okay . . . so the responsibilities are ... the

attributes and operations for the class, and the

collaborations are the classes that the responsibilities

point to.

Vinod: I thought you didn't understand CRC.

Ed: Maybe a little, but go ahead.

Vinod: So here's my class definition for

HomeManagementlnterface.

246 PART TWO SOFTWARE ENGINEERING PRACTICE

Attributes:

optionsPanel—provides info on buttons that enable user

to select functionality

situationPanel—provides info on buttons that enable user

to select situation

FloorPlan—same as surveillance object but this one

displays devices

devicelcons—info on icons representing lights,

appliances, HVAC, etc.

devicePanels—simulation of appliance or device control

panel; ollows control

Operations:

disployConlroll), selectConhrol(), displaySituation/l,

selectSifuationd, acceisFloorplanf), selectDevicelcon(),

displayDevicePonelO, accessDevicePanell),

Class: HomeManagementlnterface

Responsibility Collaborator

displayControl OptionsPanel (doss)

selectControl

displaySituation

selectSituation

accessFloorplan

OptionsPanel (class)

SituationPanel (class)

SituationPanel (class)

FloorPlan (class) . . .

Ed: So when the operation accessFloorplan() is invoked,

it collaborates with the FloorPlan object just like the one

we developed for surveillance. Wait, I have a description

of it here. (They look at Figure 8. 1 4.)

Vinod: Exactly. And if we wanted to review the entire

class model, we could start with this index card, then go

to the collaborator's index card, and from there to one of

the collaborator's collaborators, and so on.

Ed: Good way to find omissions or errors.

Vinod: Yep.

POINT
An association defines

a relationship between

classes. Multiplicity

defines how mony of

one class ore reloted to

how many of another

class.

® What is a

stereotype?

8.7.5 Associations and Dependencies

In many instances, two analysis classes are related to one another in some fashion,

much like two data objects may be related to one another (Section 8.3.3). In UML

these relationships are called associations. Referring back to Figure 8.14, the Floor-

Plan class is defined by identifying a set of associations between FloorPlan and two

other classes, Camera and Wall. The class Wall is associated with three classes that

allow a wall to be constructed, WallSegment, Window, and Door.

In some cases, an association may be further defined by indicating multiplicity (the

term cardinality was used earlier in this chapter). Referring to Figure 8. 14, a Wall object

is constructed from one or more WallSegment objects. In addition, the Wall object

may contain 0 or more window objects and 0 or more Door objects. These multiplic-

ity constraints are illustrated in Figure 8.17, where "one or more" is represented using

1 . . *, and "0 or more" by 0 . .
*

. In UML, the asterisk indicates an unlimited upper bound

on the range.24

In many instances, a client-server relationship exists between two analysis

classes. In such cases, a client-class depends on the server-class in some way and a

dependency relationship is established. Dependencies are defined by a stereotype. A

stereotype is an "extensibility mechanism" [ARL02] within UML that allows a software

24 Other multiplicity relations—one to one, one to many, many to many, one to a specified range with

lower and upper limits, and others—may be indicated as part ot an association.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 247

Multiplicity

Wall

Is used to build

0 .

-« Is used to build

Is used to build Q *

WallSegment Window Door

Dependencies DisplayWindow Camera

«ccce$s>>

{password}

engineer to define a special modeling element whose semantics are custom-defined.

In UML stereotypes are represented in double angle brackets (e.g., -.stereotype-).

As an illustration of a simple dependency within the SofeHome surveillance sys-

tem, a Camera object (in this case, the server-class) provides a video image to a Dis-
playWindow object (in this case, the client-class). The relationship between these

two objects is not a simple association, yet a dependency association does exist. In

a use-case written for surveillance (not shown), the modeler learns that a special

password must be provided in order to view specific camera locations. One way to

achieve this is to have Camera request a password and then grant permission to the

DisplayWindow to produce the video display. This can be represented as shown in

Figure 8.18 where .-access" implies that the use of the camera output is controlled by
a special password.

8.7.6 Analysis Packages

An important part of analysis modeling is categorization. That is, various elements
of the analysis model (e.g., use-cases, analysis classes) are categorized in a manner

248 PARI TWO SOFTWARE ENGINEERING PRACTICE

Packages
Package name

Environment j

+Tree

+landscape
+Rood
+Wall

ect

+Scene

Characters |

+Player

+Protagonist

Antagonist

+SupportingRoie

Bridge
Building
VisualErf

RulesOfTheGamel

RulesOfMovement
+ConstraintsOnAction

POINT
A package is used to

assemble o collection

of related dosses.

that packages them as a grouping—called an analysis package—that is given a rep-

resentative name.

To illustrate the use of analysis packages, consider the video game that vve intro-

duced earlier. As the analysis model for the video game is developed, a large number

of classes are derived. Some focus on the game environment—the visual scenes that

the user sees as the game is played. Classes such as Tree, Landscape, Road, Wall,

Bridge, Building, VlsualEffect, might fall within this category. Others focus on the

characters within the game, describing their physical features, actions, and con-

straints. Classes such as Player (described earlier) Protagonist, Antagonist, Sup-

portingRoles, might be defined. Still others describe the rules of the game—how a

player navigates through the environment. Classes such as Rules ofMovement and

ConstraintsOnAction are candidates here. Many other categories might exist.

These classes can be represented as analysis packages as shown in Figure 8.19.

The plus sign preceding the analysis class name in each package indicates that

the classes have public visibility and are therefore accessible from other packages.

Although they are not shown in the figure, other symbols can precede an element

within a package. A minus sign indicates that an element is hidden from all other

packages and a # symbol indicates that an element is accessible only to classes con-

tained within a given package.

8.8 Creating a Behavioral Mqbil.

^ How do I

• model the

software's

reaction to some

external event?

Class diagrams, CRC index cards, and other class-oriented models discussed in Sec-

tion 8.7 represent static elements of the analysis model. It is now time to make a

transition to the dynamic behavior of the system or product. To accomplish this, we

must represent the behavior of the system as a function of specific events and time.

CHAPTER 8 BUILDING THE ANALYSIS MODEL
249

POINT
Use-cases oie parsed

to define events. To

accomplish this, the

use-case is examined

for points of

information exchange.

The behavioral model indicates how software will respond to external events or

stimuli. To create the model, the analyst must perform the following steps:

1 . Evaluate all use-cases to fully understand the sequence of interaction within

the system.

2. identify events that drive the interaction sequence and understand how these

events relate to specific classes.

3. Create a sequence for each use-case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

Each of these steps is discussed in the sections that follow.

8.8.1 Identifying Events with the Use-Case

As we noted in Section 8.5, the use-case represents a sequence of activities that in-

volves actors and the system. In general, an event occurs whenever the system and

an actor exchange information. Recalling our earlier discussion of behavioral mod-

eling in Section 8.6.3, it is important to note that an event is not the information that

has been exchanged, but rather thefact that information has been exchanged.

A use-case is examined for points of information exchange. To illustrate, we re-

consider the use-case for a small portion of the SafeHome security function.

The hnmmwncr uses the kevoad to kev in a four-digit Password, The password is com-

pared with the valid Dasswnrd stored in the svsteriL If the password is incorrect, the CQILl

(ml panel will beeD once and reset itself for additional input. If the password is correct. •

the control panel awaits further action.

The underlined portions of the use-case scenario indicate events. An actor should be

identified for each event; the information that is exchanged should be noted; and any

conditions or constraints should be listed.

As an example of a typical event, consider the underlined use-case phrase

"homeowner uses the keypad to key in a four-digit password. In the context of the

analysis model, the object, Homeowner, 25 transmits an event to the object

ControlPanel. The event might be called password entered. The information trans-

ferred is the four digits that constitute the password, but this is not an essential part

of the behavioral model. It is important to note that some events have an explicit

impact on the flow of control of the use-case, while others have no direct impact on

the flow of control. For example, the event password entered does not explicitly

change the flow of control of the use-case, but the results of the event compare pass-

word (derived from the interaction "password is compared with the valid password

25 In this example, we assume that each user (homeowner) that interacts with SafeHome has an iden-

tifying password and is therefore a legitimate object.

250 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
The system has states

that represent specific

externally observable

behavior; a class has

stotes that represent

its behavior os the

system performs its

functions.

stored in the system") will have an explicit impact on the information and control

flow of the SafeHome software.

Once all events have been identified, they are allocated to the objects involved.

Objects can be responsible tor generating events (e.g., Homeowner generates the

password entered event) or recognizing events that have occurred elsewhere (e g.,

ControlPanel recognizes the binary result of the compare password event).

8.8.2 State Representations

In the context of behavioral modeling, two different characterizations of states must be
considered: (I) the state of each class as the system performs its function and (2) the

state of the system as observed from the outside as the system performs its function.26

The state of a class takes on both passive and active characteristics [CHA93], A
passive stale is simply the current status of all of an object's attributes. For example,
the passive state of the class Player (in the video game application discussed ear-

lier) would include the current position and orientation attributes of Player as well as
other features of Player that are relevant to the game (e.g., an attribute that indi-

cates magic wishes remaining) The active state of an object indicates the current status

of the object as it undergoes a continuing transformation or processing. The class

Player might have the following active states: moving, at rest, injured, being cured,

trapped, lost, and so forth. An event (sometimes called a trigger) must occur to force

an object to make a transition from one active state to another.

Two different behavioral representations are discussed in the paragraphs that

follow. The first indicates how an individual class changes state based on
external events, and the second shows the behavior of the software as a function

of time.

State diagrams for analysis classes. One component of a behavioral model is

a UML state diagram that represents active states for each class and the events (trig-

gers) that cause changes between these active states. Figure 8.20 illustrates a state

diagram for the ControlPanel class in the SafeHome security function.

Each arrow shown in Figure 8.20 represents a transition from one active state

of a class to another. The labels shown for each arrow represent the event that trig-

gers the transition. Although the active state model provides useful insight into the

"life history" of a class, it is possible to specify additional information to provide

more depth in understanding the behavior of a class. In addition to specifying the

event that causes the transition to occur, the analyst can specify a guard and an ac-

tion [CHA93], A guard is a Boolean condition that must be satisfied in order for the

26 The state diagrams presented in Section 8.6.3 depict the state of the system. Our discussion in this

section will focus on the state of each class within the analysis model.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 251

State diagram
lor the Control-

Panel class

Timer < lockedTime

transition to occur. For example, the guard for the transition from the reading

state to the "comparing state" in Figure 8.20 can be determined by examining the

use-case:

if (password Input = 4 digits) then compare to stored password

POINT
Unlike o state diagram

that represents

behavior without

noting the dosses

involved, o sequence

diagram represents

behavior by describing

how dosses move

from state to state.

In general, the guard for a transition usually depends upon the value of one or more

attributes of an object. In other words, the guard depends on the passive state ot the

object.

An action occurs concurrently with the state transition or as a consequence of it

and generally involves one or more operations (responsibilities) of the object. Foi ex-

ample, the action connected to the pas&vord entered event (Figure 8.20) is an oper-

ation named validatePassword() that accesses a password object and performs a

digit-by-digit comparison to validate the entered password.

Sequence diagrams. The second type of behavioral representation, called a se-

quence diagram in UML, indicates how events cause transitions from object to ob-

ject. Once events have been identified by examining a use-case, the modeler cieates

a sequence diagram—a representation of how events cause flow from one object to

252 PART TWO SOFTWARE ENGINEERING PRACTICE

Sequence diagram (partial) lor the SafeHome security function

another as a function of time. In essence, the sequence diagram is a shorthand ver-

sion of the use-case. It represents key classes and the events that cause behavior to

flow from class to class.

Figure 8.21 illustrates a partial sequence diagram for the SafeHome security func-

tion. Each of the arrows represents an event (derived from a use-case) and indicates

how the event channels behavior between SafeHome objects. Time is measured ver-

tically (downward), and the narrow vertical rectangles represent time spent in pro-

cessing an activity. States may be shown along a vertical timeline.

The first event, system ready, is derived from the external environment and chan-

nels behavior to a Homeowner object. The homeowner enters a password. A re-

quest lookup event is passed to System which looks up the password in a simple

database and returns a result found or notfound) to ControIPanel (now in the com-
paring state). A valid password results in a password=correct event to System which
activates sensors with a request activation event. Ultimately, control is passed back
to the homeowner with the activation successful event.

Once a complete sequence diagram has been developed, all of the events that

cause transitions between system objects can be collated into a set of input events

and output events (from an object). This information is useful in the creation of an

, effective design for the system to be built.

CHAPTER S BUILDING THE ANALYSIS MODEL 253

Generalized Analysis Modeling in

Objective: Analysis modeling tools provide

the capability to develop scenario-based

models, class-based models, and behavioral models using

UML notation.

Mechanics: Tools in this category support the full range

of UML diagrams required to build an analysis model

(these tools also support design modeling). In addition to

diagramming, tools in this category (1)
perform

consistency and correctness checks for all UML diagrams;

(2) provide links for design and code generation; (3) build

a database that enables the management and assessment

of large UML models required for complex systems.

Representative Tools27

The following tools support a full range of UML diagrams

required for analysis modeling;

Software Tools

UML

Control Center, developed by TogetberSoft

(www.togethersoft.com).

Enterprise Architect, developed by Sparx Systems

(www.sparxsystems.com.au).

Object Technology Workbench (OTW), developed by

OTW Software (www.olwsoftware.com).

PowerDesigner, developed by Sybase (www.sybase.com).

Rational Rose, developed by Rational Corporation

(www.rational.com).

System Architect, developed by Popkin Software

(www.popkin.com).

UML Studio, developed by Pragsoft Corporation

(www.pragsoft.com).

Visio, developed by Microsoft (www.microsoft.com).

Visual UML, developed by Visal Object Modelers

(www.visualuml.com).

ArgoUML, an open source tool (argouml.tigris.org).

8.9 Summary —
The objective of analysis modeling is to create a variety of representations that depict

software requirements for information, function, and behavior. To accomplish this,

two different (but potentially complementary) modeling philosophies can be applied:

structured analysis and object-oriented analysis. Structured analysis views software

as an information transformer. It assists the software engineer in identifying data ob-

jects, their relationships, and the manner in which those data objects are transformed

as they flow through software processing functions. Object-oriented analysis exam-

ines a problem domain defined as a set of use-cases in an effort to extract classes that

define the problem. Each class has a set of attributes and operations. Classes are re-

lated to one another in a variety of different ways and are modeled using UML dia-

grams. The analysis model is composed of four modeling elements: scenario-based

models, flow models, class-based models, and behavioral models.

Scenario-based models depict software requirements from the user's point of view.

The use-case—a narrative or template-driven description ofan interaction between an

actor and the software—is the primary modeling element. Derived during requirement

elicitation, the use-case defines the key steps for a specific function or interaction. The

27 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

254 PART TWO SOFTWARE ENGINEERING PRACTICE

degree of use-case fonnality and detail varies, but the end result provides necessary

input to all other analysis modeling activities. Scenarios can also be described using

an activity diagram—a flowchart-like graphical representation that depicts the pro-

cessing How within a specific scenario. Swimlane diagrams illustrate how the pro-

cessing flow is allocated to various actors or classes.

Flow models focus on the flow of data objects as they are transformed by pro-

cessing functions. Derived from structured analysis, flow models use the data flow

diagram, a modeling notation that depicts how input is transformed into output as

data objects move through a system. Each software function that transforms data is

described by a process specification or narrative. In addition to data flow, this mod-

eling element also depicts control flow—a representation that illustrates how events

affect the behavior of a system.

Class-based modeling uses information derived from scenario-based and flow-

oriented modeling elements to identify analysis classes. A grammatical parse may

be used to extract candidate classes, attributes, and operations from text-based nar-

ratives. Criteria for the definition of a class are defined. The class-responsibility-

collaborator index card can be used to define relationships between classes. In

addition, a variety of UML modeling notation can be applied to define hierarchies,

relationships, associations, aggregations, and dependencies among classes. Analy-

sis packages are used to categorize and group classes in a manner that makes them

more manageable for large systems.

The first three analysis modeling elements provide a static view of the software.

Behavioral modeling depicts dynamic behavior. The behavioral model uses input

from scenario-based, flow-oriented, and class-based elements to represent the

states of analysis classes and the system as a whole. To accomplish this, states are

identified, the events that cause a class (or the system) to make a transition from one

state to another are defined, and the actions that occur as transition is accomplished

are also identified. State diagrams and sequence diagrams are the UML notation

used for behavioral modeling.

BEfERENCES
[ABB83] Abbott, R., "Program Design by informal English Descriptions," CACM, vol. 26, no. 11,

November 1983, pp. 892-894

[AMB95] Ambler. S
,
"Using Use-Cases," Software Development, July 1995, pp 53-61

.

[ARA891 Arango, G., and R. Prieto-Diaz, "Domain Analysis: Concepts and Research Directions,"

Domain Analysis. Acquisition ofReusable InformationforSoftware Construction, (Arango, G. and
R. Prieto-Diaz, eds.) , IEEE Computer Society Press, 1 989.

[ARL02] Arlovv, and I. Neustadt, UML and the Unified Process, Addison-Wesley, 2002.

[BER93] Berard, E. V., Essayson Object Oriented Software Engineering, Addison-Wesley, 1993.

[BOO86] Booch, G., "Object-Oriented Development," IEEE Trans. Software Engineering, vol.

SE-12, no. 2. February 1986, pp. 2llff.

[BUD96] Budd, T., An Introduction to Object-Oriented Programming, 2nd ed., Addison-Wesley,

1996.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 255

[CAS891 Cashman, M., "Object-Oriented Domain Analysis," ACM Sofhbare Engineering Notes,

vol. 14, no. 6, October 1989, p. 67.

[CHA93] de Champeaux, D„ D. Lea, and P. Faure, Object-Oriented System Development. Addison-

Wesley, 1993.

[CHE77] Chen, P, The Entity-Relationship Approach to Logical Database Design, QED Information

Systems, 1977.

[COA9
1 J

Coad, P„ and E. Yourdon, Object-Oriented Analysis, 2nd ed„ Prentice-Hall, 1991

[COCOl] Cockburn, A., Writing Effective Use Cases, Addison-Wesley, 2001.

(DAV93| Davis, A., Software Requirements: Objects, Functions and states, Prentice-Hall, 1 993.

[DEM79j DeMarco, T., Structured Analysis and System Specification, Prentice-Hall, 1979.

[FlR93j Firesmith, D. G., Object-Oriented Requirements Analysis and Logical Design, Wiley, 1993,

[I.ET03] Lethbridge, T., personal communication on domain analysis, May, 2003

IOMG03] Object Management Group, OMG Unified Modeling Language Specification, version 1 .5,

March 2003, available from http://www.rational.com/uml/ resources/documentation/.

[SCH02] Schmuller, J., Teach YourselfUML in 24 Hours, 2nd ed.. SAMS Publishing, 2002.

[SCH98] Schneider, G., and J. Winters, Applying Use Cases, Addison-Wesley, 1 998.

(STR88J Stroustrup, B., "What Is Object-Oriented Programming?" IEEE Software, vol. 5, no. 3,

May 1988, pp. 10-20.

[TAY90] Taylor, D. A., Object-Oriented Technology: A Managers Guide, Addison-Wesley, 1990.

[THA00] Thalheim, B„ Entity Relationship Modeling, Springer-Verlag, 2000.

[TIL93J Tillmann, G„ A Practical Guide to Logical Data Modeling, McGraw-Hill, 1993.

[UML03] The UML Cafe, "Customers Don't Print Themselves," available at http://www.

theumlcafe.com/a0079.htm, May, 2003.

[WIR901 Wirfs-Brock, R B. Wilkerson, and L. Weiner. Designing Object-Oriented Software,

Prentice-Hall, 1990.

Problems and Points to Ponder

8. 1 . m a few sentences, tty' to describe the primary differences between structured analysis and

object-oriented analysis.

8 .2 . Is it possible to develop an effective analysis model without developing all four elements

shown in Figure 8.3? Explain.

8 .3 . Is it possible to begin coding immediately after an analysis model has been created? Ex-

plain your answer and then argue the counterpoint.

8 .4 . What is the purpose of domain analysis? How is it related to the concept of requirements

patterns?

8 .5 . An analysis rule of thumb is that the model "should focus on requirements that are visible

within the problem or business domain / What types of requirements are no; visible in these do-

mains? Provide a few examples.

8 .6 . You have been asked to build one of the following systems:

a. A network-based course registration system for your university.

b. A Web-based order-processing system for a computer store.

c. A simple invoicing system for a small business.

d. Software that replaces a Rolodex and is built into a wireless phone.

e. An automated cookbook that is built into an electric range or microwave.

Select the system that is of interest to you and describe data objects, relationships, and attrib-

utes.

8 . 7 . Draw a context-level model (level 0 DFD) for one of the five systems that are listed in Prob-

lem 8.6. Write a context-ievel processing narrative for the system.

256 PART TWO SOFTWARE ENGINEERING PRACTICE

8 .8 . What is an analysis package, and how might it be used?

8 .9 . Develop CSPECs and PSPECs for the system you selected in Problem 8.6. Try to make your

model as complete as possible.

8. to. The department of public works for a large city has decided to develop a Web-based pot-

hole tracking and repair system (PHTRS). A description follows:

Citizens can log onto a Web site and report the location and severity of potholes. As pot-

holes are reported they are logged within a "public works department repair system" and

are assigned an identifying number, stored by street address, size (on a scale of 1 to 10),

location (middle, curb, etc.), district (determined from street address), and repair priority

(determined from the size of the pothole). Work order data are associated with each pot-

hole and include pothole location and size, repair crew identifying number, number of

people on a crew, equipment assigned, hours applied to repair, hole status (work in

progress, repaired, temporary repair, not repaired), amount of filler material used, and cost

of repair (computed from hours applied, number of people, material
,
and equipment used)

.

Finally, a damage file is created to hold information about reported damage due to the pot-

hole and includes the citizen's name, address, phone number, type of damage, dollar

amount ofdamage. PHTRS is a Web-based system; all queries are to be made interactively.

Using structured analysis notation, develop an analysis model for PHTRS.

8.1

1

. Describe the object-oriented terms encapsulation and inheritance

8 . 12 . Using the context-level DFD developed in Problem 8.7, develop level 1 and level 2 data

flow diagrams. Use a "grammatical parse" on the context-level processing narrative to get your-

self started. Remember to specify all information flow by labeling all arrows between bubbles.

Use meaningful names for each transform.

8 . 13 . How does a state diagram for analysis classes differ from the state diagrams presented

for the complete system?

8 . 14 . Develop a class model for the PHTRS system introduced in Problem 8.10.

8 . 15 . Develop a complete set of CRC model index cards for the PHTRS system introduced in

Problem 8.10.

8 . 16 . Conduct a review of the CRC index cards with your colleagues. How many additional

classes, responsibilities, and collaborators were added as a consequence of the review?

8 . 17 . Describe the difference between an association and a dependency for an analysis class.

8 . 18 . Draw a UML use-case diagram for the PHTRS system introduced in Problem 8.10. You'll

have to make a number of assumptions about the manner in which a user interacts with this

system.

8 . 19 . Write a template-based use-case for the SafeHome home management system described

informally in the sidebar following Section 8.7.4.

Further
Dozens ofbooks have been published on structured analysis. Most cover the subject adequately,

but only a few do a truly excellent job. DeMarco and Plauger (Structured Analysis and System

Specification, Pearson, 1985) is a classic that remains a good introduction to the basic notation.

Books by Kendall and Kendall (Systems Analysis and Design, fifth edition, Prentice-Hall, 2002)

and Hoffer et al. (Modem Systems Analysis and Design, Addison-Wesley, third edition., 2001) are

worthwhile references. Yourdon's book (Modem Structured Analysis, Yourdon-Press. 1989) on

the subject remains among the most comprehensive coverage published to date.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 257

Allen (Data Modelingfor Everyone, Wrox Press, 2002), Simpson and Witt (Data Modeling Es-

sentials, second edition, Coriolis Group, 2000) Reingruberand Gregory (Data Modeling Handbook,

Wiley, 1 995) present detailed tutorials for creating industry-quality data models. An interesting

book by Hay (Data Modeling Patterns, Dorset House, 1995) presents typical data mode! patterns

that are encountered in many different businesses. A detailed treatment of behavioral modeling

can be found in Kowal (Behavior Models: Specifying User's Expectations, Prentice-Hall, 1992).

Use-cases form the foundation of object-oriented analysis. Books by Bittner and Spence (Use

Case Modeling, Addison-Wesley, 2002), Cockbum [COC01], Armour and Miller (Advanced Use-

Case Modeling: Software Systems, Addison-Wesley, 2000), and Rosenberg and Scott (Use-Case Dri-

ven Object Modeling with UML: A Practical Approach, Addison-Wesley, 1999) provide worthwhile

guidance in the creation and use of this important requirements elicitation and representation

mechanism.

Worthwhile discussions of UML have been written by Arlow and Neustadt [ARL02]

,

Schmulier [SCH02], Fowler and Scott (UML Distilled, second edition, Addison-Wesley. 1999),

Booch and his colleagues (The UML User Guide, Addison-Wesley, 1998), and Rumbaugh and his

colleagues (The Unified Modeling Language Reference Manual, Addison-Wesley, 1998).

The underlying analysis and design methods that support the Unified Process are discussed by

Larman (Applying UML and Patterns: An Introduction to Object-OrientedAnalysis and Design and the

Unified Process, second edition, Prentice-Hall, 2001), Dennis and his colleagues (System Analysis

and Design: An Object-Oriented Approach with UML, Wiley, 2001), and Rosenberg and Scott (Use-

Case Driven Object Modeling with UML, Addison-Wesley, 1 999) . Balcer and Mellor (Executable UML:

A Foundationfor Model Driven Architecture, Addison-Wesley, 2002) discuss the overall semantics

of UML, the models that can be created, and a way to consider UML as an executable language.

Starr (Executable UML: How to Build Class Models, Prentice-Hall, 2001
)
provides useful guidelines

and detailed suggestions for creating effective analysis and design classes.

A wide variety of information sources on analysis modeling are available on the Internet. An
up-to-date list of World Wide Web references that are relevant to analysis modeling can be

found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Design
Engineering

Key
Concepts
abstraction

architecture

design classes

model elements

quality

functional

independence

information hiding

modularity

patterns

refactoring

refinement

D esign engineering encompasses the set of principles, concepts, and prac-

tices that lead to the development of a high-quality system or product. De-

sign principles (discussed in Chapter 5) establish an overriding philosophy

that guides the designer in the work that is performed. Design concepts must be

understood before the mechanics ofdesign practice are applied, and design prac-

tice itself leads to the creation of various representations of the software that

serve as a guide for the construction activity that follows.

Design engineering is not a commonly used phrase in the software engineering

context. And yet, it should be. Design is a core engineering activity. In the early

1 990s Mitch Kapor, the creator of Lotus 1 -2-3, presented a ' software design man-

ifesto" in Dr. Dobbs Journal. He said:

What is design? It's where you stand with a foot in two worlds—the world of tech-

nology and the world of people and human purposes—and you try to bring the two

together. .

.

The Roman architecture critic Vitruvius advanced the notion that well-designed

buildings were those which exhibited firmness, commodity, and delight. The same

might be said of good software Firmness: A program should not have any bugs that

inhibit its function. Commodity.- A program should be suitable for the purposes for

which it was intended. Delight: The experience of using the program should be a plea-

- surable one. Here we have the beginnings of a theory of design for software.

What is ft? Design is what virtu-

ally every engineer wants to-do. It is

the place where creativity rules

—

where customer requirements, busi-

ness needs, and technical considerations all

come together in the formulation of a product or

system. Design creates a representation or

model of the software, but unlike the analysis

model (that focuses on describing required data,

function, and behavior), the design model pro-

vides detail about software data structures, ar-

chitecture, interfaces, and components that are

necessary to implement the system.

Who does it? Software engineers conduct each

of the design tasks.

Why is it important? Design allows a software

engineer to model the system or'product that is

to be built. This model can be assessed for qual-

ity and improved before code is generated, tests

are conducted, and end-users become involved

in large numbers. Design is the place where soft-

ware quality is established.

What are the steps? Design depicts the soft-

ware in a number of different ways. First, the ar-

chitecture of the system or product must be

represented. Then, the interfaces that connect

the software to end-users, to other systems and

devices, and to its own constituent components

are modeled. Finally, the software components

that are used to construct the system are

258

259CHAPTER 9 DESIGN ENGINEERING

desfgBip Each of these views represents a dif-

ferent aesign action, but all must conform to a set

of basic design concepts that guide all software

design work.

S the work product? A design model
that: encompasses architectural, interface,

component-level, and deployment representa-

tions is the primary work product that is pro-

duced during software design.

How do I ensure that I've done it right?
The design model is assessed by the software

team in an effort to determine whether it con-

tains errors, inconsistencies, or omissions;

whether better alternatives exist; and whether
the model can be implemented within the con-

straints, schedule, and cost that have been es-

tablished.

The goal of design engineering is to produce a model or representation that exhibits

firmness, commodity, and delight. To accomplish this, a designer must practice diversi-

fication and then convergence. Belady [BEL81] states that ‘diversification is the acquisi-

tion ofa repertoire of alternatives, the raw material of design: components, component
solutions, and knowledge, all contained in catalogs, textbooks, and the mind.

1

' Once this

diverse set of information is assembled, the designer must pick and choose elements
from the repertoire that meet the requirements defined by requirements engineering
(Chapter 7) and the analysis model (Chapter 8). As this occurs, alternatives are consid-

ered and rejected, and the design engineer converges on "one particular configuration

of components, and thus the creation of the final product" [BEL8
1 1

.

Diversification and convergence demand intuition and judgment. These qualities

are based on experience in building similar entities, a set of principles and/or heuris-

tics that guide the way in which the model evolves, a set of criteria that enables qual-

ity to be judged, and a process of iteration that ultimately leads to a final design
representation.

Design engineering for computer software changes continually as new methods,
better analysts, and broader understanding evolve. Even today, most software design
methodologies lack the depth, flexibility, and quantitative nature that are normally
associated with more classical engineering design disciplines. However, methods for

software design do exist, criteria for design quality are available, and design nota-
tion can be applied. In this chapter, we explore the fundamental concepts and prin-

ciples that are applicable to all software design, the elements of the design model,
and the impact of patterns on the design process. In Chapters 10, 11, and 12 we ex-

amine a variety of software design methods as they are applied to architectural, in-

terface, and component-level design.

£J

—

Des ign WITHIN THE Context of Softwar e Engineering

Software design sits at the technical kernel of software engineering and is applied

regardless of the software process model that is used. Beginning once software re-

quirements have been analyzed and modeled, software design is the last software

engineering action within the modeling activity and sets the stage for construction

(code generation and testing).

260

Design engineering

should always begin

with a consideration of

dclo—the foundation

for all other elements

of the design. After the

foundation is hid, the

architecture must be

derived. Only then,

should you perform

other design tasks.

PART TWO SOFTWARE ENGINEERING PRACTICE

1'The most common mirode of software engineering is the transition from analysis to design and design to code.

Richard Due

Each of the elements of the analysis mode! (Chapter 8) provides information that

is necessary to create the four design models required for a complete specification

of design. The flow of information during software design is illustrated in Figure 9. 1

.

The analysis model, manifested by scenario-based, class-based, flow-oriented and

behavioral elements, feed the design task. Using design notation and design meth-

ods discussed in later chapters, design produces a data/class design, an architec-

tural design, an interface design, and a component design.

The data/class design transforms analysis-class models (Chapter 8) into design

class realizations and the requisite data structures required to implement the soft-

ware. The classes and relationships defined by CRC index cards and the detailed data

content depicted by class attributes and other notation provide the basis for the data

design activity. Part of class design may occur in conjunction with the design of soft-

ware architecture. More detailed class design occurs as each software component is

designed.

The architectural design defines the relationship between major structural ele-

ments of the software, the architectural styles and design patterns that can be used

to achieve the requirements defined for the system, and the constraints that affect

Translating the analysis model into the design model

Scenerio-based
elements

Flow-oriented
elements

Use-cases - text

Use-case diagrams

Activity diagrams

Swim lane diagrams

Data flow diagrams

Control-flow diagrams

Processing narratives

Component-
level Design

^Interface Design

Ana lysis Model |
Class-based
elements

Behavioral

elements

Class diagrams State diagrams

Sequence diagrams

CRC models

Collaboration diagrams

Architectural Design

Data/Class Design

,ian Model

CHAPTER 9 DESIGN ENGINEERING 261

the way in which architectural can be implemented [SHA96]. The architectural de-

sign representation—the framework of a computer-based system—can be derived

from the system specification, the analysis model, and the interaction ofsubsystems

defined within the analysis model.

The interface design describes how the software communicates with systems that

interoperate with it, and with humans who use it. An interface implies a flow of in-

formation (e g., data and/or control) and a specific type of behavior. Therefore, us-

age scenarios and behavioral models provide much of the information required for

interface design.

The component-level design transforms structural elements of the software ar-

chitecture into a procedural description of software components. Information ob-

tained from the class-based models, flow models, and behavioral models serve as

the basis for component design.

"There are two ways of constructing a software design. One way is to make it so simple that there are obviously no

deficiencies, and the other way is to moke H so complicated that there are obviously no deficiencies. The first method

is for more difficult."

C.A.R. Hoore

During design we make decisions that will ultimately affect the success of soft-

ware construction and, as important, the ease with which software can be main-

tained. But why is design so important?

The importance of software design can be stated with a single word—quality.

Design is the place where quality is fostered in software engineering. Design pro-

vides us with representations of software that can be assessed for quality. Design

is the only way that we can accurately translate a customer's requirements into a

finished software product or system. Software design serves as the foundation for

all the software engineering and software support activities that follow. Without

design, we risk building an unstable system—one that will fail when small changes

are made; one that may be difficult to test; one whose quality cannot be assessed

until late in the software process, when time is short and many dollars have already

been spent.

9.2 Design Process and Design Quality

Software design is an iterative process through which requirements are translated

into a "blueprint" for constructing the software. Initially, the blueprint depicts a holis-

tic view of software. That is, the design is represented at a high level of abstraction—

a level that can be directly traced to the specific system objective and more detailed

data, functional, and behavioral requirements. As design iterations occur, subsequent

refinement leads to design representations at much lower levels of abstraction. These

can still be traced to requirements, but the connection is more subtle.

262 PART TWO SOFTWARE ENGINEERING PRACTICE

Throughout the design process, the quality of the evolving design is assessed with

a series of formal technical reviews or design walkthroughs discussed in Chapter 26.

McGlaughlin [MCG91] suggests three characteristics that serve as a guide for the

evaluation of a good design:

• The design must implement all of the explicit requirements contained in the

analysis model, and it must accommodate all of the implicit requirements

desired by the customer.

• The design must be a readable, understandable guide for those who generate

code and for those who test and subsequently support the software.

• The design should provide a complete picture of the software, addressing the

data, functional, and behavioral domains from an implementation perspective.

Each of these characteristics is actually a goal of the design process. But how is each

of these goals achieved?

"[W]riting a dever piece of code that works is one thing; designing something that con support a long-lasting

business is quite another."

C. Ferguson

Quality guidelines. In order to evaluate the quality of a design representation, we

must establish technical criteria for good design. Later in this chapter, we discuss de-

sign concepts that also serve as software quality criteria. For the time being, we pre-

sent the following guidelines:

What are the

• characteris-

tics of a good

design?

1 . A design should exhibit an architecture that (a) has been created using rec-

ognizable architectural styles or patterns, (b) is composed of components

that exhibit good design characteristics (these are discussed later in this

chapter), and (c) can be implemented in an evolutionary fashion, 1 thereby fa-

cilitating implementation and testing.

2. A design should be modular; that is, the software should be logically parti-

tioned into elements or subsystems.

3. A design should contain distinct representations of data, architecture, inter-

faces, and components.

4. A design should lead to data structures that are appropriate for the classes to

be implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional

characteristics.

6. A design should lead to interfaces that reduce the complexity of connections

between components and with the external environment.

I For smaller systems, design can sometimes be developed linearly

CHAPTER 9 DESIGN ENGINEERING 263

7 . A design should be derived using a repeatable method that is driven by infor-

mation obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communi-

cates its meaning.

These design guidelines are not achieved by chance. Design engineering encourages

good design through the application of fundamental design principles, systematic

methodology, and thorough review.

Assessing Design Quality—
The Formal Technical Review

Design is important because it allows a software

team to assess the quality
2
of the software before it is

implemented—at a time when errors, omissions, or

inconsistencies are easy and inexpensive to correct. But

how do we assess quality during design? The software

can t be tested because there is no executable software to

test. What to do?

During design, quality is assessed by conducting a

series of formal technical reviews (FTRs). FTRs are

discussed in detail in Chapter 26,
3
but it's worth

providing a summary of the technique at this point. An
FTR is a meeting conducted by members of the software

team. Usually two, three, or four people participate

depending on the scope of the design information to be

reviewed. Each person plays a role: the review leader

plans the meeting, sets an agenda, and then runs the

meeting; the recorder takes notes so that nothing is

missed; the producer is the person whose work iroduct

(e.g., the design of a software component) is being

reviewed. Prior to the meeting, each person on the

review teem is given a copy of the design work product

and is asked to read it, looking for errors, omissions, or

ambiguity. When the meeting commences, the intent is to

note all problems with the work product so that they can

be corrected before implementation begins. The FTR

typically lasts between 90 minutes and two hours. At the

conclusion of the FTR, the review team determines

whether further actions are required on the part of the

producer before the design work product can be

approved as part of the final design model.

"Quality isn't something you lay on top of subjects and objects like tinsel on a Christmas tree."

Robert Pirsig

Quality attributes. Hewlett-Packard [GRA87] developed a set of software quality

attributes that has been given the acronym FURPS—functionality, usability, reliabil-

ity, performance, and supportability. The FURPS quality attributes represent a target

for all software design:

• Functionality is assessed by evaluating the feature set and capabilities of the

program, the generality of the functions that are delivered, and the security of

the overall system.

2 The quality factors discussed in Chapter 1 5 can assist the review team as it assesses quality.

3 You might consider reviewing Section 26.4 at this time FTRs are a critical pan of the design process

and are an important mechanism for achieving design quality.

264 PART TWO SOFTWARE ENGINEERING PRACTICE

Software designers

tend to focus on the

problem to be solved,

lust don't forget that

the FUUPS attributes

ore always part of the

problem. They must be

considered.

• Usability is assessed by considering human factors (Chapter 12), overall

aesthetics, consistency, and documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure (MTTF), the ability to

recover from failure, and the predictability of the program.

• Performance is measured by processing speed, response time, resource

consumption, throughput, and efficiency.

• Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability—these three attributes represent a more common

term, maintainability—in addition, testability, compatibility, configurability

jthe ability to organize and control elements of the software configuration,

(Chapter 27), the ease with which a system can be installed, and the ease

with which problems can be localized.

Not every software quality attribute is weighted equally as the software design is de-

veloped. One application may stress functionality with a special emphasis on secu-

rity. Another may demand performance with particular emphasis on processing

speed. A third might focus on reliability. Regardless of the weighting, it is important

to note that these quality attributes must be considered as design commences, not

after the design is complete and construction has begun.

Generic Task Set for Design

-€HSE5&n

1

.

Examine the information domain

model and design appropriate data

structures for data objects and their attributes.

2. Using the analysis model, select an architectural style

(pattern) that is appropriate for the software.

3. Partition the analysis model into design subsystems

and allocate these subsystems within the architecture.

Be certain that each subsystem is functionally

cohesive.

Design subsystem interfaces.

Allocate analysis classes or functions to each

subsystem.

4. Create a set of design classes or components.

Translate each analysis class description into a

design class.

Check each design class against design criteria;

consider inheritance issues.

Define methods and messages associated with each

design class.

Evaluate and select design patterns for a design

class or a subsystem. <.

Review design classes and revise as required.

5. Design ony interface required with external systems

or devices.

6. Design the user interface.

Review results of task analysis.

Specify action sequence based on user scenarios.

Create behavioral model of the interface.

Define interface objects, control mechanisms.

Review the interface design and revise as required.

7. Conduct component-level design.

Specify all algorithms at a relatively low level of

abstraction.

Refine the interface of each component.

Define component-level data structures.

Review each component and correct all errors

uncovered.

8. Develop a deployment model.

CHAPTER 9 DESIGN ENGINEERING 265

As o designer, work

hard to derive both

procedural and data

abstractions that serve

the problem at band.

If they can serve an

entire domain of

problems, that's

even better.

Design Concepts

A set of fundamental software design concepts has evolved over the history of soft-

ware engineering. Although the degree of interest in each concept has vaiied ovei

the years, each has stood the test of time. Each provides the software designei with

a foundation from which more sophisticated design methods can be applied.

M. A. Jackson [JAC75] once said: "The beginning of wisdom for a [software engi-

neer] is to recognize the difference between getting a program to work, and getting

it right " Fundamental software design concepts provide the necessary framework

for "getting it right."

9.3.1 Abstraction

When we consider a modular solution to any problem, many levels ofabstraction can

be posed. At the highest -level of abstraction, a solution is stated in broad terms us-

• ing the language of the problem environment. At lower levels of abstraction, a more

detailed description of the solution is provided.

“Abstraction is one of the fundamental ways that we os bunions cope with complexity.

Grady Booch

As we move through different levels of abstraction, we work to create procedural

and data abstractions. A procedural abstraction refers to a sequence of instructions

that have a specific and limited function. The name ofprocedural abstraction implies

these functions, but specific details are suppressed. An example of a procedural ab-

straction would be the word open for a door. Open implies a long sequence of pro-

cedural steps (e.g., walk to the door, reach out and grasp knob, turn knob and pull

door, step away from moving door, etc.).
4

A data abstraction is a named collection of data that describes a data object, in the

context of the procedural abstraction open, we can define a data abstraction called

door. Like any data object, the data abstraction for door would encompass a set of

attributes that describe the door (e.g., door type, swing direction, opening mechanism,

weight, dimensions). It follows that the procedural abstraction open would make use of

information contained in the attributes of the data abstraction door.

9.3.2 Architecture

Software architecture alludes to "the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system" [SHA95a], In its sim-

plest form, architecture is the structure or organization of program components

4 it should be noted, however, that one set of operations can be replaced with another, as long as the

function implied by the procedural abstraction remains the same. Therefore, the steps required to

implement open would change dramatically if the door were automatic and attached to a sensor.

266

WebRef
An in depth discussion

of software architecture

am be found ot

www.sei.tmu.

edu/ato/otajnit.

html.

Don't just let architec-

ture happen. Ifyou do,

you'll spend the rest of

the project trying to

force fit the design.

Design architecture

explicitly.

PART TWO SOFTWARE ENGINEERING PRACTICE

(modules), the manner in which these components interact, and the structure ofdata

that are used by the components. In a broader sense, however, components can be

generalized to represent major system elements and their interactions.

"A software architecture is the development work product that gives the highest return on investment with respect to

quality, schedule, and cost."

Len Bass et aL

One goal of software design is to derive an architectural rendering of a system.

This rendering serves as a framework from which more detailed design activities are

conducted. A set of architectural patterns enable a software engineer to reuse

design-level concepts.

The architectural design can be represented using one or more of a number of dif-

ferent models [GAR95]. Structural models represent architecture as an organized col-

lection of program components. Framework models increase the level of design

abstraction by attempting to identify repeatable architectural design frameworks
that are encountered in similar types of applications. Dynamic models address the be-

havioral aspects of the program architecture, indicating how the structure or system
configuration may change as a function of external events. Process models focus on
the design of the business or technical process that the system must accommodate.
Finally,Junctional models can be used to represent the functional hierarchy of a sys-

tem. Architectural design is discussed in Chapter 10.

9.3.3 Patterns

Brad Appleton defines a design pattern in the following manner: "A pattern is a
named nugget of insight which conveys the essence of a proven solution to a recur-

ring problem within a certain context amidst competing concerns" [APP98], Stated

in another way, a design pattern describes a design structure that solves a particular

design problem within a specific context and amid "forces" that may have an impact
on the manner in which the pattern is applied and used.

"Each pattern describes o problem which occurs over and over again In our environment, and then describes the core

of the solution to that problem, in such a woy that you can use this solution a million rimes over, without ever doing it

the some way twice."

Christopher Alexander

The intent of each design pattern is to provide a description that enables a de-

signer to determine (l) whether the pattern is applicable to the current work,

(2) whether the pattern can be reused (hence, saving design time), and (3) whether
the pattern can serve as a guide for developing a similar, but functionally or struc-

turally different pattern. Design patterns are discussed in more detail in Section 9.5.

CHAPTER 9 DESIGN ENGINEERING 267

Don't overmodularize.

Jhe simplicity oi each

small module will

be overshadowed by

the complexity of

integration.

9.3.4 Modularity

Software architecture and design patterns embody modularity; that is, software is di-

vided into separately named and addressable components, sometimes called mod-

ules, that are integrated to satisfy problem requirements.

It has been stated that "modularity is the single attribute of software that allows a

program to be intellectually manageable" [MYE78], Monolithic software (i.e.
,
a large

program composed of a single module) cannot be easily grasped by a software en-

gineer. The number of control paths, span of reference, number of variables, and

overall complexity would make understanding close to impossible. To illustrate this

point, consider the following argument based on observations of human problem

solving.

Consider two problems, p\ and p2 . If the perceived complexity ofpi is greater than

the perceived complexity ofp2 ,
it follows that the effort required to solve p, is greater

than the effort required to solve p2 . As a general case, this result is intuitively obvi-

ous. It does take more time to solve a difficult problem.

It also follows that the perceived complexity of two problems when they are com-

bined is often greater than the sum of the perceived complexity when each is taken

separately. This leads to a "divide and conquer" strategy—it’s easier to solve a com-

plex problem when you break it into manageable pieces. This has important impli-

cations with regard to modularity and software. It is, in fact, an argument for

modularity.

It is possible to conclude that, if we subdivide software indefinitely, the effort

required to develop it will become negligibly small! Unfortunately, other forces

come into play, causing this conclusion to be (sadly) invalid. Referring to Figure

9.2, the effort (cost) to develop an individual software module does decrease as

the total number of modules increases. Given the same set of requirements, more

modules means smaller individual size. However, as the number of modules

grows, the effort (cost) associated with integrating the modules also grows. These

Number of modules

268

SP

POINT
The intent of

infoimotion hiding is

to hide the detoils of

doto structures and

procedural processing

behind a module

interface. Knowledge

of the details need not

be known by users of

tne module.

PART TWO SOFTWARE ENGINEERING PRACTICE

characteristics lead to a total cost or effort curve shown in the figure. There is a

number, AT, of modules that would result in minimum development cost, but we do
not have the necessary' sophistication to predict M with assurance

The curves shown in Figure 9.2 do provide useful guidance when modularity is con-

sidered. We should modularize, but care should be taken to stay in the vicinity of M.

Undermodularity or overmodularity should be avoided. But how do we know the vicin-

ity of A T? How modular should we make software? The answers to these questions re-

quire an understanding of other design concepts considered later in this chapter.

We modularize a design (and the resulting program) so that development can be

more easily planned; software increments can be defined and delivered; changes can
be more easily accommodated; testing and debugging can be conducted more effi-

ciently and long-term maintenance can be conducted without serious side effects.

9.3.5 Information Hiding

The concept of modularity leads every software designer to a fundamental question:

How do we decompose a software solution to obtain the best set of modules? The
principle of information hiding [PAR72] suggests that modules be "characterized by
design decisions that (each) hides from all others." In other words, modules should

be specified and designed so that information (algorithms and data) contained within

a module is inaccessible to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of in-

dependent modules that communicate with one another only that information nec-

essary to achieve software function. Abstraction helps to define the procedural (or

informational) entities that make up the software. Hiding defines and enforces ac-

cess constraints to both procedural detail within a module and any local data struc-

ture used by the module [ROS75].

The use of information hiding as a design criterion for modular systems provides

the greatest benefits when modifications are required during testing and later, dur-

ing software maintenance. Because most data and procedure are hidden from other

parts of the software, inadvertent errors introduced during modification are less

iikely to propagate to other locations within the software.

9.3.6 Functional Independence

The concept offunctional independence is a direct outgrowth of modularity and the

concepts of abstraction and information hiding, in landmark papers on software de-

sign Wirth [WIR71] and Parnas [PAR72) allude to refinement techniques that enhance
module independence. Later work by Stevens, Myers, and Constantine [STE74] so-

lidified the concept.

Functional independence is achieved by developing modules with "single-

minded" function and an "aversion" to excessive interaction with other modules.

Stated another way, we want to design software so that each module addresses a

CHAPTER 9 DESIGN ENGINEERING 269

POINT
Cohesion is o

qualitative indication of

the degree to which a

module focuses on just

one thing.

POINT
Coupling is o

qualitative indication of

the degree to which o

module is connected to

other modules ond to

the outside world.

There is a tendency to

move immediately to

lull detail, skipping

refinement steps. This

leads to errors and

omissions and mokes

the design much more

difficult to review.

Perform stepwise

refinement.

specific subfunction of requirements and has a simple interface when viewed from

other parts of the program structure. It is fair to ask why independence is important.

Software with effective modularity, that is, independent modules, is easier to de

velop because function may be compartmentalized and interfaces are simplified

(consider the ramifications when development is conducted by a team). Independent

modules are easier to maintain (and test) because secondary' effects caused by' de-

sign or code modification are limited, error propagation is reduced, and reusable

modules are possible. To summarize, functional independence is a key to good de-

sign, and design is the key to software quality.

independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module. Coupling is

an indication of the relative interdependence among modules.

Cohesion is a natural extension of the information hiding concept described in

Section 9.3.5. A cohesive module perfonns a single task, requiring little interaction

with other components in other parts of a program. Stated simply, a cohesive mod-

ule should (ideally) do just one thing.

Coupling is an indication of interconnection among modules in a software struc-

ture. Coupling depends on the interface complexity between modules, the point at

which entry or reference is made to a module, and what data pass across the inter-

face. In software design, we strive for lowest possible coupling. Simple connectivity

among modules results in software that is easier to understand and less prone to a

"ripple effect" [STE741, caused when errors occur at one location and propagate

throughout a system.

9.3.7 Refinement

Stepwise refinement is a top-down design strategy originally' proposed by Niklaus

Wirth [WIR7 1] . A program is developed by successively refining levels of proce-

dural detail. A hierarchy is developed by decomposing a macroscopic statement

of function (a procedural abstraction) in a stepwise fashion until programming

language statements are reached.

Refinement is actually a process of elaboration. We begin with a statement of func-

tion (or description of data) that is defined at a high level of abstraction. That is, the

statement describes function or information conceptually but provides no informa-

tion about the internal workings of the function or the internal structure of the data.

Refinement causes the designer to elaborate on the original statement, providing

more and more detail as each successive refinement (elaboration) occurs.

Abstraction and refinement are complementary concepts. Abstraction enables

a designer to specify procedure and data and yet suppress low-level details.

Refinement helps the designer to reveal low-level details as design progresses.

Both concepts aid the designer in creating a complete design model as the design

evolves.

270 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
Excellent resources ‘or

refactoring cm be

found at

www.refoctoring.

com.

“I have not failed. I've just found 10,000 ways that won't work."

Thomas Edison

9.3.8 Refactoring

An important design activity suggested for many agile methods (Chapter 4), refac-

toring is a reorganization technique that simplifies the design, (or code) of a compo-
nent without changing its function or behavior. Fowler [FOW99] defines refactoring

in the following manner: "Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of the code (design) yet im-

proves its internal structure."

When software is refactored, the existing design is examined for redundancy, un-
used design elements, inefficient or unnecessary algorithms, poorly constructed or

inappropriate data structures, or any other design failure that can be corrected to

yield a better design. For example, a first design iteration might yield a component
that exhibits low cohesion (i.e., it performs three functions that have only limited re-

lationship to one another). The designer may decide that the component should be
refactored into three separate components, each exhibiting high cohesion. The re-

sult will be software that is easier to integrate, easier to test, and easier to maintain.

design modeling begins.

The players: Vinod, Jcmie, and Ed—members of the

SafeHome software engineering team . Also, Shakira, a
new member of the team.

The conversation:

(All four team members have just returned from a
morning seminar, entitled "Applying Basic Design

Concepts," offered by a local computer science

professor.)

Vinod: Did you get anything out of the seminar?

Ed: Knew most of the stuff, but it's not a bad idea to hair

it again, I suppose.

Jamie: When I was an undergrad CS major, i never

really understood why information hiding was as

important as they say it is.

Vinod: Because . bottom line . . . it's a technique for

reducing error propagation in a program. Actually,

functional independence also accomplishes the same
tiling.

Shakira: I wasn't a CS grad, so a lot of the stuff the

instructor mentioned is new to me. I can generate good
code and fast I don't see why this stuff is so important.

Jamie: I've seen your work, Shak, and you know what,

you do a lot of this stuff naturally . . . that's why your

designs and code work.

Shakira (smiling): Well, I always do try to partition

the code, keep it focused on one thing, keep Interfaces

simple and constrained, reuse code whenever I can . . .

that sort of thing.

Ed: Modularity, functional independence, hiding,

patterns . . . see.

Jamie: I still remember the very first programming

course I took . . . they taugnr us to refine the code
iteratively.

Vinod: Same thing can tie applied to design, you know.

Ed: The only concept I hadn't heard of before was
"refactoring."

Shakira: That's used in Extreme Programming, I think

she said.

CHAPTER 9 DESIGN ENGINEERING 271

Ed: Yep. It's not a whole lot different than refinement, Vinod: I agree. But as important, let's all commit to think

only you do it after the design or code is completed. about them as we develop the design.

Kind of an optimization pass through the software, if

you ask me.

Jamie: Let's get back to SafeHome design. I think we

should put these concepts on our review checklist as we

develop the design model for SafeHome.

9.3.9 Design Classes

In Chapter 8, we noted that the analysis model defines a complete set of analysis

classes. Each of these classes describes some element of the problem domain, fo-

cusing on aspects of the problem that are user or customer visible. The level of ab-

straction of an analysis class is relatively high.

As the design model evolves, the software team must define a set ofdesign classes

that (1) refine the analysis classes by providing design detail that will enable the

classes to be implemented, and (2) create a new set of design classes that implement

a software infrastructure to support the business solution. Five different types of de-

sign classes, each representing a different layer of the design architecture are sug-

gested [AMB01]:

Whot types

'% of dosses

does the designer

create?

As the design model evolves, the software team must develop a complete set of at-

tributes and operations for each design class. The level of abstraction is reduced as

each analysis class is transformed into a design representation. That is. analysis

• User interface classes define all abstractions that are necessary for human -

computer interaction (HC1). In many cases, HCI occurs within the context of a

metaphor (e.g„ a checkbook, an order form, a fax machine) and the design

classes for the interface may be visual representations of the elements of the

metaphor.

• Business domain classes are often refinements of the analysis classes defined

earlier. The classes identify the attributes and services (methods) that are

required to implement some element of the business domain.
‘

• Process classes implement lower-level business abstractions required to fully

manage the business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist

beyond the execution of the software.

• System classes implement software management and control functions that

enable the system to operate and communicate within its computing envi-

ronment and with the outside world.

272 PART TWO SOFTWARE ENGINEERING PRACTICE

7 What is

• a "well-

formed" design

class?

classes represent objects (and associated services that are applied to them) using the

jargon of the business domain. Design classes present significantly more technical

detail as a guide for implementation.

Ariow and N'eustadt [ARL02] suggest that each design class be reviewed to en-

sure that it is "well-formed.'' They define four characteristics of a well-formed de-

sign class:

Complete and sufficient. A design class should be the complete encapsula-

tion of all attributes and methods that can reasonably be expected (based on a

knowledgeable interpretation of the class name) to exist for the class. For exam-

ple, the class Scene defined for video editing software is complete only if it con-

tains all attributes and methods that can reasonably be associated with the

creation of a video scene. Sufficiency ensures that the design class contains only

those methods that are sufficient to achieve the intent of the class, no more and

no less.

Primitiveness. Methods associated with a design class should be focused on

accomplishing one service for the class. Once the service has been implemented

with a method, the class should not provide another way to accomplish the same
thing. For example, the class VideoClip of the video editing software might have

attributes start-point and end-point to indicate the start and end points of the clip

(note that the raw video loaded into the system may be longer than the clip that is

used). The methods, setStartPomt() and setEndPoint() provide the only means for es-

tablishing start and end points for the clip.

High cohesion. A cohesive design class has a small, focused set of responsi-

bilities and single-mindedly applies attributes and methods to implement those

responsibilities. For example, the class VideoClip of the video editing software

might contain a set of methods for editing the video clip. As long as each

method focuses solely on attributes associated with the video dip, cohesion is

maintained.

Low coupling. Within the design model, it is necessary for design classes to

collaborate with one another. However, collaboration should be kept to an accept-

able minimum. If a design model is highly coupled (all design classes collaborate

with all other design classes) the system is difficult to implement, to test, and to

maintain over time. In general, design classes within a subsystem should have only

limited knowledge of classes in other subsystems. This restriction, called the Law

ofDemeter [L1E03], suggests that a method should only send messages to methods

in neighboring classes. 5

5 A less formal way of stating the Law of Demeter is "Each unit should only talk to its friends; don't

talk to strangers."

CHAPTER 9 DESIGN ENGINEERING 273

into a Design Class

SafeHome

Refining an Analysis Class

The scene: Ed's cubicle, as design

modeling continues.

The players: Vinod and Ed—members of the

SafeHome software engineering team.

The conversation:

(Ed is working on the FloorPlan class (see sidebar

discussion in Section 8.7.4 and Figure 8.14] and has

refined it for the design model.)

Ed: So you remember the FloorPlan class, right? It's

used as part of the surveillance and home management

functions.

Vinod (nodding): Yeah, I seem to recall that we used

it as part of our CRC discussions for home management.

Ed: We did. Anyway, I'm refining it for design. Want

to show how we'll actually implement the FloorPlan

class. My idea is to implement it as a set of linked lists

[a specific data structure]. So ... I had to refine the

analysis class FloorPlan (Figure 8. 1 4) and, actually,

sort of simplify it.

Vinod: The analysis class showed only things in the

problem domain, well, actually on the computer screen,

that were visible to the end-user, right?

Ed: Yep, but for the FloorPlan design class, I've got to

add some things that are implementation specific. I

needed to show that FloorPlan is an aggregation of

segments—hence the Segment class—and that the

Segment class is composed of lists for wall segments,

windows, doors, and so on. The class Camera
collaborates with FloorPlan, and obviously, there can

be many cameras in the floor plan.

Vinod: Phew, let's see a picture of this new FloorPlan

design class.

(Ed shows Vinod the drawing shown in Figure 9.3.)

Vinod: Okay, I see what you're trying to do. This allows

you to modify the floor plan easily because new items can

be added or deleted to the list—the aggregation—without

any problems.

Ed (nodding): Yeah, I think it'll work.

Vinod: So do I.

Design class

for FloorPlan

and composite

aggregation

for the class

(see sidebar

discussion)

274 PART TWO SOFTWARE ENGINEERING PRACTICE

.9_,4 The Design Model

3*

POINT
The design modei has

four mojor elements:

doto, architecture,

components, ond

interface.

The design model can be viewed in two different dimensions as illustrated in Figure 9.4.

The process dimension indicates the evolution of the design model as design tasks are

executed as part of the software process. The abstraction dimension represents the

level of detail as each element of the analysis model is transformed into a design

equivalent and then refined iteratively. Referring to the figure, the dashed line indicates

the boundary between the analysis and design models. In some cases, a clear distinc-

tion between the analysis and design models is possible. In other cases, the analysis

model slowly blends into the design and a clear distinction is less obvious.

The elements of the design model use many of the same UML diagrams that were

used in the analysis model. The difference is that these diagrams are refined and

elaborated as part of design; more implementation-specific detail is provided, and

architectural structure and style, components that reside within the architecture, and

interfaces between the components and with the outside world are all emphasized.

"Questions oboul whether design is necessary or affordable are quite beside the point: design is inevitable. The

alternative to good design is bod design, not no design at all."

Douglas Martin

Dimensions oi the design model

High

Analysis model

E

TJ

E
o

.a
<

Class diagrams
Analysis packages
CRC models
Collaboration

diagrams
Data Flow diagrams
Control'flow diagrams
Processing narratives

i

Design class

realizations

Subsystems
Collaboration

Use-cases • text

Use-case diogroms
Activity diagrams
Swim fone diogroms
Collaboration

diagrams
State diagrams
Sequence diogroms

Technical interface

diagrams Navigation design

GUI design
Activity diogroms
Sequence diogroms

1

Design model

Low

Refinements to:

Design class

realizations

Subsystems
Collaboration

diogroms

Refinements to.

Component diagrams
Design classes

Activity diagrams
Sequence diagrams

Class diagrams
Analysis packoges
CRC models
Collaboration diogroms
Data flow diagrams
Control-flow diogroms
Processing narratives

State diagrams
Sequence diagrams

tComponent diagrams

Requirements

Constraints

Interoperability

Targets and
configuration

Design class realizations

Subsystems
Collaboration diagrams
Component diogroms
Design classes

Activity diagrams
Sequence diogroms

Deployment diagrams

Architecture

elements
Interface

elements

Process dimension

Component-level
elements

Deployment-level
elements

CHAPTER 9 DESIGN ENGINEERING 275

%
POINT

A‘ the architectural

{application) level,

data design focuses on

files or data bases; ot

the component level,

dote design considers

the data structures that

ore required to

implement locol data

objects.

POINT
The architectural model

is derived from the

application domain,

the onalvsis model,

and available styles

and patterns.

It is important to mention however, that model elements noted along the hori-

zontal axis are not always developed in a sequential fashion. In most cases prelimi-

nary architectural design sets the stage and is followed by interface design and

component-level design, which often occur in parallel. The deployment model is

usually delayed until the design has been fully developed.

9.4.1 Data Design Elements

Like other software engineering activities, data design (sometimes referred to as data

architecting

)

creates a model of data and/or information that is represented at a high

level of abstraction (the customer/user's view of data). This data model is then re-

fined into progressively more implementation-specific representations that can be

processed by the computer-based system. In many software applications, the archi-

tecture of the data will have a profound influence on the architecture of the software

that must process it.

The structure of data has always been an important part of software design. At

the program component level, the design of data structures and the associated al-

gorithms required to manipulate them is essential to the creation of high-quality ap-

plications. At the application level, the translation of a data model (derived as part

of requirements engineering) into a database is pivotal to achieving the business ob-

jectives of a system. At the business level, the collection of information stored in dis-

parate databases and reorganized into a "data warehouse" enables data mining or

knowledge discovery that can have an impact on the success of the business itself.

In every case, data design plays an important role. Data design is discussed in more

detail in Chapter 10.

9.4.2 Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The

floor plan depicts the overall layout of the rooms, their size, shape, and relationship

to one another, and the doors and windows that allow movement into and out of the

rooms. The floor plan gives us an overall view of the house. Architectural design el-

ements give us an overall view of the software.

"You ton uso an eraser on the drafting table or a sledge hammer on the construction site.”

Frank Lloyd Wright

The architectural model [SHA96] is derived from three sources. (1) information

about the application domain for the software to be built; (2) specific analysis model

elements such as data flow diagrams or analysis classes, their relationships and col-

laborations for the problem at hand, and (3) the availability of architectural patterns

(Section 9.5) and styles (Chapter 10).

PART TWO SOFTWARE ENGINEERING PRACTICE276

9.4.3 Interface Design Elements

The interface design for software is the equivalent to a set of detailed drawings (and

specifications) for the doors, windows, and external utilities of a house. These draw-

ings depict the size and shape of doors and windows, the manner in which they op-

erate, the way in which utilities connections (e.g., water, electrical, gas, telephone)

come into the house and are distributed among the rooms depicted in the floor plan.

They tell us where the door bell is located, whether an intercom is to be used to an-

nounce a visitor's presence and how a security system is to be installed. In essence,

the detailed drawings (and specifications) for the doors, windows, and externa! util-

ities tell us how things and information flow into and out of the house and within the

rooms that are part of the floor plan. The interface design elements for software tell

how information flows into and out of the system and how it is communicated

among the components defined as part of the architecture.

'The publk is more familiar with bad design than good design. It is, in effect, conditioned to prefer bod design,

because that is what it lives with. The new becomes threatening, the old reassuring.'

Paul Rand

POINT
There ore three parts

to the interface design

element: Ine user

interface: interfaces to

systems external to

the application, end

interfaces to

components within the

application.

There are three important elements of interface design: (1) the user interface (UI);

(2) external interfaces to other systems, devices, networks, or other producers or

consumers of information: and (3) internal interfaces between various design com-

ponents. These interface design elements allow the software to communicate exter-

nally and enable internal communication and collaboration among the components

that populate the software architecture.

Ul design is a major software engineering action and is considered in detail in

Chapter 12. The design of a UI incorporates aesthetic elements (e.g. layout, color,

graphics, interaction mechanisms), ergonomic elements (e.g., information layout

and placement, metaphors, Ul navigation), and technical elements (e.g., UI patterns,

reusable components). In general, the UI is a unique subsystem within the overall

application architecture.

The design of external interfaces requires definitive information about the entity

to which information is sent or received. In every case, this information should be

collected during requirements engineering (Chapter 7) and verified once the inter-

face design commences.6 The design of external interfaces should incorporate error

checking and (when necessary) appropriate security features.

The design of internal interfaces is closely aligned with component-level design

(Chapter 1 1). Design realizations of analysis classes represent all operations and

the messaging schemes required to enable communication and collaboration be-

tween operations in various classes. Each message must be designed to accom-

6 It is not uncommon for interface characteristics to change with time. Therefore, a designer should

ensure that the specification for the interface is kept up-to-date.

CHAPTER 9 DESIGN ENGINEERING 277

UML interface

representation

for Control-

Panel

WirelessPDA

w

MobilePhone

ControlPanel

LCDdispiay

LEDindicators

keyPadCharacteristics

speaker

wirelesslnierface

readKeyStroke(

)

decodeKey)

)

displayStatusj

)

lightLEDsj

)

sendControlMsgj

)

KeyPad

«lnterface»
KeyPad

readKeystrokef

)

decodeKey)

)

WebRef

Extremely valuable

information on Ul

design con be found at

www.useit.com.

modate the requisite information transfer and the specific functional requirements

of the operation that has been requested.

In some cases, an interface is modeled in much the same way as a class. UML de-

fines an interface in the following manner [OMGOl]: "An interface is a specifier for

the externally-visible [public] operations of a class, component, or other classifier

(including subsystems) without specification of internal structure." Stated more sim-

ply, an interface is a set of operations that describes some part of the behavior of a

class and provides access to those operations.

For example, the SafeHome security function makes use of a control panel that al-

lows a homeowner to control certain aspects of the security function. In an advanced

version of the system, control panel functions may be implemented via a wireless

PDA or a mobile phone.

The ControlPanel class (Figure 9.5) provides the behavior associated with a key-

pad, and, therefore, it must implement operations readKeystroked and decodeKeyQ. If

these operations are to be provided to other classes (in this case, WirelessPDA and

MobilePhone), it is useful to define an interface as shown in the figure. The inter-

face, named KeyPad, is shown as an «interface» stereotype or as a small, labeled

circle connected to the class with a line. The interface is defined with no attributes

and the set of operations that are necessary to achieve the behavior of a keypad.

"A common mistake thot people moke when trying to design something completely foolproof wos to underestimate

the ingenuity of complete fools."

Douglas Adams

278 PART TWO SOFTWARE ENGINEERING PRACTICE

The dashed line with an open triangle at its end (Figure 9.5) indicates that the

ControlPanel class provides KeyPad operations as part of its behavior. In UML, this

is characterized as a realization. That is, part of the behavior of ControlPanel will

be implemented by realizing KeyPad operations. These operations will be provided

to other classes that access the interface.

9.4.4 Component-Level Design Elements

The component-level design for software is equivalent to a set of detailed drawings

(and specifications) for each room in a house. These drawings depict wiring and

plumbing within each room, the location of electrical receptacles and switches,

faucets, sinks, showers, tubs, drains, cabinets, and closets. They also describe the

flooring to be used, the moldings to be applied, and every other detail associated

with a room. The component-level design for software fully describes the internal

detail of each software component. To accomplish this, the component-level design

defines data structures for all local data objects and algorithmic detail for all pro-

cessing that occurs within a component and an interface that allows access to all

component operations (behaviors).

"The details are not the details. They make the design."

Charles Tames

Within the context of object-oriented software engineering, a component is rep-

resented in UML diagrammatic form as shown in Figure 9.6. In this figure, a compo-

nent named SensorManagement (part of the SafeHome security function) is

represented. A dashed arrow connects the component to a class named Sensor that

is assigned to it. The SensorManagement component performs all functions asso-

ciated with SafeHome sensors including monitoring and configuring them. Further

discussion of component diagrams is presented in Chapter 1 1

.

The design details of a component can be modeled at many different levels of ab-

straction. An activity diagram can be used to represent processing logic. Detailed

procedural flow for a component can be represented using either pseudocode (a pro-

gramming language-like representation described in Chapter 1 1) or some diagram-

matic form (e.g., an activity diagram or flowchart).

UML
component
diagram tor

SensorMan-
agement

insorManagement Sensor

CHAPTER 9 DESIGN ENGINEERING 279

POINT
Deployment diograms

begin in descriptor

form, where the

deployment

environment is

described in general

terms. Later, instance

form is used, and

elements of the

configuration ore

explicitly described.

9.4.5 Deployment-Level Design Elements

Deployment-level design elements indicate how software functionality and subsys-

tems will be allocated within the physical computing environment that will support

the software. For example, the elements of the SafeHome product are configured to

operate within three primary computing environments—a home-based PC, the Saje-

Home control panel, and a server housed at CPI Corp. (providing Internet-based ac-

cess to the system).

During design, a UML deployment diagram is developed and then refined as

shown in Figure 9.7. In the figure, three computing environments are shown (in ac-

tuality, there would be more including sensors, cameras, and others). The subsystems

(functionality) housed within each computing element are in ticated. For example, the

personal computer houses subsystems that implement security, surveillance, home

management and communications features. In addition, an external access subsys-

tem has been designed to manage all attempts to access the SafeHome system from

an external source. Each subsystem would be elaborated to indicate the components

that it implements.

The diagram shown in Figure 9.7 is in descriptorform. This means that the de-

ployment diagram shows the computing environment but does not explicitly indicate

configuration details. For example, the "personal computer” is not further identified.

It could be a "Winte!" PC or a Macintosh, a Sun workstation or a Linux-box. These

UML deploy-

ment diagram
for SateHome

280 PARI TWO SOFTWARE ENGINEERING PRACTICE

details are provided when the deployment diagram is revisited in instanceform dur-

ing latter stages ofdesign or as construction begins. Each instance of the deployment

(a specific, named hardware configuration) is identified.

'Every now and then 90 away, have a little relaxation, for when you tome bock to your work your judgment will be

surer. Go some distance away because then the work appears smoller and more of it can be taken in at 0 glance and

a lack of harmony and proportion is more readily seen.'

Leonardo DaVind

9.5 Pattebn-Based Software Design

WebRef
If you need to fad 0

design (or other)

patterns, visit

www.pot1emdepot

•com/poges/.

The best designers in any field have an uncanny ability to see patterns that character-

ize a problem and corresponding patterns that can be combined to create a solution.

Throughout the design process, a software engineer should look for eveiy opportu-

nity to reuse existing design patterns (when they meet the needs of the design) rather

than creating new ones.

9.5. 1 Describing a Design Pattern

Mature engineering disciplines make use of thousands of design patterns. For ex-

ample, a mechanical engineer uses a two-step, keyed shaft as a design pattern. In-

herent in the pattern are attributes (the diameters of the shaft, the dimensions of the

keyway, etc.) and operations (e.g., shaft rotation, shaft connection). An electrical en-

gineer uses an integrated circuit (an extremely complex design pattern) to solve a

specific element of a new problem. Design patterns may be described using the tem-

plate [MAI03] shown in the sidebar.

Design Pattern Template

Pattern name—describes the essence of the

pattern in a short but expressive name.

Intent—describes the pattern and what it does.

Also-known-as—lists any synonyms for the pattern.

Motivation—provides an example of the problem.

Applicability—notes specific design situations in which the

pattern is applicable.

Structure—describes the classes that ore required to

implement the pattern.

fEBSls

Participants—describes the responsibilities of the classes

that are required to implement the pattern.

Collaborations—describes how the participants

collaborate to carry out their responsibilities.

Consequences—describes the "design forces" that affect

the pattern and the potential trade-offs that must be

considered when the pattern is implemented.

Related patterns—cross-references related design

patterns.

A description of the design pattern may also consider a set of design forces. De-

signforces describe nonfunctional requirements (e.g., ease of maintainability, porta-

bility) associated the software for which the pattern is to be applied. In addition

forces define the constraints that may restrict the manner in which the design is to

CHAPTER 9 DESIGN ENGINEERING
281

POINT
Design forces ore those

characteristics of the

problem and attributes

of the solution that

constrain the way in

which the design can

be developed.

7 What types

• of design

patterns are

available for the

software

engineer?

be implemented. In essence, design forces describe the environment and conditions

that must exist to make the design pattern applicable. The pattern characteristics

(classes, responsibilities, and collaborations) indicate the attributes of the design

that may be adjusted to enable the pattern to accommodate a variety of problems

[GAM95]. These attributes represent characteristics of the design that can be

searched (e.g., via a database) so that an appropriate pattern can be found. Finally,

guidance associated with the use of a design pattern provides an indication of the

ramifications of design decisions.

'Patterns are half-baked—meaning you always have to finish them yourself and adapt them to your own environment.

Martin Fowler

The names of design patterns should be chosen with care. One of the key techni-

cal problems in software reuse is the inability to find existing reusable patterns when

hundreds or thousands of candidate patterns exist. The search for the 'Tight" pattern

is aided immeasurably by a meaningful pattern name.

9.5.2 Using Patterns in Design

Design patterns can be used throughout software design. Once the analysis model

(Chapter 8) has been developed, the designer can examine a detailed representation

of the problem to be solved and the constraints that are imposed by the problem. The

problem description is examined at various levels of abstraction to determine if it is

amenable to one or more of the following types of design patterns;

Architectural patterns. These patterns define the overall structure of the soft-

ware, indicate the relationships among subsystems and software components, and

define the rules for specifying relationships among the elements (classes, pack-

ages, components, subsystems) of the architecture.

Design patterns. These patterns address a specific element of the design such

as an aggregation of components to solve some design problem, relationships

among components, or the mechanisms for effecting component-to-component

communication.

Idioms. Sometimes called coding patterns, these language-specific patterns

generally implement an algorithmic element of a component, a specific interface

protocol, or a mechanism for communication among components.

Each of these pattern types differs in the level of abstraction with which it is repre-

sented and the degree to which it provides direct guidance for the construction ac-

tivity (in this case, coding) of the software process.

9.5.3 Frameworks

In some cases it may be necessary to provide an implementation-specific skeletal in-

frastructure, called aframework, for design work. That is, the designer may select a

PART TWO SOFTWARE ENGINEERING PRACTICE282

POINT
A framework is a code

skeleton that con be

fleshed out with

specific classes ot

functionality that hove

been designed to

address the problem

at hand.

"reusable mini architecture that provides the generic structure and behavior for a

family of software abstractions, along with a context . . . which specifies their col-

laboration and use within a given domain" |APP98j.

A framework is not an architectural pattern, but rather a skeleton with a collec-

tion of "plug points" (also called hooks and slots) that enable it to be adapted to a spe-

cific problem domain. The plug points enable a designer to integrate problem

specific classes or functionality within the skeleton. In an object-oriented context, a

framework is a collection of cooperating classes.

In essence, the designer of a framework will argue that one reusable mini-

architecture is applicable to all software to be developed within a limited domain of

application. To be most effective, frameworks are applied with no changes. Addi-

tional design elements may be added, but only via the plug points that allow the de-

signer to flesh out the framework skeleton.

9.6 Summary

Design engineering commences as the first iteration of requirements engineering

comes to a conclusion. The intent of software design is to apply a set of principles,

concepts, and practices that lead to the development of a high-quality system or

product, The goal of design is to create a model of software that will implement all

customer requirements correctly and bring delight to those who use it. Design engi-

neers must sift through many design alternatives and converge on a solution that

best suits the needs of project stakeholders.

The design process moves from a "big picture" view of software to a more narrow

view that defines the detail required to implement a system. The process begins by
focusing on architecture. Subsystems are defined; communication mechanisms
among subsystems are established; components are identified; and a detailed de-

scription of each component is developed. In addition, external, internal, and user

interfaces are designed.

Design concepts have evolved over the first half-century of software engineering

work. They describe attributes of computer software that should be present regard-

less of the software engineering process that is chosen, the design methods that are

applied, or the programming languages that are used.

The design model encompasses four different elements. As each of these ele-

ments is developed, a more complete view of the design evolves. The architectural

element uses information derived from the application domain, the analysis model,

and available catalogs for patterns and styles to derive a complete structural repre-

sentation ofthe software, its subsystems and components. Interface design elements

model external and internal interfaces and the user interface. Component-level ele-

ments define each of the modules (components) that populate the architecture. Fi-

nally, deployment- level design elements allocate the architecture, its components,

and the interfaces to the physical configuration that will house the software.

CHAPTER 9 DESIGN ENGINEERING 283

Pattern-based design is a technique that reuses design elements that have proven

successful in the past. Each architectural pattern, design pattern, or idiom is cata-

loged, thoroughly documented, and carefully considered as it is assessed for inclu-

sion in a specific application. Frameworks, an extension of patterns, provide an

architectural skeleton for the design of complete subsystems within a specific appli-

cation domain.

References

[AMBOII Ambler, S., The Object Primer, Cambridge Univ. Press, 2nd ed„ 2001.

[APP98] Appleton, B., "Patterns and Software: Essential Concepts and Terminology," download

able at http://www.enteract.com/~bradapp/docs/patterns-intro.html.

[ARL02] Arlow, and 1. Neustadt. UML and the Unijied Process, Addison -Wesley, 2002.

[BEL8 1 1
Belady, L., Foreword to Software Design- Methods and Techniques (L.J. Peters, author),

Yourdon Press, 1981

IFOWOO] Fowler, M., et al., Refactoring: Improving the Design of Existing Code, Addison-Wesley.

2000 .

[GAM951 Gamma, E„ et al., Design Patterns, Addison-Wesley, 1995.

[GAR95] Garlan, D., and M. Shaw, "An Introduction to Software Architecture," Advances in Soft

ware Engineering and Knowledge Engineering, vol. I (V. Ambriola and G. Tortora, eds.), World

Scientific Publishing Company, 1995.

[GRA87] Grady, R. B„ and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,

Prentice-Hall, 1987.

[JAC75] Jackson, M. A., Principles ofProgram Design, Academic Press, 1975.

[L1E03] Lieberherr, K., "Demeter: Aspect-Oriented Programming," May 2003, available at:

http://www.ccs.neu.edu/home/lieber/LoD.html.

[MA103] Maioriello, "What Are Design Patterns and Do 1 Need Them?,’’ developer.com, 2003,

available at http://www developer.com/design/article.php/ 1474561

.

(MCG911 McGlaughlin, R., "Some Notes on Program Design," Software Engineering Notes, vol. 16,

no. 4, October 1991, pp. 53-54.

[MYE78] Myers, G., Composite Structured Design, Van Nostrand, 1978.

[OMGOl] Object Management Group, OMG unified Modeling Language Specification, version 1.4,

September 2001

.

(PAR72] Parnas, D. L., "On Criteria to be used in Decomposing Systems into Modules." CACM,

vol. 14, no. 1, April 1972, pp. 221-227.

[ROS75] Ross, D., J. Goodenough, and C. Irvine, "Software Engineering: Process, Principles and

Goals," IEEE Computer, vol. 8, no. 5, May 1975.

[SCH02] Schmuller, Teach YourselfUML, SAMS Publishing, 2002.

[SHA96] Shaw, M„ and D. Garlan, Software Architecture, Prentice-Hall, 1996.

[STA02] "Metaphor," The Stanford HCI Learning Space, 2002, http://hci.stanford.edu/ hcils/

concepts/metaphor.htm!

.

[STE74] Stevens, W„ G. Myers, and L. Constantine. "Structured Design," IBM Systems Journal,

vol. 13, no. 2, 1974, pp. 115-139.

[WIR71] Wirth, N., "Program Development by Stepwise Refinement," CACM, vol. 14, no. 4, 1971,

pp. 221-227. .,

Problems and Points to Pqkillb

9.1. If a software design is not a program (and it isn't), then what is it?

9 .2 . Do you design software when you "write" a program? What makes software design differ-

ent from coding?

284 PART TWO SOFTWARE ENGINEERING PRACTICE

9 .3 . Describe software architecture in your own words.

9 .4 . Visit a design patterns repository (on the Web) and spend a few minutes browsing through
the patterns. Pick one and present it to your class

9.5. Provide examples of three data abstractions and the procedural abstractions that can be
used to manipulate them.

9 .6 . Apply a “stepwise refinement approach" to develop three different levels of procedural ab-
straction for one or more of the following programs: (a) Develop a check writer that, given a nu-
meric dollar amount, will print the amount in words normally required on a check; (b) Iteratively

solve for the roots of a transcendental equation; (c) Develop a simple task scheduling algorithm
for an operating system.

9 . 7 . When should a modular design be implemented as monolithic software? How can this be
accomplished? is performance the only justification for implementation of monolithic software?

9 .8 . Suggest a design pattern that you encounter in a category of everyday things (e.g., con-
sumer electronics, automobiles, appliances). Fully document the pattern using the template
provided in Section 9.5.

9 .9 . Discuss the relationship between the concept of information hiding as an attribute of ef-

fective modularity and the concept of module independence.

9 . 10 . Is there a case when complex problems require less effort to solve? How might such a
case affect the argument for modularity?

9. 1

1

. How are the concepts of coupling and software portability related? Provide examples to
support your discussion.

9 . 12 . Examine the task set presented for design. Where is quality assessed within the task set?
How is this accomplished?

9 . 13 . Do a bit ofresearch on Extreme Programming and write a brief paper on the use of refac-
toring for that agile software development process.

9 . 14 . How do we assess the quality of a software design?

. -.—Further

Donald Norman has written two books (The Design ofEveryday Things. Doubleday, 1 990, and The
Psychology ofEveryday Things. HarperCollins, 1 988) that have become classics in the design lit-

erature and "must" reading for anyone who designs anything that humans use. Adams (Con-
ceptual Blockbusting, third edition, Addison-Wesley, 1986) has written a book that is essential
reading for designers who want to broaden their way of thinking. Finally, a classic text by Polya
(How to Solve It, Princeton University Press, second edition, 1 988) provides a generic problem-
solving process that can help software designers when they are faced with complex problems.

Following in the same tradition, Winograd et al. (Bringing Design to Software, Addison-
Wesley, 1996) discusses software designs that work, those that don't, and why. A fascinating
book edited by Wixon and Ramsey (Field Methods Casebookfor Sofhvare Design, Wiley, 1 996)
suggests field research methods (much like those used by anthropologists) to understand how
end-users do the work they do and then provides guidance for designing software that meets
their needs. Beyer and Holtzblatt (Contextual Design: A Customer-Centered*Approach to Systems
Designs, Academic Press, 1997) offer another view of software design that integrates the cus-
tomer/user into every aspect of the software design process.

McConnell (Code Complete, Microsoft Press, 1993) presents an excellent discussion of the
practical aspects of designing high-quality computer software Robertson

(Simple Program De-
sign. third edition, Boyd and Fraser Publishing, 1999) offers an introductory discussion of soft-

ware design that is useful for those beginning their study of the subject. Fowler and his

CHAPTER 9 DESIGN ENGINEERING 285

colleagues (Refactoring Improving the Design of Existing Code, Addison Wesley, 1999 discuss

techniques for the incremental optimization of software designs.

Over the past decade, manv books on pattern-based design have been written for software

engineers. Gamma and his colleagues [GAM95] have written the seminal book on the subject.

Other books by Douglass (
Real-Time Design Patterns, Addison-Wesley, 2002), Metsker (Design

Patterns Java Workbook, Addison-Wesley, 2002), Juric et al. (J2EE Design Patterns Applied, Wrox

Press, 2002), Marinescu and Roman (E/B Design Patterns, Wiley, 2002), and Shalloway and Trott

(Design Patterns Explained, Addison-Wesley, 200 1)
discuss design patterns in specific application

and language environments. In addition, classic books by the architect Christopher Alexander

(Notes on the Synthesis ofForm, Harvard University Press, 1 964 and A Pattern Language Towns.

Buildings, Construction, Oxford University Press, 1977) are must reading for a software designer

who intends to fully understand design patterns.

A wide variety of information sources on design engineering are available on the Internet.

An up-to-date list of World Wide Web references that are relevant to software design and de-

sign engineering can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Creating an
Architectural Design

Key
Concepts
adl

archetypes

architectural

assessment

complexity

context diagram

definition

design

mapping

patterns

ATAM

Components

data design

factoring

styles

D esign has been described as a multistep process in which representations

of data and program structure, interface characteristics, and procedural

detail are synthesized from information requirements. This description is

extended by Freeman [FRE80):

[Dlesign is an activity concerned with making major decisions, often of a structural

nature, it shares with programming a concern for abstracting information represen-

tation and processing sequences, but the level of detail is quite different at the ex-

tremes. Design builds coherent, well planned representations of programs that

concentrate on the interrelationships of parts at the higher level and the logical oper-

ations involved at the lower levels. . .

.

As we have noted in Chapter 9, design is information driven. Software design

methods are derived from consideration of each of the three domains of the

analysis model. The informational, functional, and behavioral domains serve as a
guide for the creation of the software design.

Methods required to create "coherent, well planned representations" of the

data and architectural layers of the design model are presented in this chapter.

The objective is to provide a systematic approach for the derivation of the archi-

tectural design—the preliminary blueprint from which software is constructed.

What is it? Architectural design

represents the structure of data and
program components that are re-

quired to build a computer-based

system. It considers the architectural style that the

system will take, the structure and properties of

the components that constitute the system, and
the interrelationships that occur among all ar-

chitectural components of a system.

Who does it? Although a software engineer can

design both data and architecture, the job is of-

ten allocated to specialists when large, complex

systems are to be built. A database or data

warehouse designer creates the data architec-

ture for a system. The "system architect" selects

an appropriate architectural style for the re-

quirements derived during system engineering

and software requirements analysis.

Why is it important? You wouldn't attempt to

build a house without a blueprint, would you?
You also wouldn't begin drawing blueprints by
sketching the plumbing layout for the house.

You'd need to look at the big picture—the house

itself—before you worry about details. That's

what architectural design does—it provides you
with the big picture and ensures that you've got

if right.

What are the steps? Architectural design be-

gins with data design and then proceeds to the

derivation of one or more representations of the

architectural structure of the system. Alternative

architectural styles or patterns are analyzed to

286

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 287

derive the structure that is best suited to customer

requirements and quality attributes. Once an al-

ternative has been selected, the architecture is

elaborated using an architectural design method.

What is the work product? An architecture

model encompassing data architecture and pro-

gram structure is created during architectural

design. In addition, component properties and

relationships (interactions) are described.

How do I ensure that I've done it right?

At each stage, software design work products

are reviewed for clarity, correctness, complete-

ness, and consistency with requirements and

with one another.

10.1 Software Architecxu&e

In their landmark book on the subject, Shaw and Garlan [SHA96| discuss software

architecture in the following manner:

Ever since the first program was divided into modules, software systems have had archi-

tectures, and programmers have been responsible for the interactions among the mod-

ules and the global properties of the assemblage. Historically, architectures have been

implicit—accidents of implementation, or legacy systems of the past. Good software de-

velopers have often adopted one or several architectural patterns as strategies for system

organization, but they use these patterns informally and have no means to make them

explicit in the resulting system.

Today, effective software architecture and its explicit representation and design have

become dominant themes in software engineering.

"The architecture of a system is a comprehensive framework that describes its form and structure—its components

and how they fit together."

Jerrold Grochow

10.1.1 What Is Architecture?

When we discuss the architecture of a building, many different attributes come to

mind. At the most simplistic level, we consider the overall shape of the physical

structure. But in reality, architecture is much more. It is the manner in which the var-

ious components of the building are integrated to form a cohesive whole. It is the

way in which the building fits into its environment and meshes with other buildings

in its vicinity, it is the degree to which the building meets its stated purpose and sat-

isfies the needs of its owner. It is the aesthetic feel of the structure—the visual im-

pact of the building—and the way textures, colors, and materials are combined to

create the external facade and the internal "living environment." It is small details—

the design of lighting fixtures, the type of flooring, the placement of wall hangings,

the list is almost endless. And finally, it is art.

288

POINT
Software architecture

must model the

structure of o system

and the manner in

which doto and

procedural components

colkiborate with one

another.

WebRef
Useful pointers to

mony software

orctritectuie sites con

be obtained ct

www2.umassd.

ed«/S£Centef/SA

Resources.html.

POINT
The architectural model

provides o Gestoh

view of the system,

allowing the software

engineer to examine

it os a whole.

PART TWO SOFTWARE ENGINEERING PRACTICE

But what about software architecture

?

Bass, Clements, and Kazman [BAS03] de-

fine this elusive term in the following way:

The software architecture of a program or computing system is the structure or structures

of the system, which comprise software components, the externally visible properties of

those components, and the relationships among them.

The architecture is not the operational software. Rather, it is a representation that

enables a software engineer to (1) analyze the effectiveness of the design in meet-

ing its stated requirements, (2) consider architectural alternatives at a stage when
making design changes is still relatively easy, and (3) reduce the risks associated with

the construction of the software.

"Marry your architecture in haste, repent ot your leisure."

Barry Boehm

This definition emphasizes the role of "software components" in any architectural

representation. In the context of architectural design, a software component can be

something as simple as a program module or an object-oriented class, but it can also

be extended to include databases and "middleware" that enable the configuration of a

network of clients and servers.

In this book the design of software architecture considers two levels of the design

pyramid (Figure 9.

1

)—data design and architectural design. In the context of the pre-

ceding discussion, data design enables us to represent the data component of the ar-

chitecture in conventional systems and class definitions (encapsulating attributes and
operations) in object-oriented systems. Architectural design focuses on the represen-

tation of the structure of software components, their properties, and interactions.

10. 1 .2 Why Is Architecture Important?

In a book dedicated to software architecture, Bass and his colleagues [BAS03] iden-

tify three key reasons that software architecture is important:

• Representations of software architecture are an enabler for communication

between all parties (stakeholders) interested in the development of a

computer-based system.

• The architecture highlights early design decisions that will have a profound

impact on all software engineering work that follows and, as important, on

the ultimate success of the system as an operational entity.

• Architecture "constitutes a relatively small, intellectually graspable model of

how the system is structured and how its components work together" [BAS03],

The architectural design model and the architectural patterns contained within it are

transferable. That is, architecture styles and patterns (Section 10.3.1) can be applied

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 289

to the design of other systems and represent a set of abstractions that enable soft-

ware engineers to describe architecture in predictable ways.

10.2 Data Design

The data design action translates data objects defined as part of the analysis model

(Chapter 8) into data structures at the software component level and, when neces-

sary, a database architecture at the application level. In some situations, a database

must be designed and built specifically for a new system. In others, however, one or

more existing databases are used.

10.2.1 Data Design at the Architectural Level

Today, businesses large and small are awash in data. It is not unusual for even a

moderately sized business to have dozens of databases serving many applications

encompassing hundreds of gigabytes of data. The challenge is to extract useful in-

formation from this data environment, particularly when the information desired is

cross-functional (e.g., information that can be obtained only if specific marketing

data are cross-correlated with product engineering data).

"Data quality is the difference between a data warehouse and a data garbage dump."

Jarrett Rosenberg

WebRef
Information of

data warehouse

technologies con

be obtained at

www.dataware

house.com.

To solve this challenge, the business IT community has developed data mining

techniques, also called knowledge discovery in databases (KDD), that navigate

through existing databases in an attempt to extract appropriate business-level

information. However, the existence of multiple databases, their different

structures, the degree of detail contained with the databases, and many other fac-

tors make data mining difficult within an existing database environment. An al-

ternative solution, called a data warehouse, adds an additional layer to the data

architecture.

A data warehouse is a separate data environment that is not directly integrated

with day-to-day applications but encompasses all data used by a business [MAT96]

.

In a sense, a data warehouse is a large, independent database that has access to the

data that are stored in databases that serve the set of applications required by a

business.

A detailed discussion of the design of data structures, databases, and the data

warehouse is best left to books dedicated to these subjects (e.g., [DATOO], [PRE98]

,

[K.1M98]). The interested reader should see the Further Readings and Information

Sources section of this chapter for additional references.

290 PART TWO SOFTWARE ENGINEERING PRACTICE

Data Mining/Warehousing

Objective: Data mining tools assist in (tie

identification of significant relationships among

attributes that describe a specific data object or set of data

objects. Tools for data warehousing ossist in the design of

data models for a data warehouse.

Mechanics: Tool mechanics vary. In general, mining tools

accept large data sets as input and allow the user to query

the data in an effort to belter understand relationships

among various data items. Warehousing tools that are used

for design provide entity relationship or other modeling

capabilities.

Representative Tools'

Data Mining:

Business Objects, developed by Business Objects, SA

(www.business objects.com), is a data design tool set

hat supports "data integration, query, reporting,

analysis, and analytics."

V

Software Tools

SPSS, developed by SPSS, Inc. (www.spss.com), provides

a wide array of statistical functions to allow the

analysis of large data sets.

Data Warehousing:

Industry Warehouse Studio, developed by Sybase

(www.sybase.com), provides a packaged data

warehouse infrastructure that "jumpstarts" data

warehouse design.

IFW Business Intelligence Suite, developed by Modelware

(www.modeiwarepl.com), is a set of models, software

tools, and database designs that "provide a fast path

to data warehouse and datamart design and

implementation."

A comprehensive list of data mining/warehousing tools

and resources can be found at the Data Warehousing

Information Center (www.dwinfocenter.org).

J

10.2.2 Data Design at the Component Level

Data design at the component level focuses on the representation of data structures

that are directly accessed by one or more software components. Wasserman

[WAS80) has proposed a set of principles that may be used to specify and design such

data structures. In actuality, the design of data begins during the creation of the

analysis model. Recalling that requirements analysis and design often overlap, we

consider the following set ofprinciples (adapted from [WAS80]) for data specification:

The systematic analysis principles applied toJunction and behavior should also

be applied to data. Representations of data flow and content should also be

developed and reviewed, data objects should be identified, alternative data

organizations should be considered, and the impact of data modeling on soft-

ware design should be evaluated.

All data structures and the operations to be performed on each should be identi-

fied. The design of an efficient data structure must take the operations to be

performed on the data structure into account. The attributes and operations

encapsulated within a class satisfy this principle.

A mechanismfor defining the content ofeach data object should be established

and used to define both data and the operations applied to it. Class diagrams

*) Whot

* principles

are applicable

to data design?

I Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 291

XSLA

^ What is an

• architectural

style?

(Chapter 8) define the data items (attributes) contained within a class and the

processing (operations) that are applied to these data items.

4. Low-level data design decisions should be deferred until late in the design process.

A process of stepwise refinement may be used for the design of data. That is,

overall data organization may be defined during requirements analysis, refined

during data design work, and specified in detail during component-level

design.

5. The representation ofa data stivcture should be known only to those modules

that must make direct use ofthe data contained within the structure. The con-

cept of information hiding and the related concept of coupling (Chapter 9)

provide important insight into the quality of a software design.

6. A library ofuseful data structures and the operations that may be applied to

them should be developed. A class library achieves this.

7 . A software design and programming language should support the specification

and realization ofabstract data types. The implementation of a sophisticated

data structure can be made exceedingly difficult if no means for direct speci-

fication of the structure exists in the programming language chosen for im-

plementation.

These principles form a basis for a component-level data design approach that can

be integrated into both the analysis and design activities.

Architectural Styles and Patterns

When a builder uses the phrase "center hall colonial" to describe a house, most peo-

ple familiar with houses in the United States will be able to conjure a general image

of what the house will look like and what the floor plan is likely to be. The builder

has used an architectural style as a descriptive mechanism to differentiate the house

from other styles (e.g., A-frame, raised ranch, Cape Cod). But more importantly, the

architectural style is also a template for construction. Further details of the house

must be defined, its final dimensions must be specified, customized features may be

added, building materials are to be determined, but the style—-a "center hall colonial"—

guides the builder in his work.

"There is at the back of every ortist's mind, a pattern or type of architecture."

G. K. Chesterton

The software that is built for computer-based systems also exhibits one of many
architectural styles. Each style describes a system category that encompasses (1) a set

of components (e.g., a database, computational modules) that perform a function re-

quired by a system; (2) a set ofconnectors that enable "communication, coordination,

and cooperation" among components; (3) constraints that define how components

292

WebRef
Alttibuts-taed

Grchitectu/ol slyies

(ABAS) con be used

os building blocks fot

soflwoce architectures.

Information con be

obtained at

www.sei.cmu.

edg/ota/abos.

html.

PART TWO SOFTWARE ENGINEERING PRACTICE

can be integrated to form the system; and (4) semantic models that enable a designer

to understand the overall properties of a system by analyzing the known properties

of its constituent parts [BAS03].

An architectural style is a transformation that is imposed on the design of an

entire system. The intent is to establish a structure for all components of the sys-

tem. In the case where an existing architecture is to be reengineered (Chapter 31),

the imposition of an architectural style will result in fundamental changes to the

structure of the software including a reassignment of the functionality of compo-

nents [BOSOO],

An architectural pattern, like an architectural style, imposes a transformation on

the design of an architecture. However, a pattern differs from a style in a number of

fundamental ways: (1)
the scope of a pattern is less broad, focusing on one aspect of

the architecture rather than the architecture in its entirety; (2) a pattern imposes a

rule on the architecture, describing how the software will handle some aspect of its

functionality at the infrastructure level (e.g., concurrency) [BOSOO]; (3) architectural

patterns tend to address specific behavioral issues within the context of the archi-

tectural, e.g., how a real-time application handles synchronization or interrupts. Pat-

terns can be used in conjunction with an architectural style to establish the shape the

overall structure of a system. In the section that follows, we consider commonly used

architectural styles and patterns for software.

10.3.1 A Brief Taxonomy of Architectural Styles

Although millions of computer-based systems have been created over the past 50

years, the vast majority can be categorized (see [SHA961,]BUS96], [BAS03]) into one

of a relatively small number of architectural styles:

Data-centered architecture. A data store (e.g., a file or database) resides at the

center of this architecture and is accessed frequently by other components that up-

date, add, delete, or otherwise modify data within the store. Figure 10. 1 illustrates a

typical data-centered style. Client software accesses a central repository, in some

cases the data repository is passive. That is, client software accesses the data inde-

pendent of any changes to the data or the actions of other client software. A variation

on this approach transforms the repository' into a "blackboard" that sends notifica-

tions to client software when data of interest to the client changes.

A data-centered architecture promotes integrability [BAS03]. That is, existing com-

ponents can be changed and new client components added to the architecture without

concern about other clients (because the client components operate independently). In

addition, data can be passed among clients using the blackboard mechanism (i.e., the

blackboard component serves to coordinate the transfer of information between

clients). Client components independently execute processes.

Data-flow architecture. This architecture is applied when input data are to be

transformed through a series of computational or manipulative components into

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 293

Data-centered

architecture

Data-flow

architecture

output data. A pipe and filter structure (Figure 1 0.2) has a set of components, called

filters, connected by pipes that transmit data from one component to the next. Each

filter works independently of those components upstream and downstream, is de-

signed to expect data input of a certain form, and produces data output (to the next

filter) of a specified form. However, the filter does not require knowledge of the

workings of its neighboring filters.

"The use of patterns and styles of design is pervasive in engineering disciplines."

Mary Shaw and David Garlan

294 PART TWO SOFTWARE ENGINEERING PRACTICE

Main program/subprogram architecture

If the data flow degenerates into a single line of transforms, it is termed batch se-

quential. This structure accepts a batch of data and then applies a series of sequential

components (filters) to transform it.

Call and return architecture. This architectural style enables a software de-

signer (system architect) to achieve a program structure that is relatively easy to

modify and scale. Two substyles [BAS03| exist within this category':

• Main program/subprogram architecture. This classic program structure

decomposes function into a control hierarchy where a "main" program

invokes a number of program components, which in turn may invoke still

other components. Figure 10.3 illustrates an architecture of this type.

• Remote procedure call architecture. The components of a main program/

subprogram architecture are distributed across multiple computers on a

network.

Object-oriented architecture. The components of a system encapsulate data

and the operations that must be applied to manipulate the data. Communication and

coordination between components is accomplished via message passing.

Layered architecture. The basic structure of a layered architecture is illustrated

in Figure 10.4. A number of different layers are defined, each accomplishing opera-

tions that progressively become closer to the machine instruction set. At the outer

layer, components service user interface operations. At the inner layer, components

perform operating system interfacing. Intermediate layers provide utility services

and application software functions.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 295

These architectural styles are only a small subset of those available to the soft-

ware designer .

2 Once requirements engineering uncovers the characteristics and

constraints of the system to be built, the architectural style or combination of styles

that best fits those characteristics and constraints can be chosen. In many cases,

more than one style might be appropriate, and alternatives might be designed and

evaluated. For example, a layered style (appropriate for most systems) can be com-

bined with a data-centered architecture in many database applications.

Style

SafeHome

Choosing an Architectural

The scene: Jamie's cubicle, as

design modeling continues.

The players: Jamie and Ed—members of the

SafeHome software engineering team.

The conversation:

Ed (frowning): We've been modeling the security

function using UML . .
.
you know classes, relationships,

that sort of stuff. So I guess the object-oriented

architecture
3

is the right way to go.

Jamie: But. . . ?

Ed: But ... I hove trouble visualizing what an object-

oriented architecture is. I get the call and return

architecture, sort of a conventional process hierarchy, but

OO . . I don't know. It seems sort of amorphous.

2 See [BOSOOl, [HOFOO], [BAS03], (SHA97], (BUS96), and [SHA96] fora detailed discussion of archi-

tectural styles and patterns.

3 It can be argued that the SafeHome architecture should be considered at a higher level than the ar-

chitecture noted. SafeHome has a variety of subsystems—home monitoring functionality, the com-

pany's monitoring site, and the subsystem running in the owner's PC. Within subsystems,

concurrent processes (e.g. those monitoring sensors) and event handling are prevalent. Some ar-

chitectural decisions at this level are made during system or product engineering (Chapter 6), but

architectural design within software engineering may very well have to consider these issues.

296 PART TWO SOFTWARE ENGINEERING PRACTICE

Jamie (smiling): Amorphous, huh?

Ed: Yeah . . . what I mean is I can't visualize a real

structure, just design classes floating in space.

Jamie: Well, that's not true. There are class hierarchies

. . . think of the hierarchy (aggregation) we did for the

FloorPlan object [Figure 9.3]. An OO architecture is a

combination of that structure and the interconnections

—

you know, collaborations—between the dosses. We can

show it by fully describing the attributes and operations,

the messaging that goes on, and the structure of the

classes.

Ed: I'm going to spend an hour mapping out a call and

return architecture, then I'll go back and consider an OO
architecture.

Jamie: Dougll have no problem with that. He said that

we should consider architectural alternatives. By the way,

there's absolutely no reason why both of these architectures

couldn't be used in combination with one another.

Ed: Good. I'm on it.

10.3.2 Architectural Patterns

POINT
A software architecture

moy have o number of

architectural patterns

that address issues

such os concurrency,

persistence, and

distribution.

if a house builder decides to construct a center-hall colonial, there is a single archi-

tectural style that can be applied. The details of the style (e.g., number of fireplaces,

facade of the house, placement of doors and windows) can vary considerably, but

once the decision on the overall architecture of the house is made, the style is im-

posed on the design .

4

Architectural patterns are a bit different .

5 For example, every house (and every ar-

chitectural style for houses) employs a kitchen pattern. The kitchen pattern defines

the need for placement of basic kitchen appliances, the need for a sink, the need for

cabinets, and possibly, rules for placement of these things relative to workflow in the

room. In addition, the pattern might specify the need for counter tops, lighting, wall

switches, a central island, flooring, and so on. Obviously, there is more than a single

design for a kitchen, but every design can be conceived within the context of the "so-

lution" suggested by the kitchen pattern.

As we have already noted, architectural patterns for software define a specific ap-

proach for handling some behavioral characteristic of the system. Bosch [BOSOO] de-

fines a number of architectural pattern domains. Representative examples are provided

in the paragraphs that follow.

Concurrency. Many applications must handle multiple tasks in a manner that sim-

ulates parallelism (i.e., this occurs whenever multiple "parallel" tasks or components

are managed by a single processor). There are a number of different ways in which an

4 This implies that there will be a central foyer and hallway, that rooms will be placed to the left and

right of the foyer, that the house will have two (or more) stories, that the bedrooms of the house

will be upstairs, and so on. These "rules" are imposed once the decision is made to use the center-

hall colonial style.

5 It is important to note that there is not universal agreement on this terminology. Some people (e.g,

[BUS96]) use the terms styles and patterns synonymously, while others make the subtle distinction

suggested in this section.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN
297

application can handle concurrency, and each can be presented by a different archi-

tectural pattern. For example, one approach is to use an operating system process man-

agement pattern that provides built-in OS features that allow components to execute

concurrently. The pattern also incorporates OS functionality that manages communi-

cation between processes, scheduling, and other capabilities required to achieve con-

currency. Another approach might be to define a task scheduler at the application

level. A task scheduler pattern contains a set of active objects that each contains a tickf)

operation [BOSOO], The scheduler periodically invokes tidy) for each object, which

then performs the functions it must perform before returning control back to the

scheduler, which then invokes the tick() operation for the next concurrent object.

Persistence. Data persists if it survives past the execution of the process that cre-

ated it. Persistent data are stored in a database or file and may be read or modified

by other processes at a later time. In object-oriented environments, the idea of a per-

sistent object extends the persistence concept a bit further. The values of all ot the

object's attributes, the general state of the object, and other supplementary infor-

mation are stored for future retrieval and use. In general, two architectural patterns

are used to achieve persistence-a database management system pattern that applies

the storage and retrieval capability of a DBMS to the application architecture or an

application level persistence pattern that builds persistence features into the applica-

tion architecture (e.g., word processing software that manages its own document

structure).

Distribution. The distribution problem addresses the manner in which systems or

components within systems communicate with one another in a distributed envi-

ronment. There are two elements to this problem: (1) the way in which entities con-

nect to one another, and (2) the nature of the communication that occurs. The most

common architectural pattern established to address the distribution problem is the

broker pattern. A broker acts as a "middle-man" between the client component and

a server component. The client sends a message to the broker (containing all ap-

propriate information for the communication to be effected), and the broker com-

pletes the connection. CORBA (Chapter 30) is an example of a broker architecture.

Before any one of the architectural patterns noted in the preceding paragraphs

can be chosen, it must be assessed for its appropriateness for the application and the

overall architectural style, as well as its maintainability, reliability, security, and per-

formance.

10.3.3 Organization and Refinement

Because the design process often leaves a software engineer with a number of ar-

chitectural alternatives, it is important to establish a set ofdesign criteria that can be

used to assess an architectural design. The following questions [BAS03] provide in-

sight into the architectural style that has been derived.

298 PART TWO SOFTWARE ENGINEERING PRACTICE

How do I

• ossess an

architectural style

that has been

derived?

UL4.

POINT
Architectural context

represents how the

software interacts with

entities external to its

boundaries.

Control. How is control managed within the architecture? Does a distinct con-
trol hierarchy exist, and if so, what is the role of components within this control hi-

erarchy? How do components transfer control within the system? How is control
shared among components? What is the control topology (i.e., the geometric form
that the control takes)? Is control synchronized or do components operate asyn-
chronously?

Data. How are data communicated between components? Is the flow of data
continuous, or are data objects passed to the system sporadically? What is the
mode of data transfer (i.e., are data passed from one component to another or are
data available globally to be shared among system components)? Do data compo-
nents (e.g., a blackboard or repository) exist, and if so, what is their role? How do
functional components interact with data components? Are data components pas-
sive or active (i.e., does the data component actively interact with other compo-
nents in the system)? How do data and control interact within the system?

These questions provide the designer with an early assessment ofdesign quality and
lay the foundation for more detailed analysis of the architecture.

—Architectural Design _
As architectural design begins, the software to be developed must be put into context
that is, the design should define the external entities (other systems, devices, people)
that the software interacts with and the nature of the interaction. This information can
generally be acquired from the analysis model and all other information gathered dur-
ing requirements engineering. Once context is modeled and all external software in-

terfaces have been described, the designer specifies the structure of the system by
defining and refining software components that implement the architecture. This
process continues iteratively until a complete architectural structure has been derived.

“A doctor con bury bis mistakes, but an archited can only advise his client to plant vines."

Frank Lloyd Wright

10.4.1 Representing the System in Context

In Chapter 6, we noted that a system engineer must model context. A system con-
text diagram (Figure 6.4) accomplishes this requirement by representing the flow of
information into and out of the system, the user interface, and relevant support pro-
cessing. At the architectural design level, a software architect uses an architectural

context diagram (ACD) to model the manner in which software interacts with enti-

ties external to its boundaries. The generic structure of the architectural context di-

agram is illustrated in Figure 10.5.

Referring to the figure, systems that interoperate with the target system (the sys-
tem for which an architectural design is to be developed) are represented as:

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 299

Architectural

context

diagram
(adapted Irom

[BOSOO])

• Superordinate systems—those systems that use the target system as part of

some higher level processing scheme.

• Subordinate systems—those systems that are used by the target system and

provide data or processing that are necessary to complete target system

functionality.

• Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,

information is either produced or consumed by the peers and the target

system).

• Actors—those entities (people, devices) that interact with the target system by

producing or consuming information that is necessary for requisite

processing.

Each of these external entities communicates with the target system through an in-

terface (the small shaded rectangles)

.

To illustrate the use of the ACD we again consider the home security function of

the SafeHome product. The overall SafeHome product controller and the Internet-

based system are both superordinate to the security function and are shown above

the function in Figure 10.6. The surveillance function is a peer system and uses (is

used by) the home security function in later versions of the product. The homeowner

and control panels are actors that are both producers and consumers of information

used/produced by the security software. Finally, sensors are used by the security

software and are shown as subordinate to it.

As part of the architectural design, the details of each interface shown in Figure

10.6 would have to be specified. All data that flow into and out of the target system

must be identified at this stage.

^ How do

• systems

interoperate with

one another?

300 PART TWO SOFTWARE ENGINEERING PRACTICE

Architectural

context

diagram (or

the SateHome
security

function

POINT
Archetypes are the

abstract building blocks

of on architectural

design.

10.4,2 Defining Archetypes

An archetype is a class or pattern that represents a core abstraction that is critical to

the design of an architecture for the target system. In general, a relatively small set

of archetypes is required to design even relatively complex systems. The target sys-

tem architecture is composed of these archetypes, which represent stable elements
of the architecture but may be instantiated in many different ways based on the be-

havior of the system.

In many cases, archetypes can be derived by examining the analysis classes de-
fined as part of the analysis model. Continuing our discussion of the SafeHome home
security function, we might define the following archetypes:

• Node. Represents a cohesive collection of input and output elements of the

home security function. For example a node might be comprised of

(1) various sensors, and (2) a variety of alarm (output) indicators.

• Detector. An abstraction that encompasses all sensing equipment that feeds

information into the target system.

• Indicator. An abstraction that represents all mechanisms (e.g., alarm siren,

flashing lights, bell) for indicating that an alarm condition is occurring.

• Controller. An abstraction that depicts the mechanism that allows the

arming or disarming of a node. If controllers reside on a network, they have
the ability to communicate with one another.

Each of these archetypes is depicted using UML notation as shown in Figure 10.7.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 301

UML relation-

ships for

SafeHome
security

function

archetypes

(adapted from

[BOSOO])

Components of the

software architecture

are derived from three

sources—the applica-

tion domain, the infra-

structure domain, and

the interface domain.

Because analysis

modeling does not

address infrastructure,

allocate sufficient

design time to consider

it carefully.

Recall that the archetypes form the basis for the architecture but are abstractions

that must be further refined as architectural design proceeds. For example. Detec-

tor might be refined into a class hierarchy of sensors.

10.4.3 Refining the Architecture into Components

As the software architecture is refined into components, the structure of the system

begins to emerge. But how are these components chosen? In order to answer this

question, the architectural designer begins with the classes that were desctibed as

part of the analysis model 6 These analysis classes represent entities within the ap-

plication (business) domain that must be addressed within the software architec-

ture. Hence, the application domain is one source for the derivation and refinement

of components. Another source is the infrastructure domain. The architecture must

accommodate many infrastructure components that enable application compo-

nents but have no business connection to the application domain. For example,

memory management components, communication components, database com-

ponents, and task management components are often integrated into the software

architecture.

The interfaces depicted in the architecture context diagram (Section 10.4.1) imply

one or more specialized components that process the data that flow across the in-

terface. In some cases (e.g. a graphical user interface), a complete subsystem aichi-

tecture with many components must be designed.

6 If a conventional (non-object-oriented) approach is chosen, components can be derived from the

data flow model. We discuss this approach in Section 10.6

302 PART TWO SOFTWARE ENGINEERING FRACTICE

"The structure of o softwore system provides the ecology in which code is born, molures, and dies. A well-designed

habitot allows for the successful evolution of oil the components needed in a softwore system.'

R. Pottis

Continuing the SafeHome home security function example, we might define the
set of top-level components that address the following functionality:

• External communication management—coordinates communication of the

security function with external entities, for example, Internet-based systems,

external alarm notification.

• Control panel processing—manages all control panel functionality.

• Detector management—coordinates access to all detectors attached to the

system.

• Alarm processing—verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and then
positioned within the overall SafeHome architecture. Design classes (with appropri-

ate attributes and operations) would be defined for each. It is important to note, how-
ever, that the design details of all attributes and operations would not be specified

until component-level design (Chapter II).

The overall architectural structure (represented as a UML component diagram) is

illustrated in Figure 10.8. Transactions are acquired by External communication man-
agement as they move in from components that process the SafeHome GUI and the In-

ternet interface. This information is managed by a SafeHome executive component that

Overall architectural structure tor SafeHome with top-level components

SofeHome
executive

V >v Function

selection

External

|

communication

management

7 V

GUI Internet

interface

Home
management

J Control panel

J processing
h—1 Detector L^J Alarm
L 1 management 1 1 processing

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 303

selects the appropriate product function (in this case, security), the control panel pro-

cessing component interacts with the homeowner to arm/disarm the security func-

tion. The detector management component polls sensors to detect an alarm condition,

and the alarm processing component produces output when an alarm is detected.

10.4.4 Describing Instantiations of the System

The architectural design that has been modeled to this point is still relatively high level.

The context of the system has been represented; archetypes that indicate the impor-

tant abstractions within the problem domain have been defined; the overall structure

of the system is apparent; and the major software components have been identified.

However, further refinement (recall that all design is iterative) is still necessary'.

To accomplish this, an actual instantiation of the architecture is developed. By this

we mean that the architecture is applied to a specific problem with the intent of

demonstrating that the structure and components are appropriate.

Figure 10.9 illustrates an instantiation of the SafeHome architecture for the secu-

rity system. Components shown in Figure 10.8 are refined further to show additional

detail. For example, the detector management component interacts with a scheduler

iKM An instantiation oi the security Junction with component elaboration

SafeHome
executive

External

communication

management

GUI
Internet

interface

Security

‘

Control

panel

processing

7—
1—|—1 Detector 1 1 Alarm

1 1 management f" 1 processing

* *

Keypad
processing

CP display

functions

304 PART TWO SOFTWARE ENGINEERING PRACTICE

infrastructure component that implements "concurrent" polling ofeach sensor object

used by the security system. Similar elaboration is performed for each of the com-

ponents represented in Figure 10.8.

Architectural Design

Objective: Architectural design tools model

the overall software structure by representing

component interfaces, dependencies and relationships,

and interactions.

Mechanics: Tool mechanics vary. In most cases,

architectural design capability is part of the functionality

provided by automated tools for analysis and design

modeling.

Representative Tools 7

Adalon, developed by Synthis Corp. (www.synthis.com), is

a specialized design tool for the design and

V _

Software Tools

construction of specific Web-based component

architectures.

ObjectiF, developed by microTOOL GmbH
(www.microtool.com), is a UML-based design tool that

leads to architectures (e.g., Coldfusion, J2EE, Fusebox)

amenable to component-based software engineering

(Chapter 30).

Rational Rose, developed by Rational (www.rational.com),

is a UML-based design tool that supports all aspects of

architectural design.

J

1IL5 Assessing Alternative Architectural Designs

At its best, design results in a number of architectural alternatives that are each as-

sessed to determine which is the most appropriate for the problem to be solved. In the

sections that follow, we consider the assessment of alternative architectural designs.

"Moybe it's in the bosement. Let me go upstairs and check."

M. C. Escher

WebRef
Indepth information on

ATAM con be obtained

ol

www.sei.cmo.edu

/ata/gtq method

.html.

10.5. 1 An Architecture Trade-Off Analysis Method

The Software Engineering Institute (SEI) has developed an architecture tradeoffanaly-

sis method (ATAM) [KAZ98] that establishes an iterative evaluation process for software

architectures. The design analysis activities that follow are performed iteratively:

1 . Collect scenarios. A set of use-cases (Chapters 7 and 8) is developed to repre-

sent the system from the user's point of view.

2. Elicit requirements, constraints, and environment description. This information

is required as part of requirements engineering and is used to be certain that

all stakeholder concerns have been addressed.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 305

3. Describe the architectural styles/pattems that have been chosen to address the

scenarios and requirements.

4. Evaluate quality attributes by considering each attribute in isolation. Quality at-

tributes for architectural design assessment include reliability, performance,

security, maintainability, flexibility, testability, portability, reusability, and in-

teroperability.

5. Identify the sensitivity ofquality attributes to various architectural attributesfor a

specific architectural style. This can be accomplished by making small changes

in the architecture and determining how sensitive a quality attribute, say per-

formance, is to the change. Any attributes that are significantly affected by

variation in the architecture are termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the sensitivify analy-

sis conducted in step 5. The SEI describes this approach in the following man-

ner [KAZ98):

Once the architectural sensitivity points have been determined, finding trade-off

points is simply the identification of architectural elements to which multiple attrib-

utes are sensitive. For example, the performance of a client-server architecture might

be highly sensitive to the number of servers (performance increases, within some

range, by increasing the number of servers). . The number of servers, then, is a

trade-off point with respect to this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps 5

and 6, some architecture alternatives may be eliminated, one or more of the

remaining architectures may be modified and represented in more detail, and then

the ATAM steps are reapplied.
8

SafeHome

Architecture Assessment

The scene: Doug Miller's office as

architectural design modeling proceeds.

The players: Vinod, Jamie, Shakira, and Ed—members

of the SafeHome software engineering team. Also, Doug

Miller, manager of the software engineering group.

The conversation:

Doug: I know you guys are deriving a couple of

different architectures for the SafeHome product, and

thafs a good thing. I guess my question is, how are we

going to choose the one that's best?

Ed: I'm working on a call and return style, and then

either Jamie or I are going to derive an OO architecture.

Doug: Okay, and how do we choose?

Shakira: I took a course in design in my senior year,

and I remember that there are a number of ways to

do it.

8 The Software Architecture Analysis Method (SAAM) is an alternative to ATAM and is well-worth ex-

amining by those readers interested in architectural analysis. A paper on SAAM can be downloaded

from: http://www.sei.cmu.edu/publications/articles/saam-metho-propert-sas.htmf

306 PART TWO SOFTWARE ENGINEERING PRACTICE

Vinod: There are, but they're a bit academic. Look, I

think we can do our assessment and choose the right one

using use-cases and scenarios.

Doug: Isn't that the same thing?

Vinod: Not when you're talking about architectural

assessment. We already have a complete set of use-cases.

So we apply each to both architectures and see how the

system reacts—how components ond connectors work in

the use-case context.

Ed: That's a good idea. Makes sure we didn't leave

anything out.

Vinod: True, but it also tells us whether the architectural

design is convoluted, whether the system has to twist itself

into a pretzel to get the job done.

Jamie: Scenarios aren't just another name for use-cases?

Vinod: No, in this case a scenario implies something

different.

Doug: You're talking about a quality scenario or a

change scenario, right?

Vinod: Yes. What we do is go back to the stakeholders

and ask them how SafeHome is likely to change over the

next, say, three years. You know, new versions, features,

that sort of thing. We build a set of change scenarios. We
also develop a set of quality scenarios that define the

attributes we'd like to see in the software architecture.

Jamie: And we apply them to the alternatives.

Vinod: Exactly. The style that handles the use-cases and

scenarios best is the one we choose.

10.5.2 Architectural Complexity

A useful technique for assessing the overall complexity of a proposed architecture is

to consider dependencies between components within the architecture. These de-

pendencies are driven by information/control flow within the system. Zhao [ZHA98]

suggests three types of dependencies:

Sharing dependencies represent dependence relationships among consumers who use the

same resource or producers who produce for the same consumers. For example, for two

components u and v, if u and v refer to the same global data, then there exists a shared

dependence relationship between u and v.

Flow dependencies represent dependence relationships between producers and con-

sumers of resources. For example, for two components u and v, if u must complete be-

fore control flows into v (prerequisite), or if u communicates with v by parameters, then

there exists a flow dependence relationship between u and v.

Constrained dependencies represent constraints on the relative flow of control among

a set of activities. For example, for two components u and v, if u and v cannot execute at

the same time (mutual exclusion), then there exists a constrained dependence relation-

ship between u and v.

The sharing and flow dependencies noted by Zhao are similar to the concept of cou-

pling discussed in Chapter 9. Coupling is an important design concept that is appli-

cable at the architectural level and at the component level. Simple metrics for

evaluating coupling are discussed in Chapter 15.

10.5.3 Architectural Description Languages

The architect of a house has a set of standardized tools and notation that allow the

design to be represented in an unambiguous, understandable fashion. Although the

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 307

software architect can draw on UML notation, other diagrammatic forms, and a few

related tools, there is a need for a more formal approach to the specification of an

architectural design.

Architectural description language (ADL) provides a semantics and syntax for de-

scribing a software architecture. Hofmann and his colleagues [HOFOl] suggest that

an ADL should provide the designer with the ability to decompose architectural com-

ponents, compose individual components into larger architectural blocks, and rep-

resent interfaces (connection mechanisms) between components. Once descriptive,

language-based techniques for architectural design have been established, it is more

likely that effective assessment methods for architectures will be established as the

design evolves.

Software Tools

Architectural Description Languages

The following summary of a number of

important ADLs was prepared by Rickard Land

[LAN02] and is reprinted with the author's permission. It

should be noted that the first five ADLs listed have been

developed for research purposes and are not commercial

products.

Rapide (poset.stanford.edu/rapide/) [LUC95] builds on

the notion of partial ordered sets.

UniCon (www.cs.cmu.edu/~UniCon) [SHA96] defines

software architectures in terms of abstractions that

designers find useful.

Aesop (www.cs.cmu.edu/~able/aesop/) [GAR94]

addresses the problem of style reuse.

Wright (www.cs.cmu.edu/~oble/wright/) [ALL97]

formalizes architectural styles using predicates, thus

allowing for static checks to determine the consistency

and completeness of an architecture.

Acme (www.cs.cmu.edu/~ocme/) [GAROO] is a second-

generation ADL
UML (www.uml.org/) includes many of the artifacts

needed for architectural descriptions, but is not as

complete as other ADLs.

10.6 Mapping Data Flow into a Software Architecture

The styles discussed in Section 1 0.3. 1 represent radically different architectures, so

it should come as no surprise that a comprehensive mapping that accomplishes the

transition from the analysis model to a variety of architectural styles does not exist.

In fact, there is no practical mapping for some architectural styles. The designer must

approach the translation of requirements to design for these styles by using the tech-

niques discussed in Section 10.4.

To illustrate one approach to architectural mapping, we consider a mapping tech-

nique for the call and return architecture—an extremely common structure for many

types of systems. This mapping technique enables a designer to derive reasonably

complex call and return architectures from data flow diagrams within the analysis

model. The technique, sometimes called stivctured design, is presented in books by

Myers [MYE78] and Yourdon and Constantine [YOU79].

Structured design is often characterized as a data flow-oriented design method

because it provides a convenient transition from a data flow diagram (Chapter 8)

308 PART TWO SOFTWARE ENGINEERING PRACTICE

to software architecture. The type of information flow is the driver for the map-

ping approach.

10.6.1 Transform Flow

Information must enter and exit software in an "external world" form. For example,

data typed on a keyboard, tones on a telephone line, and video images in a multi-

media application are all forms of external world information. Such externalized

data must be converted into an internal form for processing. Information enters the

system along paths that transform external data into an internal form. These paths

are identified as incoming flow At the kernel of the software, a transition occurs. In-

coming data are passed through a transform center and begin to move along paths

that now lead "out" of the software. Data moving along these paths are called out-

going flow. The overall flow of data occurs in a sequential manner and follows one,

or only a few, "straight line" paths. 9 when a segment of a data flow diagram exhibits

these characteristics, transform flow is present.

10.6.2 Transaction Flow

Information flow is often characterized by a single data item, called a transaction,

that triggers other data flow along one of many paths. When a DFD takes the form

shown in Figure 10.10, transaction flow is present.

Transaction flow is characterized by data moving along an incoming path that

converts external world information into a transaction. The transaction is evalu-

9 An obvious mapping for this type of information flow is the data flow architecture described in Sec-

tion 10.3.1 There are many cases, however, where the data flow architecture may not be the best

choice for a complex system Examples include systems that will undergo substantial change over

time or systems in which the processing associated with the data flow is not necessarily sequential.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 309

ated and, based on its value, flow along one of many action paths is initiated. The

hub of information flow from which many action paths emanate is called a trans-

action center

It should be noted that, within a DFD for a large system, both transform and trans-

action flow may be present. For example, in a transaction-oriented flow, information

flow along an action path may have transform flow characteristics.

10.6.3 Transform Mapping

Transform mapping is a set of design steps that allows a DFD with transform flow

characteristics to be mapped into a specific architectural style. To illustrate this ap-

proach, we again consider the SafeHome security function. 10 One element of the

analysis model is a set of data flow diagrams that describe information flow within

the security function. To map these data flow diagrams into an architecture, the fol-

lowing design steps are initiated:

Qadvice^

If the DFD is refined

further at this time,

strive to derive bubbles

that exhibit high

cohesion.

Step I. Review the fundamental system model. The fundamental system

model or context diagram depicts the security function as a single transformation,

representing the external producers and consumers of data that flow into and out of

the function. Figure 10.1 1 depicts a level 0 model, and Figure 10.12 depicts refined

data flow for the security function.

Step 2. Review and refine data flow diagrams for the software. Information

obtained from the analysis models is refined to produce greater detail. For example,

the level 2 DFD for monitorsensors (Figure 10.13) is examined, and a level 3 data flow

Context level

DFD (or the

SaieHome
security

(unction

10 We consider only the portion of the SafeHome security function that uses the control panel. Other

features, discussed earlier in this book and this chapter, will not be considered here.

310 PART TWO SOFTWARE ENGINEERING PRACTICE

Level 2 DFD
that refines

the monitor

sensors

transform

diagram is derived as shown in Figure 10. 14. At level 3, each transform in the data

flow diagram exhibits relatively high cohesion (Chapter 9). That is, the process im-

plied by a transform performs a single, distinct function that can be implemented as

a component in the SafeHome software. Therefore, the DFD in Figure 10. 14 contains

sufficient detail for a "first cut" at the design of architecture for the monitor sensors

subsystem, and we proceed without further refinement.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 311

Level 3 DFD for monitor sensors with flow boundaries

Configuration information!

r ^
Formated

ID, type,

location

Sensor

information

Sensor

ID, setting'

fi
/

^ Alarm

condition code^

sensor ID, timing

information

Telephone

number

ready

telephone''

number Telephone

number tones

POINT
You will often

encounter both types

of date flow within the

same flow-oriented

model. The flows ote

partitioned and

program structure is

derived using the

appropriate mapping.

Vary the location of

how boundaries in on

effort to explore alter-

native program struc-

tures. This takes very

little time and provides

important insight.

Step 3. Determine whether the DFD has transform or transaction flow char-

acteristics. in general, information flow within a system can always be represented

as transform. However, when an obvious transaction characteristic (Figure 1 0. 1 0) is en-

countered, a different design mapping is recommended, in this step, the designer se-

lects global (software-wide) flow characteristics based on the prevailing nature of the

DFD. In addition, local regions of transform or transaction flow are isolated. These sub-

flows can be used to refine program architecture derived from a global characteristic

described previously. For now, we focus our attention only on the monitor sensors sub-

system data flow depicted in Figure 10.14.

Evaluating the DFD (Figure 10.14), we see data entering the software along one

incoming path and exiting along three outgoing paths. No distinct transaction cen-

ter is implied (although the transform establishes alarm conditions that could be per-

ceived as such). Therefore, an overall transform characteristic will be assumed for

information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing

flow boundaries. In the preceding section incoming flow was described as a path

that converts information from external to internal form; outgoing flow converts

from internal to external form. Incoming and outgoing flow boundaries are open to

interpretation. That is, different designers may select slightly different points in the

312

Don'tbecome

dogmatic at this stoge.

Itmy be necessary to

establish two or more

controllers for input

processing or computa-

tion, based on the

complexity of the

system to be built. If

common sense dictates

this approach, do it!

PART TWO SOFTWARE ENGINEERING FRACTICE

flow as boundaty locations. In fact, alternative design solutions can be derived by

varying the placement of flow boundaries. Although care should be taken when

boundaries are selected, a variance of one bubble along a flow path will generally

have little impact on the final program structure.

Flow boundaries for the example are illustrated as shaded curves running verti-

cally through the flow in Figure 10.14. The transforms (bubbles) that constitute the

transform center lie within the two shaded boundaries that run from top to bottom

in the figure. An argument can be made to readjust a boundary (e.g., an incoming

flow boundary separating read sensors and acquire response info could be proposed)

.

The emphasis in this design step should be on selecting reasonable boundaries,

rather than lengthy iteration on placement of boundaries.

Step 5. Perform "first-level factoring." The program architecture derived using

this mapping results in a top-down distribution of control. Factoring results in a pro-

gram structure in which top-level components perform decision-making and low-

level components perform most input, computation, and output work. Middle-level

components perform some control and do moderate amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure (a

call and return architecture) that provides control for incoming, transform, and out-

going information processing. This first-level factoring for the monitor sensors sub-

system is illustrated in Figure 10.15. A main controller (called monitor sensors

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN
313

executive) resides at the top of the program structure and coordinates the following

subordinate control functions:

Keep “worker"

modules low in the

program structure, This

will lead to on architec-

ture that is easier to

maintain.

Eliminate redundant

control modules. That

is, if o control module

does nothing except

control one other

module, its control

function should be

imploded to a higher

level module.

Focus on the functional

independence of the

modules you've

derived. High cohesion

and low coupling

should be your gool.

• An incoming information processing controller, called sensor input controller.

coordinates receipt of all incoming data,

. A transform flow controller, called alarm conditions controller, supervises all

operations on data in internalized form (e.g.. a module that invokes various

data transformation procedures).

• An outgoing information processing controller, called alarm output controller,

coordinates production of output information.

Although a three-pronged structure is implied by Figure 10.15, complex flows in

large systems may dictate two or more control modules for each of the generic con-

trol functions described previously. The number of modules at the first level should

be limited to the minimum that can accomplish control functions and still maintain

good functional independence characteristics.

Step 6. Perform "second-level factoring." Second-level factoring is accom-

plished by mapping individual transforms (bubbles) of a DFD into appropriate mod-

ules within the architecture. Beginning at the transform center boundary and moving

outward along incoming and then outgoing paths, transforms are mapped into sub-

ordinate levels of the software structure. The general approach to second-level fac-

toring is illustrated in Figure 1 0. 1

6

Although Figure 10.16 illustrates a one-to-one mapping between DFD transforms

and software modules, different mappings frequently occur. Two or even three bub-

bles can be combined and represented as one component, or a single bubble may be

expanded to two or more components. Practical considerations and measures ot de-

sign quality dictate the outcome of second-level factoring. Review and refinement

may lead to changes in this structure, but it can serve as a "first-iteration" design.

Second-level factoring for incoming flow follows in the same manner. Factoring is

again accomplished by moving outward from the transform center boundary on the

incoming flow side. The transform center of monitor sensors subsystem software is

mapped somewhat differently. Each of the data conversion or calculation transforms

of the transform portion of the DFD is mapped into a module subordinate to the trans-

form controller. A completed first-iteration architecture is shown in Figure 10. 1 7.

The components mapped in the preceding manner and shown in Figure 10.17 rep-

resent an initial design of software architecture. Although components are named in

a way that implies function, a brief processing narrative (adapted from the PSPEC cre-

ated during analysis modeling) should be written for each.

Step 7. Refine the first-iteration architecture using design heuristics for im-

proved software quality. A first-iteration architecture can always be refined by

applying concepts of functional independence (Chapter 9). Components are ex-

ploded or imploded to produce sensible factoring, good cohesion, minimal coupling,

Second-level

factoring for

monitor

sensors

First iteration structure tor monitor sensors

Monitor
sensors

executive

Ser

in

conti

isor

DUt
roller

1

Alarm
conditions

controller

Alarm
|

output

controller |

Acquire
response

info

Establish

alarm
conditions

Select

phone
number

Format
display

Generate
alarm
signal

Set up
connection

to phone net

Read
sensors

Genera te

display
1

Generate
pulses to line

314

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN
315

and most importantly, a structure that can be implemented without difficulty, tested

without confusion, and maintained without grief.

Refinements are dictated by the analysis and assessment methods described

briefly in Section 10.5, as well as practical considerations and common sense. There

are times, for example, when the controller for incoming data flow is totally unnec-

essary, when some input processing is required in a component that is subordinate

to the transform controller, when high coupling due to global data cannot be

avoided, or when optimal structural characteristics cannot be achieved. Software re-

quirements coupled with human judgment is the final arbitei

The objective of the preceding seven steps is to develop an architectural repre-

sentation of software. That is, once structure is defined, we can evaluate and refine

software architecture by viewing it as a whole. Modifications made at this time re-

quire little additional work, yet can have a profound impact on software quality

The reader should pause for a moment and consider the difference between the de-

sign approach described and the process of "writing programs." If code is the only rep-

resentation of software, the developer will have great difficulty evaluating or refining at

a global or holistic level and will, in fact, have difficulty "seeing the forest for the trees."

Refining a First-Cut Architecture

The scene: Jamie's cubicle, as design modeling

continues.

The players: Jamie and Ed—members of tbe

SafeHome software engineering team.

The conversation:

(Ed has just completed a first-cut design of the monitor

sensors subsystem. He stops in to ask Jamie her opinion.)

Ed: So here's the architecture that I derived.

(Ed shows Jamie Figure 1 0. 1 7, which she studies for o

few moments.)

Jamie: That's cool, but I think we can do a few things to

make it simpler . . . and better.

Ed: Such as?

Jamie: Well, why did you use the sensor input controller

component?

Ed: Because you need a controller for the mapping.

Jamie: Not really. The controller doesn't do much,

since we're managing a single flow path for incoming

data. We can eliminate the controller with no ill

effects.

Ed: I can live with that, I'll make the change and . .

Jamie (smiling): Hold up! We can also implode the

components establish alarm conditions and select phone

number. The transform controller you show isn t really

necessary, ond the small decrease in cohesion is

tolerable,

Ed: Simplification, huh?

Jamie: Yep. And while we're making refinements, it

would be a good idea to implode the components format

display and generate display. Display formatting for the

control panel is simple. We can define a new module

called produce display.

Ed (sketching): So this is what you think we should

do?

(He shows Jamie Figure 10.18.)

Jamie: It's a start.

316 PART TWO SOFTWARE ENGINEERING PRACTICE

Refined

program
structure for

monitor

sensors

Monitor
sensors

executive

Esta

ala

cond

}lish

rm
tions

10.6.4 Transaction Mapping

In many software applications, a single data item triggers one of a number of infor-

mation flows that effect a function implied by the triggering data item. The data item,

called a transaction, and its corresponding flow characteristics are discussed in Sec-
tion 10.6.2. In this section we consider design steps used to map transaction flow
into a software architecture.

Transaction mapping will be illustrated by considering the user interaction
subsystem of the SafeHome security function. Level 1 data flow for this subsystem
is shown as part of Figure 10.12. Refining the flow, a level 2 data flow diagram is

developed and shown in Figure 10.19. The data object user commands flows
into the system and results in additional information flow along one of three
action paths. A single data item, command type, causes the data flow to fan out-
ward from a hub. Therefore, the overall data flow characteristic is transaction-
oriented.

It should be noted that information flow along two of the three action paths ac-
commodates additional incoming flow (e.g.

,
system parameters and data are in-

put on the "configure" action path). Each action path flows into a single transform,

display messages and status.

The design steps for transaction mapping are similar and in some cases identical

to steps for transform mapping (Section 10.6.3). A major difference lies in the map-
ping of DFD to software structure.

Step 1 . Review the fundamental system model.

Step 2. Review and refine data flow diagrams for the software.

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 317

User
commands

Level 2 DFD lor user interaction subsystem

Raw
System parameters configuration,

and data data /

Password
Display

nformotion

Step 3. Determine whether the DFD has transform or transaction flow

characteristics.

Steps 1,2, and 3 are identical to corresponding steps in transform mapping. The DFD

shown in Figure 10.19 has a classic transaction flow characteristic. However flow

along two of the action paths emanating from the invoke command processing bub-

ble appears to have transform flow characteristics. Therefore, flow boundaries must

be established for both flow types.

POINT
First-level factoring

results in the derivation

of o control hierarchy

for the software.

Second-level factoring

distributes "worker"

modules under the

oppropriate controller.

Step 4. Identify the transaction center and the flow characteristics along

each of the action paths. The location of the transaction center can be immedi-

ately discerned from the DFD. The transaction center lies at the origin of a number

of actions paths that flow radially from it. For the flow shown in Figure 10.19, the in-

voke command processing bubble is the transaction center.

The incoming path (i.e., the flow path along which a transaction is received) and

all action paths must also be isolated. Each action path must be evaluated for its in-

dividual flow characteristic. For example, the "password" path (shown enclosed by a

shaded area in Figure 10.19) has transform characteristics. Incoming, transform, and

outgoing flow are indicated with boundaries.

Step 5. Map the DFD in a program structure amenable to transaction pro-

cessing. Transaction flow is mapped into an architecluie that contains an in

coming branch and a dispatch branch. The structure of the incoming branch is

318 PART TWO SOFTWARE ENGINEERING PRACTICE

Trcmsactlon

mapping

developed in much the same way as transform mapping. Starting at the transaction
center, bubbles along the incoming path are mapped into modules. The structure of
the dispatch branch contains a dispatcher module that controls all subordinate ac-
tion modules. Each action flow path of the DFD is mapped to a structure that corre-
sponds to its specific flow characteristics. This process is illustrated schematically
in Figure 10.20.

Considering the user interaction subsystem data flow, first-level factoring for step
5 is shown in Figure 10.21, The bubbles read user command and activate/deactivate

system map directly into the architecture without the need for intermediate control

modules. The transaction center, invoke command processing, maps directly into a
dispatcher module of the same name. Controllers for system configuration and pass-
word processing are created as illustrated in Figure 10.2 1 .

Step 6. Factor and refine the transaction structure and the structure of
each action path. Each action path of the data flow diagram has its own infor-

mation flow characteristics. We have already noted that transform or transaction

flow may be encountered. The action path-related "substructure" is developed using
the design steps discussed in this and the preceding section.

As an example, consider the password processing information flow shown (inside

shaded area) in Figure 10.19. The flow exhibits classic transform characteristics. A
password is input (incoming flow) and transmitted to a transform center where it is

compared against stored passwords. An alarm and warning message (outgoing
flow) are produced {if a match is not obtained). The "configure'

1

path is drawn simi-

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 319

First-level

factoring for

user interac-

tion subsystem

First iteration architecture for user interaction subsystem

larly using the transform mapping. The resultant software architecture is shown in

Figure 10.22.

Step 7. Refine the first-iteration architecture using design heuristics for

improved software quality. This step for transaction mapping is identical to the

corresponding step for transform mapping. In both design approaches, criteria

such as module independence, practicality (efficacy of implementation and test),

and maintainability must be carefully considered as structural modifications are

proposed.

320 PART TWO SOFTWARE ENGINEERING PRACTICE

"Moke it os simple os possible. But no simpler.'

Albert Einstein

10.6.5 Refining the Architectural Design

Any discussion of design refinement should be prefaced with the following com-
ment: Remember that an "optimal design" that doesn't work has questionable merit.

The software designer should be concerned with developing a representation of soft-

ware that will meet all functional and performance requirements and merit accept-

ance based on design measures and heuristics.

Refinement of software architecture during early stages of design is to be en-

couraged. As we discussed earlier in this chapter, alternative architectural styles may
be derived, refined, and evaluated for the "best" approach. This approach to opti-

mization is one of the true benefits derived by developing a representation of soft-

ware architecture.

It is important to note that structural simplicity often reflects both elegance and
efficiency. Design refinement should strive for the smallest number of components
that is consistent with effective modularity and the least complex data structure that

adequately serves information requirements.

l.fl.7 Summary

Software architecture provides a holistic view of the system to be built. It depicts the

structure and organization of software components, their properties, and the con-

nections between them. Software components include program modules and the

various data representations that are manipulated by the program. Therefore, data

design is an integral part of the derivation of the software architecture. Architecture

highlights early design decisions and provides a mechanism for considering the ben-

efits of alternative system structures.

Data design translates the data objects defined in the analysis model into data

structures that reside within the software. The attributes that describe the object, the

relationships between data objects and their use within the program all influence the

choice of data structures. At a higher level of abstraction, data design may lead to

the definition of an architecture for a database or a data warehouse.

A number of different architectural styles and patterns are available to the software

engineer. Each style describes a system category that (1) encompasses a set ofcompo-
nents that perform a function required by a system, (2) a set of connectors that enable

communication, coordination and cooperation among components, (3) constraints

that define how components can be integrated to form the system, and (4) semantic

models that enable a designer to understand the overall properties of a system.

In a general sense, architectural design is accomplished using four distinct steps.

First, the system must be represented in context. That is, the designer should define

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 321

the external entities that the software interacts with and the nature of the interac-

tion. Once context has been specified, the designer should identify a set of top-level

abstractions, called archetypes, that represent pivotal elements of the system's be-

havior or function. After abstractions have been defined, the design begins to move

closer to the implementation domain. Components are identified and represented

within the context of an architecture that supports them. Finally, specific instantia-

tions of the architecture are developed to "prove" the design in a real world context.

As a simple example of architectural design, the mapping method presented in this

chapter uses data flow characteristics to derive a commonly used architectural style.

A data flow diagram is mapped into program structure using one oftwo mapping ap-

proaches—transform mapping or transaction mapping. Once an architecture has

been derived, it is elaborated and then analyzed against quality criteria.

References

[AH083] Aho, A. V.. J. Hopcroft, and J. Ullmann, Data Structures and Algorithms, Addison-Wesley.

1983.

[ALL97] Allen R., "A Formal Approach to Software Architecture," Ph.D. Thesis, Carnegie Mellon

University, Technical Report Number: CMU-CS-97-144 1997.

IBAR00] Barroca, L. and P. Hall (eds.), Sopvare Architecture: Advances and Applications. Springer-

Verlag, 2000.

[BAS03J Bass, L., P. Clements, and R. Kazman, SoftwareArchitecture in Practice. 2nd ed. Addison-

Wesley, 2003.

1BOS00I Bosch, J., Design & Use ofSoftware Architectures, Addison-Wesley, 2000.

[BUS96] Buschmann. F., Pattern-Oriented Software Architecture, Wiley, 1996.

[DATOO] Date, C.)., An introduction to Database Systems, 7th ed., Addison-Wesley, 2000.

[DIK001 Dikel, D„ D. Kane, and J. Wilson, Software Architecture: Organizational Principles and Pat-

terns, Prentice-Hall, 2000.

[FRE80] Freeman, P„ "The Context of Design," in Sopvare Design Techniques, 3rd ed. (P. Freeman

and A. Wasserman, eds.), IEEE Computer Society Press, 1980, pp. 2-4.

[GAR94] Garlan D„ R. Allen, and J. Ockerbloom, "Exploiting Style in Architectural Design Envi-

ronments," in Proceedings ofSIGSOFT •94 Symposium on the Foundations ofSopvare Engi

neering, 1994.

[GAR001 Garlan D„ R. T Monroe, and D. Wile, "Acme: Architectural Description of Component-

Based Systems," in Foundations ofComponent-Based Systems, G. T. Leavens and M. Sitarman,

eds. Cambridge University Press, 2000.

(HOF001 Hofmeister, C., R. Nord, and D. Soni, Applied Software Architecture, Addison-Wesley, 2000.

(HOF011 Hofmann, C., et al., "Approaches to Software Architecture," downloadable from:

http://citeseer.nj.nec.com/840l5.html.

[KAZ98] Kazman, R., et al., The Architectural TradeoffAnalysis Method, Software Engineering In-

stitute, CMU/SEI-98-TR-008, July 1998.

[KJM98] Kimball, R., L. Reeves, M. Ross, and W. Thornthwaite, The Data Warehouse Lifecycle

Toolkit: Expert Methodsfor Designing, Developing, and Deploying Data Warehouses, Wiley, 1998.

|LAN02] Land R.. A Brief Survey of Software Architecture, Technical Report, Dept, of Computer

Engineering, Malardalen University, Sweden, February, 2002.

[LUC95] Luckham D. C., et al., "Specification and Analysis of System Architecture Using Rapide,"

IEEE Transactions on Software Engineering, issue "Special Issue on Software Architecture," 1 995.

[MAT96] Mattison, R., Data Warehousing: Strategies, Technologies and Techniques, McGraw-Hill,

1996.

[MYE78] Myers, G„ Composite Structured Design, Van Nostrand, 1978.

322 PART TWO SOFTWARE ENGINEERING PRACTICE

[PRE98I Preiss. B. R Data Structures and Algorithms With Object-Oriented Design Patterns in

C++, Wiley, 1998.

[SHA96| Shaw, M„ and D. Garlan, Software Architecture, Prentice-Hall, 1996.
[SHA97] Shaw, M., and P. Clements, "A Field Guide to Boxology: Preliminary Classification of Ar-

chitectural Styles for Software Systems," Proc. COMPSAC, Washington, DC, August 1997.
[WAS80J Wasserman, A., "Principles of Systematic Data Design and Implementation," in Soft-

ware Design Techniques (P. Freeman and A. Wasserman, eds.), 3rd ed., IEEE Computer Soci-
ety Press, 1980, pp. 287-293.

[YOU79] Yourdon, E., and L. Constantine, Structured Design, Prentice-Hall. 1979.
[ZHA98I Zhao, "On Assessing the Complexity of Software Architectures," Proc. Inti Software

Architecture Workshop, ACM, Orlando, FL, 1998, pp. 163-167.

Problems and Points to Ponder
fO.!. Using a data flow diagram and a processing narrative, describe a computer-based sys-
tem that has distinct transform (tow characteristics. Define flow boundaries and map the DFD
into a software architecture using the technique described in Section 10.6,3,

10.2. Write a three- to five-page paper that presents guidelines for selecting data structures
based on the nature of the problem. Begin by delineating the classical data structures encoun-
tered in software work and then describe criteria for selecting from these for particular types of
problems.

10.3. Explain the difference between a database that services one or more conventional busi-
ness applications and a data warehouse.

10.4. Using a data flow diagram and a processing narrative, describe a computer-based sys-
tem that has distinct transaction flow characteristics. Define flow boundaries and map the DFD
into a software structure using the technique described in Section 10.6.4.

10.5. Some of the architectural styles noted in Section 10.3,1 are hierarchical in nature and
others are not. Make a list of each type. How would the architectural styles that are not hierar-
chical be implemented?

1 0.6. If you haven't done so, complete Problem 8, 1 0. Use the design methods described in this

chapter to develop a software architecture for the PHTRS.

10.7. Research the ATAM (use the SE1 Web site) and present a detailed discussion of the six
steps presented in Section 10.5.

1

10.8. Select an application with which you are familiar. Answer each of the questions posed
for control and data in Section 10.3.3.

1 0.9. Some designers contend that all data flow may be treated as transform-oriented. Discuss
how this contention will affect the software architecture that is derived when a transaction-oriented
flow is treated as transform. Use an example flow to illustrate important points.

10.10. The terms architectural style, architectural pattern, andframework are often encountered
in discussions of software architecture. Do some research (use the Web) and describe how each
of these terms differs from its counterparts.

1 0. 1 1 . Present two or three examples of applications for each of the architectural styles noted
in Section 10.3.1.

10 . 12 . Using the architecture of a house or building as a metaphor, draw comparisons with
software architecture. How are the disciplines of classical architecture and software architec
ture similar? How do they differ?

CHAPTER 10 CREATING AN ARCHITECTURAL DESIGN 323

Further Readings and Information Sources I

The literature on software architecture has exploded over the past decade. Books by Fowler [Pat-

terns ofEnterprise Application Architecture, Addison-Wesley, 2003), Clements and his colleagues

(Documenting Software Architecture: View and Beyond, Addison-Wesley, 2002), Schmidt and his

colleagues [Pattern -Oriented Software Architectures, two volumes, Wiley, 2000), Bosch [BOSOOl,

Dikel and his colleagues [DiKOOl, Hofmeister and his colleagues (HOFOO), Bass, Clements, and

Kazman [BAS031, Shaw and Garlan [SHA96], and Buschmann et al. (BUS96) provide in-depth

treatment of the subject. Earlier work by Garlan (An Introduction to Software Architecture, Soft-

ware Engineering Institute, CMU/SEI-94-TR-021, 1994) provides an excellent introduction.

Clements and Northrop [Software Product Lines: Practices and Patterns, Addison-Wesley, 2001))

address the design of architectures that support software product lines. Clements and his col-

leagues [Evaluating Software Architectures, Addison-Wesley, 2002) consider the issues associated

with the assessment of architectural alternatives and the selection of the best architecture for a

given problem domain.

Implementation-specific books on architecture address architectural design within a specific

development environment or technology. Wallnau and his colleagues [Building Systemsfrom
Commercial Components, Addison-Wesley, 2001) present methods for constructing component-

based architectures. Pritchard [COM and CORBA Side-by-Side, Addison-Wesley, 1 999), Mowbray
(CORBA Design Patterns, Wiley, 1997) and Mark et al. [Object Management Architecture Guide,

Wiley, 1996) provide detailed design guidelines for the CORBA distributed application support

framework. Shanley [Protected Mode Software Architecture, Addison-Wesley, 1996) provides ar-

chitectural design guidance for anyone designing PC-based real-time operating systems, multi-

task operating systems, or device drivers.

Cun'ent software architecture research is documented yearly in the Proceedings ofthe interna-

tional Workshop on Software Architecture, sponsored by the ACM and other computing organiza-

tions, and the Proceedings ofthe international Conference on Software Engineering. Barroca and Hall

[BAR00] present a useful survey of recent research.

Data modeling is a prerequisite to good data design. Books by Teory (Database Modeling and

Design, Academic Press, 1998); Schmidt [Data Modelingfor Information Professionals, Prentice-

Hall, 1998); Bobak [Data Modeling and Designfor Today's Architectures, Artech House, 1997); Sil-

verston, Graziano, and Inmon [The Data Model Resource Book, Wiley, 1997); Date [DAT00], and

Reingruber and Gregory [The Data Modeling Handbook: A Best-Practice Approach to Building

Quality Data Models, Wiley, 1994) contain detailed presentations of data modeling notation,

heuristics, and database design approaches. The design of data warehouses has become in-

creasingly important in recent years. Books by Humphreys, Hawkins, and Dy [Data Warehous-

ing: Architecture and Implementation, Prentice-Hall, 1999); Kimball et al. 1K1M98]; and Inmon

[INM95] cover the topic in considerable detail.

General treatment of software design with discussion of architectural and data design issues

can be found in most books dedicated to software engineering. More rigorous treatments of the

subject can be found in Feijs (A Formalization ofDesign Methods, Prentice-Hall, 1993), Witt et al.

[Software Architecture and Design Principles, Thomson Publishing, 1994), and Budgen (Software

Design, Addison-Wesley 1994).

Complete presentations of data flow-oriented design may be found in Myers [MYE78], Your-

don and Constantine [YOU79]
,
and Page-Jones [The Practical Guide to Structured Systems Design,

2nd ed., Prentice-Hall, 1988). These books are dedicated to design alone and provide compre-

hensive tutorials in the data flow approach.

A wide variety of information sources on architectural design are available on the Internet.

An up-to-date list of World Wide Web references that are relevant to architectural design can be

found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

[n] Modeling
Component-Level Design

C omponent-level design occurs after the first iteration of architectural de-

sign has been completed. At this stage, the overall data and program

structure of the software has been established. The intent is to translate

the design model into operational software. But the level of abstraction of the ex-

isting design model is relatively high, and the abstraction level of the operational

program is low. The translation can be challenging, opening the door to the in-

troduction of subtle errors that are difficult to find and correct in later stages of

the software process. In a famous lecture. Edsgar Dijkstra, a major contributor to

our understanding of software design, stated [D1J72J:

Software seems to be different from many other products, where as a rule higher qual-

ity implies a higher price. Those who want really reliable software will discover that

they must find a means of avoiding the majority of bugs to start with, and as a result,

the programming process will become cheaper . effective programmers . . . should

not waste their time debugging—they should not introduce bugs to start with.

Although these words were spoken many years ago, they remain true today.

When the design model is translated into source code, we must follow a set of de-

sign principles that not only perform the translation but also do not "introduce

bugs to start with.''

It is possible to represent the component-level design using a programming

language. In essence, the program is created using the architectural design model

as a guide. An alternative approach is to represent the component-level design

Key
Concepts
cohesion

components

conventional

object-oriented

process-related

coupling

design

guidelines

graphical notation

principles

tasks

middleware

OCL

packaging principles

PDL

structured

programming

What is it? A complete set of soft-

ware components is defined during

architectural design. But the internal

data structures and processing de-

tails of each component are not represented at a

level of abstraction that is close to code.

Component-level design defines the data struc-

tures, algorithms, interface characteristics, and

communication mechanisms allocated to each

software component.

Who does it? A software engineer performs

component-level design.

Why is it important? You have to be able to de-

termine whether the software will work before you

build it. The component-level design represents

the software in a way that allows you to review

the details of the design for correctness and con-

sistency with earlier design representations (i.e.,

the data, architectural, and interface designs). It

provides a means for assessing whether data

structures, interfaces, and algorithms will work.

What are the steps? Design representations of

data, architecture, and interfaces form the foun-

dation for component-level design. The class

324

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 325

definition or processing narrative for each com-

ponent is translated into a detailed design that

makes use of diagrammatic or text-based forms

that specify internal data structures, local interface

detail, and processing logic. Design notation en-

compasses UML diagrams and supplementary

representations. Procedural design is specified us-

ing a set of structured programming constructs.

What is the work product? The design for

each component, represented in graphical,

tabular, or text-based notation, is the primary

work product produced during component-level

design.

How do I ensure that I've done it right? A
design walkthrough or inspection is conducted.

The design is examined to determine whether

data structures, interfaces, processing se-

quences, and logical conditions are correct and

will produce the appropriate data or control

transformation allocated to the component dur-

ing earlier design steps.

using some intermediate (e.g., graphical, tabular, or text-based) representation

that can be translated easily into source code. Regardless of the mechanism that

is used to represent the component-level design, the data structures, interfaces,

and algorithms defined should conform to a variety of well-established design

guidelines that help us to avoid errors as the procedural design evolves. In this

chapter, we examine these design guidelines and the methods available for

achieving them.

11.1 What Is A C.qmeohemi2 ; :

Stated in a general fashion, a component is a modular building block for computer

software. More formally, the OMC Unified Modeling Language Specification [OMGO i]

defines a component as "a modular, deployable, and replaceable part of a system

that encapsulates implementation and exposes a set of interfaces."
_

As we discussed in Chapter.10, components populate the software architecture,

and, as a consequence, play a role in achieving the objectives and requirements of

•the system to be built. Because components reside within the software architec-

ture, they must communicate and collaborate with other components and with en-

tities (e.g., other systems, devices, people) that exist outside the boundaries of the

software.

"The detoils ore not ihe detoils. They make the design.”

Charles Eomes

The true meaning of the term "component" will differ depending on the point of

view of the software engineer who uses it. In the sections that follow, we examine

three important views of what a component is and how it is used as design model-

ing proceeds.

PART TWO SOFTWARE ENGINEERING PRACTICE326

POINT
From an 00 viewpoint,

a component is a set of

collaborating classes.

Recoil that analysis

modeling and design

modeling are bolt

iterative actions. Bobo

rabng the original

analysis dass may

require additional

analysis steps, which

are then followed with

design modeling steps

to represent the elabo-

rated design class (the

details of the

component).

11.1.1 An Object-Oriented View

In the context of object-oriented software engineering, a component contains a set

of collaborating classes. 1 Each class within a component has been fully elaborated

to include all attributes and operations that are relevant to its implementation. As

part of the design elaboration, all interfaces (messages) that enable the classes to

communicate and collaborate with other design classes must also be defined. To ac-

complish this, the designer begins with the analysis model and elaborates analysis

classes (for components that relate to the problem domain) and infrastructure

classes (for components that provide support services for the problem domain).

To illustrate this process of design elaboration, consider software to be built for a

sophisticated print shop. The overall intent of the software is to collect the cus-

tomer's requirements at the front counter, cost a print job, and then pass the job on

to an automated production facility. During requirements engineering, an analysis

class called Printjob was derived. The attributes and operations defined during

analysis are noted at the top left of Figure 1 1 . 1 . During architectural design. Print-

Job is defined as a component within the software architecture and is represented

fflfng the shorthand UML notation shown in the middle right of the figure. Note that

Printjob has two interfaces, computejob, that provides job costing capability, and

initiatejob, that passes the job along to the production facility. These are represented

using the "lollipop" symbols shown to the left of the component box.

Component-level design begins at this point. The details of the component Print-

Job must be elaborated to provide sufficient information to guide implementation. The

original analysis class is elaborated to flesh out all attributes and operations required

to implement the class as the component Printjob. Referring to the lower right por-

tion of Figure 1 l.l, the elaborated design class Printjob contains more detailed at-

tribute information as well as an expanded description of operations required to

implement the component. The interfaces computejob and initiatejob imply communi-

cation and collaboration with other components (not shown here). For example, the

operation computePageCostt) (part of the computejob interface) might collaborate with

a PricingTable component that contains job pricing information. The checkPrioiityO

operation (part of the initiatejob interface) might collaborate with a JobQueue com-

ponent to determine the types and priorities of jobs currently awaiting production.

This elaboration activity is applied to every component defined as part of the archi-

tectural design. Once it is completed, further elaboration is applied to each attribute,

operation, and interface. The data structures appropriate for each attribute must be

specified. In addition, the algorithmic detail required to implement the processing logic

associated with each operation is designed. This procedural design activity is discussed

later in this chapter. Finally, the mechanisms required to implement the interface are

designed. For OO software, this may encompass the description of all messaging that

is required to effect communication between objects within the system.

1 In some cases, a component may contain a single class.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 327

Elaboration

of a design

component

11.1.2 The Conventional View

In the context of conventional software engineering, a component is a functional el-

ement of a program that incorporates processing logic, the internal data structures

that are required to implement the processing logic, and an interface that enables the

component to be invoked and data to be passed to it. A conventional component,

also called a module, resides within the software architecture and serves one of three

important roles as: (1) a control component that coordinates the invocation of all

other problem domain components, (2) a problem domain component that imple-

ments a complete or partial function that is required by the customer, or (3) an in-

frastructure component that is responsible for functions that support the processing

required in the problem domain.

Like object-oriented components, conventional software components are derived

from the analysis model. In this case, however, the data flow-oriented element of the

328 PART TWO SOFTWARE ENGINEERING PRACTICE

analysis model serves as the basis for the derivation. Each transform (bubble) repre-

sented at the lowest levels of the data flow diagram (Chapter 8) is mapped (Section

1 0.6) into a module hierarchy. Control components (modules) reside near the top of

the hierarchy (architecture), and problem domain components tend to reside toward

the bottom of the hierarchy. To achieve effective modularity, design concepts like

functional independence (Chapter 9) are applied as components are elaborated.

"A complex system fhot works is invariably found to have evolved from a simple system that worked."

John Gall

To illustrate this process of design elaboration for conventional components, we
again consider software to be built for a sophisticated photocopying center. A set of

data flow diagrams would be derived during analysis modeling: We'll assume that

these are mapped (Section 1 0.6) into an architecture shown in Figure 1 1 .2. Each box

represents a software component. Note that the shaded boxes are equivalent in func-

tion to the operations defined for the Printjob class discussed in Section 1 1 . 1 . l . In

.this case, however, each operation is represented as a separate module that is in-

voked as shown in the figure. Other modules are used to control processing and are

therefore control components.

During component-level design, each module in Figure 1 1.2 is elaborated. The

module interface is defined explicitly. That is, each data or control object that flows

Structure chart

tor a conven-
tional system

£ Job

lanagement

system

Read

print job

data

Develop

job cost

] Compute

3 page cost

Select

jobmgmt
function

9“

CD Build
[—*-] Send job

LJ work order rn to

|

production

< i •*

' 1

1

1

4 X
/ N

‘w. '

** '

L
r

.l Compute
paper cost

i
‘

1 Compute
r~l prod cost

L-jj Check

Ljj priority

~r~Pass job to
l—rJ production

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN
329

Qadvic

4s rfie design for each

software component is

elaborated, the focus

shifts to the design of

specific data structures

and procedural design

to manipulate the data

structures. However,

don't forget the archi-

tecture that must house

the components or the

global data structures

that moy serve many

components
.

'

across the interface is represented. The data structures that are used internal to the

module are defined. The algorithm that allows the module to accomplish its intended

function is designed using the stepwise refinement approach discussed in Chaptei 9.

The behavior of the module is sometimes represented using a state diagram.

To illustrate this process, consider the module ComputePageCost. The intent ot this

module is to compute the printing cost per page based on specifications provided by

the customer. Data required to perform this function are: number of pages in the docu-

ment, total number of documents to be produced, one- or two-side printing, color requirements,

size requirements. These data are passed to ComputePageCost via the module's inter-

face. ComputePageCost uses these data to determine a page cost that is based on the

size and complexity of the job—a function of all data passed to the module via the

interface Page cost is inversely proportional to the size ot the job and diiectly pro-

portional to the complexity of the job.

Figure 1 1.3 represents the component-level design using a modified UML nota

tion. The ComputePageCost module accesses data by invoking the modules getjob-

Data. which allows all relevant data to be passed to the component, and a database

Component-level design for CompufePageCosf

getlobDota Design component

ComputePageCost

accessCostsDB

Elaboratedmodu/e

PageCost

in: numberPages

in: numberDocs

in: sides= 1 ,

2

in: color* 1 , 2, 3, 4

in: page size * A, B, C, B

out: oaae cost

1 in: job size

in: color=l , 2, 3, 4

in: pageSize = A, B, C, B

out: BPC

out: SF job size (IS) =

numberPages * numberDocs;

lookup base page cost (BPC) ->

accessCostsDB (JS, color);

lookup size factor (SF) ->

accessCostDB (JS, color, size)

job complexity factor (JCF) =

1 + [(sides-1)*sideCost + SF)

pagecost = BPC * JCF

\
getJobData (numberPages, numberDocs,

sides, color, pageSize, pageCost)

accessCostsDBjjobSize, color, pageSize,

BPC. SF)

computePageCostj)

330 PART TWO SOFTWARE ENGINEERING PRACTICE

interlace, accessCostsDB, which enables the module to access a database that con-
tains all printing costs. As design continues, the ComputePageCost module is elabo-
rated to provide algorithm and interface detail (Figure 1 1 .3). Algorithm detail can be
represented using the pseudocode text shown in the figure or with a UML activity di-
agram. The interfaces are represented as a collection of input and output data ob-
jects or items. Design elaboration continues until sufficient detail is provided to guide
construction of the component.

11.1.3 A Process-Related View

The object-oriented and conventional views of component-level design presented in
the preceding sections assume that the component is being designed from scratch.
That is, the designer must create a new component based on specifications derived
from the analysis model. There is, of course, another approach.

Over the past decade, the software engineering community has emphasized the
need to build systems that make use of existing software components. In essence, a
catalog of proven design or code-level components is made available to the software
engineer as design work proceeds. As the software architecture is developed, com-
ponents or design patterns are chosen from the catalog and used to populate the ar-
chitecture. Because these components have been created with reusability in mind, a
complete description of their interface, the function(s) they perform, and the commu-
nication and collaboration they require are all available to the designer. Component-
based software engineering is discussed in considerable detail in Chapter 30.

Middleware and Component-Based Software Engineering

Software Tools

One of ihe key elements that leads to the

success or failure of CBSE is the availability of

middleware. Middleware is a collection of infrastructure

components that enable problem domain components to

communicate with one another across a network or within

a complex system. Three competing standards are
available to software engineers who want to use

component-based software engineering as their software

process:

OMG CORBA (http://www.corba.org/).

Microsoft COM
(http://www.microsofr.com/com/tech/complus.asp).

Sun JavaBeans (http://java.sun.com/products/ejb/).

The Web sites noted present a wide array of tutorials,

white papers, tools, and general resources on these

important middleware standards. Further information on
CBSE can be found in Chapter 30.

11-2 Designing Class-Based Components
As we have already noted, component-level design draws on information developed
as part of the analysis model (Chapter 8) and represented as part of the architectural
model (Chapter 10). When an object-oriented software engineering approach is cho-
sen, component-level design focuses on the elaboration of analysis classes (problem
domain specific classes), and the definition and refinement of infrastructure classes.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 331

The detailed description of the attributes, operations, and interfaces used by these

classes is the design detail required as a precursor to the construction activity.

11.2.1 Basic Design Principles

Four basic design principles are applicable to component-level design and have been

widely adopted when object-oriented software engineering is applied. The underly-

ing motivation for the application of these principles is to create designs that are

more amenable to change and to reduce the propagation of side effects when

changes do occur. These principles can be used to guide the designer as each soft-

ware component is developed.

The Open-Closed Principle (OCP) . "A module [componentl should be openfor ex-

tension but dosedfor modification" [MAR001. This statement seems to be a contradic-

tion, but it represents one of the most important characteristics of a good

component-level design. Stated simply, the designer should specify the component in

a way that allows it to be extended (within the functional domain that it addresses)

without the need to make internal (code or logic-level) modifications to the compo-

nent itself. To accomplish this, the designer creates abstractions that serve as a buffer

between the functionality that is likely to be extended and the design class itself.

For example, assume that the SafeHome security function makes use of a Detec-

tor class that must check the status of each type of security sensor. It is likely that as

time passes, the number and types of security sensors will grow. If internal process-

ing logic is implemented as a sequence of if-then-else constructs, each addressing a

different sensor type, the addition of a new sensor type will require additional inter-

nal processing logic (still another if-then-else). This is a violation of OCP.

One way to accomplish OCP for the Detector class is illustrated in Figure 1 1.4.

The sensor interface presents a consistent view of sensors to the Detector compo-

nent. If a new type of sensor is added no change is required for the Detector class

(component). The OCP is preserved.

«interface»

Sensor

read)

)

enable)

)

disable!

)

test)

)

3
I

Window/ SmokeSensor Motion Detector HeatSensor C02Sensor
doorSensor

nS Detector

332 PART TWO SOFTWARE ENGINEERING PRACTICE

SafeHome

The OCP in Action

The scene: Vinod's cubicle.

The players: Vinod and Shakira—members of the

SafeHome software engineering team.

The conversation:

Vinod: I just got a call from Doug [the team manager).

He says marketing wants to add a new sensor.

Shakira (smirking): Not again, jeez!

Vinod: Yeah . . . and you're not going to believe what

these guys have come up with.

Shakira: Amaze me.

Vinod (laughing): Jhey call it a doggie angst sensor.

Shakira: Say what?

Vinod: It's for people who leave their pets home in

apartments or condos or houses that are close to one

another. The dog starts to hark. The neighbor gets angry

and complains. With this sensor, if the dog barks fgr

more than, say, a minute, the sensor sets a special alarm

mode that calls the owner on his or her cell phone.

Shakira: You're kidding me, right?

Vinod: Nope. Doug wants to know how much time it's

going to take to add it to the security function.

Shakira (thinking a moment): Not much . . look.

[She shows Vinod Figure 1 1 .4] We've isolated the actual

sensor classes behind the sensor interface. As long as

we have specs for the doggie sensor, adding it should be

a piece of cake. Only thing I'll have to do is create an

appropriate component . . . uh, class, for it. No change

to the Detector component at all.

Vinod: So I'll tell Doug it's no big deal.

Shakira: Knowing Doug, he'll keep us focused and not

deliver the doggie thing until the next release.

Vinod: That's not a bad thing, but can you implement

now if he wants you to?

Shakira: Yeah, the way we designed the interface lets

me do it with no hassle.

Vinod (thinking a moment): Have you ever heard

of thfe "Open-Closed Principle"?

Shakira (shrugging): Never heard of it.

Vinod (smiling): Not a problem.

The Liskov Substitution Principle (LSP). "Subclasses should be substitutablefor

their base classes” [MAROO], This design principle, originally proposed by Barbara

Liskov [LIS88] suggests that a component that uses a base class should continue to

function properly if a class derived from the base class is passed to the component
instead. LSP demands that any class derived from a base class must honor any im-

plied contract between the base class and the components that use it. In the context

of this discussion, a "contract" is a precondition that must be true before the compo-
nent uses a base class and a post-condition that should be true after the component
uses a base class. When a designer creates derived classes, they must also conform

to the pre- and post-conditions.

If you dispense with

design and hack out

code, just remember

thot code is the

ultimate ’concretion
.

"

You're violating DIP.

Dependency inversion Principle (DIP). "Depend on abstractions. Do not depend

on concretions" [MAROO]. As we have seen in the discussion of the OCP, abstractions

are the place where a design can be extended without great complication. The more

a component depends on other concrete components (rather than on abstractions

such as an interface), the more difficult it will be to extend.

The Interface Segregation Principle (ISP). "Many client-specific interfaces are

better than onegeneralpurpose interface"!MAROO). There are many instances in which

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN 333

multiple client components use the operations provided by a server class. ISP sug-

gests that the designer should create a specialized interface to serve each major cat-

egory of clients. Only those operations that are relevant to a particular category of

clients should be specified in the interface for that client. If multiple clients require

the same operations, they should be specified in each ot the specialized interfaces.

As an -example, consider the FloorPlan class that is used for the SafeHome security

and surveillance functions. For the security functions. FloorPlan is used only during

configuration activities and uses the operations placeDeviceO, showDeviceo, groupDe-

vic&), and removeDeviceo to place, show, group, and remove sensors from the floor

plan. The SafeHome surveillance function uses the four operations noted for security,

but also requires special operations to manage cameras: showFOVO and showDc-

viceID(). Hence, ISP suggests that client components from the two SafeHome functions

have specialized interfaces defined for them. The interface for security would encom-

pass only the operations placeDeviceO, showDeviceo, groupDevicco, and removeDe-

viceo. The interface for surveillance would incorporate the operations placeDeviceO.

showDeviceo, groupDe\'icet), and removeDeviceo, showFOVO, and showDe\'icelD().

POINT
Designing components

for reuse requires more

than good technical

design. It also requires

effective configuration

control mechanisms

(Chapter 27).

Although component-level design principles provide useful guidance, components

themselves do not exist in a vacuum. In many cases, individual components or

classes are organized into subsystems or packages. It is reasonable to ask how this

packaging activity should occur. Exactly how should components be organized as

the design proceeds’ Marlin [MAROO] suggests additional packaging principles that

are applicable to component-level design:

The Release Reuse Equivalency Principle (REP). The granule of reuse is the

granule of release" [MAROO]. When classes or components are designed for reuse,

there is an implicit contract that is established between the developer of the reusable

entity and the people who will use it. The developer commits to establish a release

control system that supports and maintains older versions of the entity while the

users slowly upgrade to the most current version. Rather than addressing each class

individually, it is often advisable to group reusable classes into packages that can be

managed and controlled as newer versions evolve.

The Common Closure Principle (CCP). "Classes that change together belong to-

gether" [MAROO]. Classes should be packaged cohesively. That is, when classes are

packaged as part of a design, they should address the same functional or behavioral

area. When some characteristic of that area must change, it is likely that only those

classes within the package will require modification. This leads to more effective

change control and release management.

The Common Reuse Principle (CRP). "Classes that aren't reused together should

not be grouped together [MAROO]. When one or more classes with a package

changes, the release number of the package changes. All other classes or packages

that rely on the package that has been changed must now update to the most recent

334 PART TWO SOFTWARE ENGINEERING PRACTICE

What should

• we consider

when we nome

components?

release of the package and be tested to ensure that the new release operates with-

out incident. If classes are not grouped cohesively, it is possible that a class with no
relationship to other classes within a package is changed. This will precipitate un-

necessary integration and testing. For this reason, only classes that are reused to-

gether should be included within a package.

11.2.2 Component-Level Design Guidelines

In addition to the principles discussed in Section 11.2.1, a set of pragmatic design

guidelines can be applied as component-level design proceeds. These guidelines ap-

ply to components, their interfaces, and the dependencies and inheritance charac-

teristics that have an impact on the resultant design. Ambler [AMB02J suggests the

following guidelines:

Components. Naming conventions should be established for components that are

specified as part of the architectural model and then refined and elaborated as part

of the component-level model. Architectural component names should be drawn
from the problem domain and should have meaning to all stakeholders who view the

architectural model. For example, the class name FloorPlan is meaningful to every-

one reading it regardless of technical background. On the other-hand, infrastructure

components or elaborated component-level classes should be named to reflect

implementation-specific meaning. If a linked list is to be managed as part of the

FloorPlan implementation, the operation manageListo is appropriate, even if a non-

technical person might misinterpret it.
2

It is also worthwhile to use stereotypes to help identify the nature of components
at the detailed design level. For example, << infrastructure>> might be used to iden-

tify an infrastructure component; < <database> > could be used to identify a database

that services one or more design classes or the entire system; <<table>> could be

used to identify a table within a database.

Interfaces, interfaces provide important information about communication and

collaboration (as well as helping us to achieve the OCP). However, unfettered repre-

sentation of interfaces tends to complicate component diagrams. Ambler [AMB02]

recommends that (1) lollipop representation of an interface should be used in lieu of

the more formal UML box and dashed arrow approach, when diagrams grow com-
plex; (2) for consistency, interfaces should flow from the left-hand side of the com -

ponent box; (3) only those interfaces that are relevant to the component under

consideration should be shown, even if other interfaces are available. These recom-

mendations are intended to simplify the visual nature of UML component diagrams.

Dependencies and inheritance. For improved readability, it is a good idea to

model dependencies from left to right and inheritance from bottom (derived classes)

2 It is unlikely that someone from marketing or the customer organization (a nontechnical type)

would examine detailed design information.

Layer cohesion

-"Although an under-

standing ol the various

levels of cohesion is

instructive, it is more

important to be aware

of the general concept

os you design compo-

nents. Keep cohesion

os high os is possible.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 335

Ik_

Control panel

Detector

I
Phone

ILL

Modem

ILL

T-com

lo top (base classes). In addition, component interdependencies should be repre-

sented via interfaces, rather than by representation of a component-to-component

dependency. Following the philosophy of the OCP, this will help to make the system

more maintainable.

11.2.3 Cohesion

In Chapter 9, we described cohesion as the "single-mindedness" of a component.

Within the context of component-level design for object-oriented systems, cohesion

implies that a component or class encapsulates only attributes and operations that

are closely related to one another and to the class or component itself. Lethbridge

and Laganiere [LET01] define a number of different types of cohesion (listed in order

of the level of the cohesion3
):

Functional. Exhibited primarily by operations, this level of cohesion occurs

when a module performs one and only one computation and then returns a result.

Layer. Exhibited by packages, components, and classes, this type of cohesion

occurs when a higher layer accesses the services of a lower layer, but lower layers

do not access higher layers. Consider for example, the SafeHome security function

requirement to make an outgoing phone call if an alarm is sensed. It might be pos-

sible to define a set of layered packages as shown in Figure 1] .5. The shaded pack-

ages contain infrastructure components. Access is from the control panel package

downward.

Communicational. All operations that access the same data are defined within

one class. In general, such classes focus solely on the data in question, accessing

and storing it.

3 In general, the higher the level of cohesion, the easier the component is to implement, test, and

maintain.

336 PART TWO SOFTWARE ENGINEERING PRACTICE

Classes and components that exhibit functional, layer, and communicational cohe-

sion are relatively easy to implement, test, and maintain. The designer should strive

to achieve these levels ofcohesion. However, there are many instances when the fol-

lowing lower levels of cohesion are encountered:

Sequential. Components or operations are grouped in a manner that allows

the first to provide input to the next and so on. The intent is to implement a se-

quence of operations.

Procedural. Components or operations are grouped in a manner that allows

one to be invoked immediately after the preceding one was invoked, even when

there is no data passed between them.

Temporal. Operations that are performed to reflect a specific behavior or state,

e.g., an operation performed at start-up or all operations performed when an error

is detected.

Utility. Components, classes, or operations that exist within the same category

but are otherwise unrelated are grouped together. For example, a class called Sta-

tistics exhibits utility cohesion if it contains all attributes and operations required

to compute six simple statistical measures.

These levels of cohesion are less desirable and should be avoided when design al-

ternatives exist. It is important to note, however, that pragmatic design and imple-

mentation issues sometimes force a designer to opt for lower levels of cohesion.

SafeHome

Cohesion in Action

The scene: Jamie's cubicle.

The players: Jamie and Ed—members of the

SafeHome software engineering team who are working

on the surveillance function.

The conversation:

Ed: I have a first-cut design of the camera

component.

Jamie: Wanna do a quick review?

Ed: I guess ... but really, I'd like your input on

something.

(Jamie gestures for him to continue.)

Ed: We originally defined five operations for camera,

look . . . [shows Jamie the list]

determineTypefl tells me the type of camera.

translateLocahon() allows me to move the camera

around the floor plan.

displaylD() gets the camera ID and displays it near the

camera icon.

displayView/) shows me the field of view of the

camera graphically.

displayZoom() shows me the magnification of the

camera graphically.

Ed: I've designed each separately, and they're pretty

simple operations. So I thought it might be a good idea to

combine all of the display operations into just one that's

called displayCameral)—it'll show the ID, the view, and

the zoom. Whaddaya think?

Jamie (grimacing): Not sure that's such a good idea.

Ed (frowning): Why? All of these little ops can cause

headaches.

Jamie: The problem with combining them is we lose

cohesion. You know, the displayCameraQ op won’t be

single-minded.

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN 337

Ed (mildly exasperated): So what? The whole thing

will be less than 100 source lines, max. It'll be easier to

implement, I think.

Jamie: And what if marketing decides to change the

way that we represent the view field?

Ed: I'll just jump into the displayCameraQ op and make

the mod.

Jamie: What about side effects?

Ed: Whaddaya mean?

Jamie: Well, say you make the change but

inadvertently create a problem with the ID display.

Ed: I wouldn't be that sloppy.

Jamie: Maybe not, but what if some support person two

years from now has to make the mod. He might not

understand the op as well as you do and, who knows, he

might be sloppy.

Ed: So you're against it?

Jamie: You're the designer . . , it's your decision . .
.
just

be sure you understand the consequences of low

cohesion.

Ed (thinking a moment): Maybe we'll go with

separate display ops.

Jamie: Good decision.

As the design hr each

software component is

elaborated, the focus

shifts to the design of

specific data structures

and procedural designs

to manipulate the dato

structures. However,

don't forget the archi-

tecture that must house

the components or the

global data stwctures

that may serve many

components.

11.2.4 Coupling

In earlier discussions of analysis and design, we noted that communication and col-

laboration are essential elements of any object-oriented system. There is, however,

a darker side to this important (and necessary) characteristic. As the amount ofcom-

munication and collaboration increases (i.e., as the degree of "connectedness" be-

tween classes grows), the complexity of the system also increases. And as

complexity rises, the difficulty of implementing, testing, and maintaining software

also increases.

Coupling is a qualitative measure of the degree to which classes are connected to

one another. As classes (and components) become more interdependent, coupling

increases. An important objective in component-level design is to keep coupling as

low as is possible.

Class coupling can manifest itself in a variety of ways. Lethbridge and Laganiere

[LET01] define the following coupling categories:

Content coupling. Occurs when one component "surreptitiously modifies data

that is internal to another component" [LET01], This violates information hiding—

a

basic design concept.

Common coupling. Occurs when a number of components all make use of a

global variable. Although this is sometimes necessary (e.g„ for establishing default

values that are applicable throughout an application), common coupling can lead to

uncontrolled error propagation and unforeseen side effects when changes are made.

Control coupling. Occurs when operation A() invokes operation B() and passes

a control flag to B. The control flag then "directs"' logical flow within B. The prob-

lem with this form of coupling is that an unrelated change in B can result in the ne-

cessity to change the meaning of the control flag that A passes. If this is

overlooked, an error will result.

As the design hr each

software component is

elaborated, the focus

shifts to the design of

specific data structures

and procedural designs

to manipulate the dato

stwctures. However,

don't forget the archi-

tecture that must house

the components or the

global dato stwctures

that may serve many

components.

338 PART TWO SOFTWARE ENGINEERING PRACTICE

Stamp coupling. Occurs when ClassB is declared as a type for an argument of

an operation of ClassA. Because ClassB is now a part of the definition of ClassA,

modifying the system becomes more complex.

Data coupling. Occurs when operations pass long strings of data arguments.

The bandwidth" of communication between classes and components grows and the

complexity of the interface increases. Testing and maintenance are more difficult.

Routine call coupling. Occurs when one operation invokes another. This level

of coupling is common and is often quite necessary. However, it does increase the

connectedness of a system.

Type use coupling. Occurs when component A uses a data type defined in

component B (e g., this occurs whenever "a class declares an instance variable or

a local variable as having another class for its type" [LETO
1]) . If the type definition

changes, every component that uses the definition must also change.

Inclusion or import coupling. Occurs when component A imports or includes

a package or the content of component B.

External coupling. Occurs when a component communicates or collaborates

with infrastructure components (e g., operating system functions, database capa-

bility, telecommunication functions). Although this type of coupling is necessary, it

should be limited to a small number of components or classes within a system.

Software must communicate internally and externally. Therefore, coupling is a fact

of life. However, the designer should work to reduce coupling whenever possible and

understand the ramifications of high coupling when it cannot be avoided.

Coupling in Action

The scene: Shakira's cubicle.

The players: Vinod and Shakira—members of the

SafeHome software engineering team who are working

on the security function

The conversation:

Shakira: I had what I thought was a great idea .

then I thought about it a little, and it seemed like a not-so-

gneat idea. I finally rejected it, but I just thought I'd run it

by you.

Vinod: Sure, what's the idea?

Shakira: Well, each of the sensors recognizes an alarm

condition of some kind, right?

Vinod (smiling): That's why we call them sensors,

Shakira.

Shakira (exasperated): Sarcasm, Vinod. You've got

to work on your interpersonal skills.

Vinod: You were saying?

Shakira: Okay, anyway, I figured . . . why not create

on operation within each sensor object called makeCalll)

that would collaborate directly with the OutgoingCall

component, well, with an interface to the OutgoingCall

component.

Vinod (pensive): You mean rather than having that

collaboration occur out of a component like

ControlPanel or something?

Shakira: Yeah ... but then I said to myself, that means

that every sensor object will be connected to the

OutgoingCall component, and that means that it's

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN 339

indirectly coupled to the outside world ond . . . well, I just

thought it mode things complicated.

Vinod: I agree. In this case, it's a better idea to let the

sensor interface pass info to the ControlPanel and let it

initiate the outgoing call. Besides, different sensors might

result in different phone numbers. You don't want the

sensor to store that information because if it changes . . .

Shakira: It just didn't feel right.

Vinod: Design heuristics for coupling tell us it's not right.

Shakira: Whatever. . . .

1-1 --3 Conducting Component-Level Design

Earlier in this chapter we noted that component-level design is elaborative in nature.

The designer must transform information from the analysis and architectural mod-

els into a design representation that provides sufficient detail to guide the construc-

tion (coding and testing) activity. The following steps represent a typical task set for

component-level design, when it is applied for an object-oriented system.

Step I . Identify all design classes that correspond to the problem domain.

Using the analysis and architectural models, each analysis class and architectural

component is elaborated .as described in Section 1 1 . l . l

.

If you're working in a

non-00 environment,

the first three steps

focus On refinement or

data objects and

processing functions

(transforms! identified

os part of the analysis

model.

Step 2. Identify all design classes that correspond to the infrastructure do-

main. These classes are not described in the analysis model and are often missing

from the architecture model, but they must be described at this point. As we have

noted earlier, classes and components in this category include GUI components, op-

erating system components, object and data management components, and others.

Step 3. Elaborate all design classes that are not acquired as reusable com-
ponents. Elaboration requires that all interfaces, attributes, and operations neces-

sary to implement the class be described in detail. Design heuristics (e.g., component

cohesion and coupling) must be considered as this task is conducted.

Step 3a. Specify message details when classes or components collaborate.

The analysis model makes use of a collaboration diagram to show how analysis

classes collaborate with one another. As component-level design proceeds, it is

sometimes useful to show the details of these collaborations by specifying the struc-

ture of messages that are passed between objects within a system. Although this de-

sign activity is optional, it can be used as a precursor to the specification of interfaces

that show how components within the system communicate and collaborate.

Figure 1 1 .6 illustrates a simple collaboration diagram for the printing system dis-

cussed earlier. Three objects, Productionjob, WorkOrder, and JobQueue, col-

laborate to prepare a print job for submission to the production stream. Messages

are passed between objects as illustrated by the arrows in the figure. During analy-

sis modeling the messages are specified as shown in the figure. However, as design

340 PART TWO SOFTWARE ENGINEERING PRACTICE

Collaboration

diagram with

messaging

proceeds, each message is elaborated by expanding its syntax in the following

manner |BEN02]:

[guard condition] sequence expression (return value) :
=

message name (argument list)

where a [guard condition] is written in Object Constraint Language (OCL)4 and speci-

fies any set of conditions that must be met before the message can be sent; sequence

expression is an integer value (or other ordering indicator, e.g., 3.1.2) that indicates

the sequential order in which a message is sent; (return value) is the name of the in-

formation that is returned by the operation invoked by the message; message name

identifies the operation that is to be invoked, and (argument list) is the list of attributes

that are passed to the operation.

Step 3b. Identify appropriate interfaces for each component. Within the

context of component-level design, a UML interface is "a group ol externally visible

(j,e„ public) operations. The interface contains no internal structure, it has no attrib-

utes, no associations. . .
." [BEB02], Stated more formally, an interface is the equiva-

lent of an abstract class that provides a controlled connection between design

classes. The elaboration of interfaces is illustrated in Figure 1 1 . 1 . In essence, opera-

tions defined for the design class are categorized into one or more abstract classes.

Every operation within the abstract class (the interface) should be cohesive; that is,

it should exhibit processing that focuses on one limited function or subfunction.

Referring to Figure 1 1 . 1 ,
it can be argued that the interface initiale/ob does not ex-

hibit sufficient cohesion. In actuality, it performs three different subfunctions, build-

ing a work order, checking job priority, and passing a job to production. The intei face

design should be refactored One approach might be to reexamine the design classes

and define a new class WorkOrder that would take care ot all activities associated

with the assembly of a work order. The operation buildWorkOrder(

)

becomes a part

A OCL is discussed briefly in Section 1

1

A and in Chapter 28.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 341

Refactoring interfaces and class definitions for PrintJob

computejob

initiolejob

buildJob

r~i
ProductionJob

J
submitJobl_

PrintJob

«interface»
initiateJob

passJobToProduction)

of that class. Similarly, we might define a class JobQueue that would incc porate the

operation checkPilorityl). A class ProductionJob would encompass all information

associated with a production job to be passed to the production facility. The inter-

face initiateJob would then take the form shown in Figure 1 1 .7. The interface initiate-

job is now cohesive, focusing on one function. The interfaces associated with

ProductionJob, WorkOrder, and JobQueue are similarly single-minded.

Step 3c. Elaborate attributes and define data types and data structures re-

quired to implement them. In general, data structures and types used to describe

attributes are defined within the context ofthe programming language that is to be used

for implementation. UML defines an attribute's data type using the following syntax:

name : type-expression = initial-value {property string}

where name is the attribute name and type expression is the data type; initial value is the

value that the attribute takes when an object is created; and property-string defines a

property or characteristic of the attribute.

During the first component-level design iteration, attributes are normally de-

scribed by name. Referring once again to Figure 11 , 1 ,
the attribute list for PrintJob

lists only the names of the attributes. However, as design elaboration proceeds, each

attribute is defined using the UML attribute format noted. For example, paperType-

weight is defined in the following manner:

paperType-u/eight: string = "A" { contains 1 of 4 values - A, B, C, or 0}

which defines paperType-weight as a string variable initialized to the value A that can

take on one of four values from the set (A,B,C,D).

PART TWO SOFTWARE ENGINEERING PRACTICE

If an attribute appears repeatedly across a number of design classes, and it has a

relatively complex structure, it is best to create a separate class to accommodate the

attribute.

Step 3d. Describe processing flow within each operation in detail. This may

be accomplished using a programming language-based pseudocode (Section 1 1 .5.5)

or with a UML activity diagram. Each software component is elaborated through a

number of iterations that apply the stepwise refinement concept (Chapter 9).

The first iteration defines each operation as part of the design class. In every case,

the operation should be characterized in a way that ensures high cohesion; that is,

the operation should perform a single targeted function or subfunction. The next it-

eration does little more than expand the operation name. For example, the operation

computePaperCostO noted in Figure 11.1 can be expanded in the following manner:

oomputePaperCosi (weight, eize, color): numeric

This indicates that computePaperCostO requires the attributes weight, size and color as

input and returns a value that is numeric (actually a dollar value) as output.

"If I hod more time, I would hove written o shorter letter."

Bloise Poscol

Use stepwise elabora-

tion os you refine Ibe

component design.

Always ask, "Is there a

way this can be simpli-

fied and yet still

accomplish the same

result?"

If the algorithm required to implement computePaperCostO is simple and widely un-

derstood, no further design elaboration may be necessary. The software engineer who

does the coding will provide the detail necessary to implement the operation. How-

ever, ifthe algorithm is more complex or arcane, further design elaboration is required

at this stage. Figure 1 1 .8 depicts a UML activity diagram for computePaperCostO. When

activity diagrams are used for component-level design specification, they are gener-

ally represented at a level of abstraction that is somewhat higher than source code.

An alternative approach—the use of pseudocode for design specification—is dis-

cussed later in this chapter.

Step 4. Describe persistent data sources (databases and files) and identify

the classes required to manage them. Databases and files normally transcend

the design description of an individual component. In most cases, these persistent

data stores are initially specified as part of architectural design. However, as design

elaboration proceeds, it is often useful to provide additional detail about the struc-

ture and organization of these persistent data sources.

Step 5. Develop and elaborate behavioral representations for a class or

component. UML state diagrams were used as part of the analysis model to rep-

resent the externally observable behavior of the system and the more localized be-

havior of individual analysis classes. During component-level design, it is sometimes

necessary to model the behavior of a design class.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 343

UML activity diagram tor computePaperCostO

The dynamic behavior of an object (an instantiation of a design class as the pro-

gram executes) is affected by events that are external to it and the current state

(mode of behavior) of the object. To understand the dynamic behavior of an object,

the designer must examine all use-cases that are relevant to the design class

throughout its life. These use-cases provide information that helps the designer to

delineate the events that affect the object and the states in which the object resides

as time passes and events occur. The transitions between states (driven by events)

is represented using a UML statechart [BEN02] as illustrated in Figure 1 1 .9.

The transition from one state (represented by a rectangle with rounded corners)

to another occurs as a consequence of an event that takes the form:

Event-name (parameter-list) [guard-condition] / action expression

344 PART TWO SOFTWARE ENGINEERING PRACTICE

Statechart fragment for the PrintJob class

datalnputincomplete
T

buildingJobData

datalnpulCompleted [alf data

items consistentJ/displayUserOptions

entry/reodJobData(

)

exit/displayJobData(

}

do/checkConitency(

)

mcjude/datalngu^^^

computingJobCost

entry/comp
exit/save tc

utejob

taUobCost

jobCostAccepted [customer is authorized]/

getElectronicSignature

formingjob

entry/build

exit/save V
cJo/

ob

VOnumber

deliveryDateAccepted [customer is authorized]/

printlobEstimate

submittingjob

entry/submitlob

exit/initiateJob

do/place on JobQueue

Behavior within the

state buildingJobData

I jobSubmitted [all authorizations ocquired]/

/g\ printWorkOrder

where event-name identifies the event; parameter-list incorporates data that are associ-

ated with the event; guard-condition is written in Object Constraint Language (OCL)

and specifies a condition that must be met before the event can occur, and action ex-

pression defines an action that occurs as the transition takes place.

Referring to Figure 1 1 .9, each state may define entry/ and exit/ actions that occur

as transitions into and out of the state occur. In most cases, these actions correspond

to operations that are relevant to the class that is being modeled. The do/ indicator

provides a mechanism for indicating activities that occur while in the state and the

include/ indicator provides a means for elaborating the behavior by embedding more

statechart detail within the definition of a state.

It is important to note that the behavioral model often contains information that

is not immediately obvious in other design models. For example, careful examina-

tion of the statechart in Figure 1 1 .9 indicates that the dynamic behavior of the Print-

Job class is contingent upon two customer approvals as costs and schedule data for

the print job are derived. Without approvals (the guard condition ensures that the

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN
345

customer is authorized to approve) the print job cannot be submitted because there

is no way to reach the submittingjob state.

Step 6. Elaborate deployment diagrams to provide additional implementa-

tion detail. Deployment diagrams (Chapter 9) are used as part of architectural de-

sign and are represented in descriptor form. In this form, major system functions

(often represented as subsystems) are represented within the context ot the com-

puting environment that will house them.

During component-level design, deployment diagrams can be elaborated to rep-

resent the location of key packages of components. However, components generally

are not represented individually within a component diagram. The reason for this is

to avoid diagrammatic complexity. In some cases, deployment diagrams are elabo-

rated into instance form at this time. This means that the specific hardware and op-

erating system environment(s) that will be used is (are) specified and the location of

component packages within this environment is indicated.

Step 7. Factor every component-level design representation and always

consideraltematives. Throughout this book, we have emphasized that design is

. an iterative process. The first component-level moderyou create will not be as com-

plete, consistent, or accurate as the nth iteration you apply to the model. It is essen-

tial to refactor as design work is conducted.

in addition, a designer should not suffer from tunnel vision. There are always alter-

native design solutions, and the best designers consider all (or most) of them before

settling on the final design model. Develop alternatives and consider each carefully,

using the design principles and concepts presented in Chapters 5 and 9 and in this

chapter.

1 4 Object Constraint Language —
The wide variety of diagrams available as part ofUML provide a designer with a rich

set of representational forms for the design model. However, graphical representa-

tions are often not enough. The designer needs a mechanism for explicitly and for-

mally representing information that constrains some element of the design model. It

is possible, of course, to describe constraints in a natural language such as English,

but this approach invariably leads to inconsistency and ambiguity. For this reason, a

more formal language—one that draws on set theory and formal specification lan-

guages (Chapter 28) but has the somewhat less mathematical syntax of a program-

ming language—seems appropriate.

The Object Constraint Language (OCL) complements UML by allowing a software

engineer to use a formal grammar and syntax to construct unambiguous statements

'V
POINT

OCl provides o formal

grammat and syntax

for describing

component-level

design elements.

346 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
Ihe complete OCL

spectfkntron coo be

downiooded from

www.0m9.org.

about various design model elements (e g., classes and objects, events, messages,
interfaces). The simplest OCL language statements are constructed in four parts:

(1) a context that defines the limited situation in which the statement is valid; (2) a
property that represents some characteristics of the context (e.g„ if the context is a
class, a property might be an attribute); (3) an operation (e.g., arithmetic, set-
oriented) that manipulates or qualifies a property; and (4) keywords (e.g., if, then, else,

and, or, not, implies) that are used to specify conditional expressions.

As a simple example of an OCL expression, consider the guard condition placed
on the jobCostAccepted event that causes a transition between the states comput-
ingJobCost and formingjob within the statechart diagram for the Printjob class
(Figure 1 1.9). In the diagram, the guard condition is expressed in natural language
and implies that authorization can only occur if the customer is authorized to ap-
prove the cost of the job. In OCL, the expression may take the form:

customer

self.authorizationAuthority = 'yes’

where a Boolean attribute, authorizationAuthority, of the class (actually a specific in-

stance of the class) named Customer must be set to yes for the guard condition to
be satisfied.

As the design model is created, there are often instances (e.g.. Section 11.2.1) in

which pre- or post-conditions must be satisfied prior to completion of some action
specified by the design. OCL provides a powerful tool for specifying pre- and post
conditions in a formal manner. As an example, consider an extension to the print
shop system (discussed throughout this chapter) in which the customer provides an
upper cost bound for the print job and a "drop-dead" delivery date at the same time
as othei print job characteristics are specified. If cost and delivery estimates exceed
these bounds, the job is not submitted and the customer must be notified. In OCL, a
set of pre- and post-conditions may be specified in the following manner:

context Printjob: :validate(upperCosfBound : Integer, oustDeliveryReq :

Integer)

pre: upperCostBound > 0

and oustDeliveryReq > 0

and self.jobAuthorization = 'no'

post: If self.totalJobCost <= upperCostBound

and self.deliveryDate <= oustDeliveryReq

then

self.jobAuthorization = 'yes'

endif

This OCL statement defines an invariant—conditions that must exist prior to (pre) and
after (post) some behavior. Initially, a precondition establishes that bounding cost

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN
347

and delivery date must be specified by the customer, and authorization must be set

to "no." After costs and delivery are determined, the post-condition is applied. It

should also be noted that the expression: self.jobAufhorization = 'yes' is not assigning

the value "yes," but is declaring that the jobAuthorization must have been set to yes

by the time the operation finishes.

A complete description of OCL is beyond the scope of this book.5 Interested read-

ers should see [WAR98] and [OMGOl] for additional detail.

UML/OCL

Objective: A wide variety of UML tools are

available to assist the designer at ail levels of

design. Some of these tools provide OCL support.

Mechanics: Tools in this category enable a designer to

create all UML diagrams that are necessary to build a

complete design model. More importantly, many tools

provide solid syntax and semantic checking, and version

and change control management (Chapter 27). When

OCL capability is provided, tools enable the designer to

create OCL expressions and, in some cases, "compile
'

them for various types of evaluation and analysis.

Representative Tools

6

ArgoUML, distributed at Tigress.org

(http://argouml.tigris.org/), supports the complete

Software Tools

UML and OCL and includes a variety of design assist

tools that go beyond the generation of UML diagrams

and OCL expressions.

Dresden OCL toolkit, developed by Frank Finger at the

Dresden University of Technology (http://dresden-

ocl.sourceforge.net/), is a toolkit based on an OCL

compiler encompassing several modules which parse,

type check, and normalize OCL constraints.

OCL parser, developed by IBM (http://www-

3 .
ibm.com/software/ad/library/standards/ocl-

download.html), is written in Java and is available for

free to the object-oriented community to encourage the

use of OCL with UML modelers.

_J
1 1 . 5 Designing Conventional COMPONENTS —

The foundations of component-level design for conventional software components

were formed in the early 1960s and were solidified with the work of Edsgar Dijkstra

and his colleagues ([BOH661, [DIJ65], [DIJ76]). In the late 1960s, Dijkstra and others

proposed the use of a set of constrained logical constructs from which any program

could be formed. The constructs emphasized "maintenance of functional domain."

That is, each construct had a predictable logical structure, was entered at the top and

exited at the bottom, enabling a reader to follow procedural flow more easily.

5 However, further discussion of OCL (presented in the context of formal methods) is presented in

Chapter 28.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

7 A conventional software component implements an clement of processing that addresses a func-

tion or subfunction in the problem domain or some capability in the infrastructure domain . Often called

modules, procedures, or subroutines, conventional components do not encapsulate data in the way that

OO components do.

348 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
Structured

programming is a

design technique that

constrains logic flow to

three constructs:

sequence, condition,

ond repetition.

The constructs are sequence, condition, and repetition. Sequence implements
processing steps that are essential in the specification of any algorithm. Condition
provides the facility for selected processing based on some logical occurrence, and
repetition allows for looping. These three constructs are fundamental to structured
programming—an important component-level design technique.

The structured constructs were proposed to limit the procedural design of soft-
ware to a small number of predictable operations. Complexity metrics (Chapter 15)
indicate that the use of the structured constructs reduces program complexity and
thereby enhances readability, testability, and maintainability. The use of a limited
number of logical constructs also contributes to a human understanding process that
psychologists call chunking. To understand this process, consider the way in which
you are reading this page. You do not read individual letters but rather recognize pat-
terns or chunks of letters that form words or phrases. The structured constructs are
logical chunks that allow a reader to recognize procedural elements of a module,
rather than reading the design or code line by line. Understanding is enhanced when
readily recognizable logical patterns are encountered.

11.5.1 Graphical Design Notation

We have discussed the UML activity diagram earlier in this chapter and in Chapters
7 and 8. The activity diagram allows a designer to represent sequence, condition, and
repetition—all elements of structured programming—and is the descendent of an
earlier pictorial design representation (still used widely) called aflowchart.

A flowchart, like an activity diagram, is quite simple pictorially. A box is used to
indicate a processing- step. A diamond represents a logical condition, and arrows
show the flow of control. Figure 1 1.10 illustrates three structured constructs. The

Flowchart

constructs

Sequence

Case

condition

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN
349

Structured program-

ming constructs should

moke it easier to

understand the design

.

Ifusing them without

"violation
'
introduces

unnecessary

complexity, it is okay

to violate.

sequence is represented as two processing boxes connected by a line (arrow) oi

control. Condition, also called if-then-else, is depicted as a decision diamond that if

true, causes then-part processing to occur, and if false, invokes else-part process-

ing. Repetition is represented using two slightly different forms. The do while tests

a condition and executes a loop task repetitively as long as the condition holds

true. A repeat until executes the loop task first, then tests a condition and repeats

the task until the condition fails. The selection (or select-case) construct shown in

the figure is actually an extension of the if-then-else. A parameter is tested by suc-

cessive decisions until a true condition occurs and a case part processing path is

executed.

In general, the dogmatic use of only the structured constructs can introduce inet-

ficiency when an escape from a set of nested loops or nested conditions is required.

More importantly, additional complication of all logical tests along the path ot escape

can cloud software control flow, increase the possibility of error, and have a nega-

tive impact on readability and maintainability. What can we do?

The designer is left with two options: (1) The procedural representation is re-

designed so that the "escape branch" is not required at a nested location in the flow

of control or (2) the structured constructs are violated in a controlled manner; that

is, a constrained branch out of the nested flow is designed. Option 1 is obviously the

ideal approach, but option 2 can be accommodated without violating of the spirit of

structured programming.

Use a decision table

when a complex set of

conditions and oclions

ore encountered within

a component.

11.5.2 Tabular Design Notation

In many software applications, a module may be required to evaluate a complex com-

bination of conditions and select appropriate actions based on these conditions. Deci

sion tables [HUR83] provide a notation that translates actions and conditions (described

in a processing narrative) into a tabular form. The table is difficult to misinterpret and

may even be used as a machine readable input to a table driven algorithm.

A decision table is divided into four quadrants. The upper left-hand quadrant con-

tains a list of all conditions. The lower left-hand quadrant contains a list of all actions

that are possible based on combinations of conditions. The right-hand quadrants

form a matrix that indicates condition combinations and the corresponding actions

that will occur for a specific combination. Therefore, each column of the matrix may

be interpreted as a processing rule. The following steps are applied to develop a deci-

sion table:

O How do 1

I.

• build a 2.

decision table?
3.

4.

List all actions that can be associated with a specific procedure (or module).

List all conditions (or decisions made) during execution of the procedure.

Associate specific sets of conditions with specific actions, eliminating impos-

sible combinations of conditions; alternatively, develop every possible per-

mutation of conditions.

Define rules by indicating what action(s) occurs for a set of conditions.

350 PART TWO SOFTWARE ENGINEERING PRACTICE

Resultant

decision table

Rules

Conditions 1 2 3 4 5 6

Regular customer T T

Silver customer T T

Gold customer T T

Special discount F T F T F T

Actions

No discount

Apply 8 percent discount V
Apply 1 5 percent discount V
Apply additional x percent

discount V V

To illustrate the use of a decision table, consider the following excerpt from an in-

formal use-case that has just been proposed for the print shop system?

Three types of customers are defined: a regular customer, a silver customer, and a gold

customer (these types are assigned by the amount of business the customer does with the

print shop over a 12-month period). A regular customer receives normal print rates and
delivery. A silver customer gets an 8 percent discount on all quotes and is placed ahead
of all regular customers in the job queue. A gold customer gets a 15 percent reduction in

quoted prices and is placed ahead of both regular and silver customers in the job queue.

A special discount of x percent in addition to other discounts can be applied to any cus-

tomer's quote at the discretion of management.

Figure 11.11 illustrates a decision table representation of the preceding informal

use-case. Each of the six rules indicates one of six viable conditions. As a general

rule, the decision table can be used effectively to supplement other procedural de-

sign notation.

1 1 .5.3 Program Design Language

Program design language (PDL), also called structured English or pseudocode, is "a

pidgin language in that it uses the vocabulary of one language (i.e., English) and the

overall syntax of another (i.e., a structured programming language)" [CAI75], In this

chapter, PDL is used as a generic reference for a design language.

At first glance PDL may look like a programming language. The difference be-

tween PDL and a real programming language lies in the use of narrative text (e.g.,

English) embedded directly within PDL statements. Given the use of narrative text

embedded directly into a syntactical structure, PDL cannot be compiled. However,

tools can translate PDL into a programming language "skeleton" and/or a graphical

representation (e g., a flowchart) of design. These tools also produce nesting maps,

a design operation index, cross-reference tables, and a variety of other information.

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN 351

It's a good ideo to use

youi programing

language as the bosis

for POL You can then

generate a code

skeleton mixed with

narrative text as you

develop the design.

A program design language may be a simple transposition of a language such as

Ada, C, or Java. Basic PDL syntax should include constructs for component definition,

interface description, data declaration, block structuring, condition constructs, repeti-

tion constructs, and I/O constructs. It should be noted that PDL can be extended to in-

clude keywords for multitasking and/or concurrent processing, interrupt handling,

interprocess synchronization, and many other features. The application design for

which PDL is to be used should dictate the final form for the design language. The for-

mat and semantics for some of these PDL constructs are presented in the example that

follows.

To illustrate the use of PDL, we consider a procedural design for the SafeHome se-

curity function discussed in earlier chapters. The system monitors- alarms for fire,

smoke, burglar, water, and temperature (e.g., furnace breaks while homeowner is

away during winter), produces an alarm bell, and calls a monitoring service, gener-

ating a voice-synthesized message. In the PDL that follows, we illustrate some of the

important constructs noted in earlier sections.

Recall that PDL is not a programming language. The designer can adapt as re-

quired without worry of syntax errors. However, the design for the monitoring soft-

ware would have to be reviewed (do you see any problems?) and further refined

before code could be written. The following PDL8 provides an elaboration of the pro-

cedural design for an early version of an alarm management component.

component alarmManagement;

The intent of this component Is to manage control penal switches and input from sensors by

type and to act on any alarm condition that is encountered.

set default values for systemStatus (returned value), all data items

initialize all system ports and reset all hardware

check controlPanelSwitches (cps)

if cps — "test" then invoke alarm set to "on"

If cps = "aiarmOff" then invoke alarm set to "off"

default for cps = none

reset all signalValues and switches

do for all sensors

invoke oheckSensor procedure returning signalValue

if signalValue > bound [alarmType]

then phone.message = message [alarmType]

set alarmBell to "on" for alarmTimeSeoonds

8 The level of detail represented by the PDL is defined locally. Some people prefer a more natural

language-oriented description while others prefer something that is close to code.

352 PART TWO SOFTWARE ENGINEERING PRACTICE

sef system status = "alarmCondition"

parbegin

invoke alarm procedure with "on”, alarmTimeSeconds;

invoke phone procedure set to alarmType, phoneNumber

parend

else skip

endif

enddofor

end alarmManagement

Note that the designer for the alarm management component has used the construct

parbegin . .
.
parend that specifies a parallel block. All tasks specified within the parbegin

block are executed in parallel. In this case, implementation details are not considered.

Program Design Language

Objective: Although the vast majority of

software engineers who use PDL or pseudocode

develop a version that is adapted from the programming

language that they intend to use for implementation, a

number of PDL tools do exist.

Mechanics: In some cases, the tools reverse engineer

existing source code (a sad reality in a world where some

programs have absolutely no documentation at all). Others

allow a designer to create PDL with an automated assist.

Representative Tools’

PDL/81, developed by Caine, Farber, and Gordon

^ (http://www.cfg.com/pdl81/lpd.html), supports

Software Tools
\

the creation of designs using a defined version

of PDL.

DocGen, distributed by Software Improvement Group

(http://www.software-improvers.com/DocGen.htm), is

a reverse engineering tool that generates PDL-like

documentation from Ada and C code.

PowerPDL, developed by Iconix

(http://www.iconixsw.com/SpecSheets/PowerPDL.

html), allows a designer to create PDL based designs

and then translates pseudocode into the forms Ibat can

generate other design representations.

J
11.5.4 Comparison of Design Notation

Design notation should lead to a procedural representation that is easy to understand

and review. In addition, the notation should enhance "code to" ability so that code

does, in fact, become a natural by-product of design. Finally, the design representation

must be easily maintainable so that design always represents the program correctly.

A natural question that arises in any discussion of design notation is: What nota-

tion is really the best, given the attributes noted above? Any answer to this question

is subjective and open to debate. However, it appears that program design language

offers the best combination of characteristics. PDL may be embedded directly into

source listings, improving documentation and making design maintenance less dif-

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN 353

ficult. Editing can be accomplished with any text editor or word-processing system,

automatic processors already exist, and the potential for "automatic code genera-

tion" is good.

However, it does not follow that other design notation is necessarily inferior to

PDL or is "not good" in specific attributes. The pictorial nature of activity diagrams

and flowcharts provides a perspective on control flow that many designers prefer.

The precise tabular content of decision tables is an excellent tool for table-driven ap-

plications. And many other design representations (e.g., Petri nets), not presented in

this book, offer their own unique benefits. In the final analysis, the choice of a design

tool may be more closely related to human factors than to technical attributes.

11.6 Summary

The component-level design action encompasses a sequence of tasks that slowly re-

duces the level of abstraction with which software is represented. Component-level

design ultimately depicts the software at a level of abstraction that is close to code.

Two different views of component- level design may be taken, depending on the

nature of the software to be developed. The object-oriented view focuses on the

elaboration ofdesign classes that come from both the problem and infrastructure do-

main. The conventional view refines three different types ofcomponents or modules:

control modules, problem domain modules, and infrastructure modules. In both

cases, basic design principles and concepts that lead to high-quality software are ap-

plied. When considered from a process viewpoint, component-level design draws on

reusable software components and design patterns that are pivotal elements of

component-based software engineering.

Object-oriented component-level design is class-based. A number of important

principles and concepts guide the designer as classes are elaborated. Principles such

as the Open-Closed Principle and the Dependency Inversion Principle, and concepts

such as coupling and cohesion guide the software engineer in building testable, im-

plementable, and maintainable software components. To conduct component-level

design in this context, classes are elaborated by specifying messaging details, iden-

tifying appropriate interfaces, elaborating attributes and defining data structures to

implement them, describing processing flow within each operation, and represent-

ing behavior at a class or component level. In every case, design iteration (refactor-

ing) is an essential activity.

Conventional component-level design requires the represention of data struc-

tures, interfaces, and algorithms for a program module in sufficient detail to guide in

the generation of programming language source code. To accomplish this, the de-

signer uses one of a number of design notations that represent component-level de-

tail in either graphical, tabular, or text-based formats.

Structured programming is a procedural design philosophy that constrains the

number and type of logical constructs used to represent algorithmic detail. The intent

354 PART TWO SOFTWARE ENGINEERING PRACTICE

of structured programming is to assist the designer in defining algorithms that are

less complex and therefore easier to read, test, and maintain.

References

[AMB02| Ambler, S., "UML Component Diagramming Guidelines," available at http.//www.

modelingstyle.info/, 2002.

[BEN02| Bennett, S., S. McRobb, and R. Farmer, Object Oriented Analysis and Design, 2nd ed.,

McGraw-Hill, 2002.

IBOH66] Bohm, C., and G. Jacopini, "Flow Diagrams, Turing Machines and Languages with Only

TWo Formation Rules," CACM, voi. 9, no. 5. May 1966. pp. 366-371.

ICAI75] Caine, S. and K. Gordon, 'PDL—A Tool for Software Design," in Prcc. National Computer

Conference, AFIPS Press, 1975, pp. 271-276.

[DlJ65j Dijkstra, E., "Programming Considered as a Human Activity," in Proc. 1 965 IFIP Congress,

North-Holland Publishing Co., 1965.

[DIJ72] Dijkstra, E., "The Humble Programmer," 1 972 ACM Turing Award Lecture, CACM, vol. 1 5,

no. 10. October, 1972, pp. 859-866.

IDIJ76J Dijkstra. E., "Structured Programming," in Software Engineering. Concepts and Tech-

niques, (J. Buxton etal., eds.). Van Nostrand-Reinhold, 1976.

(HUR83] Hurley, R. B., Decision Tables in Software Engineering, Van Noslrand-Reinhoid, 1983.

[LETOll Lethbridge. T., and R. Laganiere, Object-Oriented Software Engineering: Practical Software

Development Using UML and java, McGraw-Hill, 200 1

.

[L1S88] Liskov, B., “Data Abstraction and Hierarchy,” SIOPLAN Notices, vol. 23. no. 5, May 1 988.

(MAR00] Martin, R., "Design Principles and Design Patterns," downloaded from http://www.ob-

jectmentor.com, 2000.

[OMGOI
| OMC Unified Modeling Specification, Object Management Group, version 1 .4, Septem-

ber, 2001.

[WAR98J Warmer, j., and A. KJepp, Object Constraint Language: Precise Modeling with UML,

Addison-Wesley, 1998.

Problems and Points to Ponder

11.1. What is a guard-condition, and when is it used?

11 .2 . Why are control components necessary in conventional software and generally not re-

quired in object-oriented software?

1 1 .3. Describe the OCP in your own words. Why is it important to create abstractions that serve

as an interface between components?

1

1

.4 . Is it reasonable to say that problem domain components should never exhibit external

coupling? If you agree, what types of components would exhibit external coupling?

11 .5 . Describe the DIP in your own words. What might happen if a designer depends too heav-

ily on concretions?

1

1

.6 . Select three components that you have developed recently and assess the types ofcohesion

that each exhibits. If you had to define the primary' benefit of high cohesion, what would it be?

11.7. Select three components that you have developed recently and assess the types of coupling

that each exhibits, if you had to define the primary benefit of low coupling, what would it be?

1

1

.8 . Do some research and develop a list of typical categories for infrastructure components.

1

1

.9 . The term component is sometimes a difficult one to define. First provide a generic defini-

tion, and then provide more explicit definitions for OO and conventional software. Finally, pick

three programming languages with which you are familiar and illustrate how each defines a

component.

CHAPTER 1 1 MODELING COMPONENT-LEVEL DESIGN 355

11.10. The terms public and private attributes are often used in component-level design work.
What do you think each means and what design concepts do they try to enforce?

11.11. Select a small portion of an existing program (approximately 50-75 source lines). Iso-

late the structured programming constructs by drawing boxes around them in the source code.
Does the program excerpt have constructs that violate the structured programming philosophy?
If so, redesign the code to make it conform to structured programming constructs. If not, what
do you notice about the boxes that you've drawn?

11.12. What is a persistent data source?

11.13. Are stepwise refinement and factoring the same thing? If not, how do they differ?

11.14. Develop (1) an elaborated design class; (2) interface descriptions; (3) an activity diagram
for one of the operations within the class; (4) a detailed statechart diagram for one of the Safe-
Home classes that we have discussed in earlier chapters.

11.15. Do a bit of research and describe three or four OCL constructs or operators that have
not been discussed in Section 1 1 .4.

11.16. What is the role of interfaces in a class-based component-level design?

Further Readings and Information Sources

Design principles, concepts, guidelines, and techniques for object-oriented design classes and com-
ponents are discussed in many books on object-oriented software engineering and OO analysis and
design. Among the many sources of information are Bennett and his colleagues [BEN02], Larman
(
Applying UML and Patterns, Prentice-Hall, 2001), Lethridge and Laganiere [LET01), and Nicola and
her colleagues

(Streamlined Object Modeling: Patterns, Rules and Implementation, Prentice-Hall,

2001), Schach
(Object-Oriented and Classical Software Engineering, fifth edition, McGraw-Hill,

2001), Dennis and his colleagues (Systems Analysis and Design; An Object-Oriented Approach with
UML, Wiley, 2001), Graham (Object-Oriented Methods: Principles and Practice, Addison-Wesley,
2000), Richter (Designing Flexible Object-Oriented Systems with UML. Macmillan, 1999). Stevens
and Pooley (Using UML: Software Engineering with Objects and Components, revised edition, Addison-
Wesley, 1999), and Riel

(Object-Oriented Design Heuristics, Addison-Wesley, 1996).

The design by contract concept is a useful design paradigm. Books by Mitchell and McKim
(Design by Contract by Example, Addison-Wesley, 2001

) and Jezequel and his colleagues (Design
Patterns and Contracts, Addison-Wesley, 1999) cover this topic in some detail. Metsker (Design
Patterns Java Workbook, Addison-Wesley, 2002) and Shalloway and Trott (Design Patterns Ex-
plained: A New Perspective on Object-Oriented Design, Addison-Wesley, 2001) consider the im-
pact of patterns on the design of software components. Design iteration is essential for the
creation of high-quality designs. Fowler (Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999) provides useful guidance that can be applied as a design evolves.

The work of Linger, Mills, and Witt (Structured Programming—Theory and Practice, Addison-
Wesley, 1 979) remains a definitive treatment of the subject. The text contains a good PDL as well
as detailed discussions of the ramifications of structured programming. Other books that focus
on procedural design issues for traditional systems include those by Robertson (Simple Program
Design, third edition. Course Technology, 2000), Farrell (A Guide to Programming Logic and De-
sign, Course Technology, 1999), Bentley (Programming Pearls, second edition, Addison-Wesley,
1999), and Dahl (Structured Programming, Academic Press, 1997).

Relatively few recent books have been dedicated solely to component-level design. In gen-
eral, programming language books address procedural design in some detail but always in the
context of the language that is introduced by the book. Hundreds of titles are available.

A wide variety of information sources on component-level design are available on the In-

ternet. An up-to- date list of World Wide Web references that are relevant to component-level
design can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

12 Performing User

Interface Design

T
he blueprint for a house (its architectural design) is not complete without

a representation of doors, windows, and utility connections for watei

,

electricity, and telephone (not to mention cable TV). The doors, windows,

and utility connections" for computer software make up the interface design of a

system.

Interface design focuses on three areas of concern: (1) the design of interfaces

between software components, (2) the design of interfaces between the software

and other nonhuman producers and consumers of information (i.e., other extei-

nal entities), and (3) the design of the interface between a human (i.e., the user)

and the computer, in this chapter we focus exclusively on the third interface de-

sign category—user interface design.
"

In the preface to his classic book on user interface design, Ben Shneiderman

[SHN90] states:

Frustration and anxiety are part of daily life for many users ot computerized informa-

tion systems. They struggle to leam command language or menu selection systems

that are supposed to help them do their job. Some people encounter such serious

cases of computer shock, terminal terror, or network neurosis that they avoid using

computerized systems.

The problems to which Shneiderman alludes are real. It is true that graphical user

interfaces, windows, icons, and mouse picks have eliminated many of the most

Key
Concepts
accessibility

design steps

golden rules

help facilities

interface

analysis

consistency

evaluation

models

internationalization

object elaboration

patterns

task analysis

usability

workflow analysis

What is it? User interface design

creates an effective communication

medium between a human and a

computer. Following a set of interface

design principles, design identifies interface ob-

jects and actions and then creates a screen layout

that forms the basis for a user interface prototype.

Who does it? A software engineer designs the

user interface by applying an iterative process

that draws on widely accepted design principles.

Why is it important? if software is difficult to

use, if it forces you into mistakes, or if it frustrates

your efforts to accomplish your goals, you won't

like it, regardless of the computational power it

exhibits or the functionality it offers. The inter-

face has to be right because it molds a user's

perception of the software.

What are the steps? User interface design be-

gins with the identification of user, task, and en-

vironmental requirements. Once user tasks have

been identified, user scenarios are created and

analyzed to define a set of interface objects and

actions. These form the basis for the creation of

screen layouts that depict graphical design and

placement of icons, definition of descriptive

screen text, specification and titling for windows,

and specification of major and minor menu

items. Tools are used to prototype and ultimately

implement the design model, and the result is

evaluated for quality.

356

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 357

What is the work product? User scenarios

are created, and screen layouts are generated.

An interface prototype is developed and modi-

fied in an iterative fashion.

How do I ensure that I've done it right?

The prototype is "test driven" by the users and

feedback from the test drive is used for the next

iterative modification of the prototype.

horrific interface problems. But even in a "Windows world," we all have encountered

user interfaces that are difficult to learn, hard to use, confusing, counterintuitive, un -

forgiving, and in many cases, totally frustrating. Yet, someone spent time and energy

building each of these interfaces, and it is not likely that the builder created these

problems purposely.

User interface design has as much to do with the study of people as it does with

technology issues. Who is the user? How does the user learn to interact with a new

computer-based system? How does the user interpret information produced by the

system? What will the user expect of the system? These are only a few of the many

questions that must be asked and answered as part of user interface design.

12.1 The Golden Rules

In his book on interface design, Theo Mandel [MAN97] coins three "golden rules”:

1 . Place the user in control.

2. Reduce the user's memory load.

3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design princi-

ples that guide this important software design action.

12.1.1 Place the User in Control

During a requirements-gathering session for a major new information system, a key

user was asked about the attributes of the windows-oriented graphical interface.

"What I really would like," said the user solemnly, "is a system that reads my mind.

It knows what I want to do before 1 need to do it and makes it very easy for me to get

it done. That's all, just that."

My first reaction was to shake my head and smile, but 1 paused for a moment.

There was absolutely nothing wrong with the user's request. She wanted a system

that reacted to her needs and helped her get things done. She wanted to control the

computer, not have the computer control her.

Most interface constraints and restrictions that are imposed by a designer are in-

tended to simplify the mode of interaction. But for whom? In many cases, the designer

might introduce constraints and limitations to simplify the implementation of the in-

terface. The result may be an interface that is easy to build, but frustrating to use.

358 PART TWO SOFTWARE ENGINEERING PRACTICE

Mandel [MAN97] defines a number of design principles that allow the user to

maintain control:

Define interaction modes in a way that does not force a user into unneces-

sary or undesired actions. An interaction mode is the current state of the inter-

face. For example, if spell check is selected in a word-processor menu, the software

moves to a spell-checking mode. There is no reason to force the user to remain in

spell-checking mode if the user desires to make a small text edit along the way. The

user should be able to enter and exit the mode with little or no effort.

Provide for flexible interaction. Because different users have different interac-

tion preferences, choices should be provided. For example, software might allow a

user to interact via keyboard commands, mouse movement, a digitizer pen, or voice

recognition commands. But every action is not amenable to every interaction mech-

anism. Consider, for example, the difficulty of using keyboard commands (or voice

input) to draw a complex shape.

Allow user interaction to be interruptible and undoable. Even when involved

in a sequence of actions, the user should be able to interrupt the sequence to do

something else (without losing the work that had been done). The user should also

be able to "undo" any action.

Streamline interaction as skill levels advance and allow the interaction to

be customized. Users often find that they perform the same sequence of interac-

tions repeatedly. It is worthwhile to design a "macro" mechanism that enables an ad-

vanced user to customize the interface to facilitate interaction.

Hide technical internals from the casual user. The user interface should move

the user into the virtual world of the application. The user should not be aware of the

operating system, file management functions, or other arcane computing technol-

ogy. In essence, the interface should never require that the user interact at a level

that is "inside" the machine (e.g., a user should never be required to type operating

system commands from within application software).

Design for direct interaction with objects that appear on the screen. The

user feels a sense of control when able to manipulate the objects that are necessary

to perform a task in a manner similar to what would occur if the object were a phys-

ical thing. For example, an application interface that allows a user to "stretch" an ob-

ject (scale it in size) is an implementation of direct manipulation.

"I have always wished that my computer would be as easy to use as my telephone. My wish has come true. I no

longer know how to use my telephone."

Bjarne Stronstrup (originator of C++)

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 359

12.1.2 Reduce the User’s Memory Load

The more a user has to remember, the more error-prone interaction with the system

will be. It is for this reason that a well-designed user interface does not tax the user's

memory. Whenever possible, the system should "remember" pertinent information

and assist the user with an interaction scenario that assists recall. Mandel [MAN97]

defines design principles that enable an interface to reduce the user's memory load:

Reduce demand on short-term memory. When users are involved in complex

tasks, the demand on short-term memory can be significant. The interface should be

designed to reduce the requirement to remember past actions and results. This can

be accomplished by p oviding visual cues that enable a user to recognize past ac-

tions, rather than having to recall them.

Establish meaningful defaults. The initial set of defaults should make sense for the

average user, but a user should be able to specify individual preferences. However, a

"reset" option should be available, enabling the redefinition of original default values.

Define shortcuts that are intuitive. When mnemonics are used to accomplish a

system function (e g., alt-P to invoke the print function), the mnemonic should be tied

to the action in a way that is easy to remember (e.g., first letter of the task to be invoked).

The visual layout of the interface should be based on a real world metaphor.

For example, a bill payment system should use a check book and check register

metaphor to guide the user through the bill paying process. This enables the user to

rely on well-understood visual cues, rather than memorizing an arcane interaction

sequence.

Disclose information in a progressive fashion. The interface should be or-

ganized hierarchically. That is, information about a task, an object, or some behav-

ior should be presented first at a high level of abstraction. More detail should be

presented after the user indicates interest with a mouse pick. An example, common

to many word-processing applications, is the underlining function. The function it-

self is one of a number of functions under a text style menu. However, evety under-

lining capability is not listed. The user must pick underlining, and then all underlining

options (e.g., single underline, double underline, dashed underline) are presented.

The scene: Vinod's cubicle, os user interface design

begins.

The players: Vinod and Jamie, members of the

SafeHome software engineering team.

The conversation:

Jamie: I've been thinking about the surveillance function

interface.

Vinod (smiling): Thinking is good.

360 PART TWO SOFTWARE ENGINEERING PRACTICE

Jamie: I think maybe we can simplify matters some.

Vinod: Meaning?

Jamie: Well, what if we eliminate the floor plan

entirely? It's flashy, but it's going to take serious

development effort. Instead we just ask the user to specify

the camera he wants to see and then display the video in

a video window.

Vinod: How does the homeowner remember how many

cameras are set up and where they are?

Jamie (mildly irritated): He's the homeowner, he

should know.

Vinod: But what if he doesn't?

Jamie: He should.

Vinod: That's not the point . . . what if he forgets?

Jamie: Uh, we could provide a list of operational

cameras and their locations.

Vinod: That's possible, but why should he have to ask

for a list?

Jamie: Okay, we provide the list whether he asks or

not.

Vinod: Better. At least he doesn't have to remember stuff

that we can give him.

Jamie (thinking for a moment): But you like the

floor plan, don't you?

Vinod: Uh huh.

Jamie: Which one will marketing like, do you think?

Vinod: You're kidding, right?

Jamie: No.

Vinod: Duh ... the one with the flash . . . they love

sexy product features . . . they're not interested in which

is easier to build.

Jamie (sighing): Okay, maybe I'll prototype both.

Vinod: Good idea . . . then we let the customer decide.

12.1.3 Make the Interface Consistent

The interface should present and acquire information in a consistent fashion. This

implies that (1) all visual information is organized according to a design standard

that is maintained throughout all screen displays, (2) input mechanisms are con-

strained to a limited set that is used consistently throughout the application, and

(3) mechanisms for navigating from task to task are consistently defined and imple-

mented. Mandel [MAN97] defines a set of design principles that help make the in-

terface consistent:

"filings that look different should act different, filings that look the same should act the same."

Lorry Marine

Allow the user to put the current task into a meaningful context. Many in-

terfaces implement complex layers of interactions with dozens of screen images. It

is important to provide indicators (e.g., window titles, graphical icons, consistent

color coding) that enable the user to know the context of the work at hand. In addi-

tion, the user should be able to determine where he has come from and what alter-

natives exist for a transition to a new task.

Maintain consistency across a family of applications. A set of applications (or

products) should all implement the same design rules so that consistency is main-

tained for all interaction.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 361

If past interactive models have created user expectations, do not make

changes unless there is a compelling reason to do so. Once a particular in-

teractive sequence has become a de facto standard (e.g., the use of alt-S to save a

file), the user expects this in every application she encounters. A change (e.g., using

alt-S to invoke scaling) will cause confusion.

The interface design principles discussed in this and the preceding sections pro

vide basic guidance for a software engineer. In the sections that tollow, we examine

the interface design process itself.

Usability

In an insightful paper on usability, tarry

Constantine [CON951 asks a question that has

significant bearing on the subject: "What do users want,

anyway?" He answers this way: "What users redly want are

good tools. All software systems, from operating systems and

languages to data entry and decision support applications,

are just tools. End users want from the tools we engineer for

them much the same as we expect from the tools we use.

They want systems that are easy to leam and that help them

do their work. They want software that doesn't slow them

down, that doesn't trick or confuse them, that does make it

easier to make mistakes or harder to finish the job."

Constantine argues that usability is not derived from

aesthetics, state-of-the-art interaction mechanisms, or built-

in interface intelligence. Rather, it occurs when the

architecture of the interface fits the needs of the people

who will be using it.

A formal definition of usability is somewhat illusive.

Donahue and his colleagues [DON99] define it in the

following manner: "Usability is a measure of how well a

computer system . . . facilitates learning; helps learners

remember what they've learned; reduces the likelihood of

errors; enables them to be efficient, and makes them

satisfied with the system."

The only way to determine whether "usability" exists

within a system you are building is to conduct usability

assessment or testing. Watch users interact with the system

and answer the following questions [CON95]:

• Is the system usable without continual help or

instruction?

• Do the rules of interaction help a knowledgeable user

to work efficiently?

• Do interaction mechanisms become more flexible as

users become more knowledgeable?

• Has the system been tuned to the physical and social

environment in which it will be used?

• Is the user aware of the state of the system? Does the

user know where she is at all times?

• Is the interface structured in a logical and consistent

manner?

• Are interaction mechanisms, icons, and procedures

consistent across the interface?

• Does the interaction anticipate errors and help the user

correct them?

• Is the interface tolerant of errors that are made?

• Is the interaction simple?

If each of these questions is answered yes, it is likely that

usability has been achieved.

Among the many measurable benefits derived from a

usable system are [DON99] increased sales and customer

satisfaction, competitive advantage, better reviews in the

media, better word of mouth, reduced support costs,

improved end-user productivity, reduced training costs,

reduced documentation costs, reduced likelihood of

litigation from unhappy customers.

12.2 User Interface Awai.ysts AND PESISfl —
The overall process for analyzing and designing a user interface begins with the cre-

ation of different models of system function (as perceived from the outside). The

human- and computer-oriented tasks that are required to achieve system function

362 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
An excellent source of

Ul design information

con be found at

www.useit.com.

Even a novice user

wonts short-cuts; even

knowledgeoble,

frequent users

sometimes need

guidance. Give them

what they need.

are then delineated; design issues that apply to all interface designs are considered;

tools are used to prototype and ultimately implement the design model; and the re-

sult is evaluated by end-users for quality.

12.2. 1 Interface Analysis and Design Models

Four different models come into play when a user interface is to be analyzed and de-

signed. A human engineer (or the software engineer) establishes a user model, the

software engineer creates a design model, the end-user develops a mental image that

is often called the user's mental model or the system perception, and the implementers
of the system create a implementation model. Unfortunately, each of these models
may differ significantly. The role of interface designer is to reconcile these differences

and derive a consistent representation of the interface.

The user model establishes the profile ofend-users of the system. To build an ef-

fective user interface, "ail design should begin with an understanding of the intended

users, including profiles of their age, sex, physical abilities, education, cultural or eth-

nic background, motivation, goals and personality" [SHN90], In addition, users can

be categorized as

Novices. No syntactic knowledge 1 of the system and little semantic knowledge 2

of the application or computer usage in general.

Knowledgeable, intermittent users. Reasonable semantic knowledge of the applica-

tion but relatively low recall of syntactic information necessary to use the interface.

Knowledgeable, frequent users. Good semantic and syntactic knowledge that of-

ten leads to the "power-user syndrome," that is, individuals who look for shortcuts

and abbreviated modes of interaction.

A design model of the entire system incorporates data, architectural, interface,

and procedural representations of the software. The requirements specification may
establish certain constraints that help define the user of the system, but the interface

design is often only incidental to the design model.3

The user's mental model (system perception) is the image of the system that end-

users carry in their heads. For example, if the user of a particular page layout system

1 In this context, syntactic knowledge refers to the mechanics of interaction that is required to use the

interface effectively.

2 Semantic knowledge refers to the underlying sense of the application—an understanding of the

functions that are performed, the meaning of input and output, and the goals and objectives of the

system.

This is not the way things should be. In many cases, user interface design is as important as archi-

tectural and component-level design.

3

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 363

POINT
Hie usei's mentol

model shapes how

the user perceives the

interface ond whether

the Ul meets the usei's

needs.

were asked to describe its operation, the system perception would guide the re-

sponse. The accuracy of the description will depend upon the user's profile (e.g.,

novices would provide a sketchy response at best) and overall familiarity with soft-

ware in the application domain. A user who understands page layout fully but has

worked with the specific system only once might actually be able to provide a more

complete description of its function than the novice who has spent weeks living to

learn the system.

The implementation model combines the outward manifestation of the computet

based system (the look and feel of the interface), coupled with all supporting infor-

mation (books, manuals, videotapes, help files) that describe system syntax and

semantics. When the implementation model and the user's mental model are coin-

cident, users generally feel comfortable with the software and use it effectively To

accomplish this "melding" of the models, the design model must have been devel-

oped to accommodate the information contained in the user model, and the imple-

mentation model must accurately reflect syntactic and semantic information about

the interface.

The models described in this section are "abstractions of what the user is doing

or thinks he is doing or what somebody else thinks he ought to be doing when he

uses an interactive system" [MON84], In essence, these models enable the interface

designer to satisfy a key element of the most important principle of user interface de-

sign: Know the user, know the tasks.

12.2.2 The Process

The analysis and design process for user interfaces is iterative and can be repre-

sented using a spiral model similar to the one discussed in Chapter 3. Referring to

Figure 12.1, the user interface analysis and design process encompasses four distinct

framework activities |MAN97|:

1 . User, task, and environment analysis and modeling.

2. interface design.

3. Interface construction (implementation).

4. interface validation.

The spiral shown in Figure 12.1 implies that each of these tasks will occur more than

once, with each pass around the spiral representing additional elaboration of re-

quirements and the resultant design. In most cases, the construction activity in-

volves prototyping—the only practical way to validate what has been designed.

Interface analysis focuses on the profile of the users who will interact with the sys-

tem. Skill level, business understanding, and general receptiveness to the new system

364 PART TWO SOFTWARE ENGINEERING PRACTICE

The user

interface

design process

are recorded; and different user categories are defined. For each user category, re-

quirements are elicited. In essence, the software engineer attempts to understand the

system perception (Section 12.2.1) for each class of users.

Once general requirements have been defined, a more detailed task analysis is

conducted. Those tasks that the user performs to accomplish the goals of the system

are identified, described, and elaborated (over a number of iterative passes through

the spiral). Task analysis is discussed in more detail in Section 12.3.

The analysis of the user environment focuses on the physical work environment.

Among the questions to be asked are:

Q What do

• we need to

know about the

environment as

we begin Ul

design?

• Where will the interface be located physically?

• Will the user be sitting, standing, or performing other tasks unrelated to the

interface?

• Does the interface hardware accommodate space, light, or noise constraints?

• Are there special human factors considerations driven by environmental

factors?

The information gathered as part of the analysis activity is used to create an analysis

model for the interface. Using this model as a basis, the design activity commences.

The goal of interface design is to define a set of interface objects and actions (and

their screen representations) that enable a user to perform all defined tasks in a

CHAPTER 12 PERFORMING USER INTERFACE DESIGN
365

manner that meets every usability goal defined for the system. Interface design is dis-

cussed in more detail in Section 12.4.

The construction activity normally begins with the creation of a prototype that en-

ables usage scenarios to be evaluated. As the iterative design process continues,

user interface development tools (see sidebar in Section 12.4) may be used to com-

plete the construction of the interface.

Validation focuses on (l) the ability of the interface to implement every user task

correctly, to accommodate all task variations, and to achieve all general user re-

quirements; (2) the degree to which the interface is easy to use and easy to learn; and

(3) the users' acceptance of the interface as a useful tool in theii work.

As we have already noted, the activities described in this section occur iteratively.

Therefore, there is no need to attempt to specify every detail (for the analysis or de-

sign model) on the first pass. Subsequent passes through the process elaborate task

detail, design information, and the operational features of the interface.

i 9- 3 Interface Analysis? —
A key tenet of all software engineering process models is this:you better understand

the problem beforeyou attempt to design a solution. In the case of user interface de-

sign, understanding the problem means understanding (1) the people (end-users)

who will interact with the system through the interface; (2) the tasks that end-users

must perform to do their work, (3) the content that is presented as part of the inter-

face, and (4) the environment in which these tasks will be conducted. In the sections

that follow, we examine each of these elements of interface analysis with the intent

of establishing a solid foundation for the design tasks that follow.

How do we

• learn what

the user wants

Irom the 111?

12.3.1 User Analysis

Earlier we noted that each user has a mental image or system perception of the soft-

ware that may be different from the mental image developed by other users. In ad-

dition, the user's mental image may be vastly different from the software engineer's

design model. The only way that a designer can get the mental image and the design

model to converge is to work to understand the users themselves as well as how

these people will use the system. Information from a broad array of sources can be

used to accomplish this:

User interviews. The most direct approach, interviews involve representatives

from the software team who meet with end-users to better understand their needs,

4 It is reasonable to argue that this section could be placed in Chapter 8, since requirements analy-

sis issues are discussed there. It has been positioned here because interface analysis and design

are intimately connected to one another, and the boundary between the two is often fuzzy.

366 PART TWO SOFTWARE ENGINEERING PRACTICE

Above oil, spend lime

talking to actual users,

but be careful. One

strong opinion doesn't

necessarily mean that

the majority of users

will agree.

motivations, work culture, and a myriad of other issues. This can be accomplished
in one-on-one meetings or through focus groups.

Sales input. Sales people meet with customers and users on a regular basis
and can gather information that will help the software team to categorize users
and better understand their requirements.

Marketing input. Market analysis can be invaluable in the definition of market
segments while providing an understanding of how each segment might use the
software in subtly different ways.

Support input. Support staff talk with users on a daily basis, making them the
most likely source of information on what works and what doesn't, what users like

and what they dislike, what features generate questions, and what features are
easy to use.

The following set of questions (adapted from [HAC98]) will help the interface de
signer better understand the users of a system:

r
POINT

How do we learn

about die

demographics and

characteristics of end-

users?

• Are users trained professionals, technicians, clerical or manufacturing
workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they
expressed a desire for classroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

• Do users work normal office hours, or do they work until the job is done?

• Is the software to be an integral part of the work users do, or will it be used
only occasionally?

• What is the primary spoken language among users?

• What are the consequences if a user makes a mistake using the system?

• Are users experts in the subject matter that is addressed by the system?

• Do users want to know about the technology that sits behind the interface?

The answers to these and similar questions will allow the designer to understand
who the end-users are. what is likely to motivate and please them, how they can
be grouped into different user classes or profiles, what their mental models of the
system are, and how the user interface must be characterized to meet their

needs.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 367

w
POINT

The user's gool is to

accomplish one or

more tasks vio the Ul.

To accomplish this, the

Ul must provide

mechonisms that allow

the user to achieve her

god.

12.3.2 Task Analysis and Modeling

The goal of task analysis is to answer the following questions:

• What work will the user perform in specific circumstances?

• What tasks and subtasks will be performed as the user does the work?

• what specific problem domain objects will the user manipulate as work is

performed?

• what is the sequence of work tasks—the workflow?

• what is the hierarchy of tasks?

To answer these questions, the software engineer must draw upon analysis tech-

niques discussed in Chapters 7 and 8, but in this instance, these techniques are ap-

plied to the user interface.

Use-cases, in earlier chapters we noted that the use-case describes the manner in

which an actor (in the context of user interface design, an actor is always a person)

interacts with a system. When used as part of task analysis, the use-case is devel-

oped to show how an end-user performs some specific work-related task. In most

instances, the use-case is written in an informal style (a simple paragraph) in the

first-person. For example, assume that a small software company wants to build a

computer-aided design system explicitly for interior designers. To get a better un-

derstanding of how they do their work, actual interior designers are asked to de-

scribe specific design functions. When asked "How do you decide where to put

furniture in a room?" an interior designer writes the following informal use-case:

I begin by sketching the floor plan of the room, the dimensions and the location of win-

dows and doors. I'm very concerned about light as it enters the room, about the view out

of the windows (if it's beautiful, 1 want to draw attention to it), about the running length

of unobstructed walls, about the flow of movement through the room. I then look at the

list of furniture my customer and 1 have chosen—tables, chairs, sofa, cabinets, the list of

accents—lamps, rugs, paintings, sculpture, plants, smaller pieces, and my notes on any

desires my customer has for placement. I then draw each item from my lists using a tem-

plate that is scaled to the floor plan. I label each item and use pencil because 1 always

move things. I consider a number of alternative placements and decide on the one I like

best. Then, 1 draw a rendering (a 3-D picture) of the room to give my customer a feel for

what it’ll look like.

This use-case provides a basic description of one important work task for the

computer-aided design system. From it, the software engineer can extract tasks, ob-

jects, and the overall flow of the interaction. In addition, additional features of the

system that would please the interior designer can also be conceived. For example,

a digital photo could be taken looking out each window in a room. When the room

is rendered, the actual outside view could be represented through the each window.

368 PART TWO SOFTWARE ENGINEERING PRACTICE

SafeHome

Use-Cases for Ul Design

The scene: Vinod's cubicle, as user

interface design continues.

The players; Vinod and Jamie, members of the

SafeHome software engineering team.

The conversation:

Jamie: I pinned down our marketing contact and had

her write a use-case for the surveillance interface.

Vinod: From who's point of view?

Jamie: The home owner’s, who else is there?

Vinod: There's also the system administrator role. Even

if it's the homeowner playing the role, it's a different point

of view. The "administrator" sets the system up, configures

stuff, lays out the floor plan, places the cameras . . .

Jamie: All I had marketing do was play the role of a

homeowner who wants to see video.

Vinod: That's okay. It's one of the major behaviors of the

surveillance function interface. But we're going to have to

examine the system administration behavior as well.

Jamie (irritated): You're right.

(Jamie leaves to find the marketing person. She returns a

few hours later.)

Jamie: I was lucky. I found our marketing contact and

we worked through the administrator use-case together.

Basically, we're going to define "administration" as one

function that's applicable to all other SafeHome functions.

Here's what we came up with.

(Jamie shows the informal use-case to Vinod.)

Informal use-case: I want to be able to set or edit

the system layout at any time. When I set up the system,

I select an administration function. It asks me whether I

want to do a new set-up, or whether I want to edit an

existing set-up. If I select a new set-up, the system

displays a drawing screen that will enable me to draw

the floor plan onto a grid. There will be icons for walls,

windows, and doors so that drawing is easy. I just

stretch the icons to their appropriate lengths. The system

will display the lengths in feet or meters (I can select the

measurement system). I can select from a library of

sensors ond cameras and place them on the floor plan.

I get to label each, or the system will do automatic

labeling. I can establish settings for sensors and

cameras from appropriate menus. If I select edit, I can

move sensors or cameras, add new ones or delete

existing ones, edit the floor plan, ond edit the setting for

cameras and sensors. In every case, I expect the system

to do consistency checking and to help me avoid

mistakes.

Vinod (after reading the scenario): Okay, there

are probably some useful design patterns or reusable

components for GUIs for drawing programs. I'll betcha

50 bucks we can implement some or most of the

administrator interface using them.

Jamie: Agreed. I'll check it out.

Task elaboration. In Chapter 9, we discussed stepwise elaboration (also called

Junctional decomposition or stepwise refinement) as a mechanism for refining the pro-

cessing tasks that are required for software to accomplish some desired function.

Task analysis for interface design uses an elaborative approach to assist in under-

standing the human activities the user interface must accommodate.

Task analysis can be applied in two ways. As we have already noted, an interac-

tive, computer-based system is often used to replace a manual or semi-automated

activity. To understand the tasks that must be performed to accomplish the goal of

the activity, a human engineer5 must understand the tasks that humans currently

5 In many cases, the tasks described in this section are performed by a software engineer. Ideally,

this person has had some training in human engineering and user interface design.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 369

Task elaboration is

quite useful, but it can

also be dangerous. lust

because you have elab-

orated a task, do not

assume that there isn't

another my to do it,

and that the other way

will be tried when the

HI is implemented.

Although object-

elaboration is

useful, it should

not be used os a

stondolone approach.

Ihe user's mice must

be considered during

task analysis.

perform (when using a manual approach) and then map these into a similar (but not

necessarily identical) set of tasks that are implemented in the context of the user in-

terface. Alternatively, the human engineer can study an existing specification for a

computer-based solution and derive a set of user tasks that will accommodate the

user model, the design model, and the system perception.

. Regardless of the overall approach to task analysis, a human engineer must first

define and classify tasks. We have already noted that one approach is stepwise elab-

oration. For example, assume that a small software company wants to build a

computer-aided design system explicitly for interior designers. By observing an inte-

rior designer at work, the engineer notices that interior design comprises a number

of major activities: furniture layout (note the use-case discussed earlier), fabric and

material selection, wall and window coverings selection, presentation (to the cus-

tomer), costing, and shopping. Each of these major tasks can be elaborated into sub-

tasks. For example, using information contained in the use-case, furniture layout can

be refined into the following tasks: (1) draw a floor plan based on room dimensions;

(2) place windows and doors at appropriate locations; (3a) use furniture templates

to draw scaled furniture outlines on floor plan; (3b) use accent templates to draw

scaled accents on floor plan. (4) move furniture outlines and accent outlines to get

best placement; (5) label all furniture and accent outlines; (6) draw dimensions to

show location; (7) draw perspective rendering view for customer. A similar approach

could be used for each of the other major tasks.

Subtasks 1-7 can each be refined further. Subtasks 1-6 will be performed by ma-

nipulating information and performing actions within the user interface. On the

other hand, subtask 7 can be performed automatically in software and will result in

little direct user interaction. 6 The design model of the interface should accommodate

each of these tasks in a way that is consistent with the user model (the profile of a

"typical" interior designer) and system perception (what the interior designer expects

from an automated system).

Object elaboration. Rather than focusing on the tasks that a user must perform,

the software engineer examines the use-case and other information obtained from

-the user and extracts the physical objects that are used by the interior designer.

These objects can be categorized into classes. Attributes of each class are defined,

and an evaluation of the actions applied to each object provide the designer with a

list of operations. For example, the furniture template might translate into a class

called Furniture with attributes that might include size, shape, location and others. The

interior designer would select the object from the Furniture class, move it to a posi-

tion on the floor plan (another object in this context), draw the furniture outline, and

so forth. The tasks select, move, and draw are operations. The user interface analysis

6 However, this may not be the case. The interior designer might want to specify the perspective to

be drawn, the scaling, the use of color and other information. The use-case related to drawing per-

spective renderings would provide the information we need to address this task.

370 PART TWO SOFTWARE ENGINEERING PRACTICE

model would not provide a literal implementation for each of these operations. How-
ever, as the design is elaborated, the details of each operation are defined.

Workflow analysis. When a number of different users, each playing different

roles, makes use of a user interface, it is sometimes necessary to go beyond task

analysis and object elaboration and apply workflow analysis. This technique allows a

software engineer to understand how a work process is completed when several

people (and roles) are involved. Consider a company that intends to fully automate

the process of prescribing and delivering prescription drugs. The entire process 7
will

revolve around a Web-based application that is accessible by physicians (or their as-

sistants), pharmacists, and patients. Workflow can be represented effectively with a

UML swimlane diagram (a variation on the activity diagram).

We consider only a small part of the work process: the situation that occurs when
a patient asks for a refill. Figure 12.2 presents a swimlane diagram that indicates the

tasks and decisions for each of the three roles noted above. This information may
have been elicited via interview or from use-cases written by each actor. Regardless,

the flow of events (shown in the figure) enable the interface designer to recognize

three key interface characteristics:

1 . Each user implements different tasks via the interface; therefore, the look

and feel of the interface designed for the patient will be different from the

one defined for pharmacists or physicians.

2 . The interface design for pharmacists and physicians must accommodate ac-

cess to and display of information from secondary information sources (e g.,

access to inventory for the pharmacist and access to information about alter-

native medications for the physician).

3 . Many of the activities noted in the swimlane diagram can be further elabo-

rated using task analysis and/or object elaboration (e.g ..fills prescription

could imply a mail-order delivery, a visit to a pharmacy, or a visit to a special

drug distribution center).

Hierarchical representation. As the interface is analyzed, a process of elabora-

tion occurs. Once workflow has been established, a task hierarchy can be defined for

each user type. The hierarchy is derived by a stepwise elaboration of each task iden-

tified for the user. For example, consider the user task requests that a prescription be

refilled. The following task hierarchy is developed:

Request that a prescription be refilled

• Provide identifying information

• Specif/ name

7 This example has been adapted from [HAC98],

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 371

Swimlane diagram for prescription reiill iunction

372 PART TWO SOFTWARE ENGINEERING PRACTICE

• Specify userid

• Specify PIN and password

• Specify prescription number

• Specify date refill is required

To complete the request that a prescription be refilled tasks, three subtasks are de-

fined. One of these subtasks, provide identifying information, is further elaborated in

three additional sub-subtasks.

"It is a for better to adopt the technology to the user than to force the user to adapt to the technology."

Larry Marine

12.3.3 Analysis of Display Content

The user tasks identified in the preceding section lead to the presentation of a va-

riety of different types of content. For modern applications, display content can

range from character-based reports (e.g., a spreadsheet), graphical displays (e.g.,

a histogram, a 3-D model, a picture of a person), or specialized information (e.g.,

audio or video files). The analysis modeling techniques discussed in Chapter 8

identify the output data objects that are produced by an application. These data ob-

jects maybe (1) generated by components (unrelated to the interface) in other parts

of the application; (2) acquired from data stored in a database that is accessible

from the application; or (3) transmitted from systems external to the application in

question.

During this interface analysis step, the format and aesthetics of the content (as it

is displayed by the interface) are considered. Among the questions that are asked

and answered are:

^ How do we
• determine

the format and

aesthetics of

content displayed

as part of the Ul?

• Are different types of data assigned to consistent geographic locations on the

screen (e.g., photos always appear in the upper right hand corner)?

• Can the user customize the screen location for content?

• Is proper on-screen identification assigned to all content?

• How is a large report partitioned for ease of understanding?

• Will mechanisms be available for moving directly to summary information for

large collections of data.

• Will graphical output be scaled to fit within the bounds of the display device

that is used?

• How will color be used to enhance understanding?

• How will error messages and warnings be presented to the user?

As each of these (and other) questions are answered, the requirements for content

presentation are established.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 373

12.3.4 Analysis of the Work Environment

Hackos and Redish [HAC98] discuss the importance of work environment analysis

when they state:

People do not perform their work in isolation. They are influenced by the activity around

them, the physical characteristics of the workplace, the type ofequipment they are using,

and the work relationships they have with other people. If the products you design do not

fit into the environment, they may be difficult or frustrating to use.

In some applications the user interface for a computer-based system is placed in a

"user-friendly location” (e.g., proper lighting, good display height, easy keyboard ac-

cess), but in others (e.g., a factory floor or an airplane cockpit) lighting may be sub-

optimal, noise may be a factor, a keyboard or mouse may not be an option, display

placement may be less than ideal. The interface designer may be constrained by fac-

tors that mitigate against ease of use.

In addition to physical environmental factors, the work place culture also comes

into play. Will system interaction be measured in some manner (e.g., time per trans-

action or accuracy of a transaction)? Will two or more people have to share infor-

mation before an input can be provided? How will support be provided to users of

the system? These and many related questions should be answered before the inter-

face design commences.

12_.4._Interface Design Steps

Once interface analysis has been completed, all tasks (or objects and actions) re-

quired by the end-user have been identified in detail, and the interface design activ-

ity commences. Interface design, like all software engineering design, is an iterative

process. Each user interface design step occurs a number of times, each elaborating

and refining information developed in the preceding step.

Although many different user interface design models (e.g., [NOR86], [NIEOO]

)

have been proposed, all suggest some combination of the following steps:

1 . Using information developed during interface analysis (Section 12.3), define

interface objects and actions (operations).

2 . Define events (user actions) that will cause the state of the user interface to

change. Model this behavior.

3. Depict each interface state as it will actually look to the end-user.

4. indicate how the user interprets the state of the system from information pro-

vided through the interface.

In some cases, the interface designer may begin with sketches ofeach interface state

(i.e„ what the user interface looks like under various circumstances) and then work

backward to define objects, actions, and other important design information. Re-

gardless of the sequence of design tasks, the designer must (1) always follow the

374 PART TWO SOFTWARE ENGINEERING PRACTICE

golden rules discussed in Section 12.1, (2) model how the interface will be imple-

mented, and (3) consider the environment (e.g., display technology, operating sys-

tem, development tools) that will be used.

"Interactive design [is] a seamless blend of graphic arts, technology, ond psychology.''

Brad Wieners

12.4. 1 Applying Interface Design Steps

An important step in interface design is the definition of interface objects and the ac-

tions that are applied to them. To accomplish this, use-cases are parsed in much the

same way as described in Chapter 8. That is, a description of a use-case is written.

Nouns (objects) and verbs (actions) are isolated to create a list of objects and actions.

Once the objects and actions have been defined and elaborated iteratively, they

are categorized by type. Target, source, and application objects are identified. A

source object (e.g., a report icon) is dragged and dropped onto a target object (e.g., a

printer icon). The implication of this action is to create a hard-copy report. An appli-

cation object represents application-specific data that are not directly manipulated as

part of screen interaction. For example, a mailing list is used to store names for a

mailing. The list itself might be sorted, merged, or purged (menu-based actions), but

it is not dragged and dropped via user interaction.

When the designer is satisfied that all important objects and actions have been

defined (for one design iteration), screen layout is performed. Like other interface de-

sign activities, screen layout is an interactive process in which graphical design and

placement of icons, definition of descriptive screen text, specification and titling for

windows, and definition of major and minor menu items is conducted. If a real world

metaphor is appropriate for the application, it is specified at this time, and the layout

is organized in a manner that complements the metaphor.

To provide a brief illustration of the design steps noted previously, we consider a

user scenario for the SafeHome system (discussed in earlier chapters). A preliminary

use-case (written by the homeowner) for the interface follows:

Preliminary use-case: I want to gain access to my SafeHome system from any remote

location via the Internet. Using browser software operating on my notebook computer

(while rm at work or traveling), 1 can determine the status of the alarm system; arm or

disarm the system; reconfigure security zones; and view different rooms within the house

via preinstalled video cameras.

To access SafeHome from a remote location, I provide an identifier and a password

These define levels of access (e.g., all users may not be able to reconfigure the system) and

provide security. Once validated, 1 can check the status of the system and change status by

arming or disarming SafeHome. 1 can reconfigure the system by displaying a floor plan of the

house, viewing each of the security sensors, displaying each currently configured zone, and

modifying zones as required. I can view the interior of the house via strategically placed

video cameras. I can pan and zoom each camera to provide different views of the interior.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 375

Based on this use-case, the following homeowner tasks, objects, and data items are

identified:

• accesses the SafeHome system

• enters an ID and password to allow remote access

• checks system status

• arms or disarms SafeHome system

• displays floor plan and sensor locations

• displays zones on floor plan

• changes zones on floor plan

• displays video camera locations on floor plan

• selects video camera for viewing

• view's video images

• pans or zooms the video camera

Although automated

took can he useful in

developing layout

prototypes, sometimes

a pencil and paper ore

ail that are needed.

WebRof
A wide variety of Ul

design patterns hove

been prawsed. for

pointers to o variety of

pottern sites, visit

www.hkpatterns.

org.

Objects (boldface) and actions (italics) are extracted from this list of homeowner

tasks. The majority of objects noted are application objects. However, video cam-

era location (a source object) is dragged and dropped onto video camera (a tar-

get object) to create a video image (a window that contains the video display).

A preliminary sketch of the screen layout for video monitoring is created

(Figure 12.3).® To invoke the video image, a video camera location icon, C, located

in the floor plan displayed in the monitoring window, is selected. In this case, a

camera location in the living room, UR, is then dragged and dropped onto the

video camera icon in the upper left-hand portion of the screen. The video image

window appears, displaying streaming video from the camera located in the liv-

ing room (LR). The zoom and pan control slides are used to control the magnifi-

cation and direction of the video image. To select a view from another camera, the

user simply drags and drops a different camera location icon into the camera icon

in the upper left-hand corner of the screen.

The layout sketch shown would have to be supplemented with an expansion of

each menu item within the menu bar, indicating what actions are available for the

video monitoring mode (state). A complete set of sketches for each homeowner task

noted in the user scenario would be created during the interface design.

12.4.2 User Interface Design Patterns

Sophisticated graphical user interfaces have become so common that a wide variety

of user interface design patterns has emerged. As we noted earlier in this book, a

8 Note that this differs somewhat from the implementation of these features in earlier chapters. This

might be considered a first draft design and represents one alternative that might be considered.

376 PART TWO SOFTWARE ENGINEERING PRACTICE

Preliminary

screen layout

Access Configure System Status View Monitoring

SafeHome

Vteoo Camera

Monitoring

a
\M>" c

c KIT.,'

/
s

'"fl

W-c LR

C
»

First Floor

S door/window sensor

M motion detector (beam shown)

C video camera location

1 1
ZoomHTTTTTm out

/ Ullllllllll.PanillTTITIl ff

B Video Imaae—LR up

design pattern is an abstraction that prescribes a design solution to a specific, well-

bounded design problem. Each of the example patterns (and all patterns within each

category) presented in the sidebar would also have a complete component-level de-

sign, including design classes, attributes, operations, and interfaces.

User Interface Patterns

Hundreds of Ul patterns have been proposed

over the past decade. Tidwell [TID02] and

vanWelie [WEL01
]
provide taxonomies

9
of user interface

design patterns that can be organized into 1 0 categories.

Example patterns within each of these categories are

presented in this sidebar.

Whole Ul. Provides design guidance for top-level

structure and navigation.

Pattern: top-level navigation

Brief description: Provides a top-level menu, often

coupled with a logo or identifying graphic, thct

enables direct navigation to any of the system's major

functions.

Page layout. Addresses the general organization of

pages (for Web sites) or distinct screen displays (for

interactive applications).

Pattern: card stack

Brief description: Provides the appearance of a stack

of tabbed cards, each selectable with a mouse click

and each representing specific subfunctions or content

categories.

9 Full patterns descriptions (along with dozens ofother patterns) can be found at [T1D02] and [WEL01].

CHAPTER 12 PERFORMING USER INTERFACE DESIGN
377

r
Forms ond input. Considers a variety of design

techniques for completing form-level input.

Pattern: fill-in-the-blanks

Brief description: Allow alphanumeric data to be

entered in a "text box."

Tables. Provide design guidance for creating and

manipulating tabular data of all kinds.

Pattern: sortable table

Brief description: Displays a long list of records that

can be sorted by selecting a toggle mechanism for any

column label.

Direct data manipulation. Addresses data editing,

modification, and transformation.

Pattern: bread crumbs

Brief description: Provides a full navigation path when

the user is working with a complex hierarchy of pages

or display screens.

Navigation. Assists the user in navigating through

hierarchical menus, Web pages, and interactive display

screens.

Pattern: edit-in-place

Brief description: Provides simple text editing

capability for certain types of content in the location

that it is displayed.

Searching. Enables content-specific searches through

information maintained within a Web site or contained by

A
persistent data stores that are accessible via an interactive

application.

Pattern: simple search

Brief description: Provides the ability to search a Web

site or persistent data source for a simple data item

described by an alphanumeric string.

Page elements. Implement specific elements of a

Web page or display screen.

Pattern: wizard

Brief description: Takes the user through a complex

task one step at a time, providing guidance for the

completion of the task through a series of simple

window displays.

E-commerce. Specific to Web sites, these patterns

implement recurring elements of e-commerce applications.

Pattern: shopping cart

Brief description: Provides a list of items selected for

purchase.

Miscellaneous. Patterns that do not easily fit into one

of the preceding categories. In some cases, these patterns

are domain dependent or occur only for specific classes of

users.

Pattern: progress indicator

Brief description: Provides an indication of progress

when an operation is under way.

A comprehensive discussion of user interface patterns is beyond the scope of this

book. The interested reader should see [DUY021, IBOROl], [WEL01], and [TID02] for

further information.

12.4.3 Design Issues

As the design ofa user interface evolves, four common design issues almost always sur-

face: system response time, user help facilities, error information handling, and com-

mand labeling. Unfortunately, many designers do not address these issues until relatively

late in the design process (sometimes the first inkling of a problem doesn't occur until

an operational prototype is available). Unnecessary iteration, project delays, and cus-

tomer frustration often result. It is far better to establish each as a design issue to be con-

sidered at the beginning of software design, when changes are easy and costs are low.

"A common mistake that people moke when hying to design something completely foolproof is to underestimate the

ingenuity of complete fools."

Douglas Adams

378 PART TWO SOFTWARE ENGINEERING PRACTICE

Response time. System response time is the primary complaint for many interac-
tive applications. In general, system response time is measured from the point at
which the user performs some control action (e.g., hits the return key or clicks a
mouse) until the software responds with the desired output or action.

System response time has two important characteristics: length and variability. If

system response is too long, user frustration and stress is the inevitable result. Vari-
ability refers to the deviation from average response time, and, in many ways, it is

the most important response time characteristic. Low variability enables the user to
establish an interaction rhythm, even if response time is relatively long. For exam-
ple, a 1 -second response to a command will often be preferable to a response that
varies from 0. 1 to 2.5 seconds. When variability is significant, the user is always off
balance, always wondering whether something '‘different" has occurred behind the
scenes.

Help facilities. Almost every user of an interactive, computer-based system re-
quires help now and then. In some cases, a simple question addressed to a knowl-
edgeable colleague can do the trick. In others, detailed research in a multivolume set
of user manuals" may be the only option. In most cases, however, modern software
provides on-line help facilities that enable a user to get a question answered or re-
solve a problem without leaving the interface.

A number of design issues [RUB88] must be addressed when a help facility is

considered:

• Will help be available for all system functions and at all times during system
interaction? Options include help for only a subset of all functions and
actions or help for all functions.

• How will the user request help? Options include a help menu, a special
function key, or a HELP command.

• How will help be represented? Options include a separate window, a
reference to a printed document (less than ideal), or a one- or two-line
suggestion produced in a fixed screen location.

• How will the user return to normal interaction? Options include a return
button displayed on the screen, a function key, or control sequence.

• How will help information be structured’ Options include a "flat" structure in

which all information is accessed through a keyword, a layered hierarchy of
information that provides increasing detail as the user proceeds into the
structure, or the use of hypertext.

Error handling. Error messages and warnings are "bad news" delivered to users
of interactive systems when something has gone awry. At their worst, error mes-
sages and warnings impart useless or misleading information and serve only to in-
crease user frustration. There are few computer users who have not encountered an

CHAPTER 12 PERFORMING USER INTERFACE DESIGN
379

^ Whot tharoc-

• lerislics

should o "good"

error message

hove?

error of the form :

'
Application XXX has beenforced to quit because an error oftype i 023

has been encountered. " Somewhere, an explanation for error 1 023 must exist;, other-

wise. why would the designers have added the identification? Yet, the error message

provides no real indication of what went wrong or where to look to get additional in-

formation. An error message presented in this manner does nothing to assuage user

anxiety or to help correct the problem.

'The inlerfoce from hell—'to correct this error and continue, enter any 1 1 -digit prime number . .

.

Author unknown

In general, every error message or warning produced by an interactive system

should have the following characteristics;

• The message should describe the problem in language the user can under-

stand.

. The message should provide constructive advice for recovering from the error.

• The message should indicate any negative consequences of the error (e.g.,

potentially corrupted data files) so that the user can check to ensure that they

have not occurred (or correct them if they have).

• The message should be accompanied by an audible or visual cue. That is, a

beep might be generated to accompany the display of the message, or the

message might flash momentarily or be displayed in a color that is easily

recognizable as the "error color."

. The message should be nonjudgmental. That is, the wording should never

place blame on the user.

Because no one really likes bad news, few users will like an error message no mat-

ter how well designed. But an effective error message philosophy can do much to

improve the quality of an interactive system and will significantly reduce user frus-

tration when problems do occur.

Menu and command labeling. The typed command was once the most common

mode of interaction between users and system software and was commonly used for

applications of every type. Today, the use of window-oriented, point and pick inter-

faces has reduced reliance on typed commands, but many power-users continue to

prefer a command-oriented mode of interaction. A number of design issues arise

when typed commands or menu labels are provided as a mode of interaction:

• Will every menu option have a corresponding command?

• what form will commands take? Options include a control sequence (e.g.,

alt-P), function keys, or a typed word.

• How difficult will it be to learn and remember the commands? What can be

done if a command is forgotten?

380 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
Guidelines for

developing accessible

software can be found

of

www-3.ibm.

com/able/

guidelines/soh

ware/occesssof

tware.html.

• Can commands be customized or abbreviated by the user?

• Are menu labels self-explanatory within the context of the interface?

• Are submenus consistent with the function implied by a master menu item?

As we noted earlier in this chapter, conventions for command usage should be es-
tablished across all applications. It is confusing and often error-prone for a user to
type alt-D when a graphics object is to be duplicated in one application and alt-D
when a graphics object is to be deleted in another. The potential for error is obvious.

Application accessibility. As computing applications become ubiquitous, software
engineers must ensure that interface design encompasses mechanisms that enable
easy access for those with special needs. Accessibility for users (and software engineers)
who may be physically challenged is an imperative for moral, legal, and business rea-
sons. A variety of accessibility guidelines (e.g., [W3C03])-many designed for Web ap-
plications but often applicable to all types ofsoftware—provide detailed suggestions for
designing interfaces that achieve varying levels of accessibility. Others (e.g., [APP03]
[MIC03]) provide specific guidelines for "assistive technology" that addresses the needs
of those with visual, hearing, mobility, speech, and learning impairments.

Internationalization. Software engineers and their managers invariably underes-
timate the effort and skills required to create user interfaces that accommodate the
needs of different locales and languages. Too often, interfaces are designed for one
locale and language and then juiy-rigged to work in other countries. The challenge
for interface designers is to create "globalized" software. That is, user interfaces
should be designed to accommodate a generic core of functionality that can be de-
livered to all who use the software. Localization features enable the interface to be
customized for a specific market.

A variety of internationalization guidelines (e.g., [IBM03]) are available to soft-

ware engineers. These guidelines address broad design issues (e.g., screen layouts
may differ in various markets) and discrete implementation issues (e.g., different al-

phabets may create specialized labeling and spacing requirements). The Unicode
standard [UNI03] has been developed to address the daunting challenge of manag-
ing dozens of natural languages with hundred of characters and symbols.

User Interface Development

Objective: These tools enable a software

engineer to create a sophisticated GUI with

relatively little custom software development. The tools

provide access to reusable components and make the

creation of an interface a matter of selecting from

predefined capabilities that are assembled using the tool.

Software Tools

Mechanics: Modem user interfaces are constructed with a
set of reusable components that are coupled with some
custom components developed to provide specialized

features. Most user interface development tools enable a
software engineer to create an interface using "drag and
drop" capability. That is, the developer selects from many

J

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 381

r
predefined capabilities (e.g., forms builders, interaction

mechanisms, command processing capability) and places

these capabilities within the content of the interface to be

created.

Representative Tools' 0

Macromedia Authorware, developed by macromedia

Inc. www.macromedia.com/software/), has been

designed for the creation of e-learning interfaces and

environments. Makes use of sophisticated construction

capabilities.

Motif Common Desktop Environment, developed by The

Open Group www.osf.org/tech/desktop/ cde/), is on

integrated graphical user interface for open systems

desktop computing. It delivers a single, standard

grophica! interface for the management of data, files,

and applications.

PowerDesigner/PowerBuilder, developed by Sybase

www.sybase.com/products/infernetappdevttools), is a

comprehensive set of CASE tools that include many

capabilities for designing and building GUIs.

A

17..5 Design Evaluation —
Once an operational user interface prototype has been created, it must be evaluated

to determine whether it meets the needs of the user. Evaluation can span a formal-

ity spectrum that ranges from an informal "test drive,” in which a user provides im-

promptu feedback to a formally designed study that uses statistical methods for the

evaluation of questionnaires completed by a population of end-users.

The user interface evaluation cycle takes the form shown in Figure 12.4. After the

design model has been completed, a first-level prototype is created. The prototype is

The Interface

design evalua-

tion cycle

0 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, too! names are trademarked by their respective developers.

382 PART TWO SOFTWARE ENGINEERING PRACTICE

evaluated by the user," who provides the designer with direct comments about the
efficacy of the interface. In addition, if formal evaluation techniques are used (e.g.,

questionnaires, rating sheets), the designer may extract information from these data
(e.g., 80 percent of all users did not like the mechanism for saving data files). Design
modifications are made based on user input, and the next level prototype is created.
The evaluation cycle continues until no further modifications to the interface design
are necessary.

The prototyping approach is effective, but is it possible to evaluate the quality of
a user interface before a prototype is built? If potential problems can be uncovered
and corrected early, the number of loops through the evaluation cycle will be re-

duced and development time will shorten. If a design model of the interface has
been created, a number of evaluation criteria [MOR81] can be applied during early

design reviews:

1 . The length and complexity of the written specification of the system and its

interface provide an indication of the amount of learning required by users of
the system.

2. The number of user tasks specified and the average number of actions per
task provide an indication of interaction time and the overall efficiency of the

system.

3. The number of actions, tasks, and system states indicated by the design

model imply the memory load on users of the system.

4. Interface style, help facilities, and error handling protocol provide a general

indication of the complexity of the interface and the degree to which it will be
accepted by the user.

Once the first prototype is built, the designer can collect a variety of qualitative

and quantitative data that will assist in evaluating the interface. To collect qualita-

tive data, questionnaires can be distributed to users of the prototype. Questions can
be (t) simple yes/no response, (2) numeric response, (3) scaled (subjective) re-

sponse, (4) Likert scales (e.g., strongly agree, somewhat agree), (5) percentage (sub-

jective) response, or (6) open-ended.

If quantitative data are desired, a form of time study analysis can be conducted.

Users are observed during interaction, and data—such as number of tasks correctly

completed over a standard time period, frequency of actions, sequence of actions,

time spent "looking" at the display, number and types of errors, error recoveiy time,

time spent using help, and number of help references per standard time period—are
collected and used as a guide for interface modification.

11 It is important to note that experts in ergonomics and interface design may also conduct reviews

of the interface. These reviews are called heuristic evaluations or cognitive walkthroughs.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 383

A complete discussion of user interface evaluation methods is best left to books

dedicated to the subject. For further information, see [LEA88], [MAN97] ,
and [HAC98],

12.6 Summary —
The user interface is arguably the most important element of a computer-based sys-

tem or product. If the interface is poorly designed, the user's ability to tap the com-

putational power of an application may be severely hindered. In fact, a weak

interface may cause an otherwise well-designed and solidly implemented applica-

tion to fail.

Three important principles guide the design of effective user interfaces: (1) place

the user in control, (2) reduce the user's memory load, and (3) make the interface

consistent. To achieve an interface that abides by these principles, an organized de-

sign process must be conducted.

The development of a user interface begins with a series of analysis tasks. These

include user identification, task, and environmental analysis/modeling. User analy-

sis defines the profiles of various end-users and applies information gathered from

a variety of business and technical sources. Task analysis defines user tasks and ac-

tions using either an elaborative or object-oriented approach, applying use-cases,

task and object elaboration, workflow analysis, and hierarchical task representa-

tions to fully understand the human-computer interaction. Environmental analysis

identifies the physical and social structures in which the interface must operate.

Once tasks have been identified, user scenarios are created and analyzed to de-

fine a set of interface objects and actions. This provides a basis for the creation of

screen layout that depicts graphical design and placement of icons, definition of de-

scriptive screen text, specification and titling for windows, and specification of ma-

jor and minor menu items. Design issues such as response time, command and

action structure, error handling, and help facilities are considered as the design

model is refined. A variety of implementation tools are used to build a prototype for

evaluation by the user.

References

[APP03] Apple Computer, People with Special Needs, 2003, available at http://www.

apple.com/disability/.

[BORO 1]
Borchers, J., A Pattern Approach to Interaction Design, Wiley, 2001.

[CON95] Constantine, L„ "What DO Users Want? Engineering Usability in Software," windows

Tech Journal, December, 1995, available from http://www.forUse.com.

[DON99] Donahue, G.. S. Weinschenck, and J Nowicki, "Usability Is Good Business," Com-

puware Corp., July, 1999, available from http://www.cornpuware.com.

[DUY02] vanDuyne, D„ J. Landay, and J. Hong, The Design ofSites, Addison-Wesley, 2002.

[HAC98I Hackos, J., and J. Redish, User and Task Analysisfor Interface Design, Wiley, 1998.

[1BM031 IBM, Overview of Software Globalization, 2003, available at http://oss.software.ibm.

com/icu/userguide/il 8n.html.

384 PART TWO SOFTWARE ENGINEERING PRACTICE

[LEA88] Lea, M., "Evaluating User Interface Designs," User Interface Design for Computer Sys-
tems, Halstead Press (Wiley), 1988,

[MAN971 Mandel, T., The Elements ofUser interface Design, Wiley, 1997.
[MIC03] Microsoft Accessibility Technology, for Everyone, 2003, available at http ://www.

microsoft.com/enable/.

IMON84) Monk, A., (ed.). Fundamentals ofHuman -Computer Interaction, Academic Press, 1984.
IMOR8I] Moran, T. P„ 'The Command Language Grammar: A Representation for the User

interface of interactive Computer Systems," Inti. Journal of Man-Machine Studies, vol. 15,

pp. 3-50.

(NIEOO) Nielsen, J„ Designing Web Usability, New Riders Publishing, 2000.
[NOR86] Norman, D. A., "Cognitive Engineering," in User Centered Systems Design, Lawrence

Earibaum Associates, 1986.

[RUB88] Rubin, T., User Interface Designfor Computer Systems, Halstead Press (Wiley), 1988.
[SHN90] Shneiderman, B., Designing the User Interface, 3rd ed., Addison-Wesley, 1990.
[TID99) Tidwell, J„ "Common Ground: A Pattern Language for HCI Design," available at

http://www.mit.edu/~jtidwell/interaction_pattems.htmI, May 1 999,
[TID02] Tidwell

,)., "IU Patterns and Techniques," available at http://time-tripper.com/uipattems/
index.html. May 2002.

[UNI03] Unicode, Inc., The Unicode Home Page, 2003, available at http://www.unicode.org/.
[W3C03] World Wide Web Consortium, Web Content Accessibility Guidelines, 2003, available at

http://www.w3.org/TR/2003/WD-WCAG20-20030624/.
[WEL01] vanWelie, M„ "Interaction Design Patterns," available at http://www.weUe. com/

patterns/, 2001.

Problems and Points to Ponder
12 . 1 . Provide a few examples that illustrate why response time variability can be an issue.

12 .2 . Develop two additional design principles that "reduce the user's memory load."

12 .3 . Add at least five additional questions to the list developed for content analysis in Section
12.3.3.

12 .4 . Develop two additional design principles that "make the interface consistent."

12 .5 . You have been asked to develop a Web-based home banking system Develop a user
model, design model, mental model, and an implementation model.

12 .6 . Develop a set of screen layouts with a definition of major and minor menu items for the
system in Problem 12.5.

12 . 7 . Develop two additional design principles that "place the user in control."

12 .8 . Perform a detailed task analysis for the system in Problem 12.5. Use either an elaborative
or object-oriented approach.

12 .9 . Develop a set of screen layouts with a definition of major and minor menu items for the
SafeHome system. You may elect to take a different approach than the one shown for the screen
layout in Figure 12.3.

12 . 10 . Continuing Problem 12.8, define interface objects and actions for the application. Iden-
tify each object type.

12.11. Describe your approach to user help facilities for the task analysis you have performed
as part of Problem 12.5.

12 . 12 . Describe the best and worst interfaces that you have ever worked with and critique

them relative to the concepts introduced in this chapter.

CHAPTER 12 PERFORMING USES INTERFACE DESIGN 385

12 . 13 . Develop an approach that would automatically integrate error messages and a usei

help facility. That is. the system would automatically recognize the error type and provide a help

window with suggestions for correcting it. Perform a reasonably complete software design that

considers appropriate data structures and algorithms.

12 . 14 . Develop an interface evaluation questionnaire that contains 20 generic questions mat

would apply to most interfaces. Have 10 classmates complete the questionnaire for an interac-

tive system that you all use. Summarize the results and report them to your class.

Further Readings and Information SQURC.E5

Although his book is not specifically about human/computer interfaces, much ofwhat Donald

Norman (The Design ofEveryday Things, reissue edition, Currency/Doubleday, 1990) has to say

about the psychology of effective design applies to the user interface. It is recommended read-

ing for anyone who is serious about doing high-quality interface design.

Graphical user interfaces are ubiquitous in the modern world of computing. Whether it is

used for an ATM, a mobile phone, a PDA, a Web site, or a business application, the user inter-

face provides a window into the software. It is for this reason that books addressed to interface

design abound. Galitz (The Essential Guide to User Interface Design. Wiley, 2002), Cooper (About

Face 2.0: The Essentials ofUser Interface Design, IDG Books, 2003), Beyer and Hoitzblatt (Contex-

tual Design: A Customer Centered Approach to Systems Design, Morgan-Kaufmann. 2002), Raskin

(The Humane Interface, Addison-Wesiey, 2000), Constantine and Lockwood (Software for Use,

ACM Press, 1999)! Mayhew (Tire Usability Engineering Lifecycle, Morgan-Kaufmann, 1999) all

discuss usability, user interface concepts, principles, and design techniques and contain many

useful examples.

Johnson (GW Bloopers: Don'ts and Do's for Software Developers and Web Designers, Morgan-

Kaufmann, 2000) provides useful guidance for those that learn more effectively by examining

counter-examples. An enjoyable book by Cooper (The Inmates Are Running the Asylum, Sams

Publishing, 1 999) discusses why high-tech products drive us crazy and how to design ones that

don't.

Task analysis and modeling are pivotal interface design activities. Hackos and Redish

(HAC98] have written a book dedicated to these subjects and provide a detailed method for ap-

proaching task analysis. Wood (User Interface Design: Bridging the Gapfrom User Requirements

to Design, CRC Press, 1 997) considers the analysis activity for interlaces and the transition to de-

sign tasks.

The evaluation aclivitv focuses on usability. Books by Rubin (Handbook oj Usability Test

ing: How to Plan, Design,"and Conduct Effective Tests. Wiley, 1994) and Nielsen (Usability In-

spection Methods, Wiley, 1994) address the topic in considerable detail.

In a unique book that may be of considerable interest to product designers, Murphy (Front

Panel: Designing Software for Embedded User Interfaces, R&D Books, 1 998) provides detailed

guidance for the design of interfaces for embedded systems and addresses safety hazards in-

herent in controls, handling heavy machinery, and interfaces tor medical or transport systems.

Interface design for embedded products is also discussed by Garrett (Advanced Instrumentation

and Computer I/O Design: Real-Time System Computer Interface Engineering, IEEE, 1994)

.

A wide variety of information sources on user interface design are available on the Internet.

An up-to-date list of World Wide Web references that are relevant to user interface design can

be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Testing

Strategies

Key
Concepts
alpha/beta testing

debugging

completion criteria

conventional

strategy

integration testing

ITG

00 strategy

regression testing

smoke testing

system testing

test specification

unit testing

V&V

validation testing

A strategy for software testing integrates software test case design meth-
ods into a well-planned series of steps that result in the successful con-
struction of software. The strategy provides a road map that describes

the steps to be conducted as part of testing, when these steps are planned and
then undertaken, and how much effort, time, and resources will be required,
i herefore, any testing strategy must incoiporate test planning, test case design,
test execution, and resultant data collection and evaluation.

A software testing strategy should be flexible enough to promote a customized
testing approach. At the same time, it must be rigid enough to promote reason-
able planning and management tracking as the project progresses. Shooman
[SH083] discusses these issues:

In many ways, testing is an individualistic process, and the number of different types

ol tests varies as much as the different development approaches. For many years, our
only defense against programming errors was careful design and the native intelli-

gence of the programmer. We are now in an era in which modern design techniques

land formal technical reviews] are helping us to reduce the number of initial errors

that are inherent in the code. Similarly, different test methods are beginning to clus-

ter themselves into several distinct approaches and philosophies

These "approaches and philosophies" are what we shall call strategy. In Chap-
ter 14, the technology of software testing is presented. In this chapter, we focus
our attention on the strategy for software testing.

What is it? Software is tested tc

uncover errors that were mode inad

vertently as it was designed ond con

structed. But how do you conduct the

tests? Should you develop a formal plan for youi

tests? Should you test the entire program as c

whole or run tests only on a small part of it?

Should you rerun tests youVe already conductec
as you add new components to a large system?

When should you involve the customer? These

and many other questions are answered when
you develop a software testing strategy.

Who does it? A strategy for software testing is

developed by the project manager, software en-

gineers, and testing specialists.

Why is it important? Testing often accounts for

more project effort than any other software en-

gineering activity. If it is conducted haphazardly,

time is wasted, unnecessary effort is expended,
and even worse, errors sneak through unde-

tected. It would therefore seem reasonable to es-

tablish a systematic strategy for testing software.

What are the steps? Testing begins "in the

small" and progresses "to the large." By this we

366

CHAPTER 13 TESTING STRATEGIES 387

mean that early testing focuses on a single com-

ponent or a small group of related components

and applies tests to uncover errors in the data

and processing logic that have been encapsu-

lated by the component(s). After components

are tested they must be integrated until the com-

plete system is constructed. At this point, a se-

ries of high-order tests are executed to uncover

errors in meeting customer requirements. As er-

rors are uncovered, they must be diagnosed

and corrected using a process that is called de-

bugging.

What is the work product? A Test Specifica-

tion documents the software team's approach to

testing by defining a plan that describes an over-

all strategy and a procedure that defines specific

testing steps and the tests that will be conducted.

How do I ensure that I've done it right?

By reviewing the Test Specification prior to test-

ing, you can assess the completeness of test

cases and testing tasks. An effective test plan

and procedure will lead to the orderly construc-

tion of the software and the discovery of errors

at each stage in the construction process.

JJLi

WebRef

Useful resources foi

softwore testing con

lie found at

www.mtsu.eciu/

~stonn/.

A Strategic Approach to Software Testing

Testing is a set of activities that can be planned in advance and conducted system-

atically. For this reason a template for software testing—a set of steps into which we

can place specific test case design techniques and testing methods—should be de-

fined for the software process.

A number of software testing strategies have been proposed in the literature. All

provide the software developer with a template for testing and all have the follow-

ing generic characteristics:

• To perform effective testing, a software team should conduct effective formal

technical reviews (Chapter 26). By doing this, many errors will be eliminated

before testing commences.

• Testing begins at the component level and works "outward” toward the inte-

gration of the entire computer-based system.

• Different testing techniques are appropriate at different points in time.

• Testing is conducted by the developer of the software and (for large projects)

an independent test group.

• Testing and debugging are different activities, but debugging must be accom-

modated in any testing strategy.

A strategy for software testing must accommodate low-level tests that are necessary

to verify that a small source code segment has been correctly implemented as well

as high-level tests that validate major system functions against customer require-

ments. A strategy must provide guidance for the practitioner and a set of milestones

for the manager. Because the steps of the test strategy occur at a time when dead-

line pressure begins to rise, progress must be measurable and problems must sur-

face as early as possible.

388

Don't get sloppy and

view testing os a

"safety net" that will

catch all errors that

occurred because of

weak software engi-

neering practices. It

won't. Stress guality

and error detection

throughout the

software process.

PART TWO SOFTWARE ENGINEERING PRACTICE

13.1.1 Veriiication and Validation

Software testing is one element of a broader topic that is often referred to as verifi-

cation and validation (V&V). Verification refers to the set of activities that ensure that

software correctly implements a specific function. Validation refers to a different set

of activities that ensure that the software that has been built is traceable to customer

requirements.' Boehm [BOE81] states this another way:

Verification: Are we building the product right?

Validation: Are we building the right product?

The definition of V&V encompasses many of the activities that are encompassed by

software quality assurance (SQA) and discussed in detail in Chapter 26.

Verification and validation encompasses a wide array of SQA activities that in-

clude formal technical reviews, quality and configuration audits, performance mon-

itoring, simulation, feasibility study, documentation review, database review,

algorithm analysis, development testing, usability testing, qualification testing, and

installation testing [WAL89] . Although testing plays an extremely important role in

V&V, many other activities are also necessary,

"Testing is the unavoidable part of any responsible effort to develop o software system."

William Howden

Testing does provide the last bastion from which quality can be assessed and,

more pragmatically, errors can be uncovered. But testing should not be viewed as a

safety net. As they say, "You can't test in quality. If it’s not there before you begin test-

ing, it won't be there when you're finished testing." Quality is incorporated into soft-

ware throughout the process ofsoftware engineering. Proper application of methods

and tools, effective formal technical reviews, and solid management and measure-

ment all lead to quality that is confirmed during testing,

Miller [MIL77] relates software testing to quality assurance by stating that "the un-

derlying motivation of program testing is to affirm software quality with methods

that can be economically and effectively applied to both large-scale and small-scale

systems."

13.1.2 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as test-

ing begins. The people who have built the software are now asked to test the

1 II should be noted that there is a strong divergence of opinion about what types of testing consti-

tute "validation." Some people believe that all testing is verification and that validation is conducted

when requirements are reviewed and approved, and later, by the user when the system is opera-

tional. Other people view unit and integration testing (Sections 13.3. 1 and 13.3.2) as verification

and higher-order testing (discussed later in this chapter) as validation.

CHAPTER 13 TESTING STRATEGIES 389

POINT
An independent test

group does not hove

the "conflict of

interest" that builders

of the software might

experience.

If an ITG does not exist

within youi organiza-

tion, you'll hove to

take its point of view.

When you test, try to

break the software.

software. This seems harmless in itself; after all, who knows the program better than

its developers? Unfortunately, these same developers have a vested interest in

demonstrating that the program is error free, that it works according to customer re-

quirements, and that it will be completed on schedule and within budget. Each of

these interests mitigate against thorough testing.

“Optimism is the occupational hazard of programming; testing is the treatment."

Kent Beck

From a psychological point of view, software analysis and design- (along with cod-

ing) are constructive tasks. The software engineer' analyzes, models, and then cre-

ates a computer program and its documentation. Like'any builder, the software

engineer is proud of the edifice that has been built and looks askance at anyone who
attempts to tear it down. When testing commences, there is a subtle, yet definite, at-

tempt to "break" the thing that the software engineer has built. From the point of

view of the builder, testing can be considered to be (psychologically) destructive. So

the builder treads lightly, designing and executing tests that will demonstrate that the

program works, rather than uncovering errors. Unfortunately, errors will be present.

And, if the software engineer doesn't find them, the customer will!

There are often a number of misconceptions that can be erroneously inferred

from the preceding discussion: (1) that the developer of software should do no test-

ing at all, (2) that the software should be "tossed over the wall" to strangers who will

test it mercilessly, (3) that testers get involved with the project only when the testing

steps are about to begin. Each of these statements is incorrect.

The software developer is always responsible for testing the individual units

(components) of the program, ensuring that each performs the function or exhibits

the behavior for which it was designed. In many cases, the developer also conducts

integration testing—a testing step that leads to the construction (and test) of the

complete software architecture. Only after the software architecture is complete

does an independent test group become involved.

The role of an independent testgroup (ITG) is to remove the inherent problems as-

sociated with letting the builder test the thing that has been built. Independent test-

ing removes the conflict of interest that may otherwise be present. After all, ITG

personnel are paid to find errors.

However, the software engineer doesn't tum the program over to ITG and walk

away. The developer and the iTG work closely throughout a software project to en-

sure that thorough tests will be conducted. While testing is conducted, the developer

must be available to correct errors that are uncovered.

"The first mistake that people make is thinking that the testing team is responsible for assuring quality.'

Brian Maritk

PART TWO SOFTWARE ENGINEERING PRACTICE390

The ITG is part of the software development project team in the sense that it be-

comes involved during analysis and design and stays involved (planning and speci-

fying test procedures) throughout a large project. However, in many cases the ITG

reports to the software quality assurance organization, thereby achieving a degree

of independence that might not be possible if it were a part of the software engi-

neering organization.

13.1.3 A Software Testing Strategy for Conventional

Software Architectures

What is the

overall

strategy for

software testing?

WebRef
Useful resources far

software 'estes can

be tend ot

www.SQAtester.

com.

The software process may be viewed as the spiral illustrated in Figure 13.1 . Initially,

system engineering defines the role of software and leads to software requirements

analysis, where the information domain, function, behavior, performance, con-

straints, and validation criteria for software are established. Moving inward along the

spiral, we come to design and finally to coding. To develop computer software, we

spiral inward along streamlines that decrease the level of abstraction on each turn.

A strategy for software testing may also be viewed in the context of the spiral

(Figure 13.1). Unit testing begins at the vortex of the spiral and concentrates on each

unit (i.e., component) of the software as implemented in source code. Testing pro-

gresses by moving outward along the spiral to integration testing, where the focus is

on design and the construction of the software architecture. Taking another turn

outward on the spiral, we encounter validation testing, where requirements estab-

lished as part of software requirements analysis are validated against the software

that has been constructed. Finally, we arrive at system testing, where the software

and other system elements are tested as a whole. To test computer software, we spi-

ral out along streamlines that broaden the scope of testing with each turn.

Considering the process from a procedural point of view, testing within the con-

text of software engineering is actually a series of four steps that are implemented se-

quentially. The steps are shown in Figure 13.2. Initially, tests focus on each

component individually, ensuring that it functions properly as a unit. Hence, the name

CHAPTER 13 TESTING STRATEGIES 391

Software

testing steps

unit testing. Unit testing makes heavy use of testing techniques that exercise specific

paths in a component's control structure to ensure complete coverage and maximum

error detection. Next, components must be assembled or integrated to form the com-

plete software package. Integration testing addresses the issues associated with the

dual problems of verification and program construction. Test case design techniques

that focus on inputs and outputs are more prevalent during integration, although

techniques that exercise specific program paths may be used to ensure coverage of

major control paths. After the software has been integrated (constructed), a set of

high-order tests are conducted. Validation criteria (established during requirements

analysis) must be evaluated. Validation testing provides final assurance that software

meets all functional, behavioral, and performance requirements.

The last high-order testing step falls outside the boundary of software engineer-

ing and into the broader context of computer system engineering. Software, once

validated, must be combined with other system elements (e.g., hardware, people,

databases). System testing verifies that all elements mesh properly and that overall

system function/performance is achieved.

13.1.4 A Software Testing Strategy for Object-Oriented Architectures

The testing of object-oriented systems presents a different set of challenges for the

software engineer. The definition of testing must be broadened to include error dis-

covery techniques (e.g., formal technical reviews) that are applied to analysis and

design models. The completeness and consistency of object-oriented representa-

tions must be assessed as they are built. Unit testing loses some of its meaning, and

integration strategies change significantly. In summary', both testing strategies and

testing tactics (Chapter 14) must account for the unique characteristics of object-

oriented software.

392 PART TWO SOFTWARE ENGINEERING PRACTICE

%
POINT

Like conventional

testing, 00 testing

begins "in the small."

Howevet, in most

coses, the smallest

element tested is o

doss ot pockoge of

collaborating classes.

The overall strategy for object-oriented software is identical in philosophy to the

one applied for conventional architectures, but differs in approach. We begin with

"testing in the small" and work outward toward "testing in the large." However, our

focus when "testing in the small” changes from an individual module (the conven-

tional view) to a class that encompasses attributes and operations and implies com-

munication and collaboration. As classes are integrated into an object-oriented

architecture, a series of regression tests are run to uncover errors due to communi-

cation and collaboration between classes (components) and side effects caused by

the addition of new classes (components) . Finally, the system as a whole is tested to

ensure that errors in requirements are uncovered.

lg Preparingfor Testing

L® Ml The scene: Doug Miller's office, as

component-level design continues and construction of

certain components begins.

The players: Doug Miller, software engineering

manager; Vinod, Jamie, Ed, and Shakira—members of

the SafeHome software engineering team.

The conversation:

Doug: It seems to me that we haven’t spent enough time

talking about testing.

Vinod: True, but we've all been just a little busy. And

besides, we have been thinking about it ... in fact, more

than thinking.

Doug (smiling): I know . . . we're all ovedoaded, but

we've still got to think down the line.

Shalcira: I like the idea of designing unit tests before I

begin coding any of my components, so that's what I've

been trying to do. I have a pretty big file of tests to run

once code for my components is complete.

Doug: That's an Extreme Programming [an agile software

development process, see Chapter 4] concept, no?

Ed: It is. Even though we're not using Extreme

Programming per se, we decided that it woulcfbe a good

idea to design unit tests before we build the component—
the design gives us all of the information-we need.

Jamie: I've been doing the same thing.

Vinod: And I've taken on the role of the integrator, so

every time one of the guys passes a component to me, I'll

integrate it and run a series of regression tests on the

partially integrated program. I've been working to design

a set of appropriate tests for each function in the system.

Doug (to Vinod): How often will you run the tests?

Vinod: Every day . . . until the system is integrated . . .

well, I mean until the software increment we plan to

deliver is integrated.

Doug: You guys are way ahead of me!

Vinod (laughing): Anticipation is everything in the

software biz. Boss.

13.1.5 Criteria for Completion of Testing

A classic question arises every time software testing is discussed: When are we done

testing—how do we know that we've tested enough? Sadly, there is no definitive an-

swer to this question, but there are a few pragmatic responses and early attempts at

_ yy, ore
empirical guidance.

• we finished °ne response to the question is: You're never done testing; the burden simply shifts

testing? from you (the software engineer) to your customer. Every time the customer/user

CHAPTER 13 TESTING STRATEGIES
393

executes a computer program, the program is being tested. This sobering fact under-

lines the importance of other software quality assurance activities.

Another response (somewhat cynical but nonetheless accurate) is: You're done

testing when you run out of time or you run out of money.

Although few practitioners would argue with these responses, a software engi-

neer needs more rigorous criteria for determining when sufficient testing has been

conducted. Musa and Ackerman [MUS89] suggest a response that is based on sta-

tistical criteria: "No, we cannot be absolutely certain that the software will never fail,

but relative to a theoretically sound and experimentally validated statistical model,

we have done sufficient testing to say with 95 percent confidence that the probabil-

ity of 1000 CPU hours of failure-free operation in a probabilistically defined environ-

ment is at least 0.995." Using statistical modeling and software reliability theory',

models of software failures (uncovered during testing) as a function of execution

time can be developed (e.g., see [MUS89], [SIN99] or [1EE01]).

By collecting metrics during software testing and making use of existing software

reliability models, it is possible to develop meaningful guidelines for answering the

question: When are we done testing? There is little debate that further work remains

to be done before quantitative rules for testing can be established, but the empirical

approaches that currently exist are considerably better than raw intuition.

13-2 Strategic Issues

Later in this chapter, we explore a systematic strategy for software testing. But even

the best strategy' will fail if a series of overriding issues are not addressed. Tom Gilb

[GIL95] argues that the following issues must be addressed if a successful software

testing strategy is to be implemented:

Specify product requirements in a quantifiable manner long before testing com-

mences. Although the overriding objective of testing is to find errors, a good test-

ing strategy also assesses other quality characteristics such as portability,

maintainability, and usability (Chapter 15). These should be specified in a way that

is measurable so that testing results are unambiguous.

State testing objectives explicitly. The specific objectives of testing should be

stated in measurable terms. For example, test effectiveness, test coverage, mean

time to failure, the cost to find and fix defects, remaining defect density or fre-

quency of occurrence, and test work-hours per regression test all should be stated

within the test plan [GIL95].

Understand the users of the software and develop a profilefor each user category.

Use-cases that describe the interaction scenario for each class of user can reduce

overall testing effort by focusing testing on actual use of the product.

Develop a testing plan that emphasizes "rapid cycle testing." Gilb [GIL95] recom-

mends that a software engineering team "learn to test in rapid cycles (2 percent of

What

• guidelines

lead to a

successful

software testing

strategy?

PARI TWO SOFTWARE ENGINEERING PRACTICE

pioject effort) of customer-useful, al least field ‘trialable.
' increments of functional-

ity and/or quality improvement." The feedback generated from these rapid cycle
tests can be used to control quality levels and the corresponding test strategies.

Build robust" software that is designed to test itself. Software should be designed
in a manner that uses antibugging (Section 13.3.1) techniques That is, software
should be capable of diagnosing certain classes of errors. In addition, the design
should accommodate automated testing and regression testing.

Use effectiveformaI technical reviews as a filterphor to testing. Formal technical
reviews (Chapter 26) can be as effective as testing in uncovering errors. For this

reason, reviews can reduce the amount of testing effort that is required to produce
high-quality software.

Conductformal technical reviews to assess the test strategy and test cases themselves
Formal technical reviews can uncover inconsistencies, omissions, and outright er-

rois in the testing approach. This saves time and also improves product quality.

Develop a continuous improvement approachfor the testing process. The test strat-

egy should be measured. The metrics collected during testing should be used as
part of a statistical process control approach for software testing.

'Testing only to end user requirements is like inspecting o building bosed on the work done by the interior designer

ot the expense of the foundations, girders, ond plumbing."

* fl Boris fewer

JJLl Test. Strategies for Conventional Rcftwadf

There are many strategies that can be used to test software. At one extreme, a soft-

ware team could wait until the system is fully constructed and then conduct tests on
the overall system in hopes of finding errors. This approach, although appealing,
simply does not work. It will result in buggy software that disappoints the customer
and end-user. At the other extreme, a software engineer could conduct tests on a

daily basis, whenever any part of the system is constructed. This approach, although
less appealing to many, can be very effective. Unfortunately, most software devel-
opers hesitate to use it. What to do?

A testing strategy that is chosen by most software teams falls between the two ex-

tremes. It takes an incremental view of testing, beginning with the testing of indi-

vidual program units, moving to tests designed to facilitate the integration of the
units, and culminating with tests that exercise the constructed system. Each of these
classes of tests is described in the sections that follow.

13.3.1 Unit Testing

Unit testing focuses verification effort on the smallest unit of software design—the
software component or module. Using the component-level design description as a

guide, important control paths are tested to uncover errors within the boundary of

394

WebRef
An excellent list of

testing resources con

be found ot

www.io.com/

wozmo/qo/.

CHAPTER 13 TESTING STRATEGIES
395

<9 What

• errors are

commonly found

during unit

testing?

the module. The relative complexity of tests and the errors those tests uncovei is lim-

ited by the constrained scope established for unit testing. The unit test focuses on the

internal processing logic and data structures within the boundaries of a component.

This type of testing can be conducted in parallel for multiple components.

Unit Test Considerations. The tests that occur as part of unit tests are illustrated

schematically in Figure 13.3. The module interface is tested to ensure that informa-

tion properly flows into and out of the program unit under test. Local data structures

are examined to ensure that data stored temporarily maintains its integrity during all

steps in an algorithm's execution. All independent paths (basis paths) through the

control structure are exercised to ensure that all statements in a module have been

executed at least once. Boundary conditions are tested to ensure that the module op-

erates properly at boundaries established to limit or restrict processing. And finally,

all error handling paths are tested.

Tests of data flow across a module interface are required belore any other test is

initiated. If data do not enter and exit properly, all other tests are moot. In addition,

local data structures should be exercised and the local impact on global data should

be ascertained (if possible) during unit testing.

Selective testing of execution paths is an essential task during the unit test. Test

cases should be designed to uncover errors due to erroneous computations, incor-

rect comparisons, or improper control flow. Among the more common errors in

computation are (1) misunderstood or incorrect arithmetic precedence, (2) mixed

mode operations, (3) incorrect initialization, (4) precision inaccuracy, and (5) incor-

rect symbolic represerfation of an expression. Comparison and control flow are

closely coupled to one another (i.e., change of flow frequently occurs after a corn-

unit test

Interface

Local data structures

Boundary conditions

Independent paths

Error handling paths

396 PART TWO SOFTWARE ENGINEERING PRACTICE

WebRef
Useful information on a

wide variety of artkies

ond resources for

'ogile testing" con

be found ot

testing.com/

ogile/.

^ADVICe^.

Be sure that you

design tests to execute

path. If you don't, the

path may fail when it

is invoked, exacer-

baling an already dicey

situation.

Thete ore some situa-

tions in which you will

not have the resources

to do comprehensive

unit testing. Select

criticol modules and

those with high cycle

made complexity, and

unit test only those.

parison). Test cases should uncover errors such as (1) comparison of different data
types. (2) incorrect logical operators or precedence, (3) expectation of equality when
precision error makes equality unlikely, (4) incorrect comparison of variables, (5) im-
proper or nonexistent loop termination, (6) failure to exit when divergent iteration is
encountered, and (7) improperly modified loop variables.

Boundary testing is one of the most important unit testing tasks. Software often
tails at its boundaries. That is, errors often occur when the nth element of an n-
dimensional array is processed, when the /th repetition of a loop with i passes is in-
voked, when the maximum or minimum allowable value is encountered. Test cases
that exercise data structure, control- flow, and data values just below, at, and just
above maxima and minima are very likely to uncover errors.

Good design dictates that error conditions be anticipated and error-handling
paths set up to reroute or cleanly terminate processing when an error does occur.
Yourdon [YOU75] calls this approach antibugging. Unfortunately, there is a tendency
to incorporate error handling into software and then never test it. A true story may
serve to illustrate:

3

A computer-aided design system was developed under contract. In one transaction pro-
cessing module, a practical joker placed the following error handling message after a se-
ries of conditional tests that invoked various control flow branches: ERROR! THERE IS NO
WAY YOU CAN GET HERE. This "error message" was uncovered by a customer during
user training!

Among the potential errors that should be tested when error handling is evalu-
ated are: (l) error description is unintelligible; (2) error noted does not correspond
to error encountered; (3) error condition causes operating system intervention
prior to error handling; (4) exception-condition processing is incorrect, or (5) error
description does not provide enough information to assist in the location of the
cause of the error.

Unit test procedures. Unit testing is normally considered as an adjunct to the
coding step. The design of unit tests can be performed before coding begins (a pre-
lerred agile approach) or after source code has been generated. A review of design
information provides guidance for establishing test cases that are likely to uncover
errors in each of the categories discussed earlier. Each test case should be coupled
with a set of expected results.

Because a component is not a stand-alone program, driver and/or stub software
must be developed lor each unit test. The unit test environment is illustrated in
Figure 13.4. In most applications a driver is nothing more than a "main program" that
accepts test case data, passes such data to the component (to be tested), and prints
relevant results. Stubs serve to replace modules that are subordinate to (called by)
the component to be tested. A stub or "dummy subprogram" uses the subordinate
module's interface, may do minimal data manipulation, provides verification of en-
try, and returns control to the module undergoing testing.

CHAPTER 1 3 TESTING STRATEGIES
397

Unit test envi-

ronment Interface

local data structures

Boundary conditions

Independent paths

Error handling paths

RESULTS

Drivers and stubs represent overhead. That is, both are software that must be

written (formal design is not commonly applied) but that is not delivered with the fi-

nal software product. If drivers and stubs are kept simple, actual overhead is rela-

tively low. Unfortunately, many components cannot be adequately unit tested with

"simple" overhead software. In such cases, complete testing can be postponed until

the integration test step (where drivers or stubs are also used).

Unit testing is simplified when a component with high cohesion is designed.

When only one function is addressed by a component, the number of test cases is re-

duced and errors can be more easily predicted and uncovered.

13.3.2 Integration Testing

A neophyte in the software world might ask a seemingly legitimate question once all

modules have been unit tested: "If they all work individually, why do you doubt that

they'll work when we put them together?" The problem, of course, is "putting them

together"—interfacing. Data can be lost across an interface; one module can have an

inadvertent, adverse affect on another; subfunctions, when combined, may not pro-

duce the desired major function; individually acceptable imprecision may be magni-

fied to unacceptable levels; global data structures can present problems. Sadly, the

list goes on and on.

Integration testing is a systematic technique for constructing the software archi-

tecture while at the same time conducting tests to uncover errors associated with in-

terfacing. The objective is to take unit tested components and build a program

structure that has been dictated by design.

398 PART TWO SOFTWARE ENGINEERIN3 PRACTICE

Taking the "big bong

’

approach to integration

is o lazy strategy that

is doomed to failure.

Integrate incrementally,

testing as you go.

When you develop a

project schedule, you'll

have to consider the

manner in which inte-

gration will occur so

that components will

be available when

needed.

There is often a tendency to attempt nonincremental integration that is, to con-
struct the program using a "big bang" approach. All components are combined in ad-

vance. The entire program is tested as a whole. And chaos usually results! A set of
errors is encountered. Correction is difficult because isolation of causes is compli-
cated by the vast expanse of the entire program. Once these errors are corrected,

new ones appear and the process continues in a seemingly endless loop.

Incremental integration is the antithesis of the big bang approach. The program is

constructed and tested in small increments, where errors are easier to isolate and
correct; interfaces are more likely to be tested completely; and a systematic test ap-

proach may be applied. In the paragraphs that follow, a number of different incre-

mental integration strategies are discussed.

Top-down integration. Top-down integration testing is an incremental approach
to construction of the software architecture. Modules are integrated by moving
downward through the control hierarchy, beginning with the main control module
(main program). Modules subordinate (and ultimately subordinate) to the main con-
trol module are incorporated into the structure in either a depth-first or breadth-first

manner.

Referring to Figure 13.5, depth -first integration integrates all components on a major
control path of the program structure. Selection of a major path is somewhat arbitraiy

and depends on application -specific characteristics. For example, selecting the left-

hand path, components M,, M2 ,
M6 would be integrated first. Next, M 8 or (if necessary

for proper functioning ofM2) M6 would be integrated. Then, the central and right-hand

CHAPTER 13 TESTING STRATEGIES 399

control paths are built Breadth-first integration incorporates all components directly

subordinate at each level, moving across the structure horizontally. From the figure,

components m3 . M3 , and M, would be integrated first. The next control level. Ms . M6 .

and so on, follows. The integration process is performed in a series of five steps:

1 .

^ What are the

W steps for 2.

top-tiown

integral ion'

3.

4.

5.

The main control module is used as a test driver, and stubs are substituted

for all components directly subordinate to the main control module.

Depending on the integration approach selected (i.e., depth or breadth first),

subordinate stubs are replaced one at a time with actual components.

Tests are conducted as each component is integrated.

On completion of each set of tests, another stub is replaced with the real

component.

Regression testing (discussed later in this section) may be conducted to en-

sure that new errors have not been introduced.

?!
• problems

may be

encountered when

top-down

integration is

chosen?

The process continues from step 2 until the entire program structure is built.

The'top-down integration strategy verifies major control or decision points early

in the test process. In a well-factored program structure, decision making occurs at

upper levels in the hierarchy and is therefore encountered first, if major control prob-

lems do exist, early recognition is essential. If depth-first integration is selected, a

complete function of the software may be implemented and demonstrated. For ex-

ample, consider a classic transaction structure (Chapter 1 0) in which a complex se-

ries of interactive inputs is requested, acquired, and validated via an incoming path

The incoming path may be integrated in a top-down manner. All input processing

(for subsequent transaction dispatching) may be demonstrated before other ele-

ments of the structure have been integrated. Early demonstration of functional ca-

pability is a confidence builder for both the developer and the customer.

Top-down strategy sounds relatively uncomplicated, but, in practice, logistical

problems can arise. The most common of these problems occurs when processing

at low levels in the hierarchy is required to adequately test upper levels. Stubs re-

place low-level modules at the beginning of top-down testing; therefore, no signifi-

cant data can flow upward in the program structure. The tester is left with three

choices: (1) delay many tests until stubs are replaced with actual modules, (2) de-

velop stubs that perform limited functions that simulate the actual module, or (3) in-

tegrate the software from the bottom of the hierarchy upward.

The first approach (delay tests until stubs are replaced by actual modules) causes

us to lose some control over correspondence between specific tests and incorpora-

tion of specific modules. This can lead to difficulty in determining the cause of errors

and tends to violate the highly constrained nature of the top-down approach. The

second approach is workable but can lead to significant overhead, as stubs become

more and more complex. The third approach, called bottom-up testing, is discussed

in the next section.

PART TWO SOFTWARE ENGINEERING PRACTICE400

Bottom -up integration. Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules (i.e., components at the lowest levels

in the program structure). Because components are integrated from the bottom up,

processing required for components subordinate to a given level is always available

and the need for stubs is eliminated. A bottom-up integration strategy may be im-

plemented with the following steps:

What ore the

• steps for

bottom-up

integration?

1 . Low-level components are combined into clusters (sometimes called builds
)

that perform a specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case in-

put and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the pro-

gram structure.

8
*

POINT
Bottom-up integration

eliminates Hie need for

complex stubs.

Integration follows the pattern illustrated in Figure 13.6. Components are com-
bined to form clusters 1 , 2, and 3. Each of the clusters is tested using a driver (shown
as a dashed block). Components in clusters 1 and 2 are subordinate to Ma . Drivers

D, and Dj are removed and the clusters are interfaced directly to Ma . Similarly, driver

D3 for cluster 3 is removed prior to integration with module Mb . Both Ma and Mb will

ultimately be integrated with component M<., and so forth.

CHAPTER 13 TESTING STRATEGIES 401

Regression testing is an

important strategy for

reducing "side effects"

Run regression tests

every lime a major

change is made to the

software (including the

integration ofnew

components).

POINT
Smoke testing might

be characterized as o

rolling integration

strategy. The software

is rebuilt (with new

components added)

and smoke tested

every day.

As integration moves upward, the need for separate test drivers lessens. In fact,

if the top two levels of program structure are integrated top down, the number of

drivers can be reduced substantially and integration of clusters is greatly simplified.

Regression testing. Each time a new module is added as part of integration test-

ing, the software changes. New data flow paths are established, new I/O may occur,

and new control logic is invoked. These changes may cause problems with functions

that previously worked flawlessly. In the context of an integration test strategy, re-

gression testing is the re-execution of some subset of tests that have already been

conducted to ensure that changes have not propagated unintended side effects.

In a broader context, successful tests (of any kind) result in the discovery of errors,

and errors must be corrected. Whenever software is corrected, some aspect of the soft-

ware configuration (the program, its documentation, or the data that support it) is

changed. Regression testing is the activity that helps to ensure that changes (due to

testing or for other reasons) do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset of all test

cases or using automated capture/playback tools. Capture/playback tools enable the

software engineer to capture test cases and results for subsequent playback and

comparison. The regression test suite (the subset of tests to be executed) contains

three different classes of test cases:

• A representative sample of tests that will exercise all software functions.

• Additional tests that focus on software functions that are likely to be affected

by the change.

• Tests that focus on the software components that have been changed.

As integration testing proceeds, the number of regression tests can grow quite large.

Therefore, the regression test suite should be designed to include only those tests

that address one or more classes of errors in each of the major program functions. It

is impractical and inefficient to re-execute evety test for every program function

once a change has occurred.

Smoke testing. Smoke testing is an integration testing approach that is commonly

used when software products are being developed. It is designed as a pacing mech-

anism for time-critical projects, allowing the software team to assess its project on

a frequent basis. In essence, the smoke testing approach encompasses the following

activities:

1 . Software components that have been translated into code are integrated into

a "build." A build includes all data files, libraries, reusable modules, and engi-

neered components that are required to implement one or more product

functions.

2. A series of tests is designed to expose errors that will keep the build from

properly performing its function. Tljp intent should be to uncover "show

402 PART TWO SOFTWARE ENGINEERING PRACTICE

stopper" errors that have the highest likelihood of throwing the software

project behind schedule.

3. The build is integrated with other builds and the entire product {in its current

form) is smoke tested daily. The integration approach may be top down or

bottom up.

The daily frequency of testing the entire product may surprise some readers. How-

ever, frequent tests give both managers and practitioners a realistic assessment of

integration testing progress. McConnell [MC096] describes the smoke test in the fol-

lowing manner:

The smoke test should exercise the entire system from end to end. It does not have to be

exhaustive, but it should be capable of exposing major problems. The smoke test should

be thorough enough that if the build passes, you can assume that it is stable enough to

be tested more thoroughly.

Smoke testing provides a number of benefits when it is applied on complex, time-

critical software engineering projects:

• Integration risk is minimized. Because smoke tests are conducted daily,

incompatibilities and other show-stopper errors are uncovered early, thereby

reducing the likelihood of serious schedule impact when errors are

uncovered.

• The quality ofthe end-product is improved. Because the approach is construc-

tion (integration) oriented, smoke testing is likely to uncover both functional

errors and architectural and component-level design errors. If these errors

are corrected early, better product quality will result.

• Error diagnosis and correction are simplified. Like all integration testing

approaches, errors uncovered during smoke testing are likely to be associ-

ated with "new software increments"—that is, the software that has just been

added to the build(s) is a probable cause of a newly discovered error.

• Progress is easier to assess. With each passing day, more of the software has

been integrated and more has been demonstrated to work. This improves

team morale and gives managers a good indication that progress is being

made.

"Trent the doily build os the heartbeat of the project. If there's no heartbeat, the project is dead."

Jim McCarthy

Strategic options. There has been much discussion (e.g., [BEI84D of the relative

advantages and disadvantages of top-down versus bottom-up integration testing. In

general, the advantages of one strategy tend to result in disadvantages for the other

strategy. The major disadvantage of the top-down approach is the need for stubs and

CHAPTER 13 TESTING STRATEGIES 403

WebRef
Pointers lo

tomraentoiY on testing

strategies con be found

at

www.qalinks.com.

^ Whot is a

• "critical

module" and why

should we identify

it?

the attendant testing difficulties that can be associated with them. Problems associ-

ated with stubs may be offset by the advantage of testing major control functions

early. The major disadvantage of bottom-up integration is that "the program as an

entity does not exist until the last module is added" [MYE79]. This drawback is tem-

pered by easier test case design and a lack of stubs.

Selection of an integration strategy depends upon software characteristics and,

sometimes, project schedule. In general, a combined approach (sometimes called

sandwich testing) that uses top-down tests for upper levels of the program struc-

ture, coupled with bottom-up tests for subordinate levels may be the best com-

promise.

As integration testing is conducted, the tester should identify critical modules. A

critical module has one or more of the following characteristics: (1)
addresses several

software requirements, (2) has a high level of control (resides relatively high in the

program structure), (3) is complex or error prone, or (4) has definite performance re-

quirements. Critical modules should be tested as early as possible. In addition, re-

gression tests should focus on critical module functions.

Integration test documentation. An overall plan for integration of the software

and a description of specific tests are documented in a Test Specification. This docu-

ment contains a test plan, a test procedure, is a work product of the software

process, and becomes part of the software configuration.

The test plan describes the overall strategy for integration. Testing is divided into

phases and builds that address specific functional and behavioral characteristics of

the software. For example, integration testing for a CAD system might be divided into

the following test phases:

• User interaction (command selection, drawing creation, display representa-

tion, error processing and representation).

• Data manipulation and analysis (symbol creation, dimensioning, rotation,

computation of physical properties).

• Display processing and generation (two-dimensional displays, three-

dimensional displays, graphs and charts).

• Database management (access, update, integrity, performance).

Each of these phases and subphases (denoted in parentheses) delineates a broad

functional category within the software and can generally be related to a specific do-

main within the software architecture. Therefore, program builds (groups of mod-

ules) are created to correspond to each phase. The following criteria and

corresponding tests are applied for all test phases:

Interface integrity. Internal and external interfaces are tested as each module (or

cluster) is incorporated into the structure.

Functional validity. Tests designed to uncover functional errors are conducted.

404 PART TWO SOFTWARE ENGINEERING PRACTICE

Information content. Tests designed to uncover errors associated with local or

global data structures are conducted.

Peifonnance. Tests designed to verify performance bounds established during

software design are conducted,

A schedule for integration, the development of overhead software, and related

topics is also discussed as part of the test plan. Start and end dates for each phase

are established and "availability windows" for unit tested modules are defined. A

brief description of overhead software (stubs and drivers) concentrates on charac-

teristics that might require special effort. Finally, test environment and resources are

described. Unusual hardware configurations, exotic simulators, and special test

tools or techniques are a few of many topics that may also be discussed.

The detailed testing procedure that is required to accomplish the test plan is de-

scribed next. The order of integration and corresponding tests at each integration

step are described. A listing of all test cases (annotated for subsequent reference)

and expected results is also included.

A history of actual test results, problems, or peculiarities is recorded in a Test Re-

port that can be appended to the Test Specification, if desired. Information contained

in this section can be vital during software maintenance. Appropriate references and

appendixes are also presented. - ’

Like all other elements of a software configuration, the test specification format

may be tailored to the local needs of a software engineering organization. It is impor-

tant to note, however, that an integration strategy (contained in a test plan) and test-

ing details (described in a test procedure) are essential ingredients and must appear.

"The best tester isn't the one who finds the most bugs ... the best tester is the one who gels the most bugs fixed."'

Cent Koner et ol.

1 3. 4.....Xesi- Strategies fob QBJEC.T-QRiEH,iEfl. Software

The objective of testing, stated simply, is to find the greatest possible number of errors

with a manageable amount of effort applied over a realistic time span. Although this

fundamental objective remains unchanged for object-oriented software, the nature of

object-oriented software changes both testing strategy and testing tactics (Chapter 1 4)

.

1 3.4. 1 Unit Testing in the OO Context

When object-oriented software is considered, the concept of the unit changes. En-

capsulation drives the definition of classes. This means that each class and each in-

stance of a class (object) packages attributes (data) and the operations (functions)

that manipulate these data. An encapsulated class is usually the focus of unit test-

ing. However, operations within the class are the smallest testable units. Because a

class can contain a number of different operations and a particular operation may

CHAPTER 13 TESTING STRATEGIES 405

POINT
Class testing for 00

software is analogous

to module testing for

conventional software.

It is not advisable to

test operations in

isolation.

POINT
An important strategy

for integration testing

of 00 software is

thread-based testing.

Threads are sets of

classes that respond to

an input or event. Use-

based tests focus on

dosses thot do not

collaborate heovily

with other classes.

exist as part of a number of different classes, the tactics applied to unit testing must

change.

We can no longer test a single operation in isolation (the conventional view of unit

testing) but rather as part of a class. To illustrate, consider a class hierarchy in which

an operation X is defined for the superclass and is inherited by a number of sub-

classes. Each subclass uses operation X, but it is applied within the context of the pri-

vate attributes and operations that have been defined for the subclass. Because the

context in which operation X is used varies in subtle ways, it is necessary to test op-

eration X in the context of each of the subclasses. This means that testing operation

X in a standalone fashion (the conventional unit testing approach) is usually ineffec-

tive in the object-oriented context.

Class testing for OO software is the equivalent of unit testing for conventional

software. Unlike unit testing of conventional software, which tends to focus on the

algorithmic detail of a module and the data that flow across the module interface,

class testing for OO software is driven by the operations encapsulated by the class

and the state behavior of the class.

13.4.2 Integration Testing in the OO Context

Because object-oriented software does not have an obvious hierarchical control

structure, traditional top-down and bottom-up integration strategies (Section 1 3.3.2)

have little meaning. In addition, integrating operations one at a time into a class (the

conventional incremental integration approach) is often impossible because of the

"direct and indirect interactions of the components that make up the class" [BER93]

.

There are two different strategies for integration testing of OO systems [BIN94],

The first, thread based testing, integrates the set of classes required to respond to one

input or event for the system. Each thread is integrated and tested individually. Re-

gression testing is applied to ensure that no side effects occur. The second integra-

tion approach, use-based testing, begins the construction of the system by testing

those classes (called independent classes) that use very few (if any) server classes. Af-

ter the independent classes are tested, the next layer of classes, called dependent

classes, which use the independent classes, are tested. This sequence of testing lay-

ers of dependent classes continues until the entire system is constructed.

The use of drivers an'd stubs also changes when integration testing of OO systems

is conducted. Drivers can be used to test operations at the lowest level and for the test-

ing of whole groups of classes. A driver can also be used to replace the user interface

so that tests of system functionality can be conducted prior to implementation of the

interface. Stubs can be used in situations in which collaboration between classes is re-

quired but one or more of the collaborating classes has not yet been fully implemented.

Cluster testing is one step in the integration testing ofOO software. Here, a cluster

of collaborating classes (determined by examining the CRC and object-relationship

model) is exercised by designing test cases that attempt to uncover errors in the

collaborations.

406 PART TWO SOFTWARE ENGINEERING PRACTICE

13.5 Validation Testing

POINT
like all other testing

steps, validation tries

to uncover errors, but

the focus is ot the

requirements level

—

on things thot will be

immediately apparent

to the end-user.

Validation testing begins at the culmination of integration testing, when individual

components have been exercised, the software is completely assembled as a pack-

age, and interfacing errors have been uncovered and corrected. At the validation or

system level, the distinction between conventional and object-oriented software dis-

appears. Testing focuses on user-visible actions and user-recognizable output from

the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is

that validation succeeds when software functions in a manner that can be reason-

ably expected by the customer. At this point a battle-hardened software developer

might protest: "Who or what is the arbiter of reasonable expectations?" -

.

Reasonable expectations are defined in the Software Requirements Specification—

a document that describes all user-visible attributes of the software. The specifica-

tion contains a section called Validation Criteria. Information contained in that

section forms the basis for a validation testing approach.

13.5.1 Validation Test Criteria

Software validation is achieved through a series of tests that demonstrate conformity

with requirements. A test plan outlines the classes of tests to be conducted, and a test

procedure defines specific test cases. Both the plan and procedure are designed to en-

sure that all functional requirements are satisfied, all behavioral characteristics are

achieved, all performance requirements are attained, documentation is correct, and

usability and other requirements are met (e.g., transportability, compatibility, error re-

covery, maintainability).

After each validation test case has beer, conducted, one of two possible condi-

tions exist: (I) The function or performance characteristic conforms to specification

and is accepted, or (2) a deviation from specification is uncovered and a deficiency

list is created. Deviation or error discovered at this stage in a project can rarely be

corrected prior to scheduled delivery. It is often necessary to negotiate with the cus-

tomer to establish a method for resolving deficiencies.

13.5.2 Configuration Review

An important element of the validation process is a configuration review. The intent

of the review is to ensure that all elements of the software configuration have been

properly developed, are cataloged, and have the necessary detail to bolster the sup-

port phase of the software life cycle. The configuration review, sometimes called an

audit, is discussed in more detail in Chapter 27.

13.5.3 Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will re-

ally use a program. Instructions for use may be misinterpreted; strange combinations

CHAPTER 13 TESTING STRATEGIES 407

of data may be regularly used; output that seemed clear to the tester may be unintel-

ligible to a user in the field.

When custom software is built for one customer, a series of acceptance tests are

conducted to enable the customer to validate all requirements. Conducted by the

end-user rather than software engineers, an acceptance test can range from an in-

formal "test drive" to a planned and systematically executed series of tests. In fact,

acceptance testing can be conducted over a period of weeks or months, thereby un-

covering cumulative errors that might degrade the system over time.

“Given enough eyeballs, all bugs are shallow (e.g., given a large enough beta-tester and co-developer base, olmost

every problem will be characterized quickly and the fix obvious to someone]."

E. Raymond

If software is developed as a product to be used by many customers, it is imprac-

tical to perform formal acceptance tests with each one. Most software product

builders use a process called alpha and beta testing to uncover errors that only the

end -user seems able to find

The alpha test is conducted at the developer's site by end-users. The software is

used in a natural setting with the developer "looking over the shoulder" of typical

users and recording errors and usage problems. Alpha tests are conducted in a con-

trolled environment.

The beta test is conducted at end-user sites. Unlike alpha testing, the developer is

generally not present. Therefore, the beta test is a "live" application of the software

in an environment that cannot be controlled by the developer. The end-user records

all problems (real or imagined) that are encountered during beta testing and reports

these to the developer at regular intervals. As a result of problems reported during

beta tests, software engineers make modifications and then prepare for release of

the software product to the entire customer base.

SafeHome

Preparingfor Validation

The scene: Doug Miller's office, os

component-level design continues and construction of

certain components begins.

The players: Doug Miller, software engineering

manager, Vinod, Jamie, Ed, and Shakira—members of

the SafeHome software engineering team.

The conversation:

Doug: The first increment will be ready for validation in

what . . . about three weeks?

Vinod: That's about right. Integration is going well.

We're smoke testing daily, finding some bugs but nothing

we can't handle. So far, so good.

Doug: Talk to me about validation.

Shakira: Well, we'll use all of the use-cases as the

basis for our test design. I haven't started yet, but I'll be

developing tests for all of the use-cases that I've been

responsible for.

Ed. Same here.

408 PARI TWO SOFTWARE ENGINEERING PRACTICE

Jamie: Me too, but we've got to get our act together for

acceptance testing and also for alpha and beta testing, no?

Doug: Yes, In fact I've been thinking that we could bring

in an outside contractor to help us with validation. I have

the money in the budget . . . and it would give us a new

point of view.

Vinod: I think we've got it under control.

Doug: I'm sure you do, but an ITG gives us an

independent look at the software.

Jamie: We're tight on time here, Doug. I, for one,

don't have the time to baby-sit anybody you bring in to

do the job.

Doug: I know, I know. But if an ITG works from

requirements and use-cases, not too much baby sitting

will be required.

Vinod: I still think we've got it under control.

Doug: I hear you, Vinod, but I'm going to overrule on

this one. Let's plan to meet with the ITG rep later this

week. Get 'em started and see what they come up with.

Vinod: Okay, maybe it'll lighten the load a bit.

13.6 System Testing

At the beginning of this book, we stressed the fact that software is only one element

of a larger computer-based system. Ultimately, software is incorporated with other

system elements (e g., hardware, people, information), and a series of system inte-

gration and validation tests are conducted. These tests fall outside the scope of the

software process and are not conducted solely by software engineers. However,

steps taken during software design and testing can greatly improve the probability

of successful software integration in the larger system.

"like death ond taxes, testing is both unpleasant and inevitable."

Ed Yourdon

A classic system testing problem is "finger-pointing." This occurs when an error

is uncovered, and each system element developer blames the other for the prob-

lem. Rather than indulging in such nonsense, the software engineer should antici-

pate potential interfacing problems and (1) design error-handling paths that test all

information coming from other elements of the system, (2) conduct a series of tests

that simulate bad data or other potential errors at the software interface, (3) record

the results of tests to use as "evidence" if finger-pointing does occur, and (4) par-

ticipate in planning and design of system tests to ensure that software is ade-

quately tested.

System testing is actually a series of different tests whose primary purpose is to

fully exercise the computer-based system. Although each test has a different pur-

pose, all work to verify that system elements have been properly integrated and per-

form allocated functions. In the sections that follow, we discuss the types of system

tests [BEI84] that are worthwhile for software-based systems.

CHAPTER 13 TESTING STRATEGIES
409

13.6.1 Recovery Testing

Many computer-based systems must recover from faults and resume processing

within a prespecified time. In some cases, a system must befault tolerant-, that is, pro-

cessing faults must not cause overall system function to cease. In other cases, a sys-

tem failure must be corrected within a specified period of time or severe economic

damage will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways

and verifies that recovery is properly performed. If recovery is automatic (performed

by the system itself), reinitialization, checkpointing mechanisms, data recovery, and

restart are evaluated for correctness. If recovery requires human intervention, the

mean-time-to-repair (MTTR) is evaluated to determine whether it is within accept-

able limits.

13.6.2 Security Testing

Any computer-based system that manages sensitive information or causes actions

that can improperly harm (or benefit) individuals is a target for improper or illegal

penetration. Penetration spans a broad range of activities: hackers who attempt to

penetrate systems for sport; disgruntled employees who attempt to penetrate for re-

venge; dishonest individuals who attempt to penetrate for illicit personal gain.

Security resting verifies that protection mechanisms built into a system will, in fact,

protect it from improper penetration. To quote Beizer [BEI841; "The system's security

must, of course, be tested for invulnerability from frontal attack—but must also be

tested for invulnerability from (lank or rear attack."

During security testing, the tester plays the role(s) of the individual who desires to

penetrate the system. Anything goes! The tester may attempt to acquire passwords

through external clerical means; may attack the system with custom software de-

signed to break down any defenses that have been constructed; may overwhelm the

system, thereby denying service to others; may purposely cause system errors, hop-

ing to penetrate during recovery; may browse through insecure data, hoping to find

the key to system entry.

Given enough time and resources, good security testing will ultimately penetrate

a system. The role of the system designer is to make penetration cost more than the

value of the information that will be obtained.

13.6.3 Stress Testing

Software testing steps discussed earlier in this chapter result in thorough evaluation

of normal program functions and performance. Stress tests are designed to confront

programs with abnormal situations. In essence, the tester who performs stress test-

ing asks: "How high can we crank this up before it fails?"

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume. For example, (1) special tests may be designed that

generate ten interrupts per second, when one or two is the average rate, (2) input

410 PART TWO SOFTWARE ENGINEERING PRACTICE

data rates may be increased by an order of magnitude to determine how input func-
tions will respond, (3) test cases that require maximum memory or other resources
are executed, (4) test cases that may cause memory management problems are de-
signed, (5) test cases that may cause excessive hunting for disk-resident data are cre-
ated. Essentially, the tester attempts to overwhelm the program.

"If you're trying to find true system bugs ond you hoven't subletted your software to o real stress test then H is high
time you started.”

Boris Beizer

A variation of stress testing is a technique called sensitivity testing. In some situa-

tions (the most common occur in mathematical algorithms), a very small range of
data contained within the bounds of valid data for a program may cause extreme and
even erroneous processing or profound performance degradation. Sensitivity testing

attempts to uncover data combinations within valid input classes that may cause in-

stability or improper processing.

13.6.4 Performance Testing

For real-time and embedded systems, software that provides required function but
does not conform to performance requirements is unacceptable. Performance testing

is designed to test the run-time performance of software within the context of an in-

tegrated system. Performance testing occurs throughout ail steps in the testing

process. Even at the unit level, the performance of an individual module may be as-

sessed as tests are conducted. However, it is not until all system elements are fully

integrated that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both
hardware and software instrumentation. That is, it is often necessary to measure
resource utilization (e g., processor cycles) in an exacting fashion. External in-

strumentation can monitor execution intervals, log events (e g., interrupts) as they
occur, and sample machine states on a regular basis. By instrumenting a system,
the tester can uncover situations that lead to degradation and possible system
failure.

Test Planning
and Management

Objective: These tools assist the software

team in planning the testing strategy that is chosen and
managing the testing process as it is conducted.

Mechanics: Tools in this category address test planning,

test storage, management ond control, requirements

Software Tools

traceability, integration, error tracking, and report

generation. Project managers use them to supplement

project scheduling tools. Testers use these tools to plan

testing activities and to control the flow of information as

the testing process proceeds.

)

CHAPTER 13 TESTING STRATEGIES
411

Representative Tools 2

OTF (Object Testing Framework), developed by MCG
Software, Inc. (www.mcgsoft.com), provides a

framework for managing suites of tests for Smalltalk

objects.

QADiredor, developed by Compuware Corp.

(www.compuware.com/qacenter), provides a single

.
A

point of control for managing all phases of the testing

process.

TestWorks, developed by Software Research, Inc.

(www.soft.com/Products/index.html), contains a fully

integrated suite of testing tools including tools for test

management and reporting.

J

13.7 THE Apt nr DEBUGGING

Software testing is an action that can be systematically planned and specified. Test

case design can be conducted, a strategy can be defined, and results can be evalu-

ated against prescribed expectations. / ,

Debugging occurs as a consequence of successful testing. That is, when a test

case-uncovers an error, debugging is an attion that results in the removal of the er

ror. Although debugging can and should be an orderly process, it is still very much

an art. A software engineer, evaluating the results of a test, is often confronted with

a "symptomatic" indication of a software problem. That is, the external manifesta-

tion of the error and the internal cause of the error may have no obvious relation-

ship to one another. The poorly understood mental process that connects a symptom

to a cause is debugging.

"As soon os we storied programming, we found to our surprise that it wasn't os easy to gel programs right as we hod

thought. Debugging had to be discovered. I can remember the exact instant when I realized that a large part of my

life from then on was going to be spent in finding mistakes in my own programs.

Maurice Wilkes, discovers debugging, 1949

13.7.1 The Debugging Process

Debugging is not testing but always occurs as a consequence of testing.
3 Referring

to Figure 13.7, the debugging process begins with the execution of a test case. Re-

sults are assessed and a lack of correspondence between expected and actual per-

formance is encountered. In many cases, the noncorresponding data are a symptom

of an underlying cause as yet hidden. Debugging attempts to match symptom with

cause, thereby leading to error correction.

Debugging will always have one of two outcomes: (1) the cause will be found and

corrected, or (2) the cause will not be found. In the latter case, the person perform-

2 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

3 in making the statement, we take the broadest possible view of testing Not only does the devel-

oper test software prior to release, but the customer/user tests software every time it is used!

412 PART TWO SOFTWARE ENGINEERING PRACTICE

7 Why is

* debugging

so difficult?

ing debugging may suspect a cause, design one or more test cases to help validate
that suspicion, and work toward error correction in an iterative fashion.

Why is debugging so difficult? In all likelihood, human psychology (see the next
section) has more to do with an answer than software technology. However, a few
characteristics of bugs provide some clues:

1 . The symptom and the cause may be geographically remote. That is, the symp-
tom may appear in one part of a program, while the cause may actually be lo-

cated at a site that is far removed. Highly coupled components (Chapter 1 1

)

exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is corrected.

3. The symptom may actually be caused by nonerrors (e.g., round-off inaccura-

cies).

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing

problems.

6. it may be difficult to accurately reproduce input conditions (e g., a real-time

application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded
systems that couple hardware and software inextricably

8. The symptom may be due to causes that are distributed across a number of

tasks running on different processors [CHE90]

.

During debugging, we encounter errors that range from mildly annoying (e.g., an
incorrect output format) to catastrophic (e.g., the system fails, causing serious eco-
nomic or physical damage). As the consequences of an error increase, the amount

CHAPTER 13 TESTING STRATEGIES
413

of pressure to find the cause also increases. Often, pressure forces a software devel-

oper to fix one error while at the same time introducing two more.

"Everyone knows that debugging is twite os hard os writing o program in the first plate. So if you are as clever as

you ton be when you write it, how will you ever debug it?"

Brian Kernighan

13.7.2 Psychological Considerations

Unfortunately, there appears to be some evidence that debugging prowess is an in-

nate human trait. Some people are good at it, and others aren t. Although experi-

mental evidence on debugging is open to many interpretations, large variances in

debugging ability have been reported for programmers with the same education and

experience.

Commenting on the human aspects of debugging, Shneiderman [SHN80] states:

Debugging is one of the more frustrating parts of programming. It has elements of prob-

lem solving or brain teasers, coupled with the annoying recognition that you have made

a mistake. Heightened anxiety and the unwillingness to accept the possibility of errors in-

creases the task difficulty Fortunately, there is a great sigh of reliefand a lessening of ten-

sion when the bug is ultimately . . . corrected.

* Although it may be difficult to "learn" debugging, a number of approaches to the

problem can be proposed. We examine these in the next section.

SafeHome

La

Debugging

The scene: Ed's cubical as coding

and unit testing is conducted.

The players: Ed and Shakira—members of the

SafeHome software engineering team.

The conversation:

Shakira (looking in through the entrance to

the cubical): Hey . . . where were you at lunch time?

Ed: Right here . . . working.

Shakira: You look miserable . . . what's the matter?

Ed (sighing audibly): I've been working on this

<bleep> bug since I discovered it at 9:30 this morning,

and it's what, 2:45? I'm clueless.

Shakira: I thought we all agreed to spend no more

than one hour debugging stuff on our own, then we'd get

help, right?

Ed: Yeah, but . . .

Shakira (walking into the cubical): So what's the

problem?

Ed: It's complicated. And besides, I've been looking at

this for, what, 5 hours? You're not going to find it.

Shakira: Indulge me . . . what's the problem?

(Ed explains the problem to Shakira who looks at it for

about 30 seconds without speaking.)

Shakira (a smile gathering on her face): Uh,

right there, the variable named selAlarmCondition.

Shouldn t it be set to 'false" before the loop gets started?

(Ed stares at the screen in disbelief, bends forward, and

begins to bang his head gently against the monitor.

Shakira, smiling broadly now, stands and walks out.)

PART TWO SOFTWARE ENGINEERING PRACTICE414

13.7.3 Debugging Strategies

Regardless of the approach that is taken, debugging has one overriding objective: to

find and correct the cause of a software error. The objective is realized by a combi-
nation of systematic evaluation, intuition, and luck. Bradley [BRA85] describes the
debugging approach in this way:

Debugging is a straightforward application of the scientific method that has been devel-

oped over 2,500 years. The basis of debugging is to locate the problem’s source [the

cause] by binary partitioning, through working hypotheses that predict new values to be
examined.

Take a simple non-software example: A lamp in my house does not work. If nothing

in the house works, the cause must be in the main circuit breaker or outside. I look around
to see whether the neighborhood is blacked out. I plug the suspect lamp into a working
socket and a working appliance into the suspect circuit. So goes the alternation of hy-

pothesis and test.

In general, three debugging strategies have been proposed [MYE79j: (I) brute force,

(2) backtracking, and (3) cause elimination. Each of these strategies can be conducted
manually, but modem debugging tools can make the process much more effective.

Ute first step in fixing o broken program is getting it to foil repeotobly (on the simplest exomple possible)."

T. Duff

Set a time limit, say,

one hour, on the time

you spend trying to

debug o problem on

your own. After that,

get help!

Debugging tactics. The brute force category of debugging is probably the most
common and least efficient method for isolating the cause of a software error. We ap-

ply brute force debugging methods when all else fails. Using a "let the computer find

the error" philosophy, memory dumps are taken, run-time traces are invoked, and the

program is loaded with output statements. We hope that somewhere in the morass of

information that is produced we will find a clue that can lead us to the cause of an er-

ror. Although the mass of information produced may ultimately lead to success, it

more frequently leads to wasted effort and time. Thought must be expended first!

Backtracking is a fairly common debugging approach that can be used success-

fully in small programs. Beginning at the site where a symptom has been uncovered,

the source code is traced backward (manually) until the site of the cause is found.

Unfortunately, as the number of source lines increases, the number of potential

backward paths may become unmanageably large.

The third approach to debugging—cause elimination—is manifested by induction

or deduction and introduces the concept of binarypartitioning. Data related to the er-

ror occurrence are organized to isolate potential causes. A "cause hypothesis" is de-

vised, and the aforementioned data are used to prove or disprove the hypothesis.

Alternatively, a list of all possible causes is developed, and tests are conducted to

eliminate each. If initial tests indicate that a particular cause hypothesis shows prom-
ise, data are refined in an attempt to isolate the bug.

CHAPTER 13 TESTING STRATEGIES 415

Automated debugging. Each of these debugging approaches can be supplemented

with debugging tools that provide semi-automated support for the software engineer

as debugging strategies are attempted. Hailpem and Santhanam [HA102] summarize

the state of these tools when they note,

.

. many new approaches have been pro-

posed and many commercial debugging environments are available. Integrated de-

velopment environments (IDEs) provide a way to capture some of the

language-specific predetermined errors (e.g., missing end-of-statement characters,

undefined variables, and so on) without requiring compilation." One area that has

caught the imagination of the industry' is the visualization of the necessary underlying

programming constructs as a means to analyze a program [BAE97]. A wide variety of

debugging compilers, dynamic debugging aids ("tracers"), automatic test case gener-

ators, and cross-reference mapping tools are available. However, tools are not a sub

stitute for careful evaluation based on a complete design model and clear source code.

Debugging

Objective: These tools provide automated

assistance for those who must debug software

problems. The intent is to provide insight that may be

difficult to obtain if approaching the debugging process

manually.

Mechanics: Most debugging tools are programming

language and environment specific.

Representative Tools4

Jprobe ThreadAnalyzer, developed by Sitraka

(www.sitraka.com), helps in the evaluation of thread

problems—deadlocks, stalls, and race conditions that

can pose serious hazards to application performance

in Java apps.

C+ + Test, developed by Parasoft

(www.parasoft.com), is a unit testing tool that supports

a full range of tests on C and C++ code.

Software Tools
\

Debugging features assist in the diagnosis of errors

that are found.

CodeMedic, developed by NewPlanet Software

(www.newplanetsoftware.com/medic/), provides a

graphical interface for the standard UNIX debugger,

gdb, and implements its most important features, gdb

currently supports C/C+ + ,
Java, PalmOS, various

embedded systems, assembly language, FORTRAN,

and Modula-2.

BugCollector Pro, developed by Nesbitt Software Corp.

(www.nesbitt.com/), implements a multiuser database

that assists a software team in keeping track of

reported bugs and other maintenance requests and

managing debugging workflow.

GNATS, a freeware application

(www.gnu.org/software/gnats/), is a set of tools for

tracking bug reports. J
The people factor. Any discussion of debugging approaches and tools is incom-

plete without mention of a powerful ally—other people! A fresh viewpoint, un-

clouded by hours of frustration, can do wonders. 5 A final maxim for debugging might

be: When all else fails, get help!

4 Toots noted here do not represent an endorsement, but rather a sampling of toots in this category.

In most cases, tool names are trademarked by their respective developers.

5 The concept of pair programming (recommended as part of the Extreme Programming process

model discussed in Chapter 4) provides a mechanism for "debugging" as the software is designed

and coded.

416 PART TWO SOFTWARE ENGINEERING PRACTICE

9 When!

• correct on

error, what

questions should

I ask myself?

UA

13.7.4 Correcting the Error

Once a bug has been found, it must be corrected. But, as we have already noted, the

correction of a bug can introduce other errors and therefore do more harm than

good. Van Vleck [VAN89] suggests three simple questions that every software engi-

neer should ask before making the "correction" that removes the cause of a bug:

1 . Is the cause ofthe bug reproduced In another part ofthe program ? in many situ-

ations. a program error is caused by an erroneous pattern of logic that may
be reproduced elsewhere. Explicit consideration of the logical pattern may
result in the discovery of other errors.

2 . What "next bug' might be introduced by thefix that I'm about to make? Before

the correction is made, the source code (or, better, the design) should be

evaluated to assess coupling of logic and data structures. If the correction is

to be made in a highly coupled section of the program, special care must be

taken when any change is made.

3. What could we have done to prevent this bug in thefirst place? This question is

the first step toward establishing a statistical software quality assurance ap-

proach (Chapter 26). If we correct the process as well as the product, the bug

will be removed from the current program and may be eliminated from all fu-

ture programs

Summary

Software testing accounts for the largest percentage of technical effort in the soft-

ware process. Yet we are only beginning to understand the subtleties of systematic

test planning, execution, and control.

The objective ofsoftware testing is to uncover errors. To fulfill this objective, a se-

ries of test steps—unit, integration, validation, and system tests—are planned and

executed. Unit and integration tests concentrate on functional verification ofa com-

ponent and incorporation of components into the software architecture. Validation

testing demonstrates traceability to software requirements, and system testing vali-

dates software once it has been incorporated into a larger system.

Each test step is accomplished through a series of systematic test techniques that

assist in the design of test cases. With each testing step, the level of abstraction with

which software is considered is broadened.

Unlike testing (a systematic, planned activity), debugging must be viewed as an art.

Beginning with a symptomatic indication of a problem, the debugging activity must

track down the cause of an error. Of the many resources available during debugging,

the most valuable is the counsel of other members of the software engineering staff

The requirement for higher-quality software demands a more systematic ap-

proach to testing. To quote Dunn and Ullman [DUN82],

CHAPTER 13 TESTING STRATEGIES 417

What is required is an overall strategy, spanning the strategic test space, quite as delib-

erate in its methodology as was the systematic development on which analysis, design

and code were based.

In this chapter, we have examined the strategic test space, considering the steps

that have the highest likelihood of meeting the overriding test objective: to find and

remove errors in an orderly and effective manner.

References

[BAE97] Baecker, R„ C. DiGiano, and A. Marcus, "Software Visualization for Debugging," Commu-

nications oftheACM, vol. 40 ,no. 4, April 1997, pp. 44-54, and other papers in the same issue.

[BE184) Beizer, B.. Software System Testing and Quality Assurance, Van Nostrand-Reinhold, 1984.

[BER93) Berard, E., Essays on Object Oriented Software Engineering, vol. 1 ,
Addison-Wesley, 1993.

[BIN94] Binder, R., "Testing Object-Oriented Systems: A Status Report," American Programmer,

vol. 7, no. 4, April 1994, pp. 23-28.

|BOE8
1 !
Boehm, B., Software Engineering Economics, Prentice-Hail, 1981, p. 37.

[BRA85] Bradley.). H., 'The Science and Art of Debugging," Computerworld, August 19, 1985,

pp. 35-38.

ICHE90] Cheung. W. H , J P. Black, and E. Manning, "A Framework for Distributed Debugging,"

IEEE Software, January 1990, pp. 106-1 15.

[DUN82] Dunn, R„ and R. Ullman, Quality Assurancefor Computer Software, McGraw-Hill, 1982,

p. 158.

(G1L951 Gilb, T„ "What We Fail to Do in Our Current Testing Culture," Testing Techniques Newslet-

ter, (on-line edition, ttn@soft.com), Software Research, January 1995.

[HA1021 Hailpem, B„ and P. Santhanam, "Software Debugging, Testing and Verification," IBM Sys-

tems Journal, vol. 41 ,
ho. 1 , 2002, available at http://www.research.ibm.com/joumal/sj/4l 1/

hailpem.html

[IEE0
1]
Softwaie Reliability Engineering, 12th International Symposium, IEEE, 2001.

[MC096] McConnell, S., "Best Practices: Daily Build and Smoke Test," IEEE Software, vol. 13,

no. 4, July 1996, pp. 143-144.

[M1L77] Miller, E„ "The Philosophy of Testing," in Program Testing Techniques, IEEE Computer

Society Press, 1977. pp. 1-3.

[MUS891 Musa, J D„ and A. F. Ackerman, "Quantifying Software Validation: When to Stop Test-

ing?" IEEE Sofhvare, May 1989, pp. 19-27.

IMYE791 Myers, G.. The Art ofSoftware Testing, Wiley, 1979.

[SH083] Shooman, M. L„ Software Engineering, McGraw-Hill, 1983.

[SHN80| Shneiderman, B.. Software Psychology, Winthrop Publishers, 1980, p. 28.

[SIN99I Singpurwalla, N„ and S. Wilson, Statistical Methods in Software Engineering: Reliability

and Risk, Springer-Verlag, 1999.

[VAN89) Van Vleck, T„ 'Three Questions About Each Bug You Find,” ACM Software Engineering

Notes, vol. 14, no. 5, July 1989, pp. 62-63.

[WAL891 Wallace, D. R„ and R. U. Fujii, "Software Verification and Validation: An Overview,"

IEEE Software, May 1989, pp 10-17.

[YOU75j Yourdon, E„ Techniques ofProgram Structure and Design, Prentice-Hall, 1975.

Problems and Points to Ponder

13 . 1 . List some problems that might be associated with the creation of an independent test

group. Are an ITG and an SQA group made up of the same people?

13 .2 . Using your own words, describe the difference between verification and validation. Do

both make use of test case design methods and testing strategies?

418 PART TWO SOFTWARE ENGINEERING PRACTICE

13 .3 . Why is a highly coupled module difficult to unit test?

13 .4 . Who should perform the validation test—the software developer or the software user?

Justify your answer.

1

3

.5 . Is it always possible to develop a strategy for testing software that uses the sequence of

testing steps described in Section 13. 1 .3? What possible complications might arise for embed-
ded systems?

13 .6 . As a class project, develop a Debugging Guide for your installation. The guide should pro-

vide language and system -oriented hints that have been learned through the school of hard

knocks! Begin with an outline of topics that will be reviewed by the class and your instructor. Pub-

lish the guide for others in your local environment.

13 . 7 . How can project scheduling affect integration testing?

13 .8 . The concept of "antibugging" (Section 13.3.1) is an extremely effective way to provide

built-in debugging assistance when an error is uncovered:

a. Develop a set of guidelines for antibugging.

b. Discuss advantages of using the technique.

c. Discuss disadvantages of using the technique. -

13 .9 . Develop a complete test strategy for the SafeHome system discussed throughout this

book. Document it in a Test Specification.

1 3. 1 0. Is unit testing possible or even desirable in all circumstances? Provide examples to jus-

tify your answer.

Further Readings and Information Sources

Virtually every book on software testing discusses strategies along with methods for test case

design. Craig and Kaskiel (Systematic Software Testing, Artech House, 2002), Tamres (Introduc-

ing Software Testing, Addison-Wesley, 2002), Whittaker (How to Break Software, Addison-Wesley,

2002), Jorgensen (Software Testing: A Craftman's Approach, CRC Press, 2002), Splaine and his col-

leagues (The Web Testing Handbook, Software Qualify' Engineering Publishing, 2001), Patton

(Software Testing, Sams Publishing, 2000), Kaner ahd his colleagues (Testing Computer Software,

second edition, Wiley, 1999) all discuss testing principles, concepts, strategies and methods.

Books by Black (Managing the Testing Process, Microsoft Press, 1 999) and Perry (Surviving the Top

Ten Challenges ofSoftware Testing: A People-Oriented Approach, Dorset House, 1 997) also address

software testing strategies.

For those readers with interest in agile software development methods, Crispin and House

(Testing Extreme Programming, Addison-Wesley, 2002) and Beck (Test Driven Development: By

Example, Addison-Wesley, 2002) present testing strategies and tactics for Extreme Program-

ming. Kamer and his colleagues (Lessons Learned in Software Testing, Wiley, 200
1)
present a col-

lection of over 300 prag'matic "lessons" (guidelines) that every software tester should leam.

Watkins (Testing IT: An Off-ihe Shelf Testing Process, Cambridge University Press, 2001) estab-

lishes an effective testing framework for all types of developed and acquired software.

Lewis (Software Testing and Continuous Quality Improvement, CRC Press, 2000) and Koomen
and his colleagues (Test Process Improvement, Addison-Wesley, 1 999) discuss strategies for con-

tinuously improving the testing process.

Sykes and McGregor (Practical Guide to Testing Object-Oriented Software, Addison-Wesley,

2001), Bashir and Goel (Testing Object Oriented Software, Springer-Verlag, 2000), Binder (Testing

Object-Oriented Systems, Addison-Wesley, 1999), Rung and his colleagues (Testing Object-

Oriented Software, IEEE Computer Society Press, 1998), and Marick (The Craft ofSoftware Test-

ing, Prentice-Hall, 1997) present strategies and methods for testing OO systems.

Guidelines for debugging are contained in a books by Agans (Debugging The Nine Indis

pensable Rules for Findinglkven the Most Elusive Hardware and Software Problems, AMACON,

CHAPTER 13 TESTING STRATEGIES 419

2002), Tells and Hsieh (The Science o/Debugging, The Coreolis Group, 2001), Robbins (Debug-

ging Applications. Microsoft Press, 2000), and Dunn (Software Defect Removal, McGraw-Hill,

1984). Rosenberg (How Debuggers Work, Wiley, 1996) addresses the technology for debugging

tools. Younessi (Object-Oriented Defect Management ofSoftware, Prentice-Hall, 2002) presents

techniques for managing defects that are encountered in object-oriented systems. Beizer

[BEI84] presents an interesting "taxonomy of bugs" that can lead to effective methods for test

planning. Ball (Debugging Embedded Microprocessor Systems, Newnes Publishing, 1998) ad-

dresses the special nature of debugging for embedded microprocessor software.

A wide variety of information sources on software testing strategies are available on the In-

ternet. An up-to-date list of World Wide Web references that are relevant to software testing

strategies can be found at the SEPA Web site:

http://www.mhhe.com/pressmcm.

CHAPTER

Testing

Tactics

Key
Concepts
bva

cydomotic

complexity

equivalence

partitioning

flow graphs

patterns

testability

testing

basis path

black-box

dass-level

control-structure

fault-based

loops

object-oriented

scenario-based

white-box

T
esting presents an interesting anomaly for the software engineers, who by

their nature are constructive people. Testing requires that the developer

discard preconceived notions of the "correctness" of software just devel-

oped and then work hard to design test cases to "break" the software. Beizer

[BEI90J describes this situation effectively when he states:

There's a myth that if we were really good at programming, there would be no bugs

to catch, if only we could really concentrate, if only everyone used structured pro-

gramming, top-down design, decision tables, if programs were written in SQUISH, if

we had the right silver bullets, then there would be no bugs. So goes the myth. There

are bugs, the myth says, because we are bad at what we do; and if we are bad at it

we should feel guilty about it. Therefore, testing and test case design is an admission

of failure, which instills a goodly dose of guilt. And the tedium of testing is just,pun-

ishment for our errors. Punishment for what’ For being human? Guilt for what? For

failing to achieve inhuman perfection’ For not distinguishing between what another

programmer thinks and what he says? For failing to be telepathic? For not solving hu-

man communications problems that have been kicked around . . for forty centuries?

Should testing instill guilt? Is testing really destructive? The answer to these ques-

tions is No!

In this chapter, we discuss techniques for software test case design. Test case

design focuses on a set oftechniques for the creation of test cases that meet over-

all testing objectives and the testing strategies discussed in Chapter 13.

What is it? Once source code has

been generated, software must be

tested to uncover (and correct) as

many errors as possible before deliv-

ery to your customer. Your goal is to design a se-

ries of test cases that have a high likelihood of

finding errors—but how? That's where software

testing techniques enter the picture. These tech-

niques provide systematic guidance for design-

ing tests that (1) exercise the internal logic and

interfaces of every software component, and

(2) exercise the input and output domains of the

program to uncover errors in program function,

behavior, and performance.

Who does it? During early stages of testing, a

software engineer performs all tests. However,

as the testing progresses, testing specialists may
become involved.

Why is it important? Reviews and other SQA
activities can and do uncover errors, but they are

not sufficient. Every time the program is exe-

cuted, the customer tests it! Therefore, you have

420

CHAPTER 14 TESTING TACTICS 421

to execute the program before it gets to the cus-

tomer with the specific intent of finding ond re-

moving all errors. In order to find the highest

possible number of errors, tests must be con-

ducted systematically and test cases must be de-

signed using disciplined techniques.

What are the steps? For conventional appli-

cations, software is tested from two different per-

spectives: (1)
internal program logic is exercised

using "white box" test case design techniques.

Software requirements are exercised using

"black box" test case design techniques. For

object-oriented applications, "testing" begins

prior to the existence of source code, but once

code has been generated, a series of tests are

designed to exercise operations with a class and

examine whether errors exist as one class col-

laborates with others. As classes ore integrated

to form a subsystem, use-based testing, along

with fault-based approaches, is applied to fully

exercise collaborating classes. Finally, use-cases

assist in the design of tests to uncover errors at

the software validation level. In every case, the

Intent is to find the maximum number of errors

with the minimum amount of effort and time.

What is the work product? A set of test cases

designed to exercise both internal logic, inter-

faces, component collaborations, and external

requirements is designed and documented, ex-

pected results are defined, and actual results are

recorded.

How do I ensure that I've done it right?

When you begin testing, change your point of

view. Try hard to "break" the software! Design

test cases in a disciplined fashion and review the

test cases you do create for thoroughness. In ad-

dition, you con evaluate test coverage and track

error detection activities.

14.1 Software Testing Fundamentals —
Fundamental testing goals and principles were discussed in Chapter 5. Recall that

the goal of testing is to find errors and that a good test is one that has a high proba-

bility of finding an error. Therefore, a software engineer should design and imple-

ment a computer-based system or a product with "testability" in mind. At the same

time, the tests themselves must exhibit a set of characteristics that achieve the goal

of finding the most errors with a minimum of effort.

"Every program does something right; it just may not be the thing we want it to do.”

Author unknown

Testability. James Bach' provides the following definition for testability: "Software

testability is simply fjow easily [a computer program] can be tested." The following

characteristics lead to testable software.

^ What ore the

• characteris-

tics of testability?

Operability. "The better it works, the more efficiently it can be tested." If a

system is designed and implemented with quality in mind, relatively few bugs

will block the execution of tests, allowing testing to progress without fits and

starts.

I The paragraphs that follow are used with permission ofjames Bach (copyright 1994) and have been

adapted from material that originally appeared in a posting in the newsgroup comp.software-eng.

422 PART TWO SOFTWARE ENGINEERING PRACTICE

^ What

• is a

"good" test?

Observability. "What you see is what you test." Inputs provided as part of test-

ing produce distinct outputs. System states and variables are visible or queriable

during execution. Incorrect output is easily identified. Internal errors are automati-

cally detected and reported. Source code is accessible.

Controllability. "The better we can control the software, the more the testing

can be automated and optimized." Software and hardware states and variables can

be controlled directly by the test engineer. Tests can be conveniently specified, au-

tomated, and reproduced.

Decomposability. 'By controlling the scope of testing, we can more quickly

isolate problems and perform smarter retesting." The software system is built from

independent modules that can be tested independently.

Simplicity. "The less there is to test, the more quickly we can test it." The pro-

gram should exhibitfunctional simplicity (e.g., the feature set is the minimum nec-

essary to meet requirements), structural simplicity (e.g., architecture is modularized

to limit the propagation of faults), and code simplicity (e.g., a coding standard is

adopted for ease of inspection and maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

Changes to the software are infrequent, controlled when they do occur, and do not

invalidate existing tests. The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

The architectural design and the dependencies between internal, external, and

shared components are well understood. Technical documentation is instantly ac-

cessible, well organized, specific and detailed, and accurate. Changes to the design

are communicated to testers.

The attributes suggested by Bach can be used by a software engineer to develop a soft-

ware configuration (i.e., programs, data, and documents) that is amenable to testing.

"Errors ore more common, more pervosive, ond more troublesome in software than with other technologies."

David Parnas

Test characteristics. And what about the tests themselves? Kaner, Falk, and

Nguyen [KAN93] suggest the following attributes of a "good" test:

l . A good test has a high probability offinding an error. To achieve this goal, the

tester must understand the software and attempt to develop a mental picture

of how the software might fail. Ideally, the classes of failure are probed. For

example, one class of potential failure in a GUI (graphical user interface) is a

failure to recognize proper mouse position. A set of tests would be designed

to exercise the mouse in an attempt to demonstrate an error in mouse posi-

tion recognition.

CHAPTER 14 TESTING TACTICS
423

2. A good test is not redundant. Testing time and resources are limited. There is

no point in conducting a test that has the same purpose as another test.

Every test should have a different purpose (even if it is subtly different).

3. A good test should be "best ofbreed" [KAN93] . In a group of tests that have a

similar intent, time and resource limitations may mitigate toward the execu-

tion of only a subset of these tests. In such cases, the test that has the highest

likelihood of uncovering a whole class of errors should be used.

4. A good test should be neither too simple nor too complex. Although it is some-

times possible to combine a series of tests into one test case, the possible

side effects associated with this approach may mask errors. In general, each

test should be executed separately.

SafeHome

Designing Unique Tests

The scene: Vinod's cubical.

The players: Vinod and Ed—members of the

SafeHome software engineering team.

The conversation:

Vinod: So these are the test cases you intend to run for

the passwordValidation operation.

Ed: Yeah, they should cover pretty much all possibilities

for the kinds of passwords a user might enter.

Vinod: So let's see . .
.
you note that the correct

password will be 8080, right?

Ed: Uh huh.

Vinod: And you specify passwords 1 234 and 6789 to

test for errors in recognizing invalid passwords?

Ed: Right, and I also test passwords that ore dose to the

correct password, see . . . 8081 and 8180.

Vinod: Those are okay, but I don't see much po rt in

running both the 1 234 and 6789 inputs. They're

redundant . . . test the same thing, don't they?

Ed: Well, they're different values.

Vinod: That's true, but if 1 234 doesn't uncover an error

... in other words ... the passwordValidotion operation

notes that it's an invalid password, it is not likely that

6789 will show us anything new.

Ed: I see what you mean.

Vinod: I'm not trying to be picky here . , it's just that

we have limited time to do testing, so it's a good idea to

run tests that have a high likelihood of finding new errors.

Ed: Not a problem . . . I'll give this a bit more thought.

14.2 Black-Box and White-Box Tes.iimg

Any engineered product (and most other things) can be tested in one of two ways:

(1) Knowing the specified function that a product has been designed to perform tests

can be conducted that demonstrate each function is fully operational while at the

same time searching for errors in each function; (2) knowing the internal workings

of a product, tests can be conducted to ensure that "all gears mesh"; that is, internal

operations are performed according to specifications, and all internal components

424 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
White-box tests con be

designed only after

component-level design

(or source code)

exists. The logical

details of the program

must be ovoiioble.

have been adequately exercised. The first test approach is called black-box testing

and the second, white-box testing.
2

Black-box testing alludes to tests that are conducted at the software interface. A
black-box test examines some fundamental aspect of a system with little regard for

the internal logical structure of the software. White-box testing of software is predi-

cated on close examination of procedural detail. Logical paths through the software

and collaborations between components are tested by providing test cases that ex-

ercise specific sets of conditions and/or loops.

At first glance it would seem that veiy thorough white-box testing would lead to

100 percent correct programs. All we need to do is identify all logical paths, develop

test cases to exercise them, and evaluate results, that is, generate test cases to ex-

ercise program logic exhaustively. Unfortunately, exhaustive testing presents certain

logistical problems (see the sidebar discussion). White-box testing should not, how-
ever, be dismissed as impractical. A limited number of important logical paths can

be selected and exercised, important data structures can be probed for validity.

Exhaustive Testing

Consider the 1 00-line program in the

language C. After some basic data declaration,

the program contains two nested loops that execute from 1

to 20 times each, depending on conditions specified at

input. Inside the interior loop, four if-then-else constructs

are required. There are approximately 10 14
possible paths

that may be executed in this program!

To put this number into perspective, we assume that a

magic test processor ("magic" because no such processor

exists) has been developed for exhaustive testing. The

processor can develop a test case, execute it, and evaluate

the results in one millisecond. Working 24 hours a day,

365 days a year, the processor would work for 31 70

years to test the program. This would, undeniably, cause

havoc in most development schedules.

Therefore, it is reasonable to assert that exhaustive

testing is impossible for large software systems.

)

14.3 White-Box Testing

White-box testing, sometimes called glass-box testing, is a test case design philosophy

that uses the control structure described as part of component-level design to derive

test cases. Using white-box testing methods, the software engineer can derive test

cases that (1) guarantee that all independent paths within a module have been ex-

2 The terms junctional testing and structural testing are sometimes used in place of black-box and

white-box testing, respectively

CHAPTER 14 TESTING TACTICS

ercised at least once (2) exercise all logical decisions on their true and false sides,

(3) execute all loops at their boundaries and within their opeialional bounds, and

(4) exercise internal data structures to ensure their validity.

“Bugs lurk in corners ond congregate ot boundaries."

Boris Beiier

1

A flow graph should be

drown only when the

logical structure of o

component is complex.

The flow groph ollows

you to trace program

paths more reodily.

Basis Path Testing—
Basis path testing is a white-box testing technique first proposed by Tom McCabe

[MCC76]. The basis path method enables the test case designer to derive a logical

complexity measure of a procedural design and use this measure as a guide for defin-

ing a basis set ofexecution paths. Test cases derived to exercise the basis set are guar-

anteed to execute every statement in the program at least one time during testing.

1 4.4. 1 Flow Graph Notation

Before the basis path method can be introduced, a simple notation for the represen-

tation of control flow, called a flow graph (or program graph) must be introduced.3

The flow graph depicts logical control flow using the notation illustrated in Figure

14.1 . Each structured construct (Chapter 1 1) has a corresponding flow graph symbol.

To illustrate the use of a flow graph, we consider the procedural design represen-

tation in Figure 14.2a. Here, a flowchart is used to depict program control structure.

Figure 14.2b maps the flowchart into a corresponding flow graph (assuming that no

compound conditions are contained in the decision diamonds of the flowchart) . Re-

ferring to Figure 14.2b, each circle, called aflowgraph node, represents one or more

procedural statements. A sequence of process boxes and a decision diamond can

map into a single node. The arrows on the flow graph, called edges or links, represent

Flow graph

notation
Sequence

-OQ

The structured constructs in flow graph form:
Case

Where each circle represents one or more

nonbranching PDL or source code statements

3 in actuality, the basis path method can be conducted without the use of flow graphs. However ,
they

serve as a useful notation for understanding control flow and illustrating the approach.

426 PART TWO SOFTWARE ENGINEERING PRACTICE

flow of control and are analogous to flowchart arrows. An edge must terminate at a
node, even if the node does not represent any procedural statements (e.g., see the
flow graph symbol for the if-then-else construct in Figure 14.1). Areas bounded by
edges and nodes are called regions. When counting regions, we include the area out-
side the graph as a region. 4

When compound conditions are encountered in a procedural design, the gener-
ation of a flow graph becomes slightly more complicated. A compound condition

occurs when one or more Boolean operators (logical OR, AND. NAND, NOR) is

present in a conditional statement. Referring to Figure 14.3, the PDL segment
translates into the flow graph shown. Note that a separate node is created for each
of the conditions a and b in the statement IF a OR b. Each node that contains a con-
dition is called a predicate node and is characterized by two or more edges ema-
nating from it.

14.4.2 Independent Program Paths

An independent path is any path through the program that introduces at least one
new set of processing statements or a new condition. When stated in terms of a flow

graph, an independent path must move along at least one edge that has not been
traversed before the path is defined. For example, a set of independent paths for the

flow graph illustrated in Figure 14.2b is:

path 1: l-ll

path 2: 1-2-3-4-5-10-1-11

4 A more detailed discussion of graphs and their uses is presented in Section 14.6. 1

.

CHAPTER 14 TESTING TACTICS
427

Compound
logic

I

Cyclomatic complexity

is a useful metric for

predicting those

modules that are likely

to be error prone. Use

it for test planning as

well os test case

design.

^ How do I

• compute

cyclomatic

complexity?

path 3: 1-2-3-6-8-9-10-1-11

path 4: 1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path

1 -2-3-4-5- 1 0- 1 -2-3-6-8-9- 10-1-11

is not considered to be an independent path because it is simply a combination of al-

ready specified paths and does not traverse any new edges.

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Figure 14.2b. That

is, if tests can be designed to force execution of these paths (a basis set), every state-

ment in the program will have been guaranteed to be executed at least one time, and

every condition will have been executed on its true and false sides. It should be noted

that the basis set is not unique. In fact, a number of different basis sets can be de-

rived for a given procedural design.

How do we know how many paths to look for? The computation of cyclomatic

complexity provides the answer. Cyclomatic complexity is a software metric that pro-

vides a quantitative measure of the logical complexity of a program. When used in

the context of the basis path testing method, the value computed for cyclomatic

complexity defines the number of independent paths in the basis set of a program

and provides us with an upper bound for the number of tests that must be conducted

to ensure that all statements have been executed at least once.

Cyclomatic complexity has a foundation in graph theory and is computed in one

of three ways:

1 . The number of regions corresponds to the cyclomatic complexity.

2. Cyclomatic complexity, V(C), for a flow graph, G, is defined as

V{G) = E - N + 2

where £ is the number of flow graph edges, and N is the number of flow

graph nodes.

428 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
Cyclomatic complexify

provides (tie upper

bound on the numbei

of test coses that will

be required to

guarantee that every

statement in the

program has been

executed of least one

time.

3. Cyclomatic complexity, 1/(C), for a flow graph, G, is also defined as

V[C) = P + l

where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the flow graph in Figure 1 4.2b, the cyclomatic complexity
can be computed using each of the algorithms just noted:

1 . The flow graph has four regions.

2 . V(G) = 1

1

edges - 9 nodes + 2 = 4.

3. V(G) = 3 predicate nodes +1=4.

More important, the value for V(G) provides us with an upper bound for the num-
ber of independent paths that form the basis set and, by implication, an upper bound
on the number of tests that must be designed and executed to guarantee coverage
of all program statements.

SafeHome

Using Cyclomatic Complexity

The scene: Shakira 's cubicle.

The players: Vinod and Shakira—members of the

SafeHome software engineering team who are working

on test planning for the security function.

The conversation:

Shakira: Look ... I know that we should unit test all the

components for the security function, but there are a lot of

'em and if you consider the number of operations that

have to be exercised, I don't know . . . maybe we should

forget white-box testing, integrate everything, and start

running black-box tests.

Vinod: You figure we don't have enough time to do
component tests, exercise the operations, and then

integrate?

Shakira: The deadline for the first increment is getting

doser than I'd like . .
. yeah. I'm concerned.

Vinod: Why don't you at least run white-box tests on
the operations that are likely to be the most error prone?

Shakira (exasperated): And exactly how do I know
which are likely to be the most error prone?

Vinod: V of G.

Shakira: Huh?

Vinod: Cyclomatic complexity—V of G. Just compute

V[G) for each of the operations within each of the

components and see which have the highest values for

V[G). The/re the ones that are most likely to be error

prone.

Shakira: And how do I compute V of G?

Vinod: It's really easy. Here's a book that describes how
to do it.

Shakira (leafing through the pages): Okay, it

doesn't look hard. I'll give it a try. The ops with the

highest V(G) will be the candidates for white-box tests.

Vinod: Just remember that there are no guarantees. A
component with a low V(G) can still be error prone.

Shakira: Alright. But at least this'll help me to narrow

down the number of components that have to undergo

white-box testing.

14.4.3 Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source
code. In this section, we present basis path testing as a series of steps. The proce-

dure average, depicted in PDLin Figure 14.4, will be used as an example to illustrate

CHAPTER 14 TESTING TACTICS
429

PDL With

nodes
identified

PROCEDURE average;

• This procedure computes the average of 100 or fewer

numbers that he between bounding values; it also computes the

sum and the total number valid.

INTERFACE RETURNS average, total.lnput. total.vaM:

INTERFACE ACCEPTS value, minimum, maximum:

TYPE valuefIMOO] IS SCALAR ARRAY:

TYPE average, total.input, total.valid;

minimum, maximum, sum IS 8CALAR:

TYPE I IS INTEGER:

0 * 1
1 total.lnput = total.valid =

^

I sum = 0:

lyDO WHILE valua[i] < > -909 AND total.lnput < 100 3

4 increment total.lnput by 1:

IF valuep] > m minimum AND vakie[i] < = maximum

g
I

THEN Increment total.valid by 1:

“ •* sum = s aum + valuep]

12

EL8E skip

/ endif

' increment I by 1?

9 ENDDO
IF total.valid >0 10

11 THEN average = aum / total.valid:

“ * EL8E average - -999:

13 ENDIF

END overace

e

each step in the test case design method. Note that average, although an extremely

simple algorithm, contains compound conditions and loops. The following steps can

be applied to derive the basis set:

1 . Using the design or code as a foundation, draw a corresponding flow

graph. A flow graph is created using the symbols and construction rules pre-

sented in Section 14.4. 1 . Referring to the PDL for average in Figure 1 4.4, a

flow graph is created by numbering those PDL statements that will be

mapped into corresponding flow graph nodes. The corresponding flow graph

is in Figure 14.5.

2. Determine the cyclomatic complexity of the resultant flow graph. The

cyclomatic complexity, l/(G), is determined by applying the algorithms de-

scribed in Section 14.4.2. It should be noted that V(G) can be determined

without developing a flow graph by counting all conditional statements in

the PDL (for the procedure average, compound conditions count as two) and

adding 1. Referring to Figure 14.5,

V(G) = 6 regions

V(G) = 1 7 edges -
1 3 nodes + 2 = 6

V(0) = 5 predicate nodes +1=6

430 PART TWO SOFTWARE ENGINEERING PRACTICE

Flow graph tor

the procedure
average

3. Determine a basis set of linearly independent paths. The value of
V(C) provides the number of linearly independent paths through the pro-
gram control structure. In the case of procedure average, we expect to

specify six paths:

path 1 : 1-2-10-11-13

path 2: 1-2-10-12-13

path 3: 1-2-3-10-11-13

path 4: 1-2-3-4-5-8-9-2-.
. .

path 5: 1 -2-3-4-S-6-8-9-2-. .

.

path 6: 1 -2-3-4-5-6-7-8-9-2-. .

.

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through
the remainder of the control structure is acceptable. It is often worthwhile to

identify predicate nodes as an aid in the derivation of test cases. In this case,

nodes 2, 3, 5, 6, and 10 are predicate nodes.

4. Prepare test cases that will force execution of each path in the basis
set. Data should be chosen so that conditions at the predicate nodes are ap-

propriately set as each path is tested Each test case is executed and compared
to expected results. Once all test cases have been completed, the tester can be
sure that all statements in the program have been executed at least once.

It is important to note that some independent paths (e g., path 1 in our example)
cannot be tested in stand-alone fashion. That is, the combination of data required to

traverse the path cannot be achieved in the normal flow of the program. In such
cases, these paths are tested as part of another path test.

CHAPTER 14 TESTING TACTICS
431

^ What is a

* graph

matrix, and how

da we extend it

for use in testing?

14.4.4 Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths .

is amenable to mechanization. To develop a software tool that assists in basis path

testing, a datastructure,.calle'd a graph matrix, can be quite useful.

A graph matrix-is a square matrix whose size (i.-e., number of rows and columns)

is equal to the number-of nodes on the flow graph. Each row and column corie-

sponds to an identified node, and matrix entries correspond to connections (an edge)

between nodes. A simple example of a flow graph and its corresponding graph ma-

trix [BEI90] is shown in Figure 14.6.

Referring to the figure, each node on the flow graph is identified by numbers, while

each edge is identified by letters. A letter entry is made in the matrix to correspond to a

connection between two nodes. For example, node 3 is connected to node 4 by edge b.

To this point, the graph matrix is nothing more than a tabular representation of a

flow graph. Fiowever, by adding a link weight to each matrix entry, the graph matrix

can become a powerful tool for evaluating program control structure during testing.

The link weight provides additional information about control flow. In its simplest

form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But

link weights can be assigned other, more interesting properties:

• The probability that a link (edge) will be executed.

• The processing time expended during traversal of a link.

• The memory required during traversal of a link.

• The resources required during traversal of a link.

Beizer [BEI90] provides a thorough treatment of additional mathematical algo-

rithms that can be applied to graph matrices. Using these techniques, the analysis re-

quired to design test cases can be partially or fully automated.

“Paying more attention to running tests than to designing them is o classic mistake.

Brian Marick

432 PART TWO SOFTWARE ENGINEERING PRACTICE

1.4.5 Control Structure Testing

The basis path testing technique described in Section 14.4 is one of a number of
techniques tor control structure testing. Although basis path testing is simple and ef-
fective, it is not sufficient in itself. In this section, variations on control structure test-

ing are discussed briefly. These broaden testing coverage and improve quality of
white-box testing.

r
POINT

Errors ore mudi more

common in the

neighborhood of

logicol conditions thon

they ore in the locus of

sequential processing

statements.

14.5.1 Condition Testing

Condition testing |TAI89] is a test case design method that exercises the logical con-
ditions contained in a program module. A simple condition is a Boolean variable or a
relational expression, possibly preceded with one NOT (-4 operator. A relational ex-
pression takes the form

E, <relational-operator> E2

where £, and E2 are arithmetic expressions and <relationaI-operator> is one of the
following: c, s, =, ^ (nonequality), >, or 2 . A compound condition is composed of
two or more simple conditions, Boolean operators, and parentheses. We assume
that Boolean operators allowed in a compound condition include OR (|), AND (&)
and NOT H. A condition without relational expressions is referred to as a Boolean
expression. Therefore, the possible types of elements in a condition include a
Boolean operator, a Boolean variable, a pair ofparentheses (surrounding a simple or
compound Boolean condition), a relational operator, or an arithmetic expression.

If a condition is incorrect, then at least one component of the condition is incor-
rect. Therefore, types of errors in a condition include Boolean operator errors

(incorrect/missing/extra Boolean operators), Boolean variable errors, Boolean
parenthesis errors, relational operator errors, and arithmetic expression errors. The
condition testing method focuses on testing each condition in the program to ensure
that it does not contain errors.

14.5.2 Data Flow Testing

The dataflow testing method selects test paths of a program according to the loca-

tions of definitions and uses of variables in the program.To illustrate the data (low
testing approach, assume that each statement in a program is assigned a unique
statement number and that each function does not modify its parameters or global
variables. For a statement with S as its statement number,

DEF(S) = (X I statement S contains a definition ofX)
USE(S) = {X I statement S contains a use of X)

If statement S is an //or loop statement, its DEF set is empty and its USE set is based
on the condition of statement S. The definition of variable X at statement S is said to

CHAPTER 14 TESTING TACTICS 433

It is unrealistic to

assume that data flow

testing will be used'

extensively when

testing a large system.

However, it con be

used in a targeted

fashion for areas of

software that are

suspect.

be live at statement S' if there exists a path from statement S to statement S' that

contains no other definition of X.

A definition use tDU) chain of variable X is of the form [X, S, S'] ,
where S and S' are

statement numbers, X is in DEF(5) and USE(S'), and the definition ofX in statement

S is live at statement S'

One simple data flow testing strategy is to require that every DU chain be covered

at least once. We refer to this strategy as the DU testing strategy. It has been shown

that DU testing does not guarantee the coverage of all branches of a program. How-

ever, a branch is not guaranteed to be covered by DU testing only in rare situations

such as if-then-else constructs in which the then part has no definition of any vari-

able and the else part does not exist. In this situation, the else branch of the ifstate-

ment is not necessarily covered by DU testing. A number of data flow testing

strategies have been studied and compared (e.g., [FRA88], [NTA88], [FRA93]). The in-

terested reader is urged to consider these other references.

"Good testers are masters at noticing 'something funny' and acting on it."

Brian Marick

14.5.3 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in soft-

ware. And yet, we often pay them little heed while conducting software tests.

Loop testing is a white-box testing technique that focuses exclusively on the va-

lidity of loop constructs. Four different classes of loops [BEI90] can be defined: sim-

ple loops, concatenated loops, nested loops, and unstructured loops (Figure 14.7).

434 PART TWO SOFTWARE ENGINEERING PRACTICE

Simple loops. The following set- of tests can be applied to simple loops, where n

is the maximum number of allowable passes through the loop.

1 . Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -
1 . n. n +

1 passes through the loop.

Nested loops. If we were to extend the test approach for simple loops to nested

loops, the number of possible tests would grow geometrically as the level of nesting

increased. This would result in an impractical number of tests. Beizer [BEI90] sug-

gests an approach that will help to reduce the number of tests:

1 . Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer

loops at their minimum iteration parameter (e.g., loop counter) values. Add

other tests for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer

loops at minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

You :on't test unstruc-

tured loops effectively.

Redesign litem.

Concatenated loops. Concatenated loops can be tested using the approach de-

fined for simple loops, if each of the loops is independent of the other However, if

two loops are concatenated and the loop counter for loop 1 is used as the initial value

for loop 2, then the loops are not independent. When the loops are not independent,

the approach applied to nested loops is recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned

to reflect the use of the structured programming constructs (Chapter II).

14^ . Black-Box Testing

Black-box testing, also called behavioral testing, focuses on the functional require-

ments of the software. That is, black-box testing enables the software engineer to

derive sets of input conditions that will fully exercise all functional requirements for

a program. Black-box testing is not an alternative to white-box techniques. Rather,

it is a complementary approach that is likely to uncover a different class of errors

than white-box methods.

Black-box testing attempts to find errors in the following categories: (1) incorrect or

missing functions, (2) interface errors, (3) errors in data structures or external data base

access, (4) behavior or performance errors, and (5) initialization and termination errors.

CHAPTEK 14 TESTING TACTICS 435

Unlike white-box testing, which is performed early in the testing process, black-

box testing tends to be applied during later stages of testing (see Chapter 13). Be-

cause black-box testing puiposely disregards control structure, attention is focused

on the information domain. Tests are designed to answer the following questions:

9 What

* questions do

black-box tests

answer?

• How is functional validity tested?

• How are system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

By applying black-box techniques, we derive a set of test cases that satisfy the fol-

lowing criteria [MYE791
:

(1)
test cases that reduce, by a count that is greater than one,

the number of additional test cases that must be designed to achieve reasonable test-

ing, and (2) test cases that tell us something about the presence or absence of classes

of errors, rather than an error associated only with the specific test at hand.

POINT
A graph represents the

relationships between

dote objects and

program objects,

enabling us to derive

test cases that search

for errors associated

with these

relationships.

14.6.1 Graph-Based Testing Methods

The first step in black-box testing is to understand the objects5 that are modeled in

software and the relationships that connect these objects. Once this has been ac-

complished, the next step is to define a series of tests that verify "all objects have the

expected relationship to one another" [BEI95], Stated in another way, software test-

ing begins by creating a graph of important objects and their relationships and then

devising a series of tests that will cover the graph so that each object and relation-

ship is exercised and errors are uncovered.

To accomplish these steps, the software engineer begins by creating a graph—a

collection of nodes that represent objects; links that represent the relationships be-

tween objects; node weights that describe the properties of a node (e g., a specific

data value or state behavior); and link weights that describe some characteristic of

a link.

The symbolic representation of a graph is shown in Figure 14.8a. Nodes are rep

resented as circles connected by links that take a number of different forms. A di-

rected link (represented by an arrow) indicates that a relationship moves in only one

direction. A bidirectional link

,

also called a symmetric link, implies that the relation-

ship applies in both directions. Parallel links are used when a number of different re-

lationships are established between graph nodes.

5 In this context, we consider the term "objects" in the broadest possible context. It encompasses data

objects, traditional components (modules), and object-oriented elements of computer software.

436 PART TWO SOFTWARE ENGINEERING PRACTICE

(a) Graph
notation,

(b) simple

example

Object

#3

(o)

'Document! or preferences

i text 1 Background color: white

Contains Start dimension: default setting

Text color: default color

(b) or preferences

As a simple example, consider a portion of a graph for a word-processing appli-

cation (Figure 14.8b) where

Object #

1

= newFile (menu selection)

Object #

2

= documentWindow

Object #3 = documentText

Referring to the figure, a menu select on newFile generates a document window.

The node weight of documentWindow provides a list of the window attributes

that are to be expected when the window is generated. The link weight indicates

that the window must be generated in less than 1 .0 second. An undirected link es-

tablishes a symmetric relationship between the newFile menu selection and doc-

umentText, and parallel links indicate relationships between documentWindow

and documentText. In reality, a far more detailed graph would have to be gener-

ated as a precursor to test case design. The software engineer then derives test

cases by traversing the graph and covering each of the relationships shown. These

test cases are designed in an attempt to find errors in any of the relationships.

Beizer [BEI95] describes a number of behavioral testing methods that can make

use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction (e.g.,

the steps required to make an airline reservation using an on-line service), and the

links represent the logical connection between steps. The data flow diagram

(Chapter 8) can be used to assist in creating graphs of this type.

CHAPTER 14 TESTING TACTICS 437

Input dosses are

known relatively early

in the software

process. For this

reason, begin thinking

about eguivalence

partitioning os the

design is created.

^ How do 1

• define

equivalence

classes for

testing?

Finite state modeling. The nodes represent different user observable states of

the software (e.g„ each of the "screens" that appear as an order entry clerk takes a

phone order), and the links represent the transitions that occur to move from state

to state. The state diagram (Chapter 8) can be used to assist in creating graphs of

this type.

Data flow modeling. The nodes are data objects, and the links are the transfor-

mations that occur to translate one data object into another. For example, the node

FICA tax withheld (FTW) is computed from gross wages (GW) using the rela-

tionship, FTW = 0.62 x GW.

Timing modeling. The nodes are program objects, and the links are the sequen-

tial connections between those objects. Link weights are used to specify the re-

quired execution times as the program executes.

A detailed discussion of each of these graph-based testing methods is beyond the

scope of this book. The interested reader should see [BEI95] for comprehensive

coverage.

14.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain

of a program into classes of data from which test cases can be derived. An ideal test

case single-handedly uncovers a class of errors (e.g.
,
incorrect processing of all char-

acter data) that might otherwise require many cases to be executed before the gen-

eral error is observed. Equivalence partitioning strives to define a test case that

uncovers classes of errors, thereby reducing the total number of test cases that must

be developed.

Test case design for equivalence partitioning is based on an evaluation of equiv-

alence classes for an input condition. Using concepts introduced in the preceding

section, if a set of objects can be linked by relationships that are symmetric, transi-

tive, and reflexive, an equivalence class is present IBE195], An equivalence class rep-

resents a set of valid or invalid states for input conditions. Typically, an input

condition is either a specific numeric value, a range of values, a set of related values,

or a Boolean condition. Equivalence classes may be defined according to the fol-

lowing guidelines:

1 . if an input condition specifies a range, one valid and two invalid equivalence

classes are defined.

2. If an input condition requires a specific value, one valid and two invalid

equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid

equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

438 PART TWO SOFTWARE ENGINEERING PRACTICE

By applying these guidelines for the derivation of equivalence classes, test cases

for each input domain data object can be developed and executed. Test cases are

selected so that the largest number of attributes of an equivalence class are exer-

cised at once.

14.6.3 Boundary Value Analysis

<5£

POINT
BVA extends

equivalence portioning

by focusing on doro of

Itie "edges" of on

equivalence cbss.

A greater number of errors occurs at the boundaries of the input domain rather than

in the "center." It is for this reason that boundary value analysis (BVA) has been de-

veloped as a testing technique. BVA leads to a selection of test cases that exercise

bounding values.

Boundary value analysis is a test case design technique that complements equiva-

lence partitioning. Rather than selecting any element of an equivalence class, BVA

leads to the selection of test cases at the "edges" of the class. Rather than focusing

solely on input conditions, BVA derives test cases from the output domain as well

[MYE79].

Guidelines for BVA are similar in many respects to those provided for equivalence

partitioning:

How do I

• create BVA

test cases?

1

.

If an input condition specifies a range bounded by values a and b, test cases

should be designed with values a and b as well as just above and just below

a and b.

2 . if an input condition specifies a number of values, test cases should be devel-

oped that exercise the minimum and maximum numbers. Values just above

and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a

temperature vs. pressure table is required as output from an engineering

analysis program. Test cases should be designed to create an output report

that produces the maximum (and minimum) allowable number of table

entries.

4.

if internal program data structures have prescribed boundaries (e.g., an array

has a defined limit of 100 entries), be certain to design a test case to exercise

the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying these

guidelines, boundary testing will be more complete, thereby having a higher likeli-

hood for error detection.

"The Arione 5 rocket blew up on lift-off due solely to o software defect (a bug) involving the conversion of a 64-bit

floating point value into a 1 6-bit integer. The rocket ond its four satellites were uninsured ond worth S500 million. A

comprehensive system test would have found the bug but wos vetoed for budgetary reasons.'

A news report

CHAPTER 14 TESTING TACTICS 439

POINT
Orthogonol orroy

testing enables you to

design test coses that

provide maximum test

coverage with a

reasonable number of

test coses.

14.6.4 Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That

is, the number of input parameters is small and the values that each of the pa-

rameters may take are clearly bounded. When these numbers are very small (e.g.,

three input parameters taking on three discrete values each), it is possible to con-

sider every input permutation and exhaustively test processing of the input do-

main. However, as the number of input values grows and the number of discrete

values for each data item increases, exhaustive testing becomes impractical or im-

possible.

Orthogonal array testing can be applied to problems in which the input domain

is relatively small but too large to accommodate exhaustive testing. The orthogo-

nal array testing method is particularly useful in finding errors associated with re

gion faults—an error category associated with faulty logic within a software

component'.

To illustrate the difference between orthogonal array testing and more conven-

tional "one input item at a time" approaches, consider a system that has three input

items, X, Y, and Z. Each of these input items has three discrete values associated with

it. There are 33 = 27 possible test cases. Phadke [PHA97] suggests a geometric view

of the possible test cases associated withX, Y, and Z illustrated in Figure 14.9. Refer-

ring to the figure, one input item at a time may be varied in se'quence along each in-

put axis. This results in relatively limited coverage of the input domain (represented

by the left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is cre-

ated. The L9 orthogonal array has a "balancing property [PHA97]." That is, test-cases

(represented by blue dots in the figure) are "dispersed uniformly throughout the test

domain," as illustrated in the right-hand cube in Figure 14.9. Test coverage across

the input domain is more complete.

A geometric

view ot test

cases [PHA97]

•

• t ,
1 •

>

V
W

\
^

X—
One input item at a time L9 orthogonal array

440 PART TWO SOFTWARE ENGINEERING PRACTICE

To illustrate the use of the L9 orthogonal array, consider the send function for a

fax application. Four parameters, PI
,
P2, P3, and P4, are passed to the send function.

Each takes on three discrete values. For example, Pi takes on values:

PI = 1, send it now
PI = 2, send it one hour later

PI = 3, send it after midnight

P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send

functions.

If a "one input item at a time” testing strategy were chosen, the following se-

quence of tests (PI, P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1),

(1,2, 1, 1), (1,3, l, 1), (l, 1,2, 1),(1, 1,3, 1), (l, 1,1,2), and (1, 1, 1,3). Phadke [PHA97]

assesses these test cases by stating:

Such test cases are useful only when one is certain that these test parameters do not in-

teract. They can detect logic faults where a single parameter value makes the software

malfunction. These faults are called single modefaults. This method cannot detect logic

faults that cause malfunction when two or more parameters simultaneously take certain

values; that is, it cannot detect any interactions. Thus its ability to detect faults is limited.

Given the relatively small number of input parameters and discrete values, exhaus-

tive testing is possible. The number of tests required is 34 = 81, large, but manage-

able. All faults associated with data item permutation would be found, but the effort

required is relatively high.

The orthogonal array testing approach enables us to provide good test coverage

with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for the

fax send function is illustrated in Figure 14.10.

An L9 orthog-

onal array

Test

case
Test parameters

Pi P
2

P
3

P<

i i 1 1 I

2 i 2 2 2

3 i 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

CHAPTER 14 TESTING TACTICS
441

Phadke |PHA97) assesses the result of tests using the L9 orthogonal array in the

following manner:

Detect and isolate all single mode faults. A single mode fault is a consistent problem

with any level of any single parameter. For example, if all test cases of iactor P 1 = l cause

an error condition, it is a single mode failure. In this example, tests 1, 2, and 3 (Figure

14.10] will show errors By analyzing the information about which tests show errors, one

can identify which parameter values cause the fault. In this example, by noting that tests

1 , 2, and 3 cause an error, one can isolate [logical processing associated with "send it now"

(PI = 1)1 as the source of the error. Such an isolation of fault is important to fix the fault.

Detect all double mode faults. If there exists a consistent problem when specific

levels of two parameters occur together, it is called a double modefault. Indeed, a double

mode fault is an indication of pairwise incompatibility or harmful interactions between

two test parameters.

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of

only single and double mode faults. However, many multimode faults are also detected

by these tests.

A detailed discussion of orthogonal array testing can be found in [PHA89]

Test Case Design

Objective: To assist the software team in

developing a complete set of test cases for both

black-box and white-box testing.

Mechanics: These tools fall into two broad categories:

static testing and dynamic testing. Three different types of

static testing tools are used in the industry: code-based

testing tools, specialized testing languages, and

requirements-based testing tools. Code-based testing tools

accept source code as input and perform a number of

analyses that result in the generation of test cases.

Specialized testing languages (e g., ATLAS) enable a

software engineer to write detailed test specifications that

describe each test case and the logistics for its execution.

Requirements-based testing tools isolate specific user

requirements and suggest test cases (or classes of tests)

that will exercise the requirements. Dynamic testing tools

interact with an executing program, checking path

coverage, testing assertions about the value of specific

variables, and otherwise instrumenting the execution flow

of the program.

Software Tools
\

Representative Tools6

McCabe Test, developed by McCabe & Associates

(www.mccabe.com), implements a variety of path

testing techniques derived from an assessment of

cyclomatic complexity and other software metrics.

Panorama, developed by International Software

Automation, Inc. (www.softwareautomation.com),

encompasses a complete set of tools for object-oriented

software development including tools that assist test

case design and test planning.

TestWorks, developed by Software Research, Inc,

(www. soft.com/Products), is a complete set of

automated testing tools that assists in the design of test

cases for software developed in C/C++ and Java and

provides support for regression testing.

T-Vec Test Generation System, developed by T-VEC

Technologies (www.t-vec.com), is a tool set that

supports unit, integration, and validation testing by

assisting in the design of test cases using information

contained in an OO requirements specification.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

442 PART TWO SOFTWARE ENGINEERING PRACTICE

14,7 Object-Oriented Testing Method
The architecture of object-oriented software results in a series of layered subsystems
that encapsulate collaborating classes. Each of these system elements (subsystems
and classes) perform functions that help to achieve system requirements. It is nec-
essaty to test an OO system at a variety of different levels to uncover errors that may
occur as classes collaborate with one another and subsystems communicate across
architectural layers.

Object-oriented testing is strategically similar to the testing of conventional sys-
tems, but it is tactically different. Because OO analysis and design models are similar
in structure and content to the resultant OO program, "testing" can begin with the re-

view of these models. Once code has been generated, actual OO testing begins "in

the small" with a series of tests designed to exercise class operations and examine
whether errors exist as one class collaborates with other classes. As classes are inte-

grated to form a subsystem, use-based testing, along with fault-based approaches, is

applied tc luily exercise collaborating classes. Finally, use-cases are used to uncover
errors at the software validation level.

Conventional test case design is driven by an input-process-output view of soft-

ware or the algorithmic detail of individual modules. Object-oriented testing focuses
on designing appropriate sequences of operations to exercise the states of a class.

WebRef
An excellent collection

of popers ood resources

on 00 testing con be

found ot .

www.rbsc.cont.

14.7.1 The Test Case Design Implications of OO Concepts

As a class evolves through the analysis and design models, it becomes a target for
test case design. Because attributes and operations are encapsulated, testing

operations outside of the class is generally unproductive. Although encapsulation is

an essential design concept for OO, it can create a minor obstacle when testing. As
Binder [BIN94] notes, "Testing requires reporting on the concrete and abstract state

of an object. Yet, encapsulation can make this information somewhat difficult to ob-
tain. Unless built-in operations are provided to report the values for class attributes,

a snapshot of the state of an object may be difficult to acquire.

inheritance also leads to additional challenges for the test case designer. We
have already noted that each new context of usage requires retesting, even though
reuse has been achieved. In addition, multiple inheritance 7 complicates testing fur-

ther by increasing the number of contexts for which testing is required [B1N94], If

subclasses instantiated from a superclass are used within the same problem do-
main, it is likely that the set of test cases derived for the superclass can be used
when testing the subclass. However, if the subclass is used in an entirely different

context, the superclass test cases will have little applicability and a new set of tests

must be designed.

7 An oo concept that should be used with extreme care.

CHAPTER 14 TESTING TACTICS
443

POINT
The strategy for fault-

based testing is to

hypothesize a set of

plausible faults and

then derive tests to

prove each hypothesis.

What types

• of faults are

encountered in

operation calls

and message

connections?

14.7.2 Applicability of Conventional Test Case Design Methods

The white-box testing methods described in earlier sections can be applied to the op-

erations defined tor a class. Basis path, loop testing, or data flow techniques can help

to ensure that every statement in an operation has been tested. However, the con-

cise structure of many class operations causes some to argue that the effort applied

to white-box testing might be better redirected to tests at a class level.

Black box testing methods are as appropriate for OO systems as they are for sys-

tems developed using conventional software engineering methods. As we noted ear-

lier in this chapter, use-cases can provide useful input in the design of black-box and

state based tests [AMB95],

14.7.3 Fault-Based Testing 8

The objective offault-based testing within an OO system is to design tests that have

a high likelihood of uncovering plausible faults. Because the product or system must

conform to customer requirements, the preliminary planning required to perform

fault-based testing begins with the analysis model. The tester looks for plausible

faults (i.e.
,
aspects of the implementation of the system that may result in defects).

To determine whether these faults exist, test cases are designed to exercise the de-

sign or code.

Of course, the effectiveness of these techniques depends on how testers perceive

a plausible fault. If real faults in an OO system are perceived to be implausible, then

this approach is really no better than any random testing technique. However, if the

analysis and design models can provide insight into what is likely to go wrong, then

fault-based testing can find significant numbers of errors with relatively low expen-

ditures of effort.

Integration testing (when applied in an OO context) looks for plausible faults in

operation calls or message connections. Three types of faults are encountered in

this context: unexpected result, wrong operation/message used, incorrect invoca-

tion. To determine plausible faults as functions (operations) are invoked, the be-

havior of the operation must be examined.

integration testing applies to attributes as well as to operations. The "behaviors"

of an object are defined by the values that its attributes are assigned. Testing should

exercise the attributes to determine whether proper values occur for distinct types of

object behavior.

It is important to note that integration testing attempts to find errors in the client

object, not the server. Stated in conventional terms, the focus of integration testing is

8 Sections 14.7.3 through 14.7.6 have been adapted from an article by Brian Marick posted on the In-

ternet newsgroup comp, testing. This adaptation is included with the permission of the author. For

further .information on these topics, see [MAR94] It should be noted that the techniques discussed

in Sections 14.7.3 through 14.7.6 are also applicable for conventional software.

444

%
POINT

Even though c Erase

doss has been

thoroughly tested, you

will still hove to test oil

dosses derived from it.

POINT
Scenorio-bosed testing

will uncover errors thot

occur when any octor

interacts with the

software.

PART TWO SOFTWARE ENGINEERING PRACTICE

to determine whether errors exist in the calling code, not the called code. The opera-

tion call is used as a clue, a way to find test requirements that exercise the calling code.

'If you wont ond expect o program to work, you will more likely see a working program—you will miss failures."

I Cem Kaiter et of.

14.7.4 Test Cases and Class Hierarchy

Inheritance does not obviate the need for thorough testing of all derived classes. In

fact, it can actually complicate the testing process. Consider the following situation.

A class Base contains operations inherited!) and redefined!). A class Derived rede-

fines redefined!

,

to serve in a local context. There is little doubt the Derived::redefin«d()

has to be tested because it represents a new design and new code. But does De-

rived::inherited() have to be retested?

If Derived::inherited() calls redefined() and the behavior of redefined!) has changed,

Derived::inherited() may mishandle the new behavior. Therefore, it needs new tests

even though the design and code have not changed. It is important to note, however,
that only a subset of all tests for Derfved::inherHed() may have to be conducted. If part

of the design and code for inheritedo does not depend on redefined!) (i.e., that does
not call it, nor any code that indirectly calls it), that code need not be retested in the

derived class.

Base::redef!ned() and Derived::redefined(j are two different operations with different

specifications and implementations. Each would have a set of test requirements de-

rived from the specification and implementation. Those test requirements probe for

plausible faults: integration faults, condition faults, boundary faults, and so forth. But

the operations are likely to be similar. Their sets of test requirements will overlap. The
better the OO design, the greater is the overlap. New tests need to be derived only for

those Derived::redefined() requirements that are not satisfied by the Base:.-redefined() tests.

To summarize, the Base::redefined() tests are applied to objects Of class Derived. Test

inputs may be appropriate for both base and derived classes, but the expected results

may differ in the derived class.

14.7.5 Scenario-Based Testing

Fault-based testing misses two main types of errors: (1) incorrect specifications and

(2) interactions among subsystems. When errors associated with incorrect specifi-

cations occur, the product doesn't do what the customer wants. It might do the

wrong thing, or it might omit important functionality. But in either circumstance,

quality (conformance to requirements) suffers. Errors associated with subsystem in-

teractions occur when the behavior of one subsystem creates circumstances (e.g.,

events, data flow) that cause another subsystem to fail.

Scenario-based testing concentrates on what the user does, not what the product

does. This means capturing the tasks (via use-cases) that the user has to perform,

then applying them and their variants as tests.

CHAPTER 14 TESTING TACTICS
445

Although scenario-

based testing has

merit, you will get a

higher return on time

invested by reviewing

usecases when they

ate developed as part

of the analysis model.

Scenarios uncover interaction errors. But to accomplish this, test cases must be

more complex and more realistic than fault-based tests. Scenario-based testing

tends to exercise multiple subsystems in a single test (users do not limit themselves

to the use of one subsystem at a time).

As an example, consider the design of scenario-based tests for a text editor by re-

viewing the informal use-cases that follow:

Use-Case: Fix the Final Draft

Background: It's not unusual to print the "final" draft, read it, and discover some an-

noying errors that weren't obvious from the on-screen image. This use-case describes the

sequence of events that occurs when this happens.

1 . Print the entire document.

2. Move around in the document, changing certain pages.

3. As each page is changed, it's printed.

4. Sometimes a series of pages is printed.

This scenario describes two things: a test and specific user needs. The user needs are

obvious: (1) a method for printing single pages and (2) a method for printing a range of

pages. As far as testing goes, there is a need to test editing after printing (as well as the

reverse). The tester hopes to discover that the printing function causes errors in the ed-

iting function; that is,' that the two software functions are not properly independent.

Use-Case: Print a New Copy

Background: Someone asks the user for a fresh copy of the document. It must be

printed.

1 . Open the document.

2. Print it.

3. Close the document.

Again, the testing approach is relatively obvious, except that this document didn't ap-

pear out of nowhere. It was created in an earlier task. Does that task affect this one?

In many modem editors, documents remember how they were last printed. By de-

fault, they print the same way the next time. After the Fix the Final Draft scenario, just

selecting "Print" in the menu and clicking the Print button in the dialog box will cause

the last corrected page to print again. So, according to the editor, the correct sce-

nario should look like this:

Use-Case: Print a New Copy

1. Open the document.

2. Select ' Print' in the menu.

3. Check if you're printing a page range; if so, click to print the entire document.

4. Click on the Print button.

5. Close the document.

446 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
Testing surfoce

structure is analogous

to black-box testing.

Deep structure testing

is similar to white-box

testing.

But this scenario indicates a potential specification error. The editor does not do
what the user reasonably expects it to do. Customers will often overlook, the
check noted in step 3 above. They will then be annoyed when they trot off to the
printer and find one page when they wanted 100. Annoyed customers signal
specification bugs.

A test case designer might miss this dependency in test design, but it is likely that
the problem would surface during testing. The tester would then have to contend
with the probable response, "That’s the way it's supposed to work!"

14.7.6 Testing Surface Structure and Deep Structure

Surface structure refers to the externally observable structure of an OO program. That
is, the structure that is immediately obvious to an end-user. Rather than performing
functions, the users ofmany OO systems may be given objects to manipulate in some
way. But whatever the interface, tests are still based on user tasks. Capturing these
tasks involves understanding, watching, and talking with representative users (and
as many nonrepresentative users as are worth considering).

There will surely be some difference in detail. For example, in a conventional sys-
tem with a command -oriented interface, the user might use the list of all commands
as a testing checklist, if no test scenarios exist to exercise a command, testing has
likely overlooked some user tasks (or the interface has useless commands). In an ob-
ject-based interface, the tester might use the list of all objects as a testing checklist.

The best tests are derived when the designer looks at the system in a new or un-
conventional way. For example, if the system or product has a command-based in-

terface, more thorough tests will be derived if the test case designer pretends that

operations are independent of objects. Ask questions like, "Might the user want to use
this operation—which applies only to the Scanner object—while working with the
printer?" Whatever the interface style, test case design that exercises the surface

structure should use both objects and operations as clues leading to overlooked tasks.

Deep structure refers to the interna! technical details of an OO program. That is,

the structure that is understood by examining the design and/or code. Deep struc-

ture testing is designed to exercise dependencies, behaviors, and communication
mechanisms that have been established as part of the design model (Chapters 9
through 12) for OO software.

The analysis and design models are used as the basis for deep structure testing.

For example, the UML collaboration diagram or the deployment model depicts col-

laborations between objects and subsystems that may not be externally visible. The
test case designer then asks: Have we captured (as a test) some task that exercises
the collaboration noted on the collaboration diagram? If not, why not?

"Be not ashamed of mistakes and thus moke them crimes."

Confudus

CHAPTER 14 TESTING TACTICS 447

Jbe number of possible

permutahons for

rcndom testing con

grow guite large. A

strategy similor to

orthogonal array

testing can be used to

improve testing

efficiency.

Testing Methods Applicable at the CLASS L fcm
In Chapter 13, we noted that software testing begins "in the small" and slowly pro-

gresses toward testing "in the large." Testing in the small tocuses on a single class

and the methods that are encapsulated by the class. Random testing and partition-

ing are methods that can be used to exercise a class during OO testing [K1R94|.

14.8.1 Random Testing for OO Classes

To provide brief illustrations of these methods, consider a banking application in

which an Account class has the following operations: open/), setup!), deposit!), with-

draw!), balance!), summarize/), creditLimitf), and close!) [KIR94], Each of these opera-

tions may be applied for Account, but certain constraints (e.g., the account must be

opened before other operations can be applied and closed after all operations are

completed) are implied by the nature of the problem. Even with these constraints,

there are many permutations of the operations. The minimum behavioral life history

of an instance of Account includes the following operations-.

open • setup * deposit • withdraw • close

This represents the minimum lest sequence for Account. However, a wide variety

of other behaviors may occur within this sequence:

open • setup • deposit • [deposit
|

withdraw I
balance

|

summarize
|

creditLimitp • withdraw • close

A variety of different operation sequences can be generated randomly. For example:

Test case r,.- open • setup • deposit • deposit • balance • summarize • withdraw • close

Test Case r/. open • setup • deposit • withdraw • deposit • balance • creditLimit • withdraw • dose

These and other random order tests are conducted to exercise different class in-

stance life histories.

SafeHome

Class Testing

The scene: Shakira's cubicle.

The ployers: Jomie and Shakira—members of the

SafeHome software engineering team who are working

on test case design for the security function.

The conversation:

Shakira: I've developed some tests for the Detector

class [Figure 1 1 .4)—you know, the one that allows access

to all of the Sensor objects for the security function. You.

familiar with it?

Jamie (laughing): Sure, it's the one that allowed you

to add the "doggie angst" sensor.

Shakira: The one and only. Anyway, it has an interface

with four ops: read(), enabled, disabled,
and testf).

Before a sensor can be read, it must be enabled Once it's

448 PART TWO SOFTWARE ENGINEERING PRACTICE

enabled, it can be read and tested. It can be disabled at

any time, except if an alarm condition is being processed.

So I defined a simple test sequence that will exercise its

behavioral life history.

{Shows Jamie the following sequence,}

#1: enable* Jest "read ’disable

Jamie: That'll work, but you've got to do more testing

than that!

Shakira: I know, I know. Here are some other

sequences I've come up with.

(She shows Jamie the following sequences.)

#2: enable* test •[read]”* test * disable

#3: [read]"

#4: enable "disable* [test
|

read]

Jamie: So let me see if I understand the intent of these.

#1 goes through a normal life history, sort of a

conventional usage. #2 repeats the read operation n

times, and that's a likely scenario. #3 tries to read the

sensor before it's been enabled . . . that should produce

on error message of some kind, right? #4 enables and
disables the sensor and then tries to read it. Isn't that the

same as test #3?

Shakira: Actually no. In #4, the sensor has been

enabled. What #4 really tests is whether the disable op
works as it should. A reod() or test() after disable!) should

generate the error message. If it doesn't, then we have an
error in the disable op.

Jamie: Cool. Just remember that the four tests have to

be applied for every sensor type since all the ops may be
subtly different depending on the type of sensor.

Shakira: Not to worry. That's the plan.

What testing

• options are

available at the

dass level?

14.8.2 Partition Testing at the Class Level

Partition testing reduces the number of test cases required to exercise the class in

much the same manner as equivalence partitioning (Section 1 4.6.2) for conventional

software. Input and output are categorized and test cases are designed to exercise

each category. But how are the partitioning categories derived?

State-based partitioning categorizes class operations based on their ability to

change the state of the class. Again considering the Account class, state opera-

tions include depositf) and withdrawn, whereas nonstate operations include bal

ance<), summarized, and creditLimit(). Tests are designed in a way that exercises

operations that change state and those that do not change state separately.

Therefore,

Test case P > : open • setup • deposit • deposit • withdraw • withdraw * close

Test Case py. open*setup*deposrt*summarize*credrtLimit*withdraw*close

Test casep, changes state, while test casep2 exercises operations that do not change
state (other than those in the minimum test sequence).

Attribute-based partitioning categorizes class operations based on the attributes

that they use. For the Account class, the attributes balance and creditLimit can be used

to define partitions. Operations are divided into three partitions: (1) operations that

use creditLimit, (2) operations that modify creditLimit, and (3) operations that do not use
or modify oreditLimit. Test sequences are then designed for each partition.

Category-based partitioning categorizes class operations based on the generic

function that each performs. For example, operations in the Account class can be

CHAPTER 14 TESTING TACTICS 449

categorized as initialization operations—open(), setup!), computational operations—
deposit!), withdraw!), queries—balanced, summarize!), creditLimitO)

and termination

operations—dosed.

14.9 InterClass Test Case Design

Test case design becomes more complicated as integration of the object-oriented

system begins. It is at this stage that testing of collaborations between classes must

begin. To illustrate "interclass test case generation" [K1R94], we expand the banking

example introduced in Section 14.8 to include the classes and collaborations noted

in Figure 14.1 1. The direction of the arrows in the figure indicates the direction of

messages, and the labeling indicates the operations that are invoked as a conse-

quence of the collaborations implied by the messages.

Like the testing of individual classes, class collaboration testing can be accom-

plished by applying random and partitioning methods, as well as scenario-based

testing and behavioral testing.

14.9.1 Multiple Class Testing

Kirani and Tsai [K1R94] suggest the following sequence of steps to generate multiple

class random test cases:

1 . For each client class, use the list of class operations to generate a series of

random test sequences. The operations will send messages to other server

classes.

2. For each message that is generated, determine the collaborator class and the

corresponding operation in the server object.

Class collabo-

ration diagram
for banking
application

(adapted from

[KIR94])

cardlnserted

possword

deposit

withdraw

accntStatus

verifyAcct

verifyPIN

verifyPolicy

withdrawReq

depositReq

450 PART TWO SOFTWARE ENGINEERING PRACTICE

3. For each operation in the server object (that has been invoked by messages

sent from the client object), determine the messages that it transmits.

4. For each of the messages, determine the next level of operations that are in-

voked and incorporate these into the test sequence.

To illustrate 1KIR94], consider a sequence of operations for the Bank class relative

to an ATM class (Figure 14.1 1):

verifyAcct • verifyPIN • [[verifyPolicy •withdrawReq]
|

depositReq
|
acctlnfoREQ]"

A random test case for the Bank class might be

Test case r3 = verifyAcct • verifyPIN • depositReq

In order to consider the collaborators involved in this test, the messages associated

with each of the operations noted in test case i\ is considered. Bank must collabo-

rate with Validationlnfo to execute verifyAcct)) and verifyPIN)). Bank must collabo-

rate with Account to execute depositReq)). Hence, a new test case that exercises

these collaborations is

Test case r4
— verifyAccfBank]vaiidAcoiValide+ion Info] * verifyPINBenk *

[validPinValidationlnfo] • depositReq • [depositaccount]

The approach for multiple class partition testing is similar to the approach used

for partition testing of individual classes. A single class is partitioned as discussed in

Section 14.8.2. However, the test sequence is expanded to include those operations

that are invoked via messages to collaborating classes. An alternative approach par-

titions tests based on the interfaces to a particular class. Referring to Figure 14. 1 1,

the Bank class receives messages from the ATM and Cashier classes. The methods

within Bank can therefore be tested by partitioning them into those that serve ATM
and those that serve Cashier. State-based partitioning (Section 14.8.2) can be used

to refine the partitions further

14.9.2 Tests Derived from Behavior Models

In Chapter 8, we discussed the use of the state diagram as a model that represents

the dynamic behavior of a class. The state diagram for a class can be used to help

derive a sequence of tests that will exercise the dynamic behavior of the class (and

those classes that collaborate with it). Figure 14.12 [KIR94] illustrates a state diagram

for the Account class discussed earlier. Referring to the figure, initial transitions

move through the empty acct and setup acct states. The majority of all behavior for

instances of the class occurs while in the working acct state. A final withdrawal and

account closure cause the Account class to make transitions to the nonworking acct

and dead acct states, respectively.

CHAPTER 14 TESTING TACTICS 451

State diagram
for the

Account class

(adapted from

[KIR94])

The tests to be designed should achieve all state coverage [KIR94]. That is, the op-

eration sequences should cause the Account class to make a transition through all

allowable states:

Test case S,: open 'setupAocnt* deposit (initial) 'withdraw (final) 'close

It should be noted that this sequence is identical to the minimum test sequence dis-

cussed in Section 14.9.1. Adding additional test sequences to the minimum se-

quence,

Test case S>' open • setupAocnt ' deposit(initial) ' deposit 'balance • credit ' withdraw

(final) 'close

Test Case S3: open • setupAocnt • deposit(initial) • deposit ' withdraw • accnt Info ' withdraw

(final) 'close

Still more test cases could be derived to ensure that all behaviors for the class have

been adequately exercised. In situations in which the class behavior results in a col-

laboration with one or more classes, multiple state diagrams are used to track the

behavioral flow of the system.

The state model can be traversed in a "breadth-first" [MGR94] manner. In this con-

text, breadth first implies that a test case exercises a single transition. When a new

transition is to be tested only previously tested transitions are used.

Consider a CreditCard object that is part of the banking system . The initial state

of CreditCard is undefined (i.e., no credit card number has been provided). Upon

reading the credit card during a sale, the object takes on a defined state; that is, the

attributes card number and expiration date, along with bank-specific identifiers are de-

fined. The credit card is submitted when it is sent for authorization, and it is approved

452 PART TWO SOFTWARE ENGINEERING PRACTICE

when authorization is received. The transition of CreditCard from one state to an-

other can be tested by deriving test cases that cause the transition to occur. A

breadth-first approach to this type of testing would not exercise submitted before it

exercised undefined and defined. If it did, it would make use of transitions that had

not been previously tested and would therefore violate the breadth-first criterion.

14.10 Testing for Specialized Environments.
Architectures, and Applications

/I testing strategy

similar to random or

politico testing

(Section 14.8) can be

used to design Ul tests.

WebRef

Useful client/server

testing infoimotion ond

resources con be found

or

www.csst-

technologies.com.

The testing methods discussed in preceding sections are generally applicable across

all environments, architectures, and applications, but unique guidelines and ap-

proaches to testing are sometimes warranted. In this section we consider testing

guidelines for specialized environments, architectures, and applications that are

commonly encountered by software engineers.

14.10.1 Testing GUIs

Graphical user interfaces (GUIs) present interesting challenges for software engi-

neers. Because of reusable components provided as part of GUI development envi-

ronments, the creation of the user interface has become less time consuming and

more precise (Chapter 1 2) . But, at the same time, the complexity of GUIs has grown,

leading to more difficulty in the design and execution of test cases.

Because many modern GUIs have the same look and feel, a series of standard

tests can be derived. Finite state modeling graphs may be used to derive a series of

tests that address specific data and program objects relevant to the GUI.

Due to the large number of permutations associated with GUI operations, testing

should be approached using automated tools. A wide array ofGUI testing tools has ap-

peared on the market over the past few years. For further discussion, see Chapter 12.

14. 10.2 Testing of Client/Server Architectures

Client/server architectures represent a significant challenge for software testers. The

distributed nature of client/server environments, the performance issues associated

with transaction processing, the potential presence of a number of different hard-

ware platforms, the complexities of network communication, the need to service

multiple clients from a centralized (or in some cases, distributed) database, and the

coordination requirements imposed on the server all combine to make testing o

client/server software architectures considerably more difficult than standalone ap

plications. In fact, recent industry studies indicate a significant increase in testing

time and cost when client/server environments are developed.

"The topic of testing is one area in which a good deol of commonality exists between traditionol system and

client/server systems."

Kelley Bourne

CHAPTER 14 TESTING TACTICS 453

In general, the testing of client/server software occurs at three different levels:

(1) individual client applications are tested in a "disconnected" mode; the operation

of the server and the underlying network are not considered; (2) the client software

and associated server applications are tested in concert, but network operations are

not explicitly exercised; (3) the complete client/server architecture, including net-

work operation and performance, is tested.

Although many different types of tests are conducted at each of these levels ofde-

tail, the following testing approaches are commonly encountered for client/server

applications;

What types

Vr of tests are

conducted for

client/server

systems?

• Application function tests. The functionality of client applications is tested

using the methods discussed earlier in this chapter. In essence, the applica-

tion is tested in standalone fashion.

• Server tests. The coordination and data management functions of the

server are tested. Server performance (overall response time and data

throughput) is also considered.

• Database tests. The accuracy and integrity of data stored by the server is

tested. Transactions posted by client applications are examined to ensure

that data are properly stored, updated, and retrieved. Archiving is also tested.

• Transaction tests. A series of tests are created to ensure that each class of

transactions is processed according to requirements. Tests focus on the

correctness of processing and also on performance issues (e.g., transaction

processing times and transaction volume).

• Network communication tests. These tests verify that communication

among the nodes of the network occurs correctly and that message passing,

transactions, and related network traffic occur without error. Network

security tests may also be conducted as part of these tests.

To accomplish these testing approaches, Musa [MUS93] recommends the devel-

opment of operational profiles derived from client/server usage scenarios.9 An oper-

ational profile indicates how different types of users interoperate with the

client/server system. That is, the profiles provide a "pattern ofusage" that can be ap-

plied when tests are designed and executed.

14.10.3 Testing Documentation and Help Facilities

The term software testing conjures images of large numbers of test cases prepared to

exercise computer programs and the data that they manipulate. Recalling the defi-

nition of software presented in the first chapter of this book, it is important to note

9 It should be noted that operational profiles can be used in testing for all types of system architec-

tures, not just client/server.

454 PART TWO SOFTWARE ENGINEERING PRACTICE

that testing must also extend to the third element of the software configuration-

documentation.

Errors in documentation can be as devastating to the acceptance of the progre m
as errors in data or source code. Nothing is more frustrating than following a user

guide or an on-line help facility exactly and getting results or behaviors that do not

coincide with those predicted by the documentation. It is for this reason that docu-

mentation testing should be a meaningful part of every software test plan.

Documentation testing can be approached in two phases. The first phase, review

and inspection (Chapter 26), examines the document for editorial clarity. The second

phase, live test, uses the documentation in conjunction with the use of the actual

program.

Documentation Testing

The following questions should be answered

during documentation and/or help facility

testing:

V

Does the documentation accurately describe how to

accomplish each mode of use?

Is the description of each interaction sequence accurate?

Are examples accurate?

Are terminology, menu descriptions, and system

responses consistent with the actual program?

Is it relatively easy to locate guidance within the

documentation?

Can troubleshooting be accomplished easily with the

documentation?

Are the document table of contents and index accurate

and complete?

Is the design of the document (layout, typefaces,

indentation, graphics) conducive to understanding and

quick assimilation of information?

• Are all software error messages displayed for the user

described in more detail in the document? Are actions

to be taken as a consequence of an error message

clearly delineated?

• If hypertext links are used, are they accurate and

complete?

• If hypertext is used, is the navigation design -

appropriate for the information required?

The only viable way to answer these questions is to have

an independent third party (e.g., selected users) test the

documentation in the context of program usage. All

discrepancies are noted and areas of document ambiguity

or weakness are defined for potential rewrite.

J
14.10,4 Testing for Real-Time Systems

The time-dependent, asynchronous nature of many real-time applications adds a

new and potentially difficult element to the testing mix—time. Not only does the test

case designer have to consider conventional test cases but also event handling (i.e.,

interrupt processing), the timing of the data, and the parallelism of the tasks

(processes) that handle the data. In many situations, test data provided when a real-

time system is in one state will result in proper processing, while the same data pro-

vided when the system is in a different state may lead to error.

For example, the real-time software that controls a new photocopier accepts oper-

ator interrupts (i.e., the machine operator hits control keys such as RESET or DARKEN)

CHAPTER 14 TESTING TACTICS 455

Witat is an

• effective

strategy for

testing a real-time

system?

with no error when the machine is making copies (in the copying state). If these same

operator interrupts are input when the machine is in thejammed state, a display of the

diagnostic code (indicating the location of the jam) will be lost (an error).

In addition, the intimate relationship that exists between real-time software and

its hardware environment can also cause testing problems. Software tests must con-

sider the impact of hardware faults on software processing. Such faults can be ex-

tremely difficult to simulate realistically.

Comprehensive test case design methods for real-time systems continue to

evolve. However, a four-step strategy can be proposed:

• Task testing. The first step in the testing of real-time software is to test each

task independently. That is, conventional tests are designed and executed for

each task. Each task is executed independently during these tests. Task

• testing uncovers errors in logic and function, but not timing. or behavior.

• Behavioral testing. Using system models created with automated tools, it is

possible to simulate the behavior of a real-time system and examine its

behavior as a consequence of external events. These analysis activities can

serve as the basis for the design of test cases that are conducted when the

real-time software has been built.

• Intertask testing. Once errors in individual tasks and in system behavior

have been isolated, testing shifts to time-related errors. Asynchronous tasks

that are known to communicate with one another are tested with different

data rates and processing load to determine if intertask synchronization

errors will occur. In addition, tasks that communicate via a message queue

or data store are tested to uncover errors in the sizing of these data storage

areas.

• System testing. Software and hardware are integrated and a full range of

system tests (Chapter 13) are conducted in an attempt to uncover errors at

the software/hardware interface. Most real-time systems process interrupts.

Therefore, testing the handling of these Boolean events is essential. Using

the state diagram and the control specification (Chapter 8), the tester

develops a list of all possible interrupts and the processing that occurs as a

consequence of the interrupts. Tests are then designed to assess the

following system characteristics:

—Are interrupt priorities properly assigned and properly handled?

—Is processing for each interrupt handled correctly?

—Does the performance (e.g., processing time) of each interrupt-handling

procedure conform to requirements?

—Does a high volume of interrupts arriving at critical times create problems

in function or performance?

456 PART TWO SOFTWARE ENGINEERING PRACTICE

11, 1,1

WebRcf

Pointer to over 70

testing patterns con be

found at

www.rbsc.com.

POINT
Testing patterns con

help a software feom

communicate mote

effectively about

testing ond better

understand Hie forces

that lead too specific

testing approach.

WebRef
Patterns that describe

testing organization,

efficiency, strategy, and

problem resolution con

be found at

www.agu.com/

supportv2/

techpapers/

palterns/papers/

systestp.htm.

In addition, global data areas that are used to transfer information as part of in-

terrupt processing should be tested to assess the potential for the generation of side

effects.

Testing Patterns

In earlier chapters, we have discussed the use of patterns as a mechanism for de-

scribing software building blocks or software engineering situations. These build-

ing blocks or situations are encountered repeatedly as different applications are

built or different projects are conducted. Like their counterparts in analysis and de-

sign, testing patterns describe often-encountered building blocks or situations that

software testers may be able to reuse as they approach the testing of some new or

revised system.

Not only do testing patterns provide software engineers with useful guidance as

testing activities commence, they also provide three additional benefits described by

Marick [MAR02]:

1 . They provide a vocabulary for problem-solvers. “Hey, you know, we should use a Null

Object."

2. They focus attention on the forces behind a problem. That allows [test case] designers

to better understand when and why a solution applies.

3. they encourage iterative thinking. Each solution creates a new context in which new

problems can be solved.

Although these benefits are "soft," they should not be overlooked. Much of soft-

ware testing, even during the past decade, has been an ad hoc activity. If testing

patterns can help a software team communicate about testing more effectively,

understand the motivating forces that lead to a specific approach to testing, and

approach the design of test cases as an evolutionary activity, they have accom-

plished much.

Testing patterns are described in much the same way as analysis and design

patterns (Chapters 7 and 9). Dozens of testing patterns have been proposed in the

literature (e.g., [B1N99], [MAR02]). The following three testing patterns (presented in

abstract form only) provide representative examples:

Pattern name: pair testing

Abstract: A process-oriented pattern, pair testing describes a technique that is analogous

to pair programming (Chapter 4) in which two testers work together to design and execute

a series of tests that can be applied to unit, integration, or validation testing activities.

Pattern name: separate test interface

Abstract: There is a need to test every class in an object-oriented system, including "in-

ternal classes" (i.e., classes that do not expose any interface outside of the component

that used them). The separate test interface pattern describes how to create "a test in-

CHAPTER 14 TESTING TACTICS
457

terface that can be used to describe specific tests on classes that are visible only inter-

nally to a component" [LAN01].

Pattern name: scenario testing

Abstract: Once unit and integration tests have been conducted, there is a need to deter-

mine whether the software will perform in a manner that satisfies users. The scenario

testing pattern describes a technique for exercising the software from the user's point of

view. A failure at this level indicates that the software has failed to meet a user visible re-

quirement [KANO!].

A comprehensive discussion of testing patterns is beyond the scope of this book. The

interested reader should see [B1N99] and [MAR02] for further information on this im-

portant topic.

Summary —
The primary objective for test case design is to derive a set of tests that have the

highest likelihood ofuncovering errors in software. To accomplish this objective, two

different categories of test case design techniques—applicable to conventional and

object-oriented systems—are used: white-box testirig and black-box testing.

White-box tests focus on the program control structure. Test cases are derived to en-

sure that all statements in the program have been executed at least once during test-

ing and that all logical conditions have been exercised. Basis path testing, a white-box

technique, makes use of program graphs (or graph matrices) to derive a set of linearly

independent tests that will ensure coverage. Condition and data flow testing further ex-

ercise program logic, and loop testing complements other white-box techniques by

providing a procedure for exercising loops of varying degrees of complexity.

Black-box tests are designed to validate functional requirements without regard to

the internal workings of a program. Black-box testing techniques focus on the infor-

mation domain of the software, deriving test cases by partitioning the input and output

domain of a program in a manner that provides thorough test coverage. Equivalence

partitioning divides the input domain into classes of data that are likely to exercise spe-

cific software function. Boundary value analysis probes the program's ability to handle

data at the limits of acceptability. Orthogonal array testing provides an efficient, sys-

tematic method for testing systems with small numbers of input parameters.

Although the overall objective of object-oriented testing—to find the maximum

number of errors with a minimum amount of effort—is identical to the objective of

conventional software testing, the strategy and tactics for OO testing differ some-

what. The view of testing broadens to include the review of both the analysis and

design model. In addition, the focus of testing moves away from the procedural com-

ponent (the module) and toward the class. The design of tests for a class uses a va-

riety of methods: fault-based testing, random testing, and partition testing. Each of

these methods exercises the operations encapsulated by the class. Test sequences

458 PART TWO SOFTWARE ENGINEERING PRACTICE

are designed to ensure that relevant operations are exercised. The state of the class,

lepresented by the values of its attributes, is examined to determine if errors exist.

integration testing can be accomplished using a use-based strategy. Use-based
testing constructs the system in layers, beginning with those classes that do not use
server classes. Integration test case design methods can also use random and parti-
tion tests. In addition, scenario-based testing and tests derived from behavioral mod-
els can be used to test a class and its collaborators. A test sequence tracks the flow
of operations across class collaborations.

Specialized testing methods encompass a broad array ofsoftware capabilities and
application areas. Testing for graphical user interfaces, client/server architectures,
documentation and help facilities, and real-time systems each require specialized
guidelines and techniques.

Experienced software developers oftep say, "Testing never ends, it just gets trans-
ferred from you [the software engineer] to your customer. Every time your customer
uses the program, a test is being conducted." By applying test case design, the soft-
ware engineer can achieve more complete testing and thereby uncover and correct
the highest number of errors before the "customer's tests" begin.

References
; .

:

[AMB95] Ambler, S., "Using Use Cases," Software Development. July 1995, pp. 53-61.
[BEI90] Beizer, B.Sofhvpre Testing Techniques, 2nd ed., van Nostrand-Reinhold, 1990
[BEJ95] Beizer, B., Black-Box Testing. Wiley, 1995.
[B1N94] Binder, R. V., "Testing Object-Oriented Systems: A Status Report," American Program-

mer. voi. 7, no. 4, April 1994, pp. 23-28.
|Blf

l'999

Binder
' R" Object-Oriented Systems: Models. Patterns, and Tools, Addison-wesley,

PEU79] Deutsch, M., "Verification and Validation," in Software Engineering (R. Jensen and
C. Tonies, eds.), Prentice-Hall, 1979, pp. 329-408.

[FRA88] Frankl, P G„ and E J. Weyuker, "An Applicable Family of Data Flow Testing Criteria
"

IEEE nans. Software Engineering, vol. SE-14, no 10. October 1988, pp. 1483-1498.
IFRA93I Frankl, P. G„ and S. Weiss, "An Experimental Comparison of the Effectiveness of Branch

Testing and Data Flow," IEEE Trans. Software Engineering, vol. SE-19 no 8 August 1993
pp. 770-787.

• s

IKAN93J Kaner, C„ J. Falk, and H. Q. Nguyen, Testing Computer Software. 2nd ed Van Nostrand-
Reinhold, 1993.

[KAN01] Kaner, C„ "Pattern: Scenario Testing," (draft), 2001, available at http://www.testing.
com/test-patterns/patterns/pattem-scenario-testing-kaner.html.

[K1R94] Kirani, S., and W. T. Tsai, "Specification and Verification of Object-Oriented Programs,"
Technical Report TR 94-64, Computer Science Department, University of Minnesota De-
cember 1994.

[LAN0IJ Lange, M., "It's Testing Time! Patterns for Testing Software, June, 2001, downloadable
from http://www.testing.com/test-patterns/pattems/index.html.

[L1N94] Lindland, O. I., et al„ "Understanding Quality in Conceptual Modeling," IEEE Sofhvare
vol. 1 1, no 4, July 1994, pp. 42-49.

[MAR94] Marick, B„ The Craft ofSoftware Testing, Prentice-Hall, 1994,
[MAR02] Marick, B„ "Software Testing Patterns," 2002, http://www.testing.com/test-patterns/

index.html.

[MCC76J McCabe, T„ "A Software Complexity Measure," IEEE nans. Software Eneineerino vol
SE-2, December 1976, pp. 308-320.

CHAPTER 14 TESTING TACTICS
459

|MGR94] McGregor,). D. and T. D. Korson, "Integrated Object Oriented Testing and Develop-

ment Processes/' CACM, vol. 37, no. 9, September 1 994, pp. 59-77.

IMUS93I Musa)., "Operational Profiles in Software Reliability Engineering, iEEE Softwate,

March 1993. pp 14-32

|MYE’79| Myers, G., The Art ofSoftware Testing, Wiley, 1979.
c -

[NTA88] Ntafos, S. C., "A Comparison ol Some Structural Testing Strategies, IEEE Tians- So
<j

w Engineer ing, vol SE-14, no. 6, June 1988, pp. 868-874.

IPHA891 Phadke M. S., Quality Engineering Using Robust Design, Prentice-Hall, 1989.

|PHA97] Phadke, M. S„ "Planning Efficient Software Tests," Crosstalk, vol 10, no. 10, October

1997, pp. 11-15. ...

ITAI891 Tai, K. c, "What to Do Beyond Branch resting," ACM Software Engineering Notes, vol. 1 4,

no. 2, April 1989, pp. 58-61

.

14 . 1 . Specify, design, and implement a software tool that will compute the cyclomatk. com-

plexity for the programming language of your choice. Use the graph matrix as the operative data

structure in your design.

14 .2 . Give at least three examples in which black-box testing might give the impression that

"everything's OK," while white-box tests might uncover an error. Give at least three examples

m which white-box testing might give the impression that "everything’s OK," while black-box.

tests might uncover an error.

1 4.3. Read Rei/er (BEI951 and determine how the program you have developed in Problem 14 1

dan be extended to accommodate various link weights. Extend your tool to process execution

probabilities or link processing times.

1 4.4. Select a software component that you have designed and implemented recently. Design a

set of test cases that will ensure that all statements have been executed using basis path testing

14 .5 . Wiry do we have to retest subclasses that are instantiated from an existing class, if the

existing class has already been thoroughly tested? Can we use the test cases designed tor the

existing class?

14 .6 . Can you think ofany additional testing characteristics that are not discussed in Section 14.1

14 .7 . Design an automated tool that will recognize loops and categorize them as indicated in

Section 14.5.3.

14 .8 . Myers [MYE79] uses the following program as a self-assessment of one's ability to spec-

ify adequate testing; A program reads three integer values. The three values are interareted as

representing the lengths of the sides of a triangle. The program prints a message that states

whether the triangle is scalene, isosceles, or equilateral. Develop a set of lest cases that you feel

will adequately test this program.

14 .9 . Design and implement the program (with error handling where appropriate) specified in

Problem 14.8. Derive a flow graph for the program and apply basis path testing to develop test

cases that will guarantee that all statements in the program have been tested. Execute the cases

and show your results.

14.10. Will exhaustive testing (even if it is possible for very small programs) guarantee that the

program is 100 percent correct?

14.1 1 . In your own words, describe why the. class is the smallest reasonable unit for testing

within an OO system.

14 . 12 . Extend the tool described in Problem 14.7 to generate test cases for each loop category,

once encountered. It will be necessary to perform, this function interactively with the tester.

460 PART TWO SOFTWARE ENGINEERING PRACTICE

14.13. Apply random testing and partitioning to three classes defined in the design for the Safe-
Home system. Produce test cases that indicate the operation sequences that will be invoked.

14.14. Apply multiple class testing and tests derived from the behavioral model to the Safe-
Home design.

14.15. Test a user manual (or help facility) for an application that you use frequently. Find at
least one error in the documentation.

-ItfRIHER Readings and Information Sources
Among dozens of books that present test case design methods are Craig and Kaskiel (System-
atic Software Testing, Artech House, 2002), Tamres (Introducing Software Testing, Addison-
Wesley, 2002), Whittaker

(How to Break Software, Addison-Wesiey, 2002), Jorgensen (Software
Testing: A Craftman's Approach, CRC Press, 2002), Splaine and his colleagues (The Web Testing
Handbook, Software Quality Engineering Publishing, 2001), Patton (Software Testing Sams Pub-
lishing, 2000), Kaner and his colleagues (Testing Computer Software, second edition, Wiley,
1 999). In addition, Hutcheson (Software Testing Methods and Metrics: The Most Important Tests'
McGraw-Hill, 1997) and Marick (The Craft ofSoftware Testing: Subsystem Testing Including Object-
Based and Object-Oriented Testing, Prentice-Hall, 1995) present treatments of testing methods
and strategies.

Myers [MYE79] remains a classic text, covering black-box techniques in considerable detail.
Beizer [BE190] provides comprehensive coverage of white-box techniques, introducing a level
of mathematical rigor that has often been missing in other treatments of testing. His later book
(BE1951 presents a concise treatment of important methods. Perry

(Effective Methodsfor Software
Testing, Wiley-QED, 1995) and Friedman and Voas (SoftwareAssessment: Reliability, Safety, Testa-
bility, Wiley, 1995) present good introductions to testing strategies and tactics. Mosley (The
Handbook ofMIS Application Software Testing, Prentice-Hall, 1993) discusses testing issues for
large information systems, and Marks (Testing Vety Big Systems, McGraw-Hill, 1992) discusses
the special issues that must be considered when testing major programming systems.

Sykes and McGregor (Practical Guidefor Testing Object-Oriented Software, Addison-Wesiey,
2001), Bashir and Goel (Testing Object-Oriented Software, Springer-Verlag, 2000), Binder (Testing
Object-Oriented Systems, Addison-Wesiey, 1999), Kung and his colleagues (Testing Object-
Oriented Software, IEEE Computer Society Press, 1998), Marick (The Craft of Software Testing,
Prentice-Hall, 1997) and Siegel and Muller (Object-Oriented Software Testing: A Hierarchical Ap-
proach, Wiley, 1996) present strategies and methods for testing OO systems.

Software testing is a resource-intensive activity. It is for this reason that many organizations
automate parts of the testing process. Books by Dustin, Rashka, and Poston (Automated Software
Testing: Introduction, Management, and Performance, Addison-Wesiey, 1999), Graham and her col-
leagues (Software Test Automation, Addison-Wesiey, 1999), and Poston (Automating Specification-
Based Software Testing, IEEE Computer Society, 1 996) discuss tools, strategies, and methods for
automated testing.

A number of books consider testing methods and strategies in specialized application areas.
Gardiner

(Testing Safety-Related Software: A Practical Handbook, Springer-Verlag, 1 999) has ed-
ited a book that addresses testing of safety-critical systems. Mosley (Client/Seiver Software Test
ing on the Desk Top and the Web, Prentice-Hall, 1999) discusses the test process for clients,
servers, and network components. Rubin (Handbook of Usability Testing, Wiley, 1994) has writ-
ten a useful guide for those who must exercise human interfaces.

Binder [BIN99] describes almost 70 testing patterns that cover testing of methods,
classes/clusters, subsystems, reusable components, frameworks, and systems as well as test
automation and specialized database testing. A list of these patterns can be found at
www.rbsc.com/pages/TestPatternList.htm.

A wide variety of information sources on test case design methods are available on the In-
ternet. An up-to-date list of World Wide Web references that are relevant to testing techniques
can be found at the SEPA Web site:

http://www.mhhe.coni/pressman.

Product
Metrics

Key
Concepts
function points

GQM paradigm

indicators

McCall's factors

measurement

attributes

prindples

measures

metrics

analysis model

code

design model

maintenance

object-oriented

testing

quality

CHAPTER

15

A key element of any engineering process is measurement. We use mea-

sures to better understand the attributes of the models that we create and

to assess the quality of the engineered products or systems that we build.

But unlike other engineering disciplines, software engineering is not grounded in

the basic quantitative laws of physics. Direct measures, such as voltage, mass, ve-

locity, or temperature, are uncommon in the software world. Because software

measures and metrics are often indirect, they are open to debate. Fenton [FEN9I]

addresses this issue when he states:

Measurement is the process by which numbers or symbols are assigned to the attrib-

utes of entities in the real world in such a way as to define them according to clearly

defined rules ... In the physical sciences, medicine, economics, and more recently the

social sciences, we are now able to measure attributes that we previously thought to

be unmeasurable . . . Of course, such measurements are not as refined as many mea-

surements in the physical sciences . . ., but they exist [and important decisions are
.

made based on them]. We fee! that the obligation to attempt to "measure the unmea-

surable" in order to improve our understanding of particular entities is as powerful in

software engineering as in any discipline.

But some members of the software community continue to argue that software

is "unmeasurable" or that attempts at measurement should be postponed until we

better understand software and the attributes that should be used to describe it.

That is a mistake.

What is it? By its nature, engi-

neering is a quantitative discipline.

Engineers use numbers to help diem

design and assess the product to be

built. Until recently, software engineers had little

quantitative guidance in their work—but that's

changing. Product metrics help software engi-

neers gain insight into the design and construc-

tion of the software they build. Unlike process

and project metrics that apply to the project (or

process) as a whole, product metrics focus on

specific attributes of software engineering work

products and are collected as technical tasks

(analysis, design, coding, and testing) are being

conducted.

Who does it? Software engineers use product

metrics to help them build higher-quality software.

Why is it important? There will always be a

qualitative element to the creation of computer

software. The problem is that qualitative assess-

ment may not be enough. A software engineer

needs objective criteria to help guide the design

of data, architecture, interfaces, and compo-

nents. The tester needs quantitative guidance

461

462 PART TWO SOFTWARE ENGINEERING PRACTICE

fhat will help in the selection of test cases and
their targets. Product metrics provide a basis

from which analysis, design, coding, and testing

can be conducted more objectively and assessed
more quantitatively.

What are the steps? The first step in the mea-
surement process is to derive the software meas-
ures and metrics that are appropriate for the

representation of software that is being consid-

ered. Next, data required to derive the formu-
lated metrics are collected. Once computed,
appropriate metrics are analyzed based on
preestablished guidelines and past data. The re-

sults of the analysis are interpreted to gain in-

sight into the quality of the software, and the

results of the interpretation lead to modification

of analysis and design models, source code, or
test cases. In some instances, it may also lead to

modification of the software process itself.

What is the work product? Product metrics

that are computed from data collected from the

analysis and design models, source code, and
test cases.

How do I ensure that I've done it right?
You should establish the objectives of measure-
ment before data collection begins, defining

each product metric in an unambiguous manner.
Define only a few metrics and then use them to

gain insight into the quality of a software engi-

neering work product.

Although product metrics for computer software are often not absolute, they pro-
vide us with a systematic way to assess quality based on a set of clearly defined rules.

They also provide the software engineer with on-the-spot, rather than after-the-fact

insight. This enables the engineer to discover and correct potential problems before
they become catastrophic defects.

In this chapter, we consider measures that can be used to assess the quality of the
product as it is being engineered. These measures of internal product attributes pro-
vide the software engineer with a real-time indication of the efficacy of the analysis,

design, and code models; the effectiveness of test cases; and the overall quality of
the software to be built.

ULJ—Software Quality

Even the most jaded software developers will agree that high-quality software is an
important goal. But how do we define quality? In the most general sense, software

quality is conformance to explicitly statedfunctional and performance requirements, ex-

plicitly documented development standards, and implicit characteristics that are ex

pected ofall professionally developed software.

There is little question that the preceding definition could be modified or extended

and debated endlessly. For the purposes of this book, the definition serves to em-
phasize three important points:

I . Software requirements are the foundation from which quality is measured.

Lack of conformance to requirements is lack of quality.

1

1 ll is important to note that quality extends to the technical characteristics of analysis and design

models and the source code realization of those models. Models that exhibit high quality (in the

technical sense) will lead to software that exhibits high quality from the customer's point of view.

CHAPTER 15 PRODUCT METRICS 463

2. Specified standards define a set of development criteria that guide the man-

ner in which software is engineered. If the criteria are not followed, lack of

quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (e.g., the

desire for ease of use). If software conforms to its explicit requirements but

fails to meet implicit requirements, software quality is suspect.

Software quality is a complex mix of factors that will vary across different applica-

tions and the customers who request them. In the sections that follow, software

quality factors are identified and the human activities required to achieve them are

described.

POINT
It's interesting to note

thot McColl's quality

factors me os valid

today os they were in

the 1970s. Therefore,

it's reasonable to

assert thot the factors

thot affect software

quality do not chonge

with time.

15.1.1 McCall’s Quality Factors

The factors that affect software quality can be categorized in two broad groups:

(1) factors that can be directly measured (e.g., defects uncovered during testing) and

(2) factors that can be measured only indirectly (e.g., usability or maintainability). In

each case measurement should occur. We must compare the software (programs,

data, documents) to some datum and arrive at an indication of quality.

McCall, Richards, and Walters [MCC77] propose a useful categorization of factors

that affect software quality. These software quality factors, shown in Figure 1 5. 1 ,
fo-

cus on three important aspects of a software product: its operational characteristics,

its ability to undergo change, and its adaptability to new environments.

Referring to the factors noted in Figure 15.1, McCall and his colleagues provide

the following descriptions:

Correctness. The extent to which a program satisfies its specification and fulfills the cus-

tomer’s mission objectives.

Reliability. The extent to which a program can be expected to perform its intended func-

tion with required precision. [It should be noted that other, more complete definitions of

reliability have been proposed (see Chapter 26).]

Correctness

Reliability

Usability

Integrity

Efficiency

464 PART TWO SOFTWARE ENGINEERING PRACTICE

Efficiency. The amount of computing resources and code required by a program to per-

form its function.

Integrity. The extent to which access to software or data by unauthorized persons can be

controlled.

Usability. The effort required to learn, operate, prepare input for, and interpret output of a

program.

Maintainability. The effort required to locate and fix an error in a program. [This is a very

limited definition.]

Flexibility. The effort required to modify an operational program.

Testability. The effort required to test a program to ensure that it performs its intended

function.

Portability. The effort required to transfer the program from one hardware and/or soft-

ware system environment to another.

Reusability. The extent to which a program [or parts of a program) can be reused in other

applications—related to the packaging and scope of the functions that the program

performs.

Interoperability. The effort required to couple one system to another.

"A product's quality is a function of how much it changes fhe work! for the better."

Tom DeMarco

Build your own

checklist using these

factors. Fust assign

each a relative impor-

tance for your project.

Then, grade your work

products to assess the

guality of the software

you're building.

It is difficult, and in some cases impossible, to develop direct measures2 of these

quality factors. In fact, many of the metrics defined by McCall et a!, can be measured

only subjectively. The metrics may be in the form ofa checklist that is used to "grade"

specific attributes of the software [CAV78I.

15.1.2 ISO 9126 Quality Factors

The ISO 9126 standard was developed in an attempt to identify quality attributes for

computer software. The standard identifies six key quality attributes:

Functionality. The degree to which the software satisfies stated needs as indi-

cated by the following sub-attributes: suitability, accuracy, interoperability, compli-

ance, and security.

Reliability. The amount of time that the software is available for use as indicated

by the following sub-attributes: maturity, fault tolerance, recoverability.

Usability. The degree to which the software is easy to use as indicated by the fol-

lowing sub-attributes: understandability, leamability, operability.

A direct measure implies that there is a single countable value that provides a direct indication of

the attribute being examined. For example, the "size" of a program can be measured directly by

counting the number of lines of code.

CHAPTER 15 PRODUCT METRICS 465

Efficiency. The degree to which the software makes optimal use of system re -

sources as indicated by the following sub-attributes: time behavior, resource behavior.

Maintainability. The ease with which repair may be made to the software as

indicated by the following sub-attributes: analyzability, changeability, stability,

testability.

Portability. The ease with which the software can be transposed from one envi-

ronment to another as indicated by the following sub-attributes: adaptability, instal-

lability, conformance, reptaceability.

Like other software quality factors discussed in Chapter 9 and Section 1 5. 1 . 1 ,
the ISO

9126 factors do not necessarily lend themselves to direct measurement. However,

they do provide a worthwhile basis for indirect measures and an excellent checklist

for assessing the quality of a system.

"Any activity becomes creative when the doer cares about doing it right, or better."

John Updike

15.1.3 The Transition to a Quantitative View

In the preceding sections, a set of qualitative factors for the "measurement" of soft-

ware quality was discussed. We strive to develop precise measures for software

quality and are sometimes frustrated by the subjective nature of the activity. Cavano

and McCall [CAV781 discuss this situation:

The determination of quality is a key factor in every day events—wine tasting contests,

sporting events [e.g., gymnastics], talent contests, etc. in these situations, quality is

judged in the most fundamental and direct manner: side by side comparison of objects

under identical conditions and with predetermined concepts. The wine maybe judged ac-

cording to clarity, color, bouquet, taste, etc. However, this type ofjudgment is very sub-

jective; to have any value at all, it must be made by an expert.

Subjectivity and specialization also apply to determining software quality. To help solve

this problem, a more precise definition of software quality is needed as well as a way to de-

rive quantitative measurements of software quality for objective analysis . .

.

In the sections that follow, we examine a set of software metrics that car be ap-

plied to the quantitative assessment of software quality. In all cases, the metrics rep-

resent indirect measures; that is, we never really measure quality but rather some

manifestation of quality. The complicating factor is the precise relationship between

the variable that is measured and the quality of software.

"Just as temperature measurement began with an index finger ... and grew to sophisticated scales, tools and

techniques, so too is software measurement maturing."

Shod Pfleeger

466 PART TWO SOFTWARE ENGINEERING PRACTICE

1.5..2 A Framework for Product Metrics

As we noted in the introduction to this chapter, measurement assigns numbers or

symbols to attributes of entities in the real word. To accomplish this, a measurement

model encompassing a consistent set of rules is required. Although the theory of

measurement (e.g., [KYB84]) and its application to computer software (e.g.

,

[DEM81], [BR196), [ZUS97]) are topics that are beyond the scope of this book, it is

worthwhile to establish a fundamental framework and a set of basic principles for

the measurement of product metrics for software.

15.2.1 Measures, Metrics, and Indicators

Although the terms measure, measurement, and metrics are often used interchange-

ably, it is important to note the subtle differences between them. Because measure

can be used either as a noun or a verb, definitions of the term can become confus-

ing. Within the software engineering context, a measure provides a quantitative in-

dication of the extent, amount, dimension, capacity, or size of some attribute of a

product or process. Measurement is the act ofdetermining a measure. The IEEE Stan-

dard Clossaiy [IEE93] defines metric as "a quantitative measure of the degree to

which a system, component, or process possesses a given attribute."

When a single data point has been collected (e.g., the number of errors uncovered

within a single software component), a measure has been established. Measurement

occurs as the result of the collection of one or more data points (e.g., a number of

component reviews and unit tests are investigated to collect measures of the num-

ber of errors for each). A software metric relates the individual measures in some

way (e..g, the average number of errors found per review or the average number of

errors found per unit test).

A software engineer collects measures and develops metrics so that indicators

will be obtained. An indicator is a metric or combination of metrics that provides in-

sight into the software process, a software project, or the product itself. An indicator

provides insightthat enables the project manager or software engineers to adjust the

process, the project, or the product to make things better.

“A science is os moture os its meosurement tools."

Louis Posteur

15.2.2 The Challenge of Product Metrics

Over the past three decades, many researchers have attempted to develop a single

metric that provides a comprehensive measure of software complexity. Fenton

[FEN94] characterizes this research as a search for "the impossible holy grail." Al-

though dozens of complexity measures have been proposed [ZUS90], each takes a

somewhat different view of what complexity is and what attributes of a system lead

to complexity. By analogy, consider a metric for evaluating an attractive car. Some

CHAPTER 15 PRODUCT METRICS 467

Voluminous informotion

on product metrics has

been compiled by Horst

Zuseot

irb.cs.tuberlin.de/

~iuse/.

What are

• the steps

of an effective

measurement

process?

observers might emphasize body design, others might consider mechanical charac-

teristics, still others might lout cost, or performance, or fuel economy, or the ability

to recycle when the car is junked. Since any one of these characteristics may be at

odds with others, it is difficult to derive a single value for "attractiveness." The same

problem occurs with computer software.

Yet there is a need to measure and control software complexity. And if a single

value of this quality metric is difficult to derive, it should be possible to develop mea-

sures of different internal program attributes (e.g., effective modularity, functional

independence, and other attributes discussed in Chapters 9 through 12). These

measures and the metrics derived from them can be used as independent indicators

of the quality of analysis and design models. But here again, problems arise. Fenton

[FEN94] notes this when he states: "The danger ofattempting to find measures which

characterize so many different attributes is that inevitably the measures have to sat-

isfy conflicting aims. This is counter to the representational theory' of measurement."

Although Fenton's statement is correct, many people argue that product measure-

ment conducted during the early stages of the software process provides software

engineers with a consistent and objective mechanism for assessing quality.

It is fair to ask, however, just how valid product metrics are. That is, how closely

aligned are product metrics to the long-term reliability and quality of a computer-

based system? Fenton [FEN91] addresses this question in the following way:

in spite of the intuitive connections between t’ne internal structure of software products

[product metricsl and its external product and process attributes, there have actually

been very few scientific attempts to establish specific relationships. There are a number

of reasons why this is so: the most commonly cited is the impracticality ofconducting rel-

evant experiments.

Each of the "challenges" noted here is a cause for caution, but it is no reason to

dismiss product metrics.3 Measurement is essential if quality is to be achieved.

15.2.3 Measurement Principles

Before we introduce a series of product metrics that (1) assist in the evaluation of

analysis and design models, (2) provide an indication of the complexity ofprocedural

designs and source code, and (3) facilitate the design of more effective testing, it is

important to understand basic measurement principles. Roche [ROC94I suggests a

measurement process that can be characterized by five activities:

• Formulation. The derivation of software measures and metrics appropriate for

the representation of the software that is being considered.

3 Although criticism of specific metrics is common in the literature, many critiques focus on esoteric

issues and miss the primary' objective of metrics in the real world: to help the software engineer es-

tablish a systematic and objective way to gain insight into his or her work and to improve product

quality as a result.

468

Inreolily, many product

metrics in use today do

not conform to these

principles os well as

they should. Sutlhat

doesn't mean that they

have no volue—just

be careful when you

use them, under-

standing that they are

intended to provide

insight, not hard scien-

tific verification.

WcbRef
A useful discussion of

GOM con be found ot

www.thedocs.com

/GoldProctices/

proctices/gqmo.

html.

PART TWO SOFTWARE ENGINEERING PRACTICE

• Collection. The mechanism used to accumulate data required to derive the

formulated metrics.

• Analysis. The computation of metrics and the application of mathematical tools.

• Interpretation. The evaluation of metrics in an effort to gain insight into the

quality of the representation.

• Feedback. Recommendations derived from the interpretation of product

metrics transmitted to the software team.

Software metrics will be useful only if they are characterized effectively and vali-

dated so that their worth is proven. The following principles [LET03] are representa-

tive of many that can be proposed for metrics characterization and validation:

• A metric should have desirable mathematical properties. That is, the metric's

value should be in a meaningful range (e.g„ zero to one, where zero truly

means absence, one indicates the maximum value, and 0.5 represents the

"half-way point"). Also, a metric that purports to be on a rational scale

should not be composed of components that are only measured on an

ordinal scale.

• When a metric represents a sojhvare characteristic that increases when positive

traits occur or decreases when undesirable traits are encountered, the value of

the metric should increase or decrease in the same manner.

• Each metric should be validated empirically in a wide variety ofcontexts before

being published or used to make decisions. A metric should measure the factor

of interest, independently of other factors. It should "scale up" to large systems

and work in a variety of programming languages and system domains.

Although formulation, characterization, and validation are critical, collection and

analysis are the activities that drive the measurement process. Roche [ROC94] sug-

gests the following guidelines for these activities: (1) whenever possible, data col-

lection and analysis should be automated; (2) valid statistical techniques should be

applied to establish relationships between internal product attributes and external

quality characteristics (e g., whether the level of architectural complexity is corre-

lated with the number of defects reported in production use); and (3) interpretative

guidelines and recommendations should be established for each metric.

15.2.4 Goal-Oriented Software Measurement

The Goal/Question/Metric (GQM) paradigm was developed by Basili and Weiss

[BAS84] as a technique for identifying meaningful metrics for any part of the soft-

ware process. GQM emphasizes the need to (1) establish an explicit measurement

goal that is specific to the process activity or product characteristic that is to be as-

sessed; (2) define a set of questions that must be answered in order to achieve the

goal, and (3) identify well-formulated metrics that help to answer these questions.

CHAPTER 15 PRODUCT METRICS 469

A goal definition [emplace fBAS94] can be used to define each measurement goal.

The template takes the form:

Analyze (the name of activity or attribute to be measured! for the purpose of (the over-

all objective of the analysis4
)
with respect to (the aspect of the activity or attribute that

is considered) from the viewpoint of (the people who have an interest in the measure-

ment) in the context of (the environment in which the measurement takes place).

As an example, consider a goal definition template for SafeHome:

Analyze the SafeHome software architecture for the purpose of evaluating architec-

tural components with respect to ihe ability to make SafeHome more extensible from

the viewpoint of the software engineers performing the work in the context of prod-

uct enhancement over the next three years.

With a measurement goal explicitly defined, a set of questions is developed. An-

swers to these questions help the software team (or other stakeholders) to determine

whether the measurement goal has been achieved. Among the questions that might

be asked are:

Qi- Are architectural components characterized in a manner that compart-

mentalizes function and related data?

Qy Is the complexity of each component within bounds that will facilitate

modification and extension?

Each of these questions should be answered quantitatively, using one or more

measures and metrics. For example, a metric that provides an indication of the co-

hesion (Chapter 9) of an architectural component might be useful in answering Q,.

Cyclomatric complexity and metrics discussed in Section 15.4. 1 or 15.4.2 might pro-

vide insight for Ch.

In actuality, there may be a number of measurement goals with related questions

and metrics. In every case, the metrics that are chosen (or derived) should conform

to the measurement principles discussed in Section 15.2.3 and the measurement at-

tributes discussed in Section 15.2.5. For further information of GQM, the interested

reader should see [SHE98] or [SOL99].

15.2.5 The Attributes of Effective Software Metrics

Hundreds of metrics have been proposed for computer software, but not all provide

practical support to the software engineer. Some demand measurement that is too

complex, others are so esoteric that few real world professionals have any hope of

understanding them, and others violate the basic intuitive notions of what high-

quality software really is.

4 van Solingen and Berghout ISOL991 suggest that the objective is almost always "understanding,

controlling, or improving" the process activity or product attribute.

470 PART TWO SOFTWARE ENGINEERING PRACTICE

Ejiogu [EJI91] defines a set of attributes that should be encompassed by effective

software metrics. The derived metric and the measures that lead to it should be:

How should

• we assess

the quality of a

proposed

software metrk?

Experience indicates

that a product metric

will be used only if it is

intuitive and easy to

compute. If dozens of
"
counts “ hove to be

mode, and complex

computahons ore

requited, it is unlikely

that the metric will be

widely adopted.

• Simple and computable. It should be relatively easy to learn how to derive the

metric, and its computation should not demand inordinate effort or time.

• Empirically and intuitively persuasive. The metric should satisfy the engineer's

intuitive notions about the product attribute under consideration.

• Consistent and objective. The metric should always yield results that are

unambiguous.

• Consistent in trie use ofunits and dimensions. The mathematical computation

of the metric should use measures that do not lead to bizarre combinations

of units.

• Programming language independent. Metrics should be based on the analysis

model, the design model, or the structure of the program itself.

• An effective mechanismfor high-qualityfeedback. That is, the metric should

lead to a higher-quality end product.

Although most software metrics satisfy these attributes, some commonly used

metrics may fail to satisfy one or two of them. An example is the function point

(discussed in Section 15.3.1)—a measure of the "functionality'' delivery by the

software. It can be argued5 that the consistent and objective attribute fails because

an independent third party may not be able to derive the same function point value

as a colleague using the same information about the software. Should we there-

fore reject the FP measure? The answer is: Of course not! FP provides useful In-

sight and therefore provides distinct value, even if it fails to satisfy one attribute

perfectly.

15.2.6 The Product Metrics Landscape

Although a wide variety of metrics taxonomies have been proposed, the following

outline addresses the most important metrics areas:

Metrics for the analysis model. These metrics address various aspects of the

analysis model and include:

Functionality delivered—provides an indirect measure of the functionality that is

packaged within the software.

System size—measures of the overall size of the system defined in terms of in-

formation available as part of the analysis model.

Specification quality—provides an indication of the specificity and completeness

of a requirements specification.

5 An equally vigorous counler-argument can be made. Such is the nature of software metrics.

CHAPTER 15 PRODUCT METRICS 471

Metrics for the design model. These metrics quantify design attributes in a man-

ner that allows a software engineer to assess design quality. Metrics include:

Architectural metrics—provide an indication of the quality of the architectural

design.

Component-level metrics—measure the complexity of software components and

other characteristics that have a bearing on quality.

Interface design metrics—focus primarily on usability.

Specialized OO design metrics—measure characteristics of classes and their com-

munication and collaboration characteristics.

Metrics for source code. These metrics measure the source code and can be used

to assess its complexity, maintainability, and testability, among other characteristics:

Halstead metrics—controversial but nonetheless fascinating, these metrics pro-

vide unique measures of a computer program.

Complexity metrics—measure the logical complexity of source code (can also be

considered to be component-level design metrics)

.

Length metrics—provide an indication of the size of the software.

Metrics for testing. These metrics assist in the design of effective test cases and

evaluate the efficacy of testing:

Statement and branch coverage metrics—lead to the design of test cases that pro-

vide program coverage.

Defect-related metrics—focus on bugs found, rather than on the tests themselves.

Testing effectiveness—provide a real-time indication of the effectiveness of tests

that have been conducted.

In-process metrics—process related metrics that can be determined as testing is

conducted.

In many cases, metrics for one model may be used in later software engineering ac-

tivities. For example, design metrics may be used to estimate the effort required to

generate source code. In addition, design metrics may be used :n test planning and

test case design

SafeHome

Debating Product Metrics

The scene: Vinod's cubicle

The players: Vinod, Jamie ond Ed—members of the

SafeHome software engineering team, who are continuing

work on component-level design and test case design.

The conversation:

Vinod: Doug [Doug Miller, software engineering

manager] told me that we should all use product

metrics, but he was kind of vague. He also said

472 PART TWO SOFTWARE ENGINEERING PRACTICE

that he wouldn't push the matter . . . using them was up

to us.

Jamie: That's good, 'cause there’s no way I have time to

start measuring stuff. We're fighting to maintain the

schedule as it is.

Ed: I agree with Jamie. We're up against it, here ... no

time.

Vinod: Yeah, I know, but there's probably some merit to

using them.

Jamie: I'm not arguing that, Vinod. It's a time thing . . .

and I for one don't have any to spare.

Vinod: But what if measuring saves you time?

Ed: Wrong, it takes time and like Jamie said . . .

Vinod: No, wait . . . what if it saves us time?

Jamie: How?

Vinod: Rework . . . that's how. If a metric we use helps

us avoid one major or even moderate problem, and that

saves us from having to rework a part of the system, we

save time. No?

Ed: It's possible, I suppose, but can you guarantee that

some product metric will help us find a problem?

Vinod: Can you guarantee that it won't?

Jamie: So what are you proposing?

Vinod: I think we should select a few design metrics,

probably class-oriented, and use them as part of our

review process for every component we develop.

Ed: I'm not real familiar with class-oriented metrics.

Vinod: I'll spend some time checking them out and

make a recommendation . . . okay with you guys?

(Ed and Jamie nod without much enthusiasm.)

15,3 Metrics eqr the Analysis,.

M

aaEi

Although relatively few analysis and specification metrics have appeared in the lit-

erature, it is possible to adapt metrics that are often used for project estimation and

apply them in this context. These metrics examine the analysis mode! with the intent

of predicting the "size" of the resultant system. Size is sometimes (but not always)

an indicator ofdesign complexity and is almost always an indicator ofincreased cod-

ing, integration, and testing effort.

15.3.1 Function-Based Metrics

WebRef

Mud) useful

infocmatioo obout

function points con

be obtained ot

www.ifpug.org

and www.function

points.com.

Thefunction point metric (FP), first proposed by Albrecht [ALB79], can be used effec-

tively as a means for measuring the functionality delivered by a system.6 Using his-

torical data, the FP can then be used to (1) estimate the cost or effort required to

design, code, and test the software; (2) predict the number of errors that will be en-

countered during testing, and (3) forecast the number of components and/or the

number of projected source lines in the implemented system.

Function points are derived using an empirical relationship based on countable

(direct) measures of software's information domain and assessments of software

complexity. Information domain values are defined in the following manner; 7

6 Since Albrecht's original work, hundreds of books, papers, and articles have been written on FP. A

worthwhile bibliography can be found at [IFP03|.

7 In actuality, the definition of information domain values and the manner in which they are counted

are a bit more complex. The interested reader should see [IFP01] for more details.

CHAPTER 15 PRODUCT METRICS
473

Number of external inputs (Els). Each external input originates from a user or

is transmitted from another application and provides distinct application-oriented

data or control information. Inputs are often used to update internal logicalfiles

(ILFs). Inputs should be distinguished from inquiries, which are counted separately.

Number of external outputs (EOs). Each external output is derived within the

application and provides information to the user. In this context external output

refers to reports, screens, error messages, and so on. Individual data items within a

report are not counted separately.

Number of external inquiries (EQs). An external inquity is defined as an on-

line input that results in the generation of some immediate software response in

the form of an on-line output (often retrieved from an ILF).

Number of internal logical files (ILFs). Each internal logical file is a logical

grouping of data that resides within the application's boundary and is maintained

via external inputs.

Number of external interface files (EIFs). Each external interfacefile is a log-

ical grouping of data that resides external to the application but provides data that

may be of use to the application.

Once these data have been collected, the table in Figure 15.2 is completed and a

complexity value is associated with each count. Organizations that use function

point methods develop criteria for determining whether a particular entry is simple,

average, or complex. Nonetheless, the determination of complexity is somewhat

subjective.

To compute function points (FP), the following relationship is used:

FP = count total x [0.65 + 0.01 x 1 (F,)] (15-1)

where count total is the sum of all FP entries obtained from Figure 15.2.

The F, (i = l to 14) are value adjustmentfactors (VAF) based on responses to the

following questions [LON02]:

I . Does the system require reliable backup and recovery?

Information
Computing
function points

Domain Value Count

External Inputs (Els) a X

External Outputs (EOs) a X

External Inquiries (EQs) a X

Internal Logical Files (ILFs) a X

External Interface Files (EIFs)

Count total

a X

Weighting factor

Simple Average Complex

3 4 6

4 5 7

3 4 6

7 10 15

5 7 10

oman

H

II

II

0

II

474 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
Volue adjustment

factors are used to

provide on indication

of problem complexity.

WebRef
An online FP cokulctor

con be found ot

irb.cs.unimagdebur

g.de/sw-eng/

us/java/fp/.

2 Are specialized data communications required to transfer information to or
from the application?

3. Are there distributed processing functions?

4. Is performance critical?

5. will the system run in an existing, heavily utilized operational environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input transaction to be built over mul-
tiple screens or operations?

8. Are the ILFs updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

1

0.

is the internal processing complex?

11- Is the code designed to be reusable?

12. Are conversion and installation included in the design?

1 3. is the system designed for multiple installations in different organizations?

14. is the application designed to facilitate change and for ease of use by the user?

Each ol these questions is answered using a scale that ranges from 0 (not important
or applicable) to 5 (absolutely essential) . The constant values in Equation (1 5- 1) and
the weighting factors that are applied to information domain counts are determined
empirically.

To illustrate the use of the FP metric in this context, we consider a simple analy-
sis model representation, illustrated in Figure 15.3. Referring to the figure, a data
flow diagram (Chapter 8) for a function within the SafeHome software is represented.
The function manages user interaction, accepting a user password to activate or de-
activate the system, and allows inquiries on the status of security zones and various
security sensors. The function displays a series of prompting messages and sends
appropriate control signals to various components of the security system.

iwmm
A data flow

model tor

ScdeHome
software

User

Password

Zone inquiry

Sensor inquiry

Panic button »

Activote/deactivote

Test sensor

SafeHome
user

interaction

function

Zone setting

Messages

Alarm"
,
sensors . . . alert

Sensor status

Activate/deactivate

System configuration data

CHAPTER 15 PRODUCT METRICS
475

The data flow diagram is evaluated to determine a set of key information domain

measures required for computation of the function point metric. Three external

inputs—password, panic button, and activate/deactivate—are shown in the

figure along with two external inquires—zone inquiry and sensor inquiry. One ILF

(system configuration file) is shown. Two external outputs (messages and sen-

sor status) and four ElFs (test sensor, zone setting, activate/deactivate, and

alarm alert) are also present. These data, along with the appropriate complexity,

are shown in Figure 15.4.

The count total shown in Figure 15.4 must be adjusted using Equation (15-1):

FP = count total x [0.65 + 0.01 x 2 (F,)]

where count total is the sum of all FP entries obtained from Figure 15.4 and F, (/ = 1

to 1 4) are value adjustment factors. For the purposes of this example, we assume that

2 (F,) is 46 (a moderately complex product). Therefore,

FP = 50 x [0.65 + (0.01 x 46)] = 56

Based on the projected FP value derived from the analysis model, the project team

can estimate the overall implemented size of the SafeHome user interaction function.

Assume that past data indicates that one FP translates into 60 lines of code (an

object-oriented language is to be used) and that 12 FPs are produced for each per-

son-month of effort. These historical data provide the project manager with impor-

tant planning information that is based on the analysis model rather than

preliminary estimates. Assume further that past projects have found an average of

three errors per function point during analysis and design reviews and four ert ors per

function point during unit and integration testing. These data can help software en-

gineers assess the completeness of their review and testing activities.

Uemura and his colleagues [UEM99] suggest that function points can also be

computed from UML class and sequence diagrams (Chapters 8 and 10). The inter-

ested reader should see [UEM991 for details.

Weighting factor

Computing
function points

Domain Value Count Simple Average Complex

External Inputs (Els) X 4 6 - V 1

External Outputs (EOs) UJ X (4> 5 7 - UJ
External Inquiries (EQs) L_2J X (3) 4 6 -

j
6 |

Internal Logical Files (ILFs) X 10 15 =
1

7 |

External Interface Files (EIFs)

Count total

ULJ X 7 10 = 20 I—
- noj

476 PART TWO SOFTWARE ENGINEERING PRACTICE

“Rather than just musing on what 'new metric' might apply ... we should also be asking ounelves the more basic

question, 'Whot will we do with metrics?'

"

Michael Moh and Larry Putnam

9s

POINT
By measuring

characteristics of the

specification, it is

possible to goin

quantitative insight

into specificity and

completeness.

15.3.2 Metrics for Specification Quality

Davis and his colleagues [DAV93J propose a list of characteristics that can be used
to assess the quality of the analysis model and the corresponding requirements spec-
ification: specificity (lack of ambiguity), completeness, correctness, understandabiiity,

verifiability, internal and external consistency, achievability, concision, traceability, mod-
ifiability, precision, and reusability. In addition, the authors [DAV93] note that high-
quality specifications are electronically stored, executable or at least interpretable,

annotated by relative importance, stable, versioned, organized, cross-referenced,
and specified at the right level of detail.

Although many of these characteristics appear to be qualitative in nature, Davis
et al. |DAV93] suggest that each can be represented using one or more metrics. For
example, we assume that there are n, requirements in a specification, such that

nr
= nf +n„f

where nf is the number of functional requirements and nnf is the number of non-
functional (e.g., performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, Davis et al. sug-
gest a metric that is based on the consistency of the reviewers' interpretation of each
requirement:

Q, = nui/nr

where nw is the number of requirements for which all reviewers had identical interpre-

tations. The closer the value ofQ to 1 , the lower is the ambiguity of the specification.

The completeness of functional requirements can be determined by computing the
ratio

Qi = nu/[ni x ns]

where nu is the number of unique function requirements, n, is the number of inputs

(stimuli) defined or implied by the specification, and ns is the number of states spec-
ified. The Q2 ratio measures the percentage of necessary functions that have been
specified for a system. However, it does not address nonfunctional requirements. To
incorporate these into an overall metric for completeness, we must consider the de-
gree to which requirements have been validated:

Q3 = nc/[nc + nm]

where nc is the number of requirements that have been validated as correct and nm
is the number of requirements that have not yet been validated.

CHAPTER 15 PRODUCT METRICS 477

"Measure what is meosurable, and what is not measurable, make measurable."

Galileo

15.4 Metrics for the Design Model

It is inconceivable that the design of a new aircraft, a new computer chip, or a new

office building would be conducted without defining design measures, determining

metrics for various aspects of design quality, and using them to guide the manner in

which the design evolves. And yet, the design of complex software-based systems

often proceeds with virtually no measurement. The irony of this is that design met-

rics for software are available, but the vast majority of software engineers continue

to be unaware of their existence.

Design metrics for computer software, like all other software metrics, are not per-

fect. Debate continues over their efficacy and the manner in which they should be

applied. Many experts argue that further experimentation is required before design

measures can be used. And yet, design without measurement is an unacceptable

alternative.

1 5.4. 1 Architectural Design Metrics

Architectural design metrics focus on characteristics of the program architecture

(Chapter 10) with an emphasis on the architectural structure and the effectiveness of

modules or components within the architecture. These metrics are "black box" in the

sense that they do not require any knowledge of the inner workings of a particular

software component.

Card and Glass [CAR901 define three software design complexity measures: struc-

tural complexity, data complexity, and system complexity.

For hierarchical architectures (e.g., call and return architectures), structural com-

plexity of a module i is defined in the following manner:

Sr
5

POINT
Metrics can provide

insight into structural

data and system

complexity associated

with architectural

SCO =/2
omW '

< l5'2 >

where

/

olJl (i) is the fan-out8 of module i.

Data complexity provides an indication of the complexity in the internal interface

for a module / and is defined as

0(i) = v(l)/[/out(') + 1]
(15-3)

where v(i) is the number of input and output variables that are passed to and from

module i.

8 Fan-out is defined as the number of modules immediately subordinate to the module r, that is, the

number of modules that are directly invoked by module /. Fan-in is defined as the number of mod-

ules that directly invoke module /.

478 PART TWO SOFTWARE ENGINEERING PRACTICE

Finally, system complexity is defined as the sum of structural and data complexity,

specified as

CO) = S(i) + D(i)
(15 -4)

As each of these complexity values increases, the overall architectural complexity of
the system also increases. This leads to a greater likelihood that integration and test-

ing effort will also increase.

Fenton [FEN91] suggests a number of simple morphology (i.e., shape) metrics that

enable different program architectures to be compared using a set of straightforward

dimensions. Referring to the call-and-return architecture in Figure 15.5, the follow-

ing metrics can be defined:

size = n + a

where n is the number of nodes and a is the number of arcs. For the architecture

shown in Figure 15.5,

size = 17 + 18 - 35

depth = 4 the longest path from the root (top) node to a leaf node,

width = 6, maximum number of nodes at any one level of the architecture,

arc-to-node ratio, r = a/n,

which measures the connectivity density of the architecture and may provide a

simple indication of the coupling of the architecture. For the architecture shown in

Figure 15.5, r = 18/17 = 1.06.

The U.S. Air Force Systems Command [USA87] has developed a number of soft-

ware quality indicators that are based on measurable design characteristics of a

computer program. Using concepts similar to those proposed in IEEE Std. 982. 1-1988

[IEE94], the Air Force uses information obtained from data and architectural design

Width

CHAPTER 15 PRODUCT METRICS 479

to derive a design structure quality index (DSQI) that ranges from 0 to 1 . The follow-

ing values must be ascertained to compute the DSQI [CHA89]:

S, = the total number of modules defined in the program architecture

52 = the number of modules whose correct function depends on the source of

data input or that produce data to be used elsewhere (in general, control

modules, among others, would not be counted as part ofS2)

53
= the number of modules whose correct function depends on prior pro-

cessing

54
= the number of database items (includes data objects and all attributes that

define objects)

55
= the total number of unique database items

56
= the number of database segments (different records or individual objects)

57
= the number of modules with a single entry and exit (exception processing

is not considered to be a multiple exit)

Once values S, through S7 are determined for a computer program, the following in-

termediate values can be computed;

Program structure : D u where D :
is defined as follows: If the architectural design

was developed using a distinct method (e g., data flow-oriented design or object-

oriented design), then D, = 1, otherwise D, = 0.

Module independence: D2
= 1 - (S2/S,)

Modules not dependent on prior processing: D3
=

1 - (S3/S,)

Database size: D4
= 1 - (S5/S4)

Database compartmentalization: Ds
= 1 - (S<,/S4)

Module entrance/exit characteristic: D6
= 1 - (S7/S,)

With these intermediate values determined, the DSQI is computed in the following

manner:

DSQI = 2 w,D, (15-5)

where / = 1 to 6, vv, is the relative weighting of the importance of each of the inter-

mediate values, and 1 w, = 1 (if all D,- are weighted equally, then vv,- = 0. 167).

The value of DSQI for past designs can be determined and compared to a design

that is currently under development. If the DSQI is significantly lower than average,

further design work and review are indicated. Similarly, if major changes are to be

made to an existing design, the effect of those changes on DSQI can be calculated.

"Meosurement ton be seen os o detour. This detour is netessory because humans mostly ore not able to moke deor

and objective decisions [without quantitative support]."

Horst Zuse

480 PART TWO SOFTWARE ENGINEERING PRACTICE

^ What charac-

• (eristics

can be measured

when we assess

an 00 design?

15.4.2 Metrics for Object-Oriented Design

There is much about object-oriented design that is subjective—an experienced de-

signer "knows" how to characterize an OO system so that it will effectively imple-

ment customer requirements. But, as an OO design model grows in size and

complexity, a more objective view of the characteristics of the design can benefit

both the experienced designer (who gains additional insight) and the novice (who

obtains an indication of quality that would otherwise be unavailable).

In a detailed treatment of software metrics for OO systems, Whitmire [WHI97] de-

scribes nine distinct and measurable characteristics of an OO design:

Size. Size is defined in terms of four views: population, volume, length, and

functionality. Population is measured by taking a static count ofOO entities such as

classes or operations. Volume measures are identical to population measures but

are collected dynamically—at a given instant of time. Length is a measure of a

chain of interconnected design elements (e.g., the depth of an inheritance tree is a

measure of length). Functionality metrics provide an indirect indication of the value

delivered to the customer by an OO application.

Complexity. Like size, there are many differing views of software complexity

[ZUS97], Whitmire views complexity in terms of structural characteristics by exam-

ining how classes of an OO design are interrelated to one another.

Coupling. The physical connections between elements of the OO design (e.g.,

the number of collaborations between classes or the number of messages passed

between objects) represent coupling within an OO system.

Sufficiency. Whitmire defines sufficiency as "the degree to which an abstrac-

tion possesses the features required of it, or the degree to which a design compo-

nent possesses features in its abstraction, from the point of view of the current

application." Stated another way, we ask: What properties does this abstraction

(class) need to possess to be useful to me? [WHI97]. In essence, a design compo-

nent (e.g., a class) is sufficient if it fully reflects all properties of the application do-

main object that it is modeling—that is, that the abstraction (class) possesses the

features required of it.

"Many of the decisions for which I hod to rely on folklore and myth can now be mode using quontitative data."

Scott Whitmire

Completeness. The only difference between completeness and sufficiency is

"the feature set against which we compare the abstraction or design component"

[WHI97]. Sufficiency compares the abstraction from the point of view of the current

application. Completeness considers multiple points of view, asking the question:

What properties are required to fully represent the problem domain object? Be-

cause the criterion for completeness considers different points of view, it indirectly

implies the degree to which the abstraction or design component can be reused.

CHAPTER 15 PRODUCT METRICS 481

Cohesion. Like its counterpart in conventional software, an OO component

should be designed in a manner that has all operations working together to

achieve a single, well-defined purpose. The cohesiveness of a class is determined

by examining the degree to which "the set of properties it possesses is part of the

problem or design domain" [WHI97].

Primitiveness. A characteristic that is similar to simplicity, primitiveness (ap-

plied to both operations and classes) is the degree to which an operation is

atomic—that is, the operation cannot be constructed out of a sequence of other op-

erations contained within a class. A class that exhibits a high degree of primitive-

ness encapsulates only primitive operations.

Similarity. The degree to which two or more classes are similar in terms of

their structure, function, behavior, or purpose is indicated by this measure.

Volatility. As we have seen earlier in this book, design changes can occur

when requirements are modified or when modifications occur in other parts of an

application, resulting in mandatory adaptation of the design component in ques-

tion. Volatility of an OO design component measures the likelihood that a change

will occur.

In reality product metrics for OO systems can be applied not only to the design

model, but also the analysis model. In the sections that follow, we explore metrics

that provide an indication of quality at the OO class level and the operation level.

15.4.3 Class-Oriented Metrics—The CK Metrics Suite

POINT
The number of

methods ond their

complexity are directly

correloted to the effort

required to test a class.

The class is the fundamental unit of an OO system. Therefore, measures and metrics

for an individual class, the class hierarchy, and class collaborations will be invalu-

able to a software engineer who must assess design quality. In earlier chapters, we

saw that the class encapsulates operations (processing) and attributes (data). The

class is often the "parent" for subclasses (sometimes called children) that inherit its

attributes and operations. The class often collaborates with other classes. Each of

these characteristics can be used as the basis for measurement.9

One of the most widely referenced sets ofOO software metrics has been proposed

by Chidamber and Kemerer [CHI94] . Often referred to as the CK metrics suite, the au-

thors have proposed six class-based design metrics for OO systems. 10

Weighted methods per class (WMC). Assume that n methods of complexity c,,

c2 , . . c„ are defined for a class C. The specific complexity metric that is chosen (e.g.,

9 It should be noted that the validity of some of the metrics discussed in this chapter is currently de-

bated in the technical literature. Those who champion measurement theory demand a degree of

formalism that some OO metrics do not provide. However, it is reasonable to state that the metrics

noted provide useful insight for the software engineer.

1 0 Chidamber and Kemerer use the term methods rather than operations. Their usage of the term is re-

flected in this section.

482

Inheritance is an

extremely powerful

feature that can get

you into trouble, if you

use it without core.

Use HIT and other

metrics to give

yourself a reading on

the complexity of doss

hierarchies.

A class

hierarchy

PART TWO SOFTWARE ENGINEERING PRACTICE

cydomatic complexity) should be normalized so that nominal complexity for a

method takes on a value of 1 .0.

WMC = I Cj

for i = 1 to rr. The number of methods and their complexity are reasonable indica-

tors of the amount of effort required to implement and test a class. In addition, the

larger the number of methods, the more complex is the inheritance tree (all sub-

classes inherit the methods of their parents). Finally, as the number of methods

grows for a given class, it is likely to become more and more application specific,

thereby limiting potential reuse. For all of these reasons. WMC should be kept as low

as is reasonable.

Although it would seem relatively straightforward to develop a count for the num-

ber ofmethods in a class, the problem is actually more complex than it seems. A con-

sistent counting approach for methods should be developed. [CHU951

Depth of the inheritance tree (DIT). This metric is "the maximum length from

the node to the root of the tree" [CHI94], Referring to Figure 15.6, the value of DIT for

the class-hierarchy shown is 4. As DIT grows, it is likely that lower-level classes will

inherit many methods. This leads to potential difficulties when attempting to predict

the behavior of a class. A deep class hierarchy (DIT is large) also leads to greater de-

sign complexity. On the positive side, large DIT values imply that many methods may
be reused.

Number of children (NOC). The subclasses that are immediately subordinate to

a class in the class hierarchy are termed its children. Referring to Figure 1 5.6, class

C2 has three children—subclasses C2i , C22 , and C23 . As the number of children

grows, reuse increases but also, as NOC increases, the abstraction represented by

CHAPTER 15 PRODUCT METRICS 483

the parent class can be diluted if some of the children are not appropriate members
of the parent class. As NOC increases, the amount of testing (required to exercise

each child in its operational context) will also increase.

Coupling between object classes (CBO). The CRC model (Chapter 8) may be

used to determine the value for CBO. In essence, CBO is the number of collabora-

tions listed for a class on its CRC index card. 1

1

As CBO increases, it is likely that the

reusability ofa class will decrease. High values ofCBO also complicate modifications

and the testing that ensues when modifications are made. In general, the CBO val-

ues for each class should be kept as low as is reasonable. This is consistent with the

general guideline to reduce coupling in conventional software.

fhe concepts of

coupling and cohesion

apply to both conven-

tional ond 00

software. Keep class

coupling low ond class

and operation cohesion

high.

Response for a class (RFC). The response set of a class is "a set of methods that

can potentially be executed in response to a message received by an object ofthat class"

[CHI94]. RFC is the number of methods in the response set. As RFC increases, the effort

required for testing also increases because the test sequence (Chapter 14) grows. It also

follows that, as RFC increases, the overall design complexity of the class increases.

Lack of cohesion in methods (LCOM). Each method within a class, C, accesses

one or more attributes (also called instance variables). LCOM is the number of meth-

ods that access one or more of the same attributes. 12
If no methods access the same

attributes, then LCOM = 0. To illustrate the case where LCOM # 0, consider a class

with six methods. Four of the methods have one or more attributes in common (i.e.,

they access common attributes). Therefore, LCOM = 4. IfLCOM is high, methods may
be coupled to one another via attributes. This increases the complexity of the class

design. Although there are cases in which a high value for LCOM is justifiable, it is

desirable to keep cohesion high; that is, keep LCOM low. 13

SafeHome

Applying CK Metrics

The scene: Vinod's cubicle.

The players: Vinod, Jamie, Shakira, and Ed

—

members of the SafeHome software engineering team,

who are continuing work on component-level design and

test case design.

The conversation:

Vinod: Did you guys get a chance to read the

description of the CK metrics suite I sent you on

Wednesday and make those measurements?

1 1 If CRC index cards are developed manually, completeness and consistency must be assessed be-

fore CBO can be determined reliably.

12 The formal definition is a bit more complex. See |CHI94) for details.

13 The LCOM metric provides useful insight in some situations, but it can be misleading in others. For

example, keeping coupling encapsulated within a class increases the cohesion of the system as a

whole. Therefore, in at least one important sense, higher LCOM actually suggests that a class may
have higher cohesion, not lower.

484 PART TWO SOFTWARE ENGINEERING PRACTICE

Shakira: Wosn't too complicated. I went back to my

UML class and sequence diograms, like you suggested,

and got rough counts for DIT, RFC, and LCOM. I couldn't

find the CRC model, so I didn't count CBO.

Jamie (smiling): You couldn't find the CRC model

because I hod it.

Shakira: That's what I love about this team, superb

communication.

Vinod: I did my counts ... did you guys develop

numbers for the CK metrics?

(Jamie and Ed nod in the affirmative.)

Jamie: Since I had the CRC cards, I took a look at CBO,

and it looked pretty uniform across most of the classes.

There was one exception, which I noted.

Ed: There are a few classes where RFC is pretty high,

compared with the averages . . . maybe we should take a

look at simplifying them.

Jamie: Maybe yes, maybe no. I'm still concerned about

time, and I don't wont to fix stuff that isn't really broken.

Vinod: I agree with that. Maybe we should look for

classes that have bad numbers in at least two or more of

the CK metrics. Kind of two strikes and you're modified.

Shakira (looking over Ed's list of classes with

high RFC): Look, see this class? Its got a high LCOM as

well as a high RFC. Two strikes?

Vinod: Yeah I think so . . . it'll be difficult to implement

because of complexity and difficult to test for the same

reason. Probably worth designing two separate classes to

achieve the same behavior.

Jamie: You think modifying it'll save us time?

Vinod: Over the long haul, yes.

15.4.4 Class-Oriented Metrics—The MOOD Metrics Suite

Harrison, Counsell, and Nithi (HAR98) propose a set of metrics for object-oriented

design that provide quantitative indicators for OO design characteristics. A small

sampling of MOOD metrics follows:

Method inheritance factor (MIF). The degree to which the class architecture of

an OO system makes use of inheritance for both methods (operations) and attributes

is defined as

MIF = 2 MAC,)

where the summation occurs over i = 1 to Tc . Tc is defined as the total number of

classes in the architecture; C, is a class within the architecture; and

MAC,) = MAC) + M,(Q

where

MAC) = the number of methods that can be invoked in association with C,.

MAC) = the number of methods declared in the class C,.

M,(C) = the number of methods inherited (and not overridden) in C,.

The value of MIF (the attribute inheritance factor, AIF, is defined in an analogous

manner) provides an indication of the impact of inheritance on the OO software.

CHAPTER 15 PRODUCT METRICS 485

During review of the

analysis model, CUC

index cards will provide

a reasonable indication

of expected values for

CS. If you encounter a

class with a large

numbei of responsibili-

ties, consider parti-

boning it.

"Analyzing 00 software in order to evaluate its quality is becoming increasingly important os the [00] paradigm

continues to increase in popularity.'

Rachel Harrison et al.

Coupling factor (CF). Earlier in this chapter we noted that coupling is an indica-

tion of the connections between elements of the OO design. The MOOD metrics suite

defines coupling in the following way:

CF = X, l,is_dier.t (C, C,)/(Tc
2 - Tc)

where the summations occur over / = 1 to Tc and j
= 1 to Tc . The function

is_client = 1 ,
if and only if a relationship exists between the client class, C0

and the server class, Q, and Cc s4 Cs

= 0, otherwise

Although many factors affect software complexity, understandability, and maintain-

ability, it is reasonable to conclude that, as the value for CF increases, the complex-

ity of the 00 software will also increase, and understandability, maintainability, and

the potential for reuse may suffer as a result.

Harrison and her colleagues [HAR98] present a detailed analysis of MIF and CF,

along with other metrics and examine their validity for use in the assessment of de-

sign quality.

15.4.5 OO Metrics Proposed by Lorenz and Kidd

In their book on OO metrics, Lorenz and Kidd [LOR94] divide class-based metrics

into four broad categories that each have a bearing on component-level design: size,

inheritance, internals, and externals. Size-oriented metrics for an OO design class

focus on counts of attributes and operations for an individual class and average val-

ues for the OO system as a whole. Inheritance-based metrics focus on the manner

in which operations are reused through the class hierarchy. Metrics for class inter-

nals look at cohesion and code-oriented issues, and external metrics examine cou-

pling and reuse. A sampling of metrics proposed by Lorenz and Kidd follows:

Class size (CS). Th& overall size of a class can be determined with the following

measures:

• The total number of operations (both inherited and private instance opera-

tions) that are encapsulated within the class.

• The number of attributes (both inherited and private instance attributes) that

are encapsulated by the class.

The WMC metric proposed by Chidamber and Kemerer (Section 15.4.3) is also a

weighted measure of class size. As we noted earlier, large values for CS indicate that

486 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
It is possible to

compute meosutes

of Hie functional

independence—
coupling ond

cohesion—of o

component ond to use

these to assess Hie

quality of a design.

a class may have too much responsibility. This will reduce the reusability of the class

and complicate implementation and testing. In general, inherited or public opera-

tions and attributes should be weighted more heavily in determining class size

[LOR94] . Private operations and attributes enable specialization and are more local-

ized in the design. Averages for the number of class attributes and operations may
also be computed. The lower the average values for CS, the more likely that classes

within the system can be reused widely.

Number of operations added by a subclass (NOA). Subclasses are specialized

by adding operations and attributes. As the value for NOA increases, the subclass

drifts away from the abstraction implied by the superclass. In general, as the depth

of the class hierarchy increases (DIT becomes large), the value for NOA at lower lev-

els in the hierarchy should go down.

15.4.6 Component-Level Design Metrics

Component-level design metrics for conventional software components focus on in-

ternal characteristics of a software component and include measures of the "three

Cs”—module cohesion, coupling, and complexity. These measures can help a soft-

ware engineer to judge the quality of a component-level design.

The metrics presented in this section are "glass box" in the sense that they require

knowledge of the inner working of the module under consideration. Component-

level design metrics may be applied once a procedural design has been developed.

Alternatively, they may be delayed until source code is available.

Cohesion metrics. Bieman and Ott [BIE94] define a collection of metrics that pro-

vide an indication of the cohesiveness (Chapter 9) of a module. The metrics are de-

fined in terms of five concepts and measures:

Data slice. Stated simply, a data slice is a backward walk through a module that

looks for data values that affect the state of the module when the walk began. It

should be noted that both program slices (which focus on statements and condi-

tions) and data slices can be defined.

Data tokens. The variables defined for a module can be defined as data tokens

for the module.

Glue tokens. This set of data tokens lies on one or more data slice.

Superglue tokens. These data tokens are common to eveiy data slice in a module.

Stickiness. The relative stickiness of a glue token is directly proportional to the

number of data slices that it binds.

Bieman and Ott develop metrics for strongJunctional cohesion (SFC), weakfunc-

tional cohesion (WFC), and adhesiveness (the relative degree to which glue tokens

bind data slices together). These metrics can be interpreted in the following man-

ner [B1E94]

:

CHAPTER 15 PRODUCT METRICS 487

All of these cohesion metrics range in value between 0 and I . They have a value of 0 when

a procedure has more than one output and exhibits none of the cohesion attribute indi-

cated by a particular metric. A procedure with no superglue tokens, no tokens that are

common to all data slices, has zero strong functional cohesion—there are no data tokens

that contribute to all outputs. A procedure with no glue tokens, that is no tokens common

to more than one data slice (in procedures with more than one data slice), exhibits zero

weak functional cohesion and zero adhesiveness—there are no data tokens that con-

tribute to more than one output.

Strong functional cohesion and adhesiveness are encountered when the Bieman and

Ott metrics take on a maximum value of 1

.

Coupling metrics. Module coupling provides an indication of the "connected-

ness" of a module to other modules, global data, and the outside environment. In

Chapter 9, coupling was discussed in qualitative terms.

Dhama [DHA95] has proposed a metric for module coupling that encompasses

data and control flow coupling, global coupling, and environmental coupling. The

measures required to compute module coupling are defined in terms of each of the

three coupling types noted previously. For data and control flow coupling,

dj = number of input data parameters

c, = number of input control parameters

d0 = number of output data parameters

c0 = number of output control parameters

For global coupling,

gd = number of global variables used as data

gc = number of global variables used as control

For environmental coupling,

w = number of modules called (fan-out)

r = number of modules calling the module under consideration (fan-in)

Using these measures, a module coupling indicator, mc , is defined in the following

way:

mc = k/M

where k is a proportionality constant and

M = dj + (a x q) + d0 + (bxc0) + gd + (c xgc) + w + r (15-6)

Values for k, a, b, and c must be derived empirically.

As the value ofmc increases, the overall module coupling decreases. In order to

have the coupling metric move upward as the degree ofcoupling increases, a revised

coupling metric may be defined as

C = I - mc

488 PART TWO SOFTWARE ENGINEERING PRACTICE

POINT
Cydomotic complexity

is only one of o lorge

number of complexity

metric.

where the degree of coupling increases as the measures in Equation (15-6) increase.

Complexity metrics. A variety of software metrics can be computed to determine

the complexity of program control flow. Many of these are based on the flow graph.

As we discussed in Chapter 14, a graph is a representation composed of nodes and

links (also called edges). When the links (edges) are directed, the flow graph is a di-

rected graph.

McCabe and Watson [MCC94] identify a number of important uses for complexity

metrics:

Complexity metrics can be used to predict critical information about reliability and main-

tainability of software systems from automatic analysis of source code [or procedural de-

sign information! . Complexity metrics also provide feedback during the software project

to help control the [design activity). During testing and maintenance, they provide de-

tailed information about software modules to help pinpoint areas of potential instability.

The most widely used (and debated) complexity metric for computer software is

cyclomatic complexity, originally developed by Thomas McCabe [MCC76], [MCC89]

and discussed in detail in Chapter 14.

Zuse ([ZUS90], [ZUS97]) presents an encyclopedic discussion of no fewer than 1

8

different categories of software complexity metrics. The author presents the basic

definitions for metrics in each category (e.g., there are a number of variations on the

cyclomatic complexity metric) and then analyzes and critiques each. Zuse's work is

the most comprehensive published to date.

15.4.7 Operation-Oriented Metrics

Because the class is the dominant unit in OO systems, fewer metrics have been pro-

posed for operations that reside within a class. Churcher and Shepperd [CHU95] dis-

cuss this when they state: "Results of recent studies indicate that methods tend to be

small, both in terms ofnumber of statements and in logical complexity [WIL93], sug-

gesting that the connectivity structure of a system may be more important than the

content of individual modules." However, some insights can be gained by examin-

ing average characteristics for methods (operations) . Three simple metrics, proposed

by Lorenz and Kidd [LOR94], are appropriate:

Average operation size (OSavg). Although lines of code could be used as an in-

dicator for operation size, the LOC measure suffers from a set ofproblems discussed

in Chapter 22 . For this reason, the number of messages sent by the operation pro-

vides an alternative for operation size. As the number of messages sent by a single

operation increases, it is likely that responsibilities have not been well-allocated

within a class.

Operation complexity (OC). The complexity of an operation can be computed

using any of the complexity metrics proposed for conventional software [ZUS90] . Be-

CHAPTER IS PRODUCT METRICS
489

Interface design

metrics are fine, bat

above all else, be

absolutely sure thot

your endusers like the

interface and are

comfortable with the

interactions required.

cause operations should be limited to a specific responsibility, the designer should

strive to keep OC as low as possible.

Average number of parameters per operation (NPavg). The larger the number

of operation parameters, the more complex the collaboration between objects. In

general, NPavg should be kept as low as possible.

15.4.8 User Interface Design Metrics

Although there is significant literature on the design of human/computer interfaces

(Chapter 12), relatively little information has been published on metrics that would

provide insight into the quality and usability of the interface.

Sears [SEA931 suggests that layout appropriateness (LA) is a worthwhile design

metric for human/computer interfaces. A typical GUI uses layout entities—graphic

icons, text, menus, windows, and the like-to assist the user in completing tasks. To

accomplish a given task using a GUI, the user must move from one layout entity to

the next. The absolute and relative position of each layout entity, the frequency with

which it is used, and the "cost" of the transition from one layout entity to the next all

contribute to the appropriateness of the interface.

"You con loom at least one principal of user interface design by loading a dishwasher. If you crowd a lot in there,

nothing gets very dean."

Author unknown

Kokol and his colleagues [KOK95] define a cohesion metric for UI screens that

measures the relative connection of on-screen content to other on-screen content.

If data (or other content) presented on a screen belongs to a single major data ob-

ject (as defined within the analysis model), UI cohesion for that screen is high, if

many different types of data or content are presented and these data are related to

different data objects, UI cohesion is low. The authors provide empirical models for

cohesion [KOK95],

In addition, direct measures of UI interaction can focus on the measurement of

time required to achieve a specific scenario or operation, time required to recover

from an error condition, counts of specific operations or tasks required to achieve a

use-case, the number of data or content objects presented on a screen, text density

and size, and many others. However, these direct measures must be organized to

create meaningful UI metrics that will lead to improved UI quality and/or improved

usability.

It is important to note that the selection of a GUI design can be guided with met-

rics such as LA or UI screen cohesion, but the final arbiter should be user input based

on GUI prototypes. Nielsen and Levy [NIE94] report that "one has a reasonably large

chance of success if one chooses between interface [designs] based solely on users

opinions. Users' average task performance and their subjective satisfaction with a

GUI are highly correlated."

490 PART TWO SOFTWARE ENGINEERING PRACTICE

15*5

Operators include all

flow of control

constructs, condi-

tionals, and math

operations. Operands

encompass all program

variables and

constants.

-Metrics for Sohrof rinnr

Halstead's theory of "software science" [HAL77] proposed the first analytical "laws"
for computer software. H Halstead assigned quantitative laws to the development of
computer software, using a set of primitive measures that may be derived after code
is generated or estimated once design is complete. The measures are:

n
i

= the number of distinct operators that appear in a program.
n2 = the number of distinct operands that appear in a program.
N| = the total number of operator occurrences.

N2
= the total number of operand occurrences.

Halstead uses these primitive measures to develop expressions for the overall
program length, potential minimum volume for an algorithm, the actual volume
(number of bits required to specify a program), the program level (a measure of soft-
ware complexity), the language level (a constant for a given language), and other
features such as development effort, development time, and even the projected
number of faults in the software.

Halstead shows that length N can be estimated

N = log2 n, + n2 log2 rt2

and program volume may be defined

V=N\og
2 (n, +n2)

It should be noted that V will vary with programming language and represents the
volume of information (in bits) required to specify a program.

The human brain follows o more rigid set of rules [for developing algorithms] than it hos been owore of."

Maurice Halstead

Theoretically, a minimum volume must exist for a particular algorithm. Halstead
defines a volume ratio L as the ratio of volume of the most compact form of a pro-
gram to the volume of the actual program. In actuality, L must always be less than 1

.

In terms of'primitive measures, the volume ratio may be expressed as

L = 2/rt, x n2/N2

Halstead's work is amenable to experimental verification, and a large body of re-
search has been conducted to investigate software science. For further information,
see [ZUS90], [FEN91], and [ZUS97].

1 4 It should be noted that Halstead's "laws" have generated substantial controversy, and many believe
that the underlying theory has flaws. However, experimental verification for selected programming
languages has been performed (e.g. [FEL89]).

CHAPTER 15 PRODUCT METRICS 491

l&Ji

POINT
Testing metrics foil into

two brood categories:

(1) metrics that

attempt to predict the

likely number of tests

required at various

testing levels, ond

(2) metrics that focus

on test coverage for a

given component.

Metrics for Testing

Although much has been written on software metrics for testing (e.g., [HET93]), the

majority of metrics proposed focus on the process of testing, not the technical char-

acteristics of the tests themselves. In general, testers must rely on analysis, design,

and code metrics to guide them in the design and execution of test cases.

Function-based metrics (Section 15.3.1) can be used as a predictor for overall

testing effort. Various project-level characteristics (e.g., testing effort and time,

errors uncovered, number of test cases produced) for past projects can be col-

lected and correlated with the number of function points produced by a project

team. The team can then project "expected values" of these characteristics for the

current project.

Architectural design metrics provide information on the ease or difficulty associ-

ated with integration testing (Chapter 13) and the need for specialized testing soft-

ware (e.g., stubs and drivers). Cyclomatic complexity (a component-level design

metric) lies at the core of basis path testing, a test case design method presented in

Chapter 1 4. m addition, cyclomatic complexity can be used to target modules as can-

didates for extensive unit testing. Modules with high cyclomatic complexity are more

likely to be error prone than modules whose cyclomatic complexity is lower. For this

reason, the tester should expend above average effort to uncover errors in such mod-

ules before they are integrated in a system.

15.6.1 Halstead Metrics Applied to Testing

Testing effort can also be estimated using metrics derived from Halstead mea-

sures (Section 15.5). Using the definitions for program volume, V, and program level,

PL, Halstead effort, e, can be computed as

PL= l/[(n,/2) x (N2/n2)] (l5-7a)

e = V/PL (15- 7b)

The percentage of overall testing effort to be allocated to a module k can be esti-

mated using the following relationship:

percentage of testing effort (k)
= e(k)/1e(i) (15-8)

where e{k) is computed for module k using Equations (15-7) and the summation in

the denominator of Equation (15-8) is the sum of Halstead effort across all modules

of the system.

15.6.2 Metrics for Object-Oriented Testing

The OO design metrics noted in Section 15.4 provide an indication of design quality.

They also provide a general indication of the amount of testing effort required to ex-

ercise an OO system.

492

00 testing con be quite

complex. Metrics con

assist you in targeting

testing resources ot

threads, scenarios, ond

packages of classes

that ore "suspect"

based on measured

characteristics. Use

them.

1££

PART TWO SOFTWARE ENGINEERING PRACTICE

Binder [BIN94] suggests a broad array of design metrics that have a direct influ-

ence on the "testability of an 00 system. The metrics consider aspects of encapsu-

lation and inheritance. A sampling follows:

Lack of cohesion in methods (LCOM). 15 The higher the value of LOOM, the

more states must be tested to ensure that methods do not generate side effects.

Percent public and protected (PAP). This metric indicates the percentage ofclass

attributes that are public or protected. High values for PAP increase the likelihood of

side effects among classes because public and protected attributes lead to high po-

tential for coupling (Chapter 9).
16 Tests must be designed to ensure that such side ef-

fects are uncovered.

Public access to data members (PAD). This metric indicates the number of

classes (or methods) that can access another class's attributes, a violation of encap-

sulation. High values for PAD lead to the potential for side effects among classes.

Tests must be designed to ensure that such side effects are uncovered.

Number of root classes (NOR). This metric is a count of the distinct class hier-

archies that are described in the design model. Test suites for each root class and the

corresponding class hierarchy must be developed. As NOR increases, testing effort

also increases.

Fan-in (FIN). When used in the OO context, fan-in for the inheritance hierarchy is

an indication of multiple inheritance. FIN > 1 indicates that a class inherits its at-

tributes and operations from more than one root class. FIN > 1 should be avoided

when possible.

Number of children (NOC) and depth of the inheritance tree (D1T). 17 As

we discussed in Chapter 14, superclass methods will have to be retested for each

subclass.

Metrics for Maintenance

All of the software metrics introduced in this chapter can be used for the develop-

ment of new software and the maintenance of existing software. However, metrics

designed explicitly for maintenance activities have been proposed.

IEEE Std. 982. 1
- 1988 [IEE94] suggests a software maturity index (SMI) that provides

an indication of the stability of a software product (based on changes that occur for

each release of the product). The following information is determined:

15 See Section 15.4.3 for a description of LCOM.

1 6 Some people promote designs in which none of the attributes are public or private; that is, PAP =

0. This implies that ail attributes must be accessed in other classes via methods.

17 See Section 15.4.3 for a description of NOC and DIT.

CHAPTER 15 PRODUCT METRICS
493

MT
= the number of modules in the current release

Fc = the number of modules in the current release that have been changed

Fg = the number of modules in the current release that have been added

Fd = the number of modules from the preceding release that were deleted in

the current release

The software maturity index is computed in the following manner:

SMI = [Mt - (F„ + FC + Fd)]/MT

As SMI approaches 1 .0, the product begins to stabilize. SMI may also be used as a

metric for planning software maintenance activities. The mean time to produce a re-

lease of a software product can be correlated with SMI, and empirical models for

maintenance effort can be developed.

Product Metrics

Objective: To assist software engineers in

developing meaningful metrics that assess the

work products produced during analysis and design

modeling, source code generation, and testing.

Mechanics: Tools in this category span a broad array of

metrics and are implemented either as standalone

applications or (more commonly) as functionality that exists

within tools for analysis and design, coding or testing. In

most cases, the metrics tool analyzes a representation of the

software (e.g., a UMl model or source code) and develops

one or more metrics as a result.

Representative Tools ' 8

Krakatau Metrics, developed by Power Software

(www.powersoftware.com/products), computes

complexity, Halstead, and related metrics for

C/C+ + and Java.

Software Tools
\

MetricsdC, developed by +1 Software Engineering

(www.plus-one.com/Metrics4C_foct_sheet.ntml),

computes a variety of architectural, design, and code-

oriented metrics as well as project-oriented metrics.

Rational Rose, developed by Rational Corporation

(www.rational.com), is a comprehensive tool set for

UMl modeling that incorporates a number of metrics

analysis features,

RSM, developed by M-Squared Technologies

(msquaredtechnologies.com/m2rsm/index.html),

computes a wide variety of code-oriented metrics for

C, C+ + and Java.

Understand, developed by Scientific Toolworks, Inc.

(www.scitools.com), calculates code-oriented metrics

for a variety of programming languages.

J

IBS Summary —
Software melrics provide a quantitative way to assess the quality of internal product

attributes, thereby enabling a software engineer to assess quality before the product

is built. Metrics provide the insight necessary to create effective analysis and design

models, solid code, and thorough tests.

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category'.

In most cases, tool names are trademarked by their respective developers.

494 PART TWO SOFTWARE ENGINEERING PRACTICE

To be useful in a real world context, a software metric must be simple and com-
putable, persuasive, consistent, and objective. It should be programming language
independent and provide effective feedback to the software engineer

Metrics for the analysis model focus on function, data, and behavior—the three
components of the analysis model. Metrics for design consider architecture,
component-level design, and interface design issues Architectural design metrics
consider the structural aspects of the design model. Component-level design met-
rics provide an indication of module quality by establishing indirect measures for
cohesion, coupling, and complexity. User interface design metrics provide an in-
dication of the ease with which a GUI can be used.

Metrics for OO systems focus on measurement that can be applied to the class
and design characteristics—localization, encapsulation, information hiding, inheri-
tance, and object abstraction techniques—that make the class unique.

Halstead provides an intriguing set of metrics at the source code level. Using the
number of operators and operands present in the code, a variety of metrics are de-
veloped to assess program quality.

Few product metrics have been proposed for direct use in software testing and
maintenance. However, many other product metrics can be used to guide the test-
ing process and as a mechanism for assessing the maintainability of a computer
program. A wide variety ofOO metrics have been proposed to assess the testabil-

ity of an OO system.

References _
JALB79] Albrecht, A. J., "Measuring Application Development Productivity," Proc. IBM Applica-

tion Development Symposium, Monterey, CA, October 1979, pp. 83-92.
’

[AI..B83] Albrecht, A. and J. E. Gaffney, "Software Function, Source Lines of Code and Devel-
opment Effort Prediction: A Software Science Validation," IEEE nans. Software Engineering
November 1983, pp. 639-648.

[BAS84J Basili, V. R., and D. M. Weiss, 'A Methodology for Collecting Valid Software Engineer-
ing Data," IEEE nans. Software Engineering, vol. SE-10, 1984, pp. 728-738.

(BER95) Berard, E„ "Metrics for Object-Oriented Software Engineering," an internet posting on
comp.software-eng, January 28, 1995.

[BIE94] Bieman, J. M . ,
and L. M. Ott, "Measuring Functional Cohesion," IEEE nans. Software En -

gineering, vol. SE-20, no. 8, August 1994, pp. 308-320.
[BIN94] Binder, R. V., "Object-Oriented Software Testing," CACJW, vol. 37, no. 9 September

1994, p. 29.

[BRI96J Briand, L. C., S. Morasca, and V. R. Basili, "Property-Based Software Engineering
Measurement,"' IEEE Trans. Software Engineering, vol. SE-22, no. 1, January 1996
pp. 68-85.

' J

ICAR90] Card, D. N., and R. L. Glass, Measuring Software Design Quality, Prentice-Hall, 1990.
ICAV78) Cavano, J. P„ and J. A. McCall, "A Framework for the Measurement of Software Qual-

ity," Proc. ACM Software QualityAssurance Workshop, November 1 978, pp. 1 33-1 39.
[CHA89] Charette, R. N., Softvare Engineering Risk Analysis and Management. McGraw-Hill/

Intertext, 1989.

[CHI94] Chidamber, S. R., and C. F. Kemerer, "A Metrics Suite for Object-Oriented Design," IEEE
Trans Software Engineering, vol. SE-20, no. 6, June 1994, pp. 476-493.

CHAPTER 15 PRODUCT METRICS 495

[CHI98] Chidamber, S. R., D. P. Darcy, and C. F. Kemerer, "Management Use of Metrics for Object-

Oriented Software: An Exploratory Analysis," IEEE Trans. Software Engineering, vol. SE-24,

no. 8, August 1998, pp. 629-639.

[CHU95) Churcher, N. I., and M. J Shepperd, "Towards a Conceptual Framework for Object-

Oriented Metrics," ACM Software Engineering Notes, vol. 20, no. 2, April 1995, pp. 69-76.

[CUR80] Curtis, W., "Management and Experimentation in Software Engineering," Proc. IEEE,

vol. 68, no, 9, September 1980.

PAV93) Davis, A., et al., "Identifying and Measuring Quality in a Software Requirements Spec-

ification," Proc. First Inti. Software Metrics Symposium, IEEE, Baltimore, MD, May 1993,

pp. 141-152.

[DEM81] DeMillo, R. A., and R. J. Upton, "Software Project Forecasting," in Software Metrics

(A. J. Perlis, F. G. Sayward, and M. Shaw, eds.), MIT Press, 1981, pp. 77-89.

[DEM82] DeMarco, T., Controlling Software Projects, Yourdon Press, 1982.

[DHA95] Dhama, H„ "Quantitative Models ofCohesion and Coupling in Software," Journal ofSys-

tems and Software, vol. 29, no. 4, April 1995,

[E)191] Ejiogu, L., Software Engineering with Formal Metrics, QED Publishing, 1991

[FEL89] Felican, L., and G. Zalateu, "Validating Halstead's Theory for Pascal Programs," IEEE

TTans. Software Engineering, vol. SE-15, no. 2, December 1989, pp. 1630-1632.

[FEN91] Fenton, N„ Software Metrics, Chapman and Hall, 1991.

[FEN94] Fenton, N., "Software Measurement: A Necessary Scientific Basis," IEEE Trans. Software

Engineering, vol. SE-20, no. 3, March 1994, pp. 199-206.

[GRA87] Grady, R. B„ and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,

Prentice-Hall, 1987.

[HAL77] Halstead, M., Elements ofSoftware Science, North-Holland, 1977.

[HAR981 Harrison, R.. S. J. Counsell, and R. V. Nithi, "An Evaluation of the MOOD Set of Object-

Oriented Software Metrics," IEEE nans. Software Engineering, vol. SE-24, no. 6, June 1998,

pp. 491-496.

[HET93] Hetzel, B„ Making Software Measurement Work, QED Publishing, 1993.

[IEE93] IEEE Standard Glossary ofSoftware Engineering Terminology, IEEE, 1993.

[IEE94] Software Engineering Standards, 1994 edition, IEEE, 1994.

[IFP01] Function Point Counting Practices Manual, Release 4.1.1, International Function Point

Users Group, 2001
,
available from http://www.ifpug.org/publications/ manual.htm.

[IFP03] Function Point Bibliography/Reference Library, International Function Point Users

Group, 2003, available from http://www.ifpug.org/about/bibliography. htm

[KOK95] Kokol, P, I. Rozman, and V. Venuti, "User Interface Metrics," ACM SIGPLAN Notices,

vol. 30, no. 4. April 1995. can be downloaded from: http://portal.acm.org/.

[KYB841 Kyburg, H. E., Theory and Measurement, Cambridge University Press, 1984.

[LET03] Lethbridge, T., private communication of software metrics, June, 2003.

[LON02] Longstreet, D., "Fundamental of Function Point Analysis," Longstreet Consulting, Inc,

2002, available at http://www.ifpug.com/fpafund.htm.

[LOR94J Lorenz, M., and J. Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.

(MCC76) McCabe, T. J., "A Software Complexity Measure," IEEE nans. Software Engineering, vol.

SE-2, December 1976, pp. 308-320.

[MCC77] McCall, J., P. Richards, and G. Walters, "Factors in Software Quality," three volumes,

NTIS AD-A049-01 4, 015, 055, November 1977.

[MCC89] McCabe, T. J., and C. W. Butler, "Design Complexity Measurement and Testing," CACM,

vol. 32, no. 12, December 1989, pp. 1415-1425.

(MCC94] McCabe, T. J., and A. H. Watson, "Software Complexity," Crosstalk, vol. 7, no. 12,

December 1994, pp. 5-9,

[NIE94] Nielsen, J.. and J. Levy, "Measuring Usability: Preference vs. Performance," CACM, vol.

37, no. 4, April 1994, pp. 65-75.

[ROC94] Roche, J. M., "Software Metrics and Measurement Principles," Software Engineering

Notes, ACM, vol. 19, no. 1, January 1994, pp. 76-85.

[SEA93] Sears. A., "Layout Appropriateness: A Metric for Evaluating User Interface Widget Layout,

IEEE nans. Software Engineering, vol. SE-19, no. 7, July 1993, pp. 707-719.

[SHE98] Sheppard, M., Goal, Question, Metric, 1998, available at http://dec.

boumemouth.ac.uk/ESERG/mshepperd/SEMGQM.htmt.

496 PART TWO SOFTWARE ENGINEERING PRACTICE

[SOL99] van Solingen, R„ and E. Berghout, The Goal/Question/Metric Method, McGraw-Hill
1999.

[UEM99] Uemura, T„ S. Kusumoto, and K. Inoue, "A Function Point Measurement Tool for UML
Design Specifications," Proc. ofSixth International Symposium on Software Metrics, IEEE, No-
vember 1999, pp. 62-69.

[USA87] Management Quality Insight, AFCSP 800-14 (U.S. Air Force), January 20, 1987.
[WHI97] Whitmire, S., Object-Oriented Design Measurement, Wiley, 1997.
[W1L93] Wilde, N„ and R. Huitt, "Maintaining Object-Oriented Software," IEEE Software Januarv

1 993, pp. 75-80.

[ZUS90] Zuse, H., Software Complexity: Measures and Methods, DeGruyter, 1990.
[ZUS97] Zuse, H., A Framework ofSoftware Measurement, DeGruyter, 1997.

Problems and Points to Ponder
15 . 1 . Develop a software tool that will compute cyclomatic complexity for a programming lan-
guage module. You may choose the language.

15 .2 . McCall's quality factors were developed during the 1970s. Almost every aspect of com-
puting has changed dramatically since the time that they were developed, and yet, McCall's fac-

tors continue to apply to modem software. Can you draw any conclusions based on this fact?

1

5

.3 . Try to come up with a measure or metric from everyday life that violates the attributes of
effective software metrics defined in Section 15.2.5.

15 .4 . A class, X, has 12 operations, Cyclomatic complexity has been computed for all opera-
tions in the OO system, and the average value of module complexity is 4. For class X, the com-
plexity for operations 1 to 12 is 5, 4, 3, 3, 6, 8, 2, 2, 5, 5, 4, 4. respectively. Compute the weighted
methods per class.

15 .5 . A system has 12 external inputs, 24 external outputs, fields 30 different external queries,
manages 4 internal logical files, and interfaces with 6 different legacy systems (6 EIFsi. All of
these data are of average complexity, and the overall system is relatively simple. Compute FP
for the system.

1

5

.6 . Measurement theory is an advanced topic that has a strong bearing on software metrics.
Using [ZUS97], [FEN91], [ZUS90], [KYB84] or some other source, write a brief paper that out-
lines the main tenets of measurement theory Individual project: Develop a presentation on the
subject and present it to vour class.

15 . 7 . Why is it that a single, all-encompassing metric cannot be developed for program com-
plexity or program quality?

15 .8 . A major information system has 1 140 modules. There are 96 modules that perform con-
trol and coordination functions and 490 modules whose function depends on prior processing.
The system processes approximately 220 data objects that each have an average of three at-

tributes. There are 140 unique data base items and 90 different database segments. Finally, 600
modules have single entry and exit points. Compute the DSQI for this system.

15 .9 . A legacy system has 940 modules. The latest release required that 90 of these modules
be changed in addition, 40 new modules were added and 1 2 old modules were removed. Com-
pute the software maturity index for the system.

15 . 10 . Develop a small software too! that will perform a Halstead analysis on programming
language source code of your choosing.

15.1 1. Software for System X has 24 individual functional requirements and 14 nonfunc-
tional requirements. What is the specificity of the requirements? The completeness?

CHAPTER 15 PRODUCT METRICS 497

Further Readings and Information Sources

There is a surprisingly large number of books that are dedicated to software metrics, although

the majority focus on process and project metrics to the exclusion of product metrics. Kan (Met-

rics and Models in Software Quality Engineering, Addison-Wesley, second edition, 2002), Fenton

and Pfleeger
(Software Metrics: A Rigourous and Practical Approach, Brooks-Cole Publishing,

1998), and Zuse [ZUS97] have written thorough treatments of product metrics.

Books by Card and Glass [CAR901, Zuse [ZUS90], Fenton [FEN91J, Ejiogu [EJI911. Moeller

and Paulish (Software Metrics, Chapman and Hall, 1993), and Hetzel [HET93] all address prod-

uct metrics in some detail. Oman and Pfleeger (Applying Software Metrics, IEEE Computer So-

ciety Press, 1997) have edited an anthology of important papers on software metrics. In

addition, the following books are worth examining:

Conte, S. D., H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and Models,

Benjamin-Cummings, 1984.

Grady, R. B., Practical Software Metrics for Project Management and Process Improvement.

Prentice-Hall. 1992.

Sheppard, M., Software Engineering Metrics. McGraw-Hill, 1992,

The theory of software measurement is presented by Denvir, Herman, and Whitty in an ed-

ited collection of papers (Proceedings ofthe international BCS-FACS Workshop: Format Aspects of

Measurement, Springer-Verlag 1992). Shepperd (Foundations ofSoftware Measurement, Prentice-

Hall, 1 996) also addresses measurement theory' in some detail. Current research is presented in

the Proceedings ofthe Symposium on Software Metrics (IEEE, published annually).

A comprehensive summary of dozens of useful software metrics is presented in [IEE941. In

general, a discussion of each metric has been distilled to the essential "primitives" (measures)

required to compute the metric and the appropriate relationships to effect the computation.

An appendix provides discussion and many references.

Whitmire [WHI97] presents the most comprehensive and mathematically sophisticated treat-

ment OfOO metrics published to date. Lorenz and Kidd [LOR94] and Hendersen-Sellers (
Object-

Oriented Metrics: Measures of Complexity, Prentice-Hall, 1996). offer the only other books

dedicated to OO metrics. Hutcheson (Software Testing Fundamentals: Methods and Metrics. Wi-

ley, 2003) presents useful guidance in the application and use of metrics for software testing.

* A wide variety of information sources on software metrics are available on the, internet. An

up-to-date list of World Wide Web references that are relevant to software metrics can be found

at the SEPA Web site:-

http://www.mhhe.com/pressman.

PART

Three

Applying Web
Engineering

I
n this part of Software Engineering: A Practitioner's Approach

you'll learn about the principles, concepts, and methods that

are used to create high-quality Web applications. These ques-

tions are addressed in the chapters that follow:

• Are Web applications (WebApps) different from other types of

software?

• What is Web engineering, and what elements of software en-

gineering practice can it adopt?

• What are the elements of a Web engineering process?

• How does one formulate and plan a Web engineering project?

• How are requirements for WebApps analyzed and modeled?

• What concepts and principles guide a practitioner in the de-

sign of WebApps?

• How does one conduct architecture, interface, and navigation

design for WebApps?

• What construction techniques can be applied to implement

the design model?

• What testing concepts, principles, and methods are applicable

to Web engineering?

Once these questions are answered you'll be better prepared to

engineer high-quality Web applications.

499

CHAPTER

Web
Engineering

Key
Concepts

bask questions

best practices

process framework

quality criteria

WebApps

attributes

categories

Web engineering

methods

process

tools

T
he World Wide Web and the Internet that empowers it are arguably the

most important developments in the history of computing. These tech-

nologies have drawn us all (with billions more who will eventually follow)

into the information age. They have become integral to daily life in the first decade

of the twenty-first century.

For those of us who can remember a world without the Web, the chaotic

growth of the technology harkens back to another era—the early days of software.

It was a time of little discipline, but enormous enthusiasm and creativity. It was a

time when programmers often hacked together systems—some good, some bad

The prevailing attitude seemed to be "Get it done fast, and get it into the field; we'll

clean it up (and better understand what we really need to build) as we go." Sound

familiar?

In a virtual round table published in IEEE Software (PRE98], I staked out my po-

sition with regard to Web engineering; -

• It seems to me that just about any important product or system is worth engineering.

Before you start building it. you'd better understand the problem, design a workable so-

lution, implement it in a solid way, and test it thoroaghly'You shout'd probably also'con-

trol changes to it as you work anchhave some mechanism for ensuring the end result's

quality. Many Web developers don't argue with this; they Just think their world is really

diffeirentjand that conventional software engineering approachesamply don't apply.

What is it? Web-based systems

and applications (WebApps) deliver

a complex array of content and

functionality to a broad population

of end-users. Web engineering (WebE) is the

process that is used to create high-quality Web-

Apps. WebE is not a perfect clone of software

engineering, but it borrows many of software

engineering's fundamental concepts and prin-

ciples. In addition, the WebE process empha-

sizes similar technical and management

activities. There are subtle differences in the

way these activities are conducted, but the

overriding philosophy dictates a disciplined

approach to the development of a computer-

based system.

Who does it? Web engineers and nontechnical

content developers create the WebApp.

Why is it important? As WebApps become"

> increasingly integrated in business strategies for

small and large companies (e.g., e-commerce),

the need to build reliable, usable, and adapt-

able systems grows in importance. That's why a

disciplined approach to WebApp development

is necessary.

What are the steps? Like any engineering dis-

cipline, WebE applies a generic approach that

is tempered with specialized strategies, tactics,

and methods. The WebE process begins with a

formulation of the problem to be solved by the

WebApp. The WebE project is planned, and the

requirements and design of the WebApp are

500

CHAPTER 16 WEB ENGINEERING 501

modeled. The system is constructed using spe-

cialized technologies and tools associated with

the Web. It is then delivered to end-users and

evaluated using both technical and business cri-

teria. Because WebApps evolve continuously,

mechanisms for configuration control, quality

assurance, and on-going support must be

established.

What is the work product? A variety of

WebE work products are produced. The final

output is the operational WebApp.

How do I ensure that I've done it right?

It's sometimes hard to be sure until end-users ex-

ercise the WebApp. However, SQA practices

can be applied to assess the quality of WebE

models, overall system content and function, us-

ability, performance, and security.

This leads us to a pivotal question: Can software engineering principles, concepts, and

methods be applied to Web development? Many of them can, but their application may

require a somewhat different spin.

But what if an undisciplined approach to Web development persists? In the ab-

sence of a disciplined process for developing Web-based systems, there is increas-

ing concern that we may face serious problems in their successful development,

deployment, and maintenance. In essence, the application infrastructure that we are

creating today may lead to a "tangled Web" as we move further into this new cen-

tury. This phrase connotes a morass of poorly developed Web-based applications

that have too high a probability of failure. Worse, as Web-based systems grow more

complex, a failure in one can and will propagate broad-based problems across many.

When this happens, confidence in the entire Internet may be shaken. Worse, it may

lead to unnecessary and ill-conceived government regulation, leading to irreparable

harm to these unique technologies.

To avoid a tangled Web and achieve greater success in development and applica-

tion of large-scale, complex Web-based systems, there is a pressing need for disci-

plined approaches and new methods and tools for development, deployment, and

evaluation ofWeb-based systems and applications. Such approaches and techniques

must take into account the special features of the new medium, the operational en-

vironments and scenarios, and the multiplicity of user profiles which pose additional

challenges to Web-based application development.

Web engineering (WebE) applies "sound scientific, engineering, and manage-

ment principles and disciplined and systematic approaches to the successful de-

velopment, deployment and maintenance of high-quality Web-based systems and

applications.” [MUR99]

16.1 Attributes of Web-Based Systems and Applications

—

In the early days of the World Wide Web (circa 1990 to 1995), "Web sites" consisted

of little more than a set of linked hypertext files that presented information using text

and limited graphics. As time passed, HTML was augmented by development tools

(e.g., XML, Java) that enabled Web engineers to provide computing capability along

PARI THREE APPLYING WEB ENGINEERING502

with information. Web-based systems and applications' (we will refer to these col-

lectively as WebApps) were bom. Today, WebApps have evolved into sophisticated

computing tools that not only provide standalone function to the end-user, but also

have been integrated with corporate databases and business applications.

"By the time we see any sort of stabilization, the Web will hove turned into something completely different."

Louis Monier

There is little debate that WebApps are different than the many other categories

of computer software discussed in Chapter 1 . Powell summarizes the primary dif-

ferences when he states that Web-based systems 'involve a mixture between print

publishing and software development, between marketing and computing, be-

tween internal communications and external relations, and between art and tech-

nology." [POW98] The following attributes are encountered in the vast majority of

WebApps.

It con be argued that a

traditional application

within ony of the

software domains

discussed in Chapter 1

can exhibit this list of

attributes. Homer,

WebApps almost

always do.

Network intensiveness. A WebApp resides on a network and must serve the

needs of a diverse community of clients. A WebApp may reside on the Internet

(thereby enabling open worldwide communication). Alternatively, an application

may be placed on an Intranet (implementing communication across an organiza-

tion) or an Extranet (inter-network communication).

Concurrency. A large number of users may access the WebApp at one time, in

many cases, the patterns of usage among end-users will vary greatly.

Unpredictable load. The number of users of the WebApp may vary by orders

of magnitude from day to day. 100 users may show up on Monday; 10,000 may use

the system on Thursday.

Performance. If a WebApp user must wait too long (for access, for server-

side processing, for client-side formatting and display), he or she may decide to

go elsewhere.

Availability. Although expectation of 100 percent availability is unreasonable,

users of popular WebApps often demand access on a "24/7/365" basis. Users in

Australia or Asia might demand access during times when traditional domestic

software applications in North America might be taken off-line for maintenance.

Data driven. The primary function of many WebApps is to use hypermedia to

present text, graphics, audio, and video content to the end-user. In addition, Web-

Apps are commonly used to access information that exists on databases that were

I In the context of this chapter, the term “Web application" (WebApp) encompasses everything from

a simple Web page that might help a consumer compute an automobile lease payment to a com-

prehensive Web site that provides complete travel services for business people and vacationers. In-

cluded within this category are complete Web sites, specialized functionality within Web sites, and

information processing applications that reside on the internet or on an Intranet or ExtraNet.

CHAPTER 16 WEB ENGINEERING 503

not originally an integral part of the Web-based environment (e.g., e-commerce or

financial applications).

Content sensitive. The quality and aesthetic nature of content remains an im-

portant determinant of the quality of a WebApp.

Continuous evolution. Unlike conventional application software that evolves

over a series of planned, chronologically spaced releases, Web applications evolve

continuously. It is not unusual for some WebApps (specifically, their content) to be

updated on a minute-by-minute schedule or for content to be independently com-

puted for each request. Some argue that the continuous evolution ofWebApps

makes the work performed on them analogous to gardening. Lowe [LOW99I dis-

cusses this when he writes:

Engineering is about adopting a consistent and scientific approach, tempered by a spe-

cific practical context, to development and commissioning of systems or applications.

Web site development is often much more about creating an infrastructure (laying out

the garden) and then "tending" the information which grows and biooms within this gar-

den. Over time the garden (i.e., Web site) will continue to evolve, change, and grow. A

good initial architecture should allow this growth to occur in a controlled and consistent

manner. . .

.

Continual care and feeding allows a Web site to grow (in robustness and impor-

tance). But unlike a garden, Web applications must serve (and adapt to) the needs of

more than the gardener.

Immediacy. Although immediacy—the compelling need to get software to

market quickly—is a characteristic of many application domains, WebApps often

exhibit a time to market that can be a matter of a few days or weeks.2 Web engi-

neers must use methods for planning, analysis, design, implementation, and test-

ing that have been adapted to the compressed time schedules required for

WebApp development.

Security. Because WebApps are available via network access, it is difficult, if

not impossible, to limit the population of end-users who may access the applica-

tion. In order to protect sensitive content and provide secure modes of data trans-

mission, strong security measures must be implemented throughout the

infrastructure that supports a WebApp and within the application itself.

Aesthetics. An undeniable part of the appeal of a WebApp is its look and feel.

When an application has been designed to market or sell products or ideas, aes-

thetics may have as much to do with success as technical design.

These general attributes apply to all WebApps, but with different degrees of

influence.

2 With modem tools, sophisticated Web pages can be produced in only a few hours.

504 PART THREE APPLYING WEB ENGINEERING

<9 What

• categories

of WebApps are

encountered in

WebE work?

But what about the WebApps themselves? What problems do they address? The

following application categories are most commonly encountered in WebE work

[DAR991 :

• Informational—read-only content is provided with simple navigation and links.

• Download—

a

user downloads information from the appropriate server.

• Customizable—the user customizes content to specific needs.

• Interaction—communication among a community of users occurs via

chatroom, bulletin boards, or instant messaging.

• User input—forms-based input is the primary mechanism for communicating

need.

• Transaction-oriented—the user makes a request (e g., places an order) that is

fulfilled by the WebApp.

• Service-oriented—the application provides a service to the user, e g., assists

the user in determining a mortgage payment.

• Portal—the application channels the user to other Web content or services

outside the domain of the portal application.

• Database access—the user queries a large database and extracts information.

• Data warehousing—the user queries a collection of large databases and

extracts information.

The attributes noted earlier in this section and the application categories noted

above represent important facts of life for Web engineers. The key is living within

the constraints imposed by these attributes and still producing a successful

WebApp.

16.2 WebApp Engineering Laye&s

The development of Web-based systems and applications incorporates specialized

process models, software engineering methods adapted to the characteristics of

WebApp development, and a set of important enabling technologies. Process, meth-

ods, and technologies (tools) provide a layered approach to WebE that is conceptu-

ally identical to the software engineering layers described in Figure 2.1.

"Web Engineering deols with disciplined ond systematic approaches to development, deployment, ond maintenance of

Web-based systems and applications."

Yogesh Doshponde

16.2.1 Process

WebE process models (discussed in detail in Section 16.3) embrace the agile devel-

opment philosophy (Chapter 4). Agile development emphasizes a lean development

CHAPTER 16 WEB ENGINEERING
505

^IDVfCE^.

The WebT process is

often ogile and is

almost always incre-

mental. Note,

however, that the agile

model may not be

chosen for motor Web

engineering projects.

It's important to note

that many Webb

methods have been

adopted directly from

their software engi-

neering counterparts.

Others ore in their

formative stages.

Some of these will

survive; others will be

discarded as better

approaches are

suggested.

approach that incorporates rapid development cycles. Aoyama [AOY98] describes

the motivation for the agile approach in the following manner:

The internet changed software development's top priority from what to when. Reduced

time-to-market has become the competitive edge that leading companies strive for Thus,

reducing the development cycle is now one of software engineering s most important

missions.

Even when rapid cycle times dominate development thinking, it is important to rec-

ognize that the problem must still be analyzed, a design should be developed, im-

plementation should proceed in an incremental fashion, and an organized testing

approach must be initiated. However, these framework activities must be defined

within a process that (1) embraces change, (2) encourages the creativity and inde-

pendence of development staff and strong interaction with WebApp stakeholders,

(3) builds systems using small development teams, and (4) emphasizes evolutionary

or incremental development using short development cycles [MCD01].

16.2.2 Methods

The WebE methods landscape encompasses a set of technical tasks that enable a

Web engineer to understand, characterize, and then build a high-quality WebApp.

WebE methods (discussed in detail in Chapters 18 through 20) can be categorized in

the following manner:

Communication methods—define the approach used to facilitate communi-

cation between Web engineers and all other WebApp stakeholders (e.g., end-users,

business clients, problem domain experts, content designers, team leaders, project

managers). Communication techniques are particularly important during require-

ments gathering and whenever a WebApp increment is to be evaluated.

Requirements analysis methods-provide a basis for understanding the con-

tent to be delivered by a WebApp, the function to be provided for the end-user, and

the modes of interaction that each class of user will require as navigation through

the WebApp occurs.

Design methods—encompass a series of design techniques that address Web-

App content, application and information architecture, interface design, and navi-

gation structure.

Testing methods—incorporate formal technical reviews of both the content

and design model and a wide array of testing techniques that address component-

level and architectural issues, navigation testing, usability testing, security testing,

and configuration testing.

it is important to note that although WebE methods adopt many of the same under-

lying concepts and principles as the software engineering methods described in Part

2 of this book, the mechanics of analysis, design, and testing must be adapted to ac-

commodate the special characteristics of WebApps.

506 PART THREE APPLYING WEB ENGINEERING

In addition to the technical methods that have just been outlined, a series of um-
brella activities (with associated methods) are essential for successful Web engi-
neering, These include project management techniques (eg., estimation,
scheduling, risk analysis), software configuration management techniques, and re-
view techniques.

WebRef
Excellent resources foi

WebE technology con

be found ot

webdeveloper.com

end

www.eborcom.

com/webmoker.

16.2.3 Tools and Technology

A vast array ot tools and technology has evolved over the past decade as WebApps
have become more sophisticated and pervasive. These technologies encompass a
wide array ofcontent description and modeling languages (e.g., HTML, VRML, XML),
programming languages (e.g., Java) component-based development resources (e.g.,

CORBA, COM, ActiveX, NET), browsers, multimedia tools, site authoring tools, data-
base connectivity tools, security tools, servers and server utilities, and site manage-
ment and analysis tools.

A comprehensive discussion of tools and technology for Web engineering is beyond
the scope of this book. The interested reader should visit one or more of the following
Web sites: Web Developer's Virtual Encyclopedia (www.wdlv.com), WebDeveloper
(www.webdeveloper.com), Developer Shed (www.devshed.com), Webknowhow.net
(www.webknowhow.net), or WebReferencc (www.webreference.com).

16,3 The Web Engineering Proce ss

The attributes of Web-based systems and applications have a profound influence on
the WebE process that is chosen. In Chapter 3 we noted that a software engineer
chooses a process model based on the attributes of the software that is to be devel-
oped. The same holds true for a Web engineer.

If immediacy and continuous evolution are primaiy attributes of a WebApp, a Web
engineering team might choose an agile process model (Chapter 4) that produces
WebApp releases in rapid-fire sequence. On the other hand, if a WebApp is to be de-
veloped over a longer time period (e.g., a major e-commerce application), an incre-
mental process model (Chapter 3) might be chosen.

“Web development is on odolescent . . . Like most adolescents, it wonts to be accepted as an adult as it tries to pull
oway from its parents. If it is going to reach its full potential, it must take a few lessons from the more seasoned
world of software development."

Doug Wallace et al.

The network intensive nature of applications in this domain suggests a popula-
tion of users that is diverse (thereby making special demands on requirements elic-
itation and modeling) and an application architecture that can be highly specialized

CHAPTER 16 WEB ENGINEERING 507

Sf*

POINT
The WebE profess

model is predicoted

on three points:

incremental delivery,

continuous change,

and short timelines.

POINT
The generic process

model (introduced

in Chapter 2) is

applicable to Web

engineering.

(thereby making demands on design). Because WebApps are often content-driven

with an emphasis on aesthetics, it is likely that parallel development activities will

be scheduled within the WebE process and involve a team ofboth technical and non-

technical people (e.g., copywriters, graphic designers).

16.3.1 Defining the Framework

Any one of the agile process models (e.g., Extreme Programming, Adaptive Software

Development, SCRUM) presented in Chapter 4 can be applied successfully as a WebE

process. The process framework that is presented here is an amalgam of the princi-

ples and ideas discussed in Chapter 4.
•

To be effective, any engineering process must be adaptable. That is, the organi-

zation of the project team, the modes of communication among team members, the

engineering activities and tasks to be performed, the information that is collected

and created, and the methods used to produce a high-quality product must all be

adapted to the people doing the work, the project timeline and constraints, and the

problem to be solved. Before we define a process framework for WebE, we must rec-

ognize that:

1 . WebApps are often delivered incrementally. That is, framework activities will

occur repeatedly as each increment is engineered and delivered.

2. changes will occur frequently. These changes may occur as a result of the

evaluation of a delivered increment or as a consequence of changing busi-

ness conditions.

3. Timelines are short. This mitigates against the creation and review of volu-

minous engineering documentation, but it does not preclude the simple re-

ality that critical analysis, design, and testing must be recorded in some

manner.

In addition, the principles defined as part of the "Manifesto for Agile Software De-

velopment" (Chapter 4) should be applied. However, the principles are not the Ten

Commandments. It is sometimes reasonable to adopt the spirit of these principles

without necessarily abiding by the letter of the manifesto.

With these issues in mind, we discuss the WebE process within the generic

process framework presented in Chapter 2.

Customer communication, within the WebE process, customer communica-

tion is characterized by two major tasks: business analysis and formulation. Busi-

ness analysis defines the business/organizational context for the WebApp. In

addition, stakeholders are identified, potential changes in business environment or

requirements are predicted, and integration between the WebApp and other busi-

ness applications, databases, and functions is defined. Formulation is a require-

ments gathering activity involving all stakeholders. The intent is to describe the

508 PARI THREE APPLYING WEB ENGINEERING

problem that the WebApp is to solve (along with basic requirements for the web-
App) using the best information available. In addition, an attempt is made to iden-

tify areas of uncertainty and where potential changes will occur.

Planning. The project plan for the WebApp increment is created. The plan con-
sists of a task definition and a timeline schedule for the time period (usually mea-
sured in weeks) projected for the development of the WebApp increment.

Modeling. Conventional software engineering analysis and design tasks are

adapted to WebApp development, merged, and then melded into the WebE model-
ing activity (Chapters 18 and 19). The intent is to develop "rapid" analysis and de-

sign models that define requirements and at the same time represent a WebApp
that will satisfy them.

Construction. WebE tools and technology are applied to construct the WebApp
that has been modeled. Once the WebApp increment has been constructed, a se-

ries of rapid tests are conducted to ensure that errors in design (i.e., content, archi-

tecture, interface, navigation) are uncovered. Additional testing addresses other

WebApp characteristics.

Deployment. The WebApp is configured for its operational environment, deliv-

ered to end-users, and then an evaluation period commences. Evaluation feedback
is presented to the WebE team, and the increment is modified as required.

These five WebE framework activities are applied using an incremental process flow

as shown in Figure 16.1.

The WebE
process

Acceptance test

Customer use

Customer evaluation
Coding

Component test

Release

Business analysis

formulation

Iteration plan

Analysis model

Content

Iteration

Function

Configuration

Design model

Content

Architecture

Navigation

Interface

CHAPTER 16 WEB ENGINEERING 509

Web Engineering—Basic Questions

The engineering of ony product involves

subtleties that are not immediately obvious to those without

substantial experience. The characteristics of WebApps

force Web engineers to answer a variety of questions that

should be addressed during early framework activities.

Strategic questions related to business needs and product

objectives are addressed during formulation. Requirements

questions related to features and functions must be

considered during analysis modeling. Broad-based design

questions related to WebApp architecture, interface

characteristics, and navigational issues are considered as

the design model evolves. Finally, a set of human issues,

related to the manner in which a user actually interacts

with the WebApp, are addressed on a continual basis.

Susan Weinshenk [WEI02] suggests a set of questions

that must be considered as analysis and design progress.

A small (adapted) subset are noted here:

• How important is a Web-site home page? Shouldlt
-

contain useful information or a simple listing of links

that lead a user’to more detail at lower levels?

• What is the most effective page layout (e.g., menu on

top, on the right or left?),and does it vary depending

upon .Hie type of WebApp being developed?

• Which media options have the most impact? Are

graphics more effective than text? Is video (or audio) an

effective option? When should various media options

be chosen?

• How much work can we expect a user to do when he

or she is looking for information? How many clicks are

people willing to make?

• How important are navigational aids when WebApps

are complex?

How complex can forms input be before it becomes

irritating for the user? How can forms input be

expedited?

• How important are search capabilities? What

percentage of users browse, and what percent use

specific searches? How important is it to structure each

page in a manner that assumes a link from some

outside source?

• Will the WebApp be designed in a manner that makes

it accessible to those who have physical or other

disabilities?

There are no absolute answers to'questions such as these,

and yet, they must be addressed as WebE proceeds. We'll

consider potential answers in Chapters 1 7 through 20.

16.3.2 Refining the Framework

We have already noted that the WebE process model must be adaptable. That .is, a

definition of the engineering tasks required to refine each framework activity is left

to the discretion of the Web engineering team. In some cases, a framework activity

is conducted informally. In others, a series of distinct tasks will be defined and con-

ducted by team members. In every case, the team has responsibility for producing a

high-quality WebApp increment within the time period allocated.

It is important to'emphasize that tasks associated with WebE framework activi-

ties may be modified, eliminated, or extended based on the characteristics of the

problem, the product, the project, and the people on the Web engineering team.

'There are those of us who believe that the best proctices for software development are practical and deserve

implementation. And then there are those of us who believe that best practices are interesting in an academic sort of

way, but ore not for the real world, thank you very much.

Warren Keuffel

510 PART THREE APPLYING WEB ENGINEERING

Be sure that the

business need for a

WebApp bos been

clearly enunciated by

someone. If it hasn't,

your WebB project is

at risk.

JN.EB Engineering Best Practices

Will every WebApp developer use the WebE process framework and task set de-
fined in Section 16.3? Probably not. Web engineering teams are sometimes under
enormous time pressure and will try to take short-cuts (even if these are ill-

advised and result in more development effort, not less). But a set of fundamental
best practices—adopted from the software engineering practices discussed
throughout Part 2 of this book—should be applied if industry-quality WebApps are

to be built.

1 . Take the time to understand business needs and product objectives, even ifthe

details of tine WebApp are vague. Many WebApp developers erroneously be-

lieve that vague requirements (which are quite common) relieve them from
the need to be sure that the system they are about to engineer has a legiti-

mate business purpose. The end result is (too often) good technical work that

results in the wrong system built for the wrong reasons for the wrong audi-

ence. If stakeholders cannot enunciate a business need for the WebApp, pro-

ceed with extreme caution. If stakeholders struggle to identify a set of clear

objectives for the product (WebApp). do not proceed until they can.

2. Describe how users will interact with the WebApp using a scenario-based ap-

proach. Stakeholders must be convinced to develop use-cases (discussed

throughout Part 2 of this book) to reflect how various actors will interact with
the WebApp. These scenarios can then be used (1) for project planning and
tracking, (2) to guide analysis and design modeling, and (3) as important in-

put for the design of tests.

3. Develop a project plan, even ifit is very brief. Base the plan on a predefined

process framework that is acceptable to all stakeholders. Because project

timelines are very short, schedule granularity should be fine; i.e., in many in-

stances, the project should be scheduled and tracked on a daily basis.

4. spend some time modeling what it is thatyou'regoing to build. Generally, com-
prehensive analysis and design models are not developed during Web engi-

neering. However, UML class and sequence diagrams along with other

selected UML notation (e.g., state diagrams) may provide invaluable insight.

5. Review the modelsfor consistency and quality. Formal technical reviews

(Chapter 26) should be conducted throughout a WebE project. The time spent
on reviews pays important dividends because it often eliminates rework and
results in a WebApp that exhibits high quality—thereby increasing customer
satisfaction.

6. Use tools and technology that enableyou to construct the system with as many
reusable components as possible. A wide array of WebApp tools are available

for virtually every aspect of WebApp construction. Many of these tools enable

CHAPTER 16 WEB ENGINEERING 511

a Web engineer to build significant portions of the application using reusable

components.

7 . Don 't rely on early users to debug the WebApp—design comprehensive tests and

execute them before releasing the system. Users of a WebApp will often give it

one chance. If it fails to perform, they move elsewhere—never to return. It is

for this reason that "test first, then deploy" should be an overriding philoso-

phy, even if deadlines must be stretched.

Quality Criteria/Guidelines for WebApps

WebE strives to produce high-quality WebApps.

But what is "quality" in this context, and what guidelines

are available for achieving it? In his paper on Web-site

quality assurance, Quibeldey-Cirkel [QUI01
]
suggests a

comprehensive set of on-line resources that address these

issues:

W3C: Style Guide for Online Hypertext

www.w3.org/Provider/Style

The Sevloid Guide to Web Design

www.sev.com.au/webzone/design/guide.asp

Web Pages That Suck

www.webpagesthatsuck.com/index.html

Resources on Web Style

www.westegg.com/unmaintained/badpages

Gartner's Web Evaluation Tool

www.gartner.com/ebusiness/website-ings

ISM Corp: Web Guidelines

www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/572

World Wide Web Usability

ijhcs.open.ac.uk

Interface Hall of Shame

www.iarchitect.com/mshame.htm

Art and the Zen of Web Sites

www.tlc-systems.com/webtips.shtml

Designing for the Web: Empirical Studies

www.microsoft.com/usability/webconf.htm

Nielsen's useit.com

www.useit.com

Quality of Experience

www.qualityofexperience.org

Creating Killer Web Sites

www.killersites.com/core.html

All Things at Web
www.pantos.org/atw

SUN's New Web Design

www.sun.com/9801 1 3/sunonnet

Tognazzini, Bruce: Homepage

www.asktog.com

Webmonkey

hotwired.lycos.com/webmonkey/design/?tw=design

World's Best WebSites

www.worldbestwebsites.com

Yale University: Yale Web-Style Guide

info.med.yale.edu/caim/manual

16.5 Summary

The impact of Web-based systems and applications is arguably the single most sig-

nificant event in the history of computing. As WebApps grow in importance, a disci-

plined WebE approach—adapted from software engineering principles, concepts,

process, and methods—has begun to evolve.

WebApps are different from other categories of computer software. They are net-

work intensive, content driven, and continuously evolving. The immediacy that drives

their development, the overriding need for security in their operation, and the de-

mand for aesthetic as well as functional content delivery are additional differentiating

512 PART THREE APPLYING WEB ENGINEERING

factors. Like other types of software, WebApps can be assessed using a variety of

quality criteria that include usability, functionality, reliability, efficiency, maintainabil-

ity, security, availability, scalability, and time to market.

WebE can be described in three layers—process, methods, and tools/technology.

The WebE process adopts the agile development philosophy that emphasizes a

"lean" engineering approach that leads to the incremental delivery of the system to

be built. The generic process framework—communication, planning, modeling, con-

struction, and deployment—is applicable to WebE. These framework activities are

refined into a set of WebE tasks that are adapted to the needs of each project. A set

of umbrella activities similar to those applied during software engineering work—
SQA, SCM, project management—apply to all WebE projects.

EEEER£NCES
[AOY98] Aoyama, M., "Web-Based Agile Software Development, IEEE Computer,

November/December, 1998, pp. 56-65.

[DAR991 Dart, S., "Containing the Web Crisis Using Configuration Management," Proc. First ICSE

Workshop on Web Engineering, ACM, Los Angeles, May 1999. (The Proceedings of the First

ICSE Workshop on Web Engineering are published on-line at http://fistserv.macarthuf.uws.

e'du.au/san/icse99-WebE/ICSE99-WebE-Proc/ default.htm)

.

[FOWOl] Fowler M., and J. Highsmith, 'The Agile Manifesto," Software Development Magazine,

August 2001, http://www.sdmagazine.com/documents/s=844/ sdm0108a/0 108a.htm.

[MCD01J McDonald, A., and R. Welland, Agile Web Engineering (AWE) Process, Department ofCom-
puter Science, University of Glascow, Technical Report TR-2001 -98, 2001

,
downloadable from

http://www.dcs.gla.ac.uk/~andrew/TR-200 1 -98.pdf.

[MUR99] Murugesan, S., WebE Home Page, http://fistserv.macarthur.uws.edu.au/ san/
WebEHome, July, 1999.

|NOR99] Norton, K., "Applying Cross Functional Evolutionary Methodologies to Web Develop-

ment," Proc. First ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1 999.

[POW98] Powell, T. A., Web Site Engineering, Prentice-Hall, 1998.

[PRE98J Pressman, R. S. (moderator), "Can Internet-Based Applications Be Engineered?" IEEE
Software, September 1998, pp. 104-1 10.

[QUI0
1] Quibeldey-Cirkel, K., "Checklist for Web Site Quality Assurance," Quality Week Europe,

2001, downloadable from www.fbi.fh-darmstadt.de/~quibeldey/ Projekte/QWE2001/
Paper_Quibeldey_Cirkel .pdf.

(WEI02] Weinschenk, S., "Psychology and the Web: Designing for People," 2002,

http://www.weihschenk.com/leam/facts.asp.

Problems and Points tq Ponder
1 6. 1 . Using an actual Web site as an example, illustrate the different manifestations ofWebApp
"content."

1

6

.2 . Do a bit of research and write a two to three page paper that summarizes one of the tech-

nologies noted in Section 16.2.3.

16 .3 . How do you judge the ''quality" of a Web site? Make a prioritized list of 10 quality attrib-

utes that you believe are most important.

16 .4 . Are there other generic attributes that differentiate WebApps from more conventional

software applications? Try to name two or three.

CHAPTER 16 WEB ENGINEERING 513

16.5. Review the discussion of the "Manifesto for Agile Software Development" presented in

Chapter 4. Which of the 1 2 principles would work well for a two-year project (involving dozens

of people) that will build a major e-commerce system for an automobile company? Which of the

12 principles would work well for a two-month project that will build an informational site for

a small real estate firm?

1 6.6. Make a list of "risks" that would be likely during the development of a new e-commerce

application that is designed to sell mobile phones and service directly over the Web.

16.7. Review the software engineering processes described in Chapter 3 and 4. ls/are there an-

other process(es)—other than the agile process model—that might be applicable to Web engi-

neering? If yes, indicate which process(es) and why.

Further Readings and Information Sources

Hundreds of books that discuss one or more Web engineering topics have been published in re-

cent years, although relatively few address all aspects of WebE. Sarukkai (Foundations of Web

Technology, Kluwar Academic Publishers, 2002) presents a worthwhile compilation of the tech-

nologies that are required for WebE. Murugusan and Deshpande (Web Engineering: Managing

Diversity and Complexity ofWeb Development, Springer-Verlag, 200 1) have edited a collection of

useful papers on WebE. Proceedings of international conferences on Web Engineering andWeb

Information Systems Engineering are published yearly by the IEEE Computer Society Press.

Flor (Web Business Engineering, Addison-Wesley, 2000) discusses business analysis and re-

lated concerns that enable the Web engineer to better understand customer needs. Bean (Engi-

neering Global E-Commerce Sites, Morgan Kaufmann, 2003) presents guidelines for the

development of global WebApps. Lowe and Hall (
Hypermedia and the Web: An Engineering Ap-

proach, Wiley, 1999) and Powell [POW98] provide reasonably complete coverage. Umar (Appli-

cation Re-engineering: Building Web-Based Applications and Dealing with Legacy Systems,

Prentice-Hall, 1 997) addresses one of the most difficult issues in WebE—the re-engineering of

legacy systems to make them compatible with Web-based systems. IEEE Std. 2001-1999 defines

basic WebE practices.

A wide variety of information sources on Web engineering is available on the Internet. An

up-to-date list of World-Wide Web references that are relevant to Web Engineering can be found

at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Initiating a
WebApp Project

Key
Concepts

analysis types

communication

e-profects

formulation

questions

goals and objectives

in-house WebE

metrics

outsourcing

planning

project management

requirements

gathering

teams

worst practices

D uring the roaring 1990s, the Internet boom generated more hubris than

any other event in the history of computers. WebApp developers at hun-
dreds of young dot.com companies argued that a new paradigm for soft-

ware development had arisen, that old rules no longer applied, that time-to-market

trumped all other concerns. They laughed at the notion that careful formulation

and planning should occur before construction commenced. And who could ar-

gue? Money was everywhere, 24-year olds became multimillionaires (on paper, at

least)—maybe things really had changed. And then the bottom fell out.

It became painfully apparent as the twenty-first century began that a "build it

and they will come" philosophy just doesn't work, that problem formulation is es-

sential to ensure that a WebApp is really needed, and that planning is worth the

effort, even when development schedules are tight. Constantine and Lockwood
ICON02] note this situation when they write:

Despite breathless declarations that the Web represents a new paradigm defined by

new rules, professional developers are realizing that lessons learned in the pre-

Internet days of software development still apply. Web pages are user interfaces,

HTML programming is programming, and browser-deployed applications are soft-

ware systems that can benefit from basic software engineering principles.

Among the most fundamental principles of software engineering is: Understand

the problem beforeyou begin to solve it, and be sure that the solutionyou conceive is

one thatpeople really want. That's the basis of formulation, the first major activity

in Web engineering. Another fundamental software engineering principle is: Plan

the work beforeyou begin performing it. That's the philosophy that underlies proj-

ect planning.

What is it? Getting started is al-

ways difficult. On one hand, there is

a tendency to procrastinate, to wait

until every t is crossed and every i is

dotted before work begins. On the other hand,

there is a desire to jump right in, to begin build-

ing even before you really know what needs to

be done. Both approaches are inappropriate,

and that's why the first two Web engineering

framework activities emphasize formulation and
planning. Formulation assesses the underlying

need for the WebApp, the overall features and
functions that users desire, and the scope of the

development effort. Planning addresses the

things that must be defined to establish a work
flow and a schedule, and to track work as the

project proceeds.

Who does it? Web engineers, their managers,

and nontechnical stakeholders all participate in

formulation and planning.

Why is it important? It's hard to travel to a
place you've never visited without directions or a

514

CHAPTER 17 INITIATING A WEBAPP PROJECT 515

map. You may arrive eventually (or you may
not), but the journey is sure to be frustrating and

unnecessarily long. Formulation and planning

provide a map for a Web engineering team.

What are the steps? Formulation begins with

customer (stakeholder) communication that

addresses the reasons for the WebApp—what is

the business need; which end-users are targeted;

what features and functions are desired; what ex-

isting systems and databases are to be accessed;

is the concept feasible; how will success be mea-

sured? Planning establishes a work plan, develops

estimates to assess the feasibility of desired deliv-

ery dates, considers risk, defines a schedule, and

establishes mechanisms for tracking and control.

What is the work product? Because Web en-

gineering work often adopts an agile philoso-

phy, work products for formulation and planning

are usually lean—but they do exist, and they

should be recorded in written form. Information

gathered during formulation is recorded in a
written document that serves as the basis for

planning and analysis modeling. The project

plan lays out the project schedule and presents

any other information that is necessary to com-

municate to members of the Web engineering

team and outsiders.

How do I ensure that I've done it right?

Develop enough detail to establish a solid

roadmap, but not so much that you become
bogged down. Formulation and planning infor-

mation should be reviewed with stakeholders to

ensure that inconsistencies and omissions are

identified early.

1Z-J F.emvLAUNG Web-Based Systems

POINT
Formulation focuses on

the "big picture'—on

business needs and

objectives and related

information.

Formulation of Web-based systems and applications represents a sequence of Web en-

gineering actions that begins with the identification ofbusiness needs, moves into a de-

scription of WebApp objectives, defines major features and functions, and performs

requirements gathering that leads to the development of an analysis model. Formula-

tion allows stakeholders and the Web engineering team to establish a common set of

goals and objectives for the construction of the WebApp. It also identifies the scope of

the development effort and provides a means for determining a successful outcome.

Analysis—a technical activity that is a continuation of formulation—identifies the data,

functional, and behavioral requirements for the WebApp.

Before we consider formulation in more detail, it is reasonable to ask where for-

mulation stops and requirements analysis begins. There is no easy answer to this

question. Formulation focuses on the "big picture''—on business needs and objec-

tives and related information. However, it is virtually impossible to maintain this

level of abstraction. Stakeholders and Web engineers want to define required con-

tent, discuss specific functionality, enumerate specific features, and identify the

manner in which end-users will interact with the WebApp. Is this formulation or re-

quirements gathering? The answer is both.

17.1.1 Formulation Questions

Powell [POW98] suggests a set of questions that should be asked and answered at

the beginning of the formulation step:

• What is the main motivation (business need) for the WebApp?

516 PART THREE APPLYING WEB ENGINEERING

As you begin formu-

lating the problem,

try to describe the

WebApp you intend

to build in a single

sentence. If you can't,

you don't understand

the overall goals of

the work.

• What are the objectives that the WebApp must fulfill?

• Who will use the WebApp?

The answer to each of these simple questions should be stated as succinctly as pos-

sible. For example, assume that the manufacturer of SafeHome' has decided to es-

tablish an e-commerce Web site to sell its products directly to consumers. A

statement describing the motivation for the WebApp might be:

SafeHomeAssured.com will allow consumers to configure and purchase all components

required to install a home/business management system.

it is important to note that detail is not provided in this statement The objective here

is to bound the overall intent of the WebApp and to place it within a legitimate busi-

ness context.

After discussion with various stakeholders, an answer to the second question is

stated:

SafellomeAssured.com will allow us to sell directly to consumers, thereby eliminating

middleman costs and improving our profit margins. It will also allow us to increase sales

by a projected 25 percent over current annual sales and will allow us to penetrate geo-

graphic regions where we currently do not have sales outlets.

Finally, the company defines the demographic for the WebApp: "Projected users of

SafeHomeAssured.com are homeowners and owners of small businesses."

The answers stated above imply specific goals for the SafeHomeAssured.com

Web site. In general, two categories of goals [GNA99] are identified:

• Informational goals—indicate an intention to provide specific content and/or

information for the end-user.

• Applicative goals—indicate the ability to perform some task within the

WebApp.

In the context ofthe SafeHomeAssured.com WebApp, one informational goalmight be:

The site will provide users with a detailed product specification, including technical de-

scriptions, installation instructions, pricing information.

Examination of the answers to the questions posed above might lead to the state-

ment of an applicative goal:

SafeHomeAssured.com will query the user about the facility (i.e., house, office/retail

space) that is to be protected and make customized recommendations about the product

and configuration to be used.

Once all informational and applicative goals have been identified, a user profile is

developed. The user profile captures "relevant features related to potential users

I The SafeHome product has been used as an example throughout Parts 1 and 2 of this book.

CHAPTER 17 INITIATING A WEBAPP PROJECT 517

including their background, knowledge, preferences and even more" [GNA99] In the

case of SafeHomeAssured.com, a user profile would identify the characteristics of a

typical purchaser of security systems (this information would be supplied by the mar-

keting department).

"If you're hocking [WebApps], your philosophy is probobly 'reody, fire,

work, it ought to be 'reody, oim, fire.'

'

aim.' If you're serious about making 'em

Author unknown

A What

• requirements

gathering steps

are used for

WebApps?

Understanding the

user's background,

motivation, and objec-

tives is critical in all

software engineering

work. If you build o

WebApp without

knowing these things,

your work is at risk.

Once goals and user profiles have been developed, the formulation activity focuses

on a statement of scope for the WebApp. In many cases, the goals already developed

are integrated into the statement of scope. In addition, however, it is useful to indicate

the degree of integration to be expected of the WebApp. That is, it is often necessary

to integrate existing information systems (e.g., an existing database application) with

a Web-based front end. Connectivity issues are considered at this stage.

17.1.2 Requirements Gathering for WebApps

Methods for requirements gathering have been discussed in Chapter 7. Although the

requirements gathering activity for Web engineering may be abbreviated, the over-

all requirements gathering objectives proposed for software engineering remain un-

changed. Adapted for WebApps, these objectives become:

• Identify content requirements.

• Identify functional requirements.

• Define interaction scenarios for different classes of users.

The following requirements gathering steps are conducted to achieve these objectives:

1 . Ask stakeholders to define user categories and develop descriptions for each

category.

2. Communicate with stakeholders to define basic WebApp requirements.

3. Analyze information gathered and use information to follow-up with stake-

holders.

4. Define use-cases (Chapter 8) that describe interaction scenarios for each user

class.

Defining user categories. It can be argued that WebApp complexity is directly

proportional to the number of user categories for the system. To define a user cate-

gory a set of fundamental questions must be addressed:

• What is the user's overall objective when using the WebApp? For example, a

user of the SafeHomeAssured.com e-commerce site might be interested in

gathering information about home management products. Another user

might want to do a price comparison. A third user wants to purchase the

518 PART THREE APPLYING WEB ENGINEERING

SafeHome product. Each represents a different user class or category; each

will have different needs and will navigate through the WebApp differently. A

fourth user already owns SafeHome and is looking for technical support or

wants to purchase additional sensors or accessories.

• What is the user's background and sophistication relative to the content and

functionality of the WebApp

?

If a user has a technical background and signifi-

cant sophistication, elementary content or functionality will provide little

benefit. Alternatively, a neophyte demands elementary content and function-

ality and would be confused if it were missing.

• How will the user anive at the WebApp? Will arrival occur through a link from

another Web site (likely to content or functionality within the WebApp), or

will arrival occur in a more controlled manner?

• What generic WebApp characteristics does the user like/dislike? Different types

of users may have distinct and predictable likes and dislikes. It's worth

attempting to determine whether they do or not. In many situations, the

answer to this question can be ascertained by asking for their favorite and

least favorite WebApps.

Using the answers to these questions, the smallest reasonable set of user classes

should be defined. As requirements gathering proceeds, each defined user class

must be polled for input.

SafeHome

Requirements Gatheringfor

The scene: Doug Miller's office.

The players: Doug Miller, manager of the software

engineering group; Vinod Raman, a member of the

SafeHome software engineering team; and later, three

marketing people.

The conversation:

Doug: Management has decided that we're going to

build an e-commerce site to sell SafeHome.

Vinod: Whoa, Doug! We have no time to do that . . .

we're swamped with product software work.

Doug: I know, I know . . . we're going to outsource the

development to a company that specializes in

constructing e-commerce sites. They tell us that they'll get

it up and running in under one month ... lots of reusable

components.

Vinod: Hmmm. Okay . . . then why am I here?

WebApps

Doug: To expedite things—they want us to take a pass

at requirements gathering for the site. I'd like you to meet

with the various stakeholders to gather some insight into

basic requirements.

Vinod (exasperated): Doug . .
.
you're not hearing

me . . . we're maxed out timewise and this

Doug (interrupting): Just give it one day of your time,

Vinod. Meet with the marketing types and get them to spec

the basic content, function, you know, the usual drill.

Vinod (resigned): Okay, I'll give 'em a call and

schedule something for tomorrow, but you're not making

my life any easier.

Doug (smiling): [hut's why you get the big bucks.

Vinod: Right.

(Vinod meets with three marketing people the following

day.)

CHAPTER 17 INITIATING A WEBAPP PROJECT 519

Vinod: You were telling me about the user's objectives

and background.

Marketing person #1 : Like I said, we want the user

to be able to customize the entire SafeHome system, you

know, pick sensors, control panels, features and functions,

then get a "bill of materials" automatically generated, get

pricing, and then purchase the system via the Web site.

Marketing person #2: We assume that the user is a

homeowner—not technical—so we need to guide him or

her through the process step by step.

Marketing person #3: I'm not technical, but I'm

worried about the specialty stuff that we need to do in

addition to the basic e-commerce stuff.

Vinod (addressing #3): Meaning?

Marketing person #3: The hard part is going to be

guiding the user through the "customizing process" in a

way that is simple and complete The actual e-commerce

stuff is pretty straightforward.

Marketing person #1 : We've got to provide an 800

number for people who don't want to do the

customization themselves.

Marketing person #3: I agree.

Vinod: Okay, we re going to have to talk about exactly

how you'd like to do the product customization as a

presales activity, but let's hold on that for a moment. I

have a few other fundamental questions.

Vinod (looking at Marketing person #2): You

said that you wanted to guide the users through the

process. Any special approach?

Marketing person #2: I'd like to see a step-by-step

process, with fill-in-the-blanks responses to basic

requirements questions, pull down menus, that sort of

thing. Each step is a window, and eoch window's data is

validated before moving to the next step.

Vinod: Have you checked that out with representative

users?

Marketing person #2: No, but I will.

Vinod: One more thing . how does a user find our

site?

Marketing person #1 : We're working on an ad

campaign that will paste www.SafeHoroeAssured.com in

mogazine ads, targeted direct mail, context-sensitive ads

that appear in search engines, and maybe even some TV

and radio spots.

Vinod: What I mean is . . . they'll always enter through

the home page.

Marketing person #3: That's what we'd like.

Vinod: Okay, now we've got to get to work. Let's

explore the details of how you want to customize systems

on-line.

Communicating with stakeholders and end-users. Most WebApps have a

broad population of end-users. Although the creation of user categories or classes

makes an evaluation of user requirements more manageable, it is not advisable to

use information gathered from just one or two people as the basis for formulation or

analysis. More people (and more opinions/points of view) must be considered.

Communication can be accomplished using one or more of the following mech-

anisms [FUC02a]:

• Ttadilionalfocus groups—a trained moderator meets with a small (usually

fewer than 10 people) group of representative end-users (or internal stake-

holders playing the role of end-users). The intent is to discuss the WebApp to

be developed, and, out of the discussion, to better understand requirements

for the system.

• Electronicfocus groups—a moderated electronic discussion conducted with a

group of representative end-users and stakeholders. The number of people

who participate can be larger. Because all users can participate at the same

What com-

* munication

mechanisms can

be used in WebE

work?

520 PART THREE APPLYING WEB ENGINEERING

time, more information can be collected in a shorter time period. Since all

discussion is text-based, a contemporaneous record is automatic.

• Iterath'e surveys—a series of brief surveys, addressed to representative users

and requesting answers to specific questions about the WebApp are

conducted via a Web site or e-mail. Responses are analyzed and used to fine-

tune the next survey.

• Exploratory surveys—

a

Web-based survey that is tied to one or more WebApps

that have users who are similar to the ones that will use the WebApp to be

developed. Users link to the survey and respond to a series of questions

(usually receiving some reward for participation).

• Scenario-building—selected users are asked to create informal use-cases that

describe specific interactions with the WebApp.

An evaluation ot

content objects and

operations can be

delayed until anolysis

modeling begins. At

Ibis point it's more

important to collect

information, not

evoluote it.

Analyzing information gathered. As information is gathered, it is categorized by

user class and transaction type, and then assessed for relevance. The objective is to

develop lists of content objects, operations that are applied to content objects within

a specific user transaction, functions (e.g., informational, computational, logical,

and help-oriented) that the WebApp provides for end-users, and other nonfunctional

requirements that are noted during the communication activities.

Fuccella and Pizzolato [FUC02b] suggest a simple (low-tech) method for under-

standing how content and functionality should be organized. A stack of "cards" is

created for content objects, operations applied to content objects, WebApp func-

tions, and other nonfunctional requirements. The cards are shuffled into random

order and then distributed to representatives from each user category. The users

are asked to arrange the cards into groupings that reflect how they would like con-

tent and functionality to be organized within the WebApp. Users are then asked to

describe each grouping and the reasons why it is important to them. Once each

user performs this exercise, the Web engineering team looks for common group-

ings among different user classes and other groupings that are unique to a specific

user class.

The WebE team develops a list of labels that would be used to point to informa-

tion within each of the groupings derived using the card stacks. Different represen-

tative users are then given the card stacks and asked to allocate content and

functionality to each of the labels. The intent here is to determine when the labels

(links within the actual WebApp) properly imply access to content and functions that

the users expect to find behind the label. This step is applied iteratively until con-

sensus is achieved.

"If you cannot describe what you are doing as o process, you don't know wbot you're doing.'

W. E. Deming

CHAPTER 17 INITIATING A WEBAPP PROJECT 521

tfee-coses have been

discussed in detail in

Part 2 of this book.

Although many

advocate the develop-

ment of lengthy use-

cases, even an informal

narrative provides some

benefit. Convince users

to write usecoses.

Developing use-cases. Use-cases2 describe how a specific user category (called

an acton will interact with the WebApp to accomplish a specific action. The action

may be as simple as acquiring defined content, or as complex as conducting detailed

user-guided analysis of selected records maintained in an on-line database The use-

case describes the interaction from the user's point ot view.

Although developing and analyzing them takes time, use-cases (1) help the de-

veloper to understand how users perceive their interaction with the WebApp; (2) pro-

vide the detail necessary to create an effective analysis model; (3) help

compartmentalize WebE work; and (4) provide important guidance for those who

must test the WebApp.

Customer Communication (Analysis/Formulation)

Identify business stakeholders. Exodty

who is the "customer" for the WebApp?

_ What business people can serve as

experts and representative end-users? Who will serve

as an active member of the team?

Formulate the business context. How does the

WebApp fit into a broader business strategy?

Define key business goals and objectives for the

WebApp. How is the success of the WebApp to be

measured in both qualitative and quantitative terms?

Define informational and applicative goals. What

classes of content are to be provided to end-users?

6 .

What functions/tasks are to be accomplished when

using the WebApp?

Identify the problem. What specific problem does the

WebApp solve?

Gather requirements. What user tasks will be

accomplished using the WebApp? What content is to

be developed? What interaction metaphor will be

used? What computational functions will be provided

by the WebApp? How will the WebApp be

configured for network utilization? What navigation

scheme is desired?

^ADVICE

For small projects, a

simple 'requirements

database" may be

maintained (using o

spreadsheet) in lieu of

IM models. Ibis

allows oil members of

a WebF team to trace

requirements to the

content and function

delivered and to better

conhol the inevitable

stream of changes that

will occur.

17.1.3 The Bridge to Analysis Modeling

As we have noted earlier in this chapter, the activities that lead a Web engineering

team from formulation to analysis modeling represent a continuum. In essence, the

level of abstraction considered during the early stages of formulation is business

strategic. However, as formulation proceeds, tactical details are discussed and spe-

cific WebApp requirements are addressed. Ultimately, these requirements are mod-

eled (using use-cases and UML notation).

The concepts and principles discussed for software requirements analysis (Chap-

ters 7 and 8) apply without revision for the Web engineering analysis activity. During

analysis, scope defined during the formulation activity is elaborated to create a com-

plete analysis model for the WebApp. Four different types of analysis are conducted

during WebE; content analysis, interaction analysis, function analysis and configu-

ration analysis. Each of these analysis tasks and the modeling techniques associated

with them is discussed in Chapter 18.

2 Techniques tor developing use-cases have been presented in detail in Chapters 7 and 8.

522 PART THREE APPLYING WEB ENGINEERING

"By failing to prepare, you are preparing to fail."

Benjamin Franks*

17.2 PLANNING FOR Web Engineering Project?;

WebRef
Tools that assist on e-

project monogei ton be

found at

www.eprojed.

com.

Given the immediacy of WebApps, it is reasonable to ask: Do we really need to

spend time planning and managing a WebApp effort? Shouldn't we just let a We-
bApp evolve naturally, with little or no explicit management? More than a few Web
developers would opt for little or no management, but that doesn't make them
right!

Figure 1 7.
1
presents a table adapted from Kulik and Samuelsen [KULOO] that in-

dicates how "e-projects" (their term for WebApp projects) compare to traditional

software projects. Referring to the figure, traditional software projects and major
e-projects have substantial similarities. Since project management is indicated for

traditional projects, it would seem reasonable to argue that it would also be indi-

cated tor major e-projects. Small e-projects do have special characteristics that

make them different from traditional projects. However, even in the case of small

e-projects, planning must occur, risks must be considered, a schedule must be es-
tablished. and controls must be defined so that confusion, frustration, and failure

are avoided.

Differences between traditional projects and e-projects [adapted from KULOO]

Traditional projects Small e-Projects Major e-Projects

Reauirements
gathering Rigorous Limited Rigorous

Technical
specifications Robust: models, spec Descriptive overview Robust; UMl models,

spec

Project duration Measured in months or

years
Measured in days,
weeks or months

Measured in

months or years

Testing and QA Focused on achieving
quality targets

Focused on risk control SQA as described
in Chapter 26

Risk management Explicit Inherent Explicit

Half-life of
deliverables 1 8 months or longer

3 to 6 months or
shorter

6 to 1 2 months
or shorter

Release process Rigorous Expedited Rigorous

Post-release customer
feedback

Requires proactive
effort

Automatically
obtained from user

interaction

Obtained both
automatically and via

solicited feedback

CHAPTER 17 INITIATING A WEBAPP PROJECT 523

17.3 The Web Engineering Team

A successful Web engineering team melds a wide variety of talents who must work as

a team in a high-pressure project environment. Timelines are short, changes are re-

lentless, and the technology keeps shifting. Creating a team that jells (see Chapter 2
1

)

is no simple matter.

"In today's net-centric ond Web-enabled world, one now needs to know a lot about o lot.

Scott Tilley and Shiboug Huang

^ What roles

• do people

play an a WebE

team?

17.3.1 The Players

The creation of a successful Web application demands a broad array of skills. Tilley

and Huang [TIL99] address this issue when they state: "There are so many differ-

ent aspects to [Webl application software that there is a (re)emergence of the ren-

aissance person, one who is comfortable operating in several disciplines.

While the authors are absolutely correct, "renaissance" people are in relatively

short supply, and given the demands associated with major WebApp development

projects, the diverse skill set required might be better distributed over a Web engi-

neering team.

Web engineering teams can -be organized in much the same way as traditional

software teams (Chapter 21). However, the players and their roles are often quite dif-

ferent. Among the many skills that must be distributed across WebE team members

are component-based software engineering, networking, architectural and naviga-

tional design, Internet standards/languages, human interface design, graphic de-

sign, content layout, and WebApp testing.

The following roles3 should be distributed among the members of the WebE team;

Content developers/providers. Because WebApps are inherently content-

driven, one role on the WebE team must focus on the generation and/or collection

of content. Recalling that content spans a broad array of data objects, content

developers/providers may come from diverse (nonsoftware) backgrounds.

Web publisher. The diverse content generated by content developers/providers

must be organized for inclusion within the WebApp. In addition, someone must act

as liaison between technical staff who engineer the WebApp and nontechnical

content developers/providers. This role is filled by the Web publisher, who must

understand both content and WebApp technology.

Web engineer. A Web engineer becomes involved in a wide range of activities

during the development of a WebApp including requirements elicitation, analysis

3 These roles have been adapted from Hansen and his colleagues [HAN991

524

These characteristics

ore typical of coHoboro-

live, sefargoniiing

teams that hove

odopreii an agile

philosophy (Chapter

4). The belter your

team, the better the

software product you

produce.

part three applying web engineering

modeling, architectural, navigational and interface design, WebApp implementation,

and testing. The Web engineer should also have a solid understanding of component
technologies, client/server architectures, HTML/XML, and database technologies

and a working knowledge of multimedia concepts, hardware/software platforms,

network security, and Web-site support issues.

Business domain experts. A business domain expert should be able to an-

swer all questions related to the business goals, objectives and requirements asso-

ciated with the WebApp.

Support specialist. This role is assigned to the person (people) who have re-

sponsibility for continuing WebApp support. Because WebApps continuously

evolve, the support specialist is responsible for corrections, adaptations, and en-

hancements to the site, including updates to content, implementation of new pro-

cedures and forms, and changes to the navigation pattern.

Administrator. Often called the "Web Master," this person has responsibility

for the day-to-day operation of the WebApp including: development and imple-

mentation of policies for the operation of the WebApp, establishment of support

and feedback procedures, implementation of security and access rights, measure-
ment and analysis of Web-site traffic, coordination of change control procedures

(Chapter 27), and coordination with support specialists. The administrator may
also be involved in the technical activities performed by Web engineers and sup-

port specialists.

17.3.2 Building the Team

In Chapter 21
,
guidelines for building successful software engineering teams are dis-

cussed in some detail. But do these guidelines apply in the pressure-packed world of

WebApp projects? The answer is yes.

In his best selling book on a computer industiy long past, Tracy Kidder [KIDOO]

tells the story of a computer company's heroic attempt to build a computer to meet
the challenge of a new product built by a larger competitor. 4 The story is a metaphor
for teamwork, leadership, and the grinding stress that all technologists encounter
when critical projects.don't go as smoothly as planned.

A summary of Kidder's book hardly does it justice, but these key points [PICO I]

have particular relevance when an organization builds a Web engineering team:

A set of team guidelines should be established. These encompass what is

expected of each person, how problems are to be dealt with, and what mecha-
nisms exist for improving the effectiveness of the team as the project proceeds.

4 Kidder's The Soul ofa New Machine, originally published in 1 98 1 , is highly recommended reading

for anyone who intends to make computing a career and everyone who already has!

CHAPTER 17 INITIATING A WEBAPP PROJECT
525

Strong leadership is a must. The team leader must lead by example and by

contact. She must exhibit a level of enthusiasm that gets other team members to

"sign up" psychologically to the work that confronts them

.

Respect for individual talents is critical. Not everyone is good at eveiything.

The best teams make use of individual strengths. The best team leaders allow indi-

viduals the freedom to run with a good idea.

Every member of the team should commit. The main protagonist in

Kidder's book calls this "signing up."

It's easy to get started, but it's very hard to sustain momentum. The

best teams never let an "insurmountable" problem stop them. Team members de-

velop a "good enough" solution and proceed, hoping that the momentum of for-

ward progress may lead to an even better solution in the long term.

17 4 Project Management Issues FOR WEB EM<5INE EBm£

Once formulation has occurred and basic WebApp requirements have been identi-

fied a business must choose from one of two Web engineering options: (1)
the Web-

App is outsourced—Web engineering is performed by a third party vendor who has

the expertise, talent, and resources that may be lacking within the business, or (2) the

WebApp is developed in-house using Web engineers that are employed by the busi-

ness. A third alternative, doing some Web engineering work in-house and outsourc-

ing other work is also an option.

"As Thomas Hobbs observed in the 17th century, life under mob rule is solitary, poor, nasty, brutish, ond short. Life

on o poorly run software project is solitary, poor, nasty, brutish, and hardly ever short enough.

Steve McConnell

The work to be performed remains the same regardless of whether a WebApp is

outsourced, developed in-house, or distributed between an outside vendor and in-

house staff. But the communication requirements, the distribution of technical ac-

tivities, the degree of interaction among stakeholders and developers, and a myriad

of other critically important issues do change.

Figure 17.2 illustrates the organizational difference between outsourcing and m-

house development for WebApps. In-house development (Figure 1 7.2a) integrates

(the dashed circle implies integration) all members of the Web engineering team di-

rectly. Communication occurs using normal organizational pathways. For outsourc-

ing (Figure 17.2b), it is both impractical and inadvisable to have each in-house

constituency (e g., content developers, stakeholders, internal Web engineers) com-

municate directly with the outsourcing vendor without some vendor liaison to coor-

dinate and control communication. In the sections that follow, we examine planning

for outsourcing and in-house development in more detail.

526 PART THREE APPLYING WEB ENGINEERING

(a| in-house development
(b) outsourced development

Do not assume that

because you've

outsourced a WebApp,

yourresponsibilities

ore minimal. In fact,

it's likely that more

oversight and manage-

ment, not less, will be

required.

17.4.1 WebApp Planning—Outsourcing

A substantial percentage of WebApps are outsourced to vendors who (purportedly)
specialize in the development of Web-based systems and applications.5 In such
cases, a business (the customer) asks for a fixed price quote for WebApp develop-
ment from two or more vendors, evaluates competing quotes, and then selects a
vendor to do the work. But what does the contracting organization look for? How is

the competence of a WebApp vendor determined? How does one know whether a
Pnce quote is reasonable? What degree of planning, scheduling, and risk assessment
can be expected as an organization (and its outsourcing contractor) embarks on a
major WebApp development effort?

"Many Fortune 500 enterprises have discovered the software os a service model [outsourcing] and are employing
similar models internally or externally.

"

Nick Evans

These questions are not always easy to answer, but a few guidelines are worth
considering.

5 Although reliable industry data are difficult to find, it is safe to say that this percentage is consider-
ably higher than the one encountered in conventional software work. Additional discussion of out-
sourcing may be found in Chapter 23.

CHAPTER 17 INITIATING A WEBAPP PROJECT 527

Some people argue

that “rough design’ is

unnecessary. Look at it

os o 'first offer' thot

lire outsourcing vendor

can modify and

improve upon. At least

you're communicating

your ideas about what

the end-result should

look like.

What

• guidelines

should we use

when considering

various

outsourcing

vendors?

Initiate the project. If outsourcing is the strategy to be chosen for WebApp de-

velopment, an organization must perform a number of tasks before searching for an

outsourcing vendor to do the work:

1. Many ofthe analysis tasks discussed in Section I7.1.3(and Chapter 18/should

be performed internally. The audience for the WebApp is identified; internal

stakeholders who may have interest in the WebApp are listed; the overall

goals for the WebApp are defined and reviewed; the information/services to

be delivered by the WebApp are specified; competing Web sites are noted;

and qualitative and quantitative "measures" of a successful WebApp are

identified. This information should be documented in a product specification

that is provided to the outsourcing vendor.

2. A rough design for the WebApp should be developed internally. Obviously, an

expert Web developer will create a complete design, but time and cost can be

saved if the general look and feel of the WebApp is identified for the out-

sourcing vendor (this can always be modified during preliminary stages of

the project). The design should include an indication of the type and volume

of content to be presented by the WebApp and the types of interactive pro-

cessing (e.g., forms, order entry) to be performed. This information should be

added to the product specification.

3 . A rough project schedule, including not onlyfinal delivery dates, but also mile-

stone dates should be developed. Milestones should be attached to deliverable

versions (increments) of the WebApp as it evolves.

4. a list ofresponsibilitiesfor the internal organization and the outsourcing vendor

is created. In essence, this task addresses what information, contacts, and

other resources are required of both organizations.

5. The degree ofoversight and interaction by the contracting organization with the

vendor should be identified. This should include the naming of a vendor liai-

son and the identification of the liaison's responsibilities and authority, the

definition of quality review points as development proceeds, and the vendor's

responsibilities with respect to interorganizational communication.

All of the information developed during these steps should be organized into a re-

quest for quote that is transmitted to candidate vendors.6

Select candidate outsourcing vendors, in recent years, thousands of "Web de-

sign" companies have emerged to help businesses establish a Web presence and/or

engage in e-commerce. Many have become adept at the WebE process, but many

others are little more than hackers. In order to select candidate Web developers, the

6 If WebApp development work is to be conducted by an internal group, nothing changes! The proj-

ect is initiated in the same manner.

528 PART THREE APPLYING WEB ENGINEERING

contractor must perform due diligence: (1) interview past clients to determine the

Web vendor's professionalism, ability to meet schedule and cost commitments, and

ability to communicate effectively; (2) determine the name of the vendor's chiefWeb
engineer(s) for successful past projects (and later, be certain that this person is con-

tractually obligated to be involved in your project); and (3) carefully examine sam-

ples of the vendor's work that are similar in look and feel (and business area) to the

WebApp that is to be contracted. Even before a request for quote is offered, a face-

to-face meeting may provide substantial insight into the "fit" between contractor and

vendor.

“You pay peanuts, you get monkeys.'

George Peppord playing Col. John "Hannibal" Smith on The A-Team (a 1980s TV show)

Assess the validity of price quotes and the reliability of estimates. Because

relatively little historical data exist and the scope ofWebApps is notoriously fluid, es-

timation is inherently risky. For this reason, some vendors will embed substantial

safety margins into the cost quoted for a project. This is both understandable and ap-

propriate. The question is not have we gotten the best bang for our buck. Rather, the

questions should be:

• Does the quoted cost of the WebApp provide a direct or indirect return-on-

investment that justifies the project?

• Does the vendor that has provided the quote exhibit the professionalism and

experience we require?

If the answers to these questions are yes, the price quote is fair.

Understand the degree of project management you can expect/perform.

The formality associated with project management tasks (performed by both the

vendor and the contracting organization) is directly proportional to the size, cost,

and complexity of the WebApp. For large, complex projects, a detailed project sched-

ule that defines work tasks, SQA checkpoints, engineering work products, customer

review points, and major milestones should be developed. The vendor and contrac-

tor should assess risk jointly and develop plans for mitigating, monitoring, and man-

aging those risks that are deemed important. Mechanisms for quality assurance and

change control should be explicitly defined in writing. Methods for effective com-

munication between the contractor and the vendor should be established.

Assess the development schedule. Because WebApp development schedules

span a relatively short period of time (often less than one or two months per deliv-

ered increment), the development schedule should have a fine granularity. That is,

work tasks and minor milestones should be scheduled on a daily timeline. This fine

granularity allows both the contracting organization and the vendor to recognize

schedule slippage before it threatens the final completion date.

CHAPTER 17 INITIATING A WEBAPP PROJECT 529

POINT
To manage scope, the

work to be performed

within an increment is

frozen. Changes are

delayed until the next

WebApp increment.

Manage scope. Because it is highly likely that scope will change as a WebApp

project moves forward, the WebE process model is adaptable and incremental. This

allows the vendor's development team to "freeze" scope for one increment so that

an operational WebApp release can be created. The next increment may address

scope changes suggested by a review of the preceding increment, but once the

second increment commences, scope is again "frozen" temporarily. This approach

enables the WebApp team to work without having to accommodate a continual

stream of changes, but still recognizes the continuous evolution characteristic of

most WebApps.

The guidelines suggested above are not intended to be a foolproof cookbook for

the production of low-cost, on-time WebApps. However, they will help both the con-

tracting organization and the vendor initiate work smoothly with a minimum of mis-

understandings.

SafeHome

Outsourcing Preliminaries

The scene: Doug Miller's office.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Sharon Woods—an

employee of e-CommerceSystems, the outsourcing vendor

for the SafeHome e-commerce Web site and manager of

the Web engineering team that will be doing the work.

The conversation:

Doug: Good to finally meet with you, Sharon. We've

certainly got some work to do over the next month or so.

Sharon (smiling): We do, but you guys seem to have

your act together. Vinod has already given us a draft

specification for the site and has also defined most of the

important content objects and site functionality.

Doug: Good. What else do you need?

Sharon: The e-commerce functionality is easy. The thing

that worries me is the front end ... the work required to

have the user customize the product pre-purchase.

Doug: Vinod gave you the basic procedure, didn't he?

Sharon: He did, but I'd like to validate it with some

real users. We'll also need to contact your content

developers to get proper descriptions for each sensor,

pictures, pricing, interface/interconnection info, that

sort of thing.

Doug: Did Vinod have time to do a rough storyboard of

the customization process for you?

Sharon: He's working on it as we speak. Said he had to

put out a fire on the product side. He knows it's critical

. . . said he'd e-mail it to me tomorrow morning.

Doug: Okay . . . look, I'd like to stay in the loop on this

project. Can we establish some ground rules for oversight

on our end. I don't want to get in your way, but. . .

Sharon: Not a problem, we like to keep our clients

involved.

Doug: I'll serve as liaison for this project. All

communication will come through me or someone like

Vinod that I appoint. Since we're on a tight schedule, t'd

like to establish a schedule that has one-day granularity

and talk or e-mail with you everyday about

accomplishments, problems, etc. I know it's a lot, but

that's what I think is appropriate.

Sharon: That's okay.

Doug (picking up a few pages of paper from

his desktop and handing them to Sharon): I've

written up a rough schedule with milestone dates . . .

what do you think?

Sharon (after studying the schedule): Hmmm.

I'm not sure this'll work for us. Let me work up an

alternative and e-mail it to you later today.

Doug: Sure.

530

It's important to

recognize that the

steps discussed in this

section can be

performed quickly. In

no cose, should WebE

planning for projects of

Ibis size take more

than 5 percent of

overall project effort.

PART THREE APPLYING WEB ENGINEERING

17.4.2 WebApp Planning—In-House Web Engineering

As WebApps become more pervasive and business strategic, many companies have

opted to control development in-house. Not surprisingly, in-house WebE is managed

somewhat differently that an outsourcing effort.

"Wbot do you do when you need to hove o Web site done yesterday?”

James lewin

The management of small and moderately-sized (i.e., less than 3-5 months in

duration) WebE projects requires an agile approach that deemphasizes project

management but does not eliminate the need to plan. Basic project management
principles (Chapter 21) still apply, but the overall approach is leaner and less for-

mal. However, as the size of the WebApp project grows, Web engineering project

management becomes more and more like software engineering project manage-

ment (Part 4 of this book). The steps that follow are recommended for small and

moderately-sized WebE projects:

Understand scope, the dimensions of change, and project constraints. No

project—regardless of how tight the time constraints—can begin until the project

team understands what must be built. Requirements gathering and customer com-

munication are essential precursors to effective WebApp planning.

Define an incremental project strategy. We have already noted that WebApps
evolve over time. If evolution is uncontrolled and chaotic, the likelihood of a suc-

cessful outcome is small. However, if the team establishes a project strategy that de-

fines WebApp increments (releases) that provide useful content and functionality for

end-users, engineering effort can be more effectively focused.

Perform risk analysis. A detailed discussion of risk analysis for traditional soft-

ware engineering projects is presented in Chapter 25. 7
All risk management tasks are

performed for WebE projects, but the approach to them is abbreviated.

Schedule risk and technology risk dominate the concern of most Web engineer-

ing teams. Among the many risk-related questions that the team must ask and an-

swer are: Can planned WebApp increments be delivered within the timeframe

defined? Will these increments provide on-going value for end-users while addi-

tional increments are being engineered? How will requests for change impact deliv-

ery schedules? Does the team understand the required Web engineering methods,

technologies, and tools? Is the available technology appropriate for the job? Will

likely changes require the introduction of new technology?

7 Those readers who are unfamiliar with basic risk management terminology and practices are urged

to examine Chapter 25 at this time.

CHAPTER 17 INITIATING A WEBAPP PROJECT 531

Develop a quick estimate. The focus of estimation for most Web engineering

projects is on macroscopic, rather than microscopic, issues. The WebE team as-

sesses whether planned WebApp increments can be developed with available re-

sources according to the defined schedule constraints. This is accomplished by

considering each increment's content and function as a whole. "Microscopic" func-

tional or work breakdowns of the increment, followed by the computation of multi-

data point estimates (see Chapter 23) are normally not conducted.

Select a task set (process description). Using a process framework (Chapter 1 6)

,

select a set of Web engineering tasks that is appropriate for the characteristics of the

problem, the product, the project, and the people on the Web engineering team. Rec-

ognize that the task set may be adapted to fit each development increment.

Establish a schedule. A WebE project schedule has relatively fine granularity for

tasks to be performed in the short-term and then much more coarse granularity dur-

ing later time periods (when additional increments are to be delivered). That is, Web

engineering tasks are distributed along the project timeline for the increment to be

developed. Task distribution for subsequent WebApp increments is delayed until de-

livery of the scheduled increment.

8*

POINT
Regordless of project

size, it's importont to

establish project

milestones so that

progress con be

assessed.

Define project tracking mechanisms. In an agile development environment,

the delivery of an operational software increment is often the primary measure of

progress. But long before deliverable software is available, the Web engineer will in-

evitably encounter the question, Where are we? In conventional software engineer-

ing work, progress is measured by determining which milestones (e.g„ a successful

review of a work product) have been achieved. For small and moderately-sized Web

engineering projects, milestones may be less well-defined, and formal quality assur-

ance activities may be de-emphasized. Therefore, an answer can be derived by

polling the Web engineering team to determine which framework activities have

been completed. However, this approach can be unreliable. Another approach is to

determine how many use-cases have been implemented and how many use-cases

(for a given increment) remain to be implemented. This provides a rough indication

of the relative degree of "completeness" of the project increment.

"Progress is made by correcting the mistakes resulting from the making of progress."

Claude Gibb

Establish a change management approach. Change management is facilitated

by the incremental development strategy that has been recommended for WebApps.

Because the development time for an increment is short, it is often possible to delay

the introduction of a change until the next increment, thereby reducing the delaying

effects associated with changes that must be implemented "on the fly." A discussion

of configuration and content management for WebApps is presented in Chapter 27.

PART THREE APPLYING WEB ENGINEERING532

WebE Project Management

Objective: To assist a Web engineering team

in planning, managing, controlling, and

tracking Web engineering projects.

Mechanics: Project management tools enable a WebE
team to establish a set of work tasks, assign effort and

specific responsibility for each task, establish task

dependencies, define a schedule, and track and control

project activities. Many tools in this category are Web-

based.

Representative Tools8

Business Engine
, developed by Business Engine

(www.businessengine.com), is a suite of Web-based

tools that provide full project management facilities for

WebE and conventional software projects.

Iteamwork, developed by iTeamwork.com

(www.iteamwork.com), "is a free, on-line, Web-bosed

Software Tools \

team project management application that you use

with your web browser."

OurProject, developed by Our Project

(www.ourproject.com), is a suite of project

management tools that are applicable to WebE and

conventional software projects.

Proj-Net, developed by Rational Concepts, Inc.

(www.rationalconcepts.com), implements a "virtual

project office (VPO) for collaboration and

communication."

StartWright (www.starlwright.com/projectl .htm) has

developed one of the Web's most comprehensive

resources for both WebE and conventional software

project management tools and information.

It should be noted that many conventional project

management tools (Part 4 of this book) can also be used

effectively for WebE projects.

17.5 Metrics for Web Engineering and WebAepjl

In general, the number

of WebE metrics that

you should collect end

then overall complexity

should be directly

proportional to the si2e

of the WebApp that is

to be built.

Web engineers develop complex systems, and like other technologists who perform

this task, they should use metrics to improve the Web engineering process and prod-

uct. In Chapter 15, we discussed the strategic and tactical uses for software metrics

in a software engineering context. These uses also apply to Web engineering.

To summarize, software metrics provide a basis for improving the software

process, increasing the accuracy of project estimates, enhancing project tracking,

and improving software quality. Web engineering metrics could, if properly charac-

terized, achieve all these benefits and also improve usability, WebApp performance,

and user satisfaction.

In the context of Web engineering, metrics have three primary goals: (1) to pro-

vide an indication of the quality of the WebApp from a technical point of view, (2) to

provide a basis for effort estimation, and (3) to provide an indication of the success

of the WebApp from a business point of view.

In this section, we summarize a set ofcommon effort and complexity metrics9 for

WebApps. These may be used to develop a historical database for effort estimation.

In addition, complexity metrics may ultimately lead to an ability to quantitatively as-

sess one or more of the technical attributes of WebApps discussed in Chapter 1 6.

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category,

in most cases, tool names are trademarked by their respective developers.

9 It is important to note that WebE metrics are still in their infancy.

CHAPTER 17 INITIATING A WEBAPP PROJECT 533

17.5.1 Metrics for Web Engineering Effort

Web engineers expend human effort performing a variety of work tasks as a

WebApp evolves. Mendes and her colleagues [MEN01] suggest a number of pos-

sible effort measures for WebApps. Some or all of these could be recorded by a

Web engineering team and later used to build a historical database for estimation

(Chapter 23).

’V ~uti ‘S&SftSfglt »v '
• : r :i MU-KOtrt*;' TT i- .*3 •.’.WM.UlKSB, i *• • -.

Application Authoring and Design Tasks

Suggested measure Description

structuring effort time to structure WebApp and/or derive architecture

!nterlinking effort time to interlink pages to build the WebApp's structure

interface planning time taken to plan WebApp's interface

interface building time token to implement WebApp's interface

link-testing effort time taken to test all links ir WebApp

media-testing effort time taken to test oil media in WebApp

total effort structuring effort + interlinking effort + interface planning + interface

building + link-testing effort + media-testing effort

Page Authoring

Suggested measure Description

text effort time token to author or reuse text in page

pcge-i 'nking effort r
:me taken to ourhor links in page

page-structuring effort time token to structure poge

total page effort text effort + page-linking effort + pagestructuring effort

Media Authoring

Suggested measure Description

media effort time taken to author or reuse medio files

media-digitizing effort time taken to digitize media

total media effort medio effort + media-digitizing effort

Program Authoring

Suggested measure

programming effor!

reuse effort

Description

time taken to outhor HTML, Java, or related language implementations

time to reuse/modify existing programming

PART THREE APPLYING WEB ENGINEERING534

WebRef

An excedent reference

on mony subjects

related to Internet

business is

www.internet.

cam.

17.5.2 Metrics for Assessing Business Value

It's interesting to note that business people have considerably outpaced Web engi-

neers in developing, collecting, and using metrics for WebApps (e.g. [STE02J,

[NOBOl]). By understanding the demographics of end-users and their usage pat-

terns, a company or organization can develop immediate input for more meaning-

ful WebApp content, more effective sales and marketing efforts, and better

profitability for the business.

The mechanisms required to collect business value data are often implemented

by the Web engineering team, but evaluation of the data and actions that result are

performed by other constituencies. For example, assume that the number of page

views can be determined for each unique visitor. Based on metrics collected, visitors

arriving from search engine X average nine page views while visitors from portal Y

have only two page views. These averages can be used by the marketing department

to allocate banner advertising budgets (advertising at search engine X provides

greater exposure, based on metrics collected, than advertising at portal Y).

A complete discussion of the collection and use of business value metrics (in-

cluding the on-going debate about personal privacy) is beyond the scope of this

book. The interested reader should examine [INA02], [EIS02], [PAT02] or [RIG01J.

Web Metrics

Objective: To assess the manner in which a

WebApp is being used, the categories.of users,

and the usability of the WebApp.

Mechanics: The vast majority of Web metrics tools

capture usage information once the WebApp goes on-line.

These tools provide a broad array of data that can be

used to assess which elements of the WebApp are most

used, how they are used, and who uses them.

Representative Tools 10

Clicktracks, developed by clicktraclcs.com

(www.clicktracks.com), is a log file analysis tool that

Software Tools
\

displays Web site visitor behavior directly on pages of

the Web site.

Marketforce, developed by Coremetrics

(www.Coremetrics.com), is representative of many

tools that collect data that can be used to assess the

success of e-commerce WebApps.

Web Metrics Testbed, developed by NIST

(zing.ncsl.nist.gov/WebTools/), is a suite of Web-

based tools that assess the usability of a WebApp.

WebTrends, developed by netlQ (www.NetlQ.com),

collects a broad range of usage data for WebApps of

all types.

1.7..6“Wqbst Practices” for WebApp Projects

Sometimes the best way to learn how to do something correctly is to examine how

not to do it! Over the past decade, more than a few WebApps have failed because (1) a

disregard for project and change management principles (however informal) resulted

1 0 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 17 INITIATING A '.VESAPP PROJECT 535

in a Web engineering team that "bounced off the walls"; (2) an ad hoc approach to

WebApp development failed to yield a workable system; (3) a cavalier approach to re-

quirements gathering and analysis failed to yield a system that met user needs; (4) an

incompetent approach to design failed to yield development of a WebApp that was

usable, functional, extensible (maintainable), and testable; (5) an unfocused ap-

proach to testing failed to yield a system that worked prior to its introduction.

With these realities in mind, it might be worthwhile to consider a set of Web en-

gineering "worst practices," adapted from an article by Tom Bragg [BRAOO], If your

e-project exhibits any ofthem, immediate remedial action is necessary.

Worst practice # 1 : We have a great idea, so let's begin building the WebApp—

now. Don't bother considering whether the WebApp is business justified, whether

users will really want to use it, whether you understand the business requirements.

Time is short, we have to start.

Reality: Take a few hours/days and make a business case for the WebApp. Be

sure that the idea is endorsed by those who will fund it and those who will use it.

Worst practice #2: Stuffwill change constantly, so there's no point in dying to

understand WebApp requirements. Never write anything down (wastes time). Rely

solely on word of mouth.

Reality: It is true that WebApp requirements evolve as Web engineering activi-

ties proceed It's also fast and simple to convey information verbally. However, a

cavalier approach to requirements gathering and analysis is a catalyst for even

more (unnecessary) change.

Worst practice #3: Developers whose dominant experience has been in tradi-

tional software development can develop WebApps immediately. No new training is re-

quired. After all, software is software, isn't it?

Reality: WebApps are different. A broad array of methods, technologies, and

tools must be expertly applied. Training and experience with them is essential."

Worst practice #4: Be bureaucratic. Insist on leaden process models, time

sheets, lots of unnecessary ' progress' meetings, and project leaders who have

never managed a WebApp project.

Reality: Encourage an agile process that emphasizes the competence and cre-

ativity of an experienced Web engineering team. Then get out of the way and let

them do the work. If project-related data must be collected (for legal reasons or for

the computation of metrics), data entry/collection should be as simple and unob-

trusive as possible.

Worst practice #5: Testing? Why bother? We'll give it to a few end-users and let

them tell us what works and what doesn't.

1 1 Many large WebE projects require integration with conventional applications and databases. In

such instances, individuals with only conventional experience can and should be involved.

536 PART THREE APPLYING WEB ENGINEERING

Reality: Over time, end-users do perform thorough "tests," but they are so upset

by unreliability and poor performance that they leave (never to return) long before

problems are corrected.

In the chapters that follow, we consider Web engineering methods that will help

you avoid these mistakes.

JJ-Z SVMMARY

Formulation is a customer communication activity that defines the problem that a

WebApp is to solve. Business need, project goals and objectives, end-user cate-

gories, major functions and features, and the degree of interoperability with other

applications are all identified. As more detailed and technical information is ac-

quired, formulation becomes requirements analysis.

The WebE team is composed of a group of technical and nontechnical members

who are organized in a manner that gives them considerable autonomy and flexibil-

ity. Project management is required during Web engineering, but project manage-

ment tasks are abbreviated and considerably less formal than those applied for

conventional software engineering projects. Many WebApp projects are outsourced,

but there is a growing trend toward in-house WebApp development. Project man-

agement for each approach differs in both strategy and tactics.

Web engineering metrics are in their infancy but have the potential to provide an

indication of the WebApp quality, provide a basis for effort estimation, and provide

an indication of the success of the WebApp from a business point of view.

RsraBSHCES
[BRAOO] Bragg, T„ 'Worst Practices for e-Business Projects: We Have Mel the Enemy and He ts

Us!" Cutter ITJournal, vol. 13, no. 4, April 2000, pp. 35-39.

ICON02] Constantine, L , and L. Lockwood, "User-Centered Engineering for Web Applications,"

IEEE Softvjare, vol. 19, no. 2, March/April 2002, pp. 42-50.

[EIS02j Eisenberg, B., "How to Interpret Web Metrics," ClickZ Today, March 2002, available at

http://www.clickz.com/sales/traffic/article.php/99235 1

.

[FUC02a] Fuccella,J., J. Pizzolato. and). Franks, "Finding Out What Users Want from

your Web Site," IBM developerWorks, 2002, http://www-106.ibm.com/

developerworks/library/moderator-guide/requirements.html.

[FUC02b| Fuccella, J., and J. Pizzolato, "Giving People What They Want: How to Involve Users in

Site Design," IBM developerWorks, 2002, http://www-l06.ibm.com/developerworks/

library/design-by-feedback/expectations.html.

[GNA991 Gnado, C., and F. Larcher, "A User-Centered Methodology for Complex and Customiz-

able Web Applications Engineering," Proc. First ICSE Workshop in Web Engineering, ACM, Los

Angeles, May 1999.

[HAN991 Hansen, S., Y. Deshpande, and S. Murugesan, "A Skills Hierarchy forWeb Information Sys-

tem Development," Proc. First ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1999.

(INA02) Inan, H.,and M. Kean, Measuring the Success ofYour Web Site. Longman Publishing, 2002.

[KIDOO] Kidder, T., The Soul ofa New Machine, Back Bay Books (reprint edition)
,
2000.

[KULOO] Kulik, P, and R. Samuelsen, "e-Project Management for a New e-Reality," Project Man-

agement Institute, December, 2000. http://www.seeprojects.com/e-Projects/ e-projecLs.html.

CHAPTER 17 INITIATING A WF.BAPP PROJECT 537

[LOW98] Lowe, D., and W. Hall, eds., Hypertext and the Web—An Engineering Approach, Wiley,

1998.

[MEN0I| Mendes, E„ N. Mosley, and S. Counsell, "Estimating Design and Authoring Effort, IEEE

Multimedia, January-March 2001, pp. 50-57.

[NOBOl] Nobles, R„ and K. Grady, Web Site Analysis and Reporting. Premier Press. 2001

.

[PAT02] Patton, S., "Web Metrics That Matter,” CIO, November 15. 2002. available at

http://www.computerworld.com/developmenttopics/websitemgmt/story/

0,10801,76002.00.html.

[PICO 1 1
Pickering, C., "Building an Effective E-Project Team." E-Project Management Advisory Ser-

vice, Cutter Consortium, vol. 2, no. 1 , 2001 ,
http://www.cutter.com/ consortium.

[POW98] Powell, T.A., Web Site Engineering, Prentice-Hall, 1998.

[R1G011 Riggins, F., and S. Mitra. "A Framework for Developing E-Business Metrics through

Functionality Interaction, January 2001, download from http:// digitalenterprise.

org/metrics/metrics.html.

[STE02] Sterne, J., Web Metrics Proven Methodsfor Measuring Web Site Success, Wiley, 2002.

[TIL99] Tilley, S., and S. Huang, "On the Emergence of the Renaissance Software Engineer,' Proc.

1st ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1999.

Problems and Points to PONDER —
17.1. Consider the metrics for Web engineering effort discussed in Section 17.5.1. Try to de-

velop five or more additional metrics for one or more categories.

17.2. Three fundamental formulation questions are posed in Section 17.1.1. Are there any

other questions that you think might be asked at this point? if so what are they, and why would

you ask them?

1 7.3. The ease of navigation through a Web site is an important indicator of WebApp quality.

Develop two or three metrics that could be used to indicate the ease of navigation.

1 7.4. In your own words, discuss how information gathered during customer communication

is "analyzed” and what the output from this activity is.

1 7.5. Describe five risks associated with outsourcing WebApp development.

17.6. Considering the SafeHome e-commerce site discussed in this chapter, what user com-

munication mechanism would you use to elicit system requirements, and why?

17.7. Review the table presented in Figure 17.1. Add three more rows that will further distin-

guish traditional projects from e-projects.

1 7.8. Describe the role of the Web publisher in your own words.

17.9. Review the characteristics of agile development teams discussed in Chapter 4 Do you

feel that an agile team organization is appropriate for WebE? Would you make any changes to

the organization for WebApp development?

17.10. What benefits can be derived from requiring the development of use-cases as part of

the requirements gathering activity?

17.11. Describe five risks associated with in-house WebApp development.

1 7.12. In the context of requirements gathering, what is a "user category"? Give examples of

three user categories for an on-line book seller.

1 7.13. How does formulation differ from requirements gathering? How does formulation dif-

fer from requirements analysis and analysis modeling?

17.14. Using one of the references noted in Section 17.5.2, discuss how business value met-

rics can be used to assist in pragmatic business decision making.

538 PART THREE APPLYING WEB ENGINEERING

-LtfRTHER Readings and Information Soppces
Methods for WebApp formulation and requirements gathering can be adapted from discussions
ot similar methods for conventional application software. Further readings recommended in
Chapters 7 and 8 contain much useful information for the Web engineer.

Flor (Web Business Engineering, Addison-Wesley, 2000) discusses business analysis and re-
lated concerns that enable the Web engineer to better understand customer needs WebApp us-
ability is a concept that underlies much of the information defined as part of formulation and
requirements gathering. Krug and Black (Don't Make Me Think: A Common Sense Approach toWeb Usability. Que Publishing, 2000) contains many guidelines and examples that can help theWeb engineer translate user requirements into an effective WebApp.

Project management for WebE projects draws from many of the same principles and con -

cepts that are applied for conventional software projects. However, agility is a watchword Wal-
lace (Extreme Programming far Web Projects,- Addison-Wesley, 2003) describes how agile
development can be used for WebE and contains useful discussions of project management is-
sues. Shelford and Remillard (Rea! Web Project Management, Addison-Wesley, 2003), O'Connell
(How to Run Successfal Projects in Web Time, Artech House, 2000), Freidlein (Web Project Man-
agement, Morgan Kaufman, 2000), and Gilbert (90 Days to Launch: Internet Projects on Time and
on Budget. Wiley, 2000) discuss a wide array of project management issues for WebE. Whitehead
(beading a Software Development Team, Addison-Wesley, 2001

)
presents many useful guidelines

that can be adapted for Web engineering teams.
Techniques for using Web metrics in business decision making are presented in books by

iSTE02)
- Inan (INA02J, Nobles [NOB01J and Menasce and Almeida (Capacity Planning forWeb Services: Metrics, Models and Methods, Prentice-Hall, 2001). "Worst practices ' are consid-

ered by Ferry- and Ferry (77 Sure-Fire Ways to Kill a Software Project, (Universe com 2000)
A wide variety of information sources on formulation and planning for Web engineering is

available on the Internet. An up-to-date list of World Wide Web references that are relevant to
formulation and planning can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
Concepts

analysis model

tonfiguralion model

content model

content relationships

data tree

functional model

Interaction model

navigation analysis

relationship analysis

RNA

use-cases

user hierarchy

CHAPTER

Analysis for
WebApps 18

L -

A t first glance, there is an apparent contradiction when we consider analy-

sis modeling within the context of Web engineering. After all, we have

noted (Chapter 1 6) that WebApps have an immediacy and a volatility that

mitigate against detailed modeling at either the analysis or the design level. And

if we do any modeling at all, the agile philosophy (an appropriate process model

for many Web engineering projects) suggests that analysis modeling is down-

played in favor of limited design modeling. Franklin [FRA02] notes this situation

when he writes:

Web sites are typically complex and highly dynamic. They require short development

phases in order to get the product up and running quickly. Frequently, developers go

straight to the coding phase without really understanding what they are trying to build

or how they want to build it. Sewer-side coding is often done ad hoc, database tables

are added as needed, and the architecture evolves in a sometimes unintentional man-

ner. But some modeling and disciplined software engineering can make the software

development process much smoother and ensure that the Web system is more main-

tainable in the future.

Is it possible to have it both ways? Can we do "some modeling and disciplined

software engineering” and still work effectively in a world where immediacy and

volatility reign? The answer is a qualified yes.

What is it? The analysis of a poten-

tial Web application focuses on three

important questions: (1) what informa-

tion or content is to be presented or

manipulated; (2) what functions are to be per-

formed for the end-user; and (3) what behaviors

will the WebApp exhibit as it presents content and

performs functions? The answers to these questions

are represented as part of an analysis model that

encompasses a variety of UML representations.

Who does it? Web engineers, nontechnical con-

tent developers, and stakeholders participate in

the creation of the analysis model.

Why is it important? Throughout this book we

have emphasized the need to understand the

problem before you begin to solve it. Analysis

modeling is important not because it enables a

Web engineering team to develop a concrete

model of WebApp requirements (things change

too frequently for this to be a realistic expecta-

tion), but rather, analysis modeling enables a

Web engineer to define fundamental aspects of

the problem—things that are unlikely to change

(in the near term). When fundamental content,

function, and behavior are understood, design

and construction are facilitated.

What are the steps? Analysis modeling focuses

on four fundamental aspects of the problem

—

content, interaction, function, and configuration.

Content analysis identifies content classes and col-

laborations. Interaction analysis describes basic

elements of user interaction, navigation, and the

539

540 PART THREE APPLYING WEB ENGINEERING

system behaviors that occur as a consequence.

Function analysis defines the WebApp functions

that are performed for the user and the sequence
of processing that occurs as a consequence. Con-
figuration analysis identifies the operational envi-

ronments) in which the WebApp resides.

What is the work product? The analysis

model is comprised of a set of UML diagrams

and text that describe content, interaction, func-

tion, and configuration.

How do I ensure that I've done it right?
Analysis modeling work products must be re-

viewed for correctness, completeness, and con-

sistency.

A Web engineering team should embrace analysis modeling when most or all of
the following conditions are met:

• The WebApp to be built is large and/or complex.

• The number of stakeholders is large.

• The number of Web engineers and other contributors is large.

• The goals and objectives (determined during formulation) for the WebApp
will effect the business' bottom line.

• The success of the WebApp will have a strong bearing on the success of the

business.

If these conditions are not present, it is possible to de-emphasize analysis model-
ing, using information obtained during formulation and requirements gathering

(Chapter 1 7) as the basis for creating a design model for the WebApp. In such cir-

cumstances, limited analysis modeling may occur, but it will be rolled into design.

18.1 Requirements Analysis for WebApps

Requirements analysis for WebApps encompasses three major tasks: formulation, re-

quirements gathering, 1 and analysis modeling. During formulation, the basic moti-

vation (goals) and objectives for the WebApp are identified, and the categories of

users are defined. As. requirements gathering begins, communication between the

Web engineering team and WebApp stakeholders (e g., customers, end-users) in-

tensifies. Content and functional requirements are listed and interaction scenarios

(use-cases) written from the end-user's point-of-view are developed. The intent is to

establish a basic understanding ofwhy the WebApp is to be built, who will use it, and

what problem(s) it will solve for its users.

"The engineering principles of planning before designing and designing before building have withstood every prior

technology transition; they'll survive this transition as well.'

Watts Humphrey

I Formulation and requirements gathering are discussed in detail in Chapter 1 7.

CHAPTER 18 ANALYSIS FOR WEBAPPS 541

It's a good idea to

build a user hierarchy.

It provides you with a

snapshot of the user

populohon ond a cross-

check to help ensure

that the needs of every

user hove been

addressed.

18.1.1 The User Hierarchy

The categories of end-users who will interact with the WebApp are identified as part

of the formulation and requirements gathering tasks. In most cases, user categories

are relatively limited and a UML representation of them is unnecessary. However,

when the number of user categories grows, it is sometimes advisable to develop a

user hierarchy as shown in Figure 18.1. The figure depicts users for the SafeHome-

Assured.com e-commerce site discussed in Chapters 16 and 17.

The user categories (often called actors) shown in Figure 18.1 provide an indica-

tion of the functionality to be provided by the WebApp and indicate a need for use-

cases to be developed for each end-user (actor) noted in the hierarchy. Referring to

the figure, the SafeHomeAssured.com user at the top of the hierarchy represents

the most general user class (category) and is refined in levels below. A guest is a

user who visits the site but does not register. Such users are often searching for gen-

eral information, comparison shopping, or otherwise interested in "free" content or

functionality. A registered user takes the time to provide contact information

(along with other demographic data requested by forms input). Subcategories for

registered user include:

• new customer—a registered user who wants to customize and then

purchase SafeHome components (and hence, must interact with the WebApp

e-commerce functionality);

• existing customer—a user who already owns SafeHome components and is

using the WebApp to (1) purchase additional components; (2) to acquire tech

support information; or (3) contact customer support.

User hierarchy

for SaleHome-
Assured.com

SafeHomeAssured.com
user

£
Guest Registered

user

Customer

service

staff

New
customer

Existing

customer

542 PART THREE APPLYING WEB ENGINEERING

Members of customer service staff are special users who can also interact with

SafeHomeAssured.com content and functionality as they assist customers who have

contacted SafeHome customer support.

18.1.2 Developing Use-Cases

Franklin [FRA01] refers to use-cases as "bundles of functionality." This description

captures the essence of this important analysis modeling technique. 2 Use-cases are

developed for each user categoiy described in the user hierarchy. In the context of
Web engineering, the use-case itself is relatively informal—a narrative paragraph
that describes a specific interaction between a user and the WebApp.3

Figure 18.2 represents a UML use-case diagram for the new customer user cat-

egory (Figure 18.1). Each oval in the diagram represents a use-case that describes a

specific interaction between new customer and the WebApp. For example, the first

interaction is described by the log-in to SafeHomeAssured.com use-case. No more
than a single paragraph would be required to describe this common interaction.

Major WebApp functionality (and the use-cases that are relevant for it) are

noted inside the dashed boxes in Figure 1 8.2. These are referred to a "packages" in

Use-case

diagram for

new-customer

2 Techniques for developing use cases have been discussed in detail earlier in this book (see Chap-
ters 7 and 8).

3 Although it is possible to develop more formal use-case descriptions, the need for WebE agility of-

ten precludes this approach.

CHAPTER 18 ANALYSIS FOR WEBAPPS 543

UML and represent specific functionality. Two packages are noted: customization

and e-commerce.

As an example, we consider the customization package of use-cases. A new cus-

tomer must describe the home environment into which SafeHome will be installed.

To accomplish this, the use-cases describe home layout, select SafeHome hardware,

and save configuration are initiated by new customer. Consider these preliminary

use-cases written from the point of view of a new customer:

Ash sire of a

WebApp grows and

analysis modeling

becomes more

rigorous, h prelimi-

nary usecases

presented here would

hove to be expanded

to conform more

closely to the format

suggested in Section

8.5 of Chapter 8.

Use-case: describe home layout

The WebApp will ask some general questions about the environment in which I plan

to install SafeHome—the number of rooms, size of rooms, type of room, the number of

floors, the number of exterior doors and windows. The WebApp will enable me to build

a rough floor plan by putting together outline shapes of the rooms for each floor. I’ll be

able to give the floor plan a name and save it for future reference (see use-case: save con-

juration).

Use-case: select SafeHome components

The WebApp will then recommend product components (e.g., control panels, sensors,

cameras) and other features (e.g., PC-based functionality implemented In software) for

each room and exterior entrance, If I request alternatives, the WebApp will provide them,

if they exist. I will be able to get descriptive and pricing information for each product com-

ponent. The WebApp will create and display a bill-of-materials as I select various com-

ponents. i'll be able to give the bill-of-materials a name and save it for future reference

(see use-case: save conjuration).

use-case: save conjuration

The WebApp will allow me to save customization data so that I can return to it later.

I can save the house layout and the SafeHome bill-of materials 1 choose for the layout To

accomplish this, 1 provide a unique identifier for the house layout and the bill-of-materi-

als. I also provide a special configuration password that must be validated before I can

gain access to the saved information.

Although considerably more detail could be provided for each ofthese use-cases, the

informal text description provides useful insight. Similar descriptions would be de-

veloped for each oval in Figure 1 8.2.

SafeHome

Refining Use-Cases for WebApps

The scene: Doug Miller's office.

The players: Doug Miller (manager of the SafeHome

software engineering group), Sharon Woods, manager of

the outsourcing vendor's Web engineering team for the

SafeHome e-commerce Web site, and Sam Chen,

manager of the SafeHomeAssured.com customer support

organization.

The conversation:

Doug: Glad to hear things are progressing well,

Sharon. Analysis modeling is almost complete?

544 PART THREE APPLYING WEB ENGINEERING

Sharon (smiling): We're making progress. The only

set of use-cases left to develop from the user hierarchy

[Figure 1 8. 1]
is the customer service staff category.

Doug (looking at Sam): And you have those now,

Sam?

Sam: I do. I've e-mailed them to you, Sharon, and cc'd

you, Doug. Here's the hardcopy version. (He hands sheets

of paper to Doug and Sharon.)

Sam: The way we look at it, we want to use the

SafeHomeAssured.com Web site as a support tool when

customers phone in an order. Our phone reps will

complete all necessary forms, etc. and process the order

for the customer.

Doug: Why not just refer the customer to the Web site?

Sam (smiling): You techies think that everyone is

comfortable with the Web. The/re not! Plenty of people still

like the telephone, so we have to give them that option. But

we don't want to build a separate order processing system

when most of the pieces are already in place on the Web.

Sharon: Makes sense.

(All parties read the use-cases [an example follows]):

Use-case: describe home layout [note that this differs

from the use-case of the same name for new customer

category]

I will ask the customer (via the phone) to describe each

room of the house and will enter room dimensions and

other characteristics on one big form designed specifically

for customer support personnel. Once the house data are

entered I can save the data under the customer's name or

phone number.

Sharon: Sam, you've been kind of terse in your

preliminary use-case desriptions. I think we're going to

need to flesh them out a bit.

Doug (nodding): I agree.

Sam (frowning): How so?

Sharon: Well . .
.
you mention "one big form designed

specifically for customer support personnel." We're going

to need more detail.

Sam: What I meant was that we don't need to walk our

reps through the process like you do for an on-line

customer One big form should do the trick.

Sharon: Let's sketch out what the form should look like.

The parties work to provide sufficient detail to allow

Sharon's team to make effective use of the use-case.

18.1.3 Refining the Use-Case Model

As use-case diagrams are created for each user category, a top-level view of exter-

nally observable WebApp requirements is developed. Use-cases are organized into

functional packages, and each package is assessed [CONOO] to ensure that it is:

^ How do

• we assess

packages of use-

cases that have

been grouped by

user function?

• Comprehensible—all stakeholders understand the purpose of the package.

• Cohesive—the package addresses functions that are closely related to one

another.

• Loosely coupled—functions or classes within the package collaborate with

one another, but collaboration outside the package is kept to a minimum.

• Hierarchically shallow—deep functional hierarchies are difficult to navigate

and hard for end-users to understand; therefore, the number of levels within

a use-case hierarchy should be minimized whenever possible.

Because requirements analysis and modeling are iterative activities, it is likely that new
use-cases will be added to packages that have been defined, that existing use-cases

will be refined, and that specific use-cases might be reallocated to different packages.

CHAPTER 18 ANALYSIS FOR WEBAPPS 545

18.2 The Analysis Model FOR WebApps

A WebApp analysis model is driven by information contained within the use-cases

that have been developed for the application. Use-case descriptions are parsed to

identity potential analysis classes and the operations and attributes associated with

each class. Content to be presented by the WebApp is identified, and functions to be

performed are extracted from the use-case descriptions. Finally, implementation-

specific requirements should be developed so that the environment and infrastruc-

ture that support the WebApp can be built.

Four analysis activities—each contributing to the creation of a complete analysis

model are:

^ What types

* of analysis

activity occur

during modeling

of a WebApp?

• Content analysis identifies the full spectrum of content to be provided by

the WebApp. Content includes text, graphics and images, and video and

audio data.

• Interaction analysis describes the manner in which the user interacts with the

WebApp.

• Functional analysis defines the operations that will be applied to WebApp

content and describes other processing functions that are independent of

content but necessary to the end-user.

• Configuration analysis describes the environment and infrastructure in which

the WebApp resides.

The information collected during these four analysis tasks should be reviewed, mod-

ified as required, and then organized into a model that can be passed to WebApp

designers.

The model itself contains structural and dynamic elements. Structural elements

identify the analysis classes and content objects that are required to create a WebApp

that meets stakeholders needs. The dynamic elements of the analysis model describe

how the structural elements interact with one another and with end-users.

"Successful [WebApps] allow customers to meet their needs better, foster,

through [a company's] employee end-users"

or cheaper themselves, rather than working

Mark McDonald

18.3 The Content Model

The content model contains structural elements that provide an important view of

content requirements for a WebApp. These structural elements encompass content

objects (e.g., text, graphical images, photographs, video images, audio) that are pre-

sented as part of the WebApp. In addition, the content model includes all analysis

classes—user-visible entities that are created or manipulated as a user interacts with

546 PART THREE APPLYING WEB ENGINEERING

the WebApp. An analysis class encompasses attributes that describe it, operations

that effect behavior required of the class, and collaborations that allow the class to

communicate with other classes.

Like other elements of the analysis model, the content model is derived from a

careful examination of use-cases developed for the WebApp. Use-cases are parsed

to extract content objects and analysis classes.

POINT
A content object is

ony item of cohesive

information that is to

be presented to on

end-user. Typically,

content objects ote

extracted from use-

cases.

18.3.1 Defining Content Objects

Web applications present pre-existing information—called content—to an end-user.

The type and form of content spans a broad spectrum of sophistication and com-

plexity. Content may be developed prior to the implementation of the WebApp, while

the WebApp is being built, or long after the WebApp is operational, in every case, it

is incorporated via navigational reference into the overall WebApp structure A con-

tent object might be a textual description of a product, an article describing a news

event, an action photograph taken at a sporting event, an animated representation

of a corporate logo, a short video of a speech, or an audio overlay for a collection of

Powerpoint slides.

Content objects are extracted from use-cases by examining the scenario descrip-

tion for direct and indirect references to content. For example, in the use-case select

SafeHome components, we encounter the sentence:

I will be able to get descriptive and pricing information for each product component.

Although there is no direct reference to content, it is implied. The Web engineer

would meet with the author of the use-case and gain a more detailed under-

standing of what "descriptive and pricing information" means. In this case, the au-

thor of the use-case might indicate that "descriptive information" includes (1) a

one paragraph general description of the component; (2) a photograph of the com-

ponent; (3) a multiparagraph technical description of the component; (4) a

schematic diagram of the component showing how it Fits into a typical SafeHome

system, and (5) a thumbnail video that shows how to install the component in a

typical household setting.

It is important to note that each of these content objects must be developed (of-

ten by content developers who are not Web engineers) or acquired for integration

into the WebApp architecture (discussed in Chapter 19).

POINT
A dota free represents

a hierarchy of content

objects.

"The Web—so much content, so little time."

Author unknown

18.3.2 Content Relationships and Hierarchy

In many instances, a simple list of content objects, coupled with a brief description

of each object, is sufficient to define the requirements for content that must be de-

signed and implemented. However, in some cases, the content model may contain

CHAPTER 18 ANALYSIS FOR WEBAPPS 547

Data tree tor a
SaieHom

d

component

entity relationship diagrams (Chapter 8) or data trees [SRI01] that depict the relation-

ships among content objects and/or the hierarchy of content maintained by a WebApp.

Consider the data tree created for a SafeHome component shown in Figure 1 8.3.

The tree represents a hierarchy of information that is used to describe the component

(later we will- see that a SafeHome component is actually an analysis class for this ap-

plication). Simple or composite data items (one or more data values) are represented

as unshaded rectangles. Content objects are represented as shaded rectangles. In the

figure, description is defined by five content objects (the shaded rectangles). In some

cases, one or more of these objects would be further refined as the data tree expands.

18.3.3 Analysis Classes4 for WebApps

As we have already noted, analysis classes are derived by examining each use-case.

For example, consider the preliminary use-case: select SafeHome components pre-

sented in Section 18.1.2.

Use-case: select SafeHome components

The WebApp will then recommend product components (e.g., control panels, sensors,

cameras) and other features (e.g., PC based functionality implemented in software) for

each room and exterior entrance. If I request alternatives, the WebApp will provide them,

if they exist. 1 will be able to get descriptive and pricing information for each product com-

ponent. The WebApp will create and display a bill-pf-materials as 1 select various com-

ponents. I'll be able to give the bill-of-materials a name and save it for future reference

(see use-case: save configuration).

A quick grammatical parse of the use-case identifies two candidate classes (under-

lined): ProductComponent and BillOfMaterials. A first-cut description of each

class is shown in Figure 18.4.

4 A detailed discussion of the mechanics tor identifying and representing analysis classes has been

presented in Chapter 8. If you have not already done so, review Chapter 8 at this time.

548 PART THREE APPLYING WEB ENGINEERING

Analysis

classes lor use-

case: selecf

SaleHome
components

The ProdfictComponent class encompasses all SaJgHome components that may

.be purchased to customize the product for a particular installation. It is a general-

, ized representation of Sensor, Camera, ControlPanel, and SoftFeature. Each

ProductComponent object contains information corresponding to the data tree

shown in Figure 1 8.3 for the class. Some of these class attributes are single or com-

posite data items and others are content objects (see Figure 18.3). Operations rele-

vant to the class are also shown.

The BillOfMaterials class encompasses a list of components that new cus-

tomer has selected. BillOfMaterials is actually an aggregation of BoMItem (many

instances of BoMItem comprise one BillOfMaterials)—a class that builds a list

composed of each component to be purchased and specific attributes about the com-

ponent as shown in Figure 18.4.

Each use-case identified for SafeHomeAssured.com is parsed for analysis ob-

jects. Class models similar to the one described in this section are developed for

each use-case.

18.4 The Interaction Model

The vast majority of WebApps enable a "conversation" between an end-user and ap-

plication functionality, content, and behavior. This interaction model is composed of

four elements: (l) use-cases, (2) sequence diagrams, (3) state diagrams, 5 and (4) a

user interface prototype. In addition to these representations, the interaction is also

represented within the context of the navigation model (Section 1 8.7).

5 Each of these is an important UML notation and has been described in Chapter 8.

CHAPTER 18 ANALYSIS FOR WEBAPPS 549

Sequence
diagram for

use-case:

select

SafeHome
components

New
customer

:FloorPlon

|

.Product i&iliof FloorPlan BoM
Component Materials Repository Repository 1

I

Describes
i

room* I Places room

(

floor £lon

I

L
i Sove|jjoor plon configui

Selects product component*

I i
add to BoM

|

I I
"i

•

JS^ve Mlof materials^

The techniques associ-

ated with task

anolysis (Chapter T2)

can he used to help

define modes of user

interaction.

In some coses,

excerpts from the

actual text of the use-

cose con be repro-

duced in the left hand

column (below the

user) so that direct

traceability can be

represented.

Use-cases, use-cases are the dominant element of the interaction model for

WebApps. It is not uncommon to describe 1 00 or more use-cases when large, com-

plex WebApps are analyzed, designed, and constructed. However, a relatively small

percentage of these use-cases describe the major interactions between end-user

categories (actors) and the system. Other use-cases refine the interactions, provid-

ing the analysis detail necessary to guide design and construction.

Sequence diagrams. UML sequence diagrams provide a shorthand representation

of the manner in which user actions (the dynamic elements of a system defined by

use-cases) collaborate with analysis classes (the structural elements of a system de-

fined by class diagrams). Since analysis classes are extracted from use-case de-

scriptions, there is a need to ensure that traceability exists between the classes that

have been defined and the use-cases that describe system interaction.

In earlier chapters we noted that sequence diagrams provide a link between the

actions described in the use-case and the analysis classes (structural entities).

Conallen [CONOO] notes this when he writes: "The merging ofdynamic and structural

elements of the [analysis] model is the key link in the traceability of the model and

should be taken veiy seriously.”

A sequence diagram for the select SafeHome components use-case is shown in

Figure 1 8.5. The vertical axis of the diagram depicts actions that are defined within the

use-case. The horizontal axis identifies the analysis classes that are used as the use-

case proceeds. For example, a new customer must first describe each room within the

house (the asterisk following "describe room" indicates that the action is iterative). To

accomplish this, the new customer answers questions about the room's size, doors,

and windows, and so forth. Once a room is defined, it is placed in a floor plan for the

house. The new customer then describes the next room or proceeds to the next ac-

tion (which is to save the floor plan configuration). The movement across and down

the sequence diagram ties each analysis class to use-case actions. If a use-case action

550 PART THREE APPLYING WEB ENGINEERING

Partial state diagram lor new customer interaction

Select "log-ii

New
customer

Customization comi

Validating user

System status *

Dispby msg *

Dispby msg =

"input ready*

"enter userid"

"enter pswd"

entry/log-in requested

do: run user validation

exit/set user access switch

userid

volidotec

password validated

pletc

Selecting user action

System status * "link reody"

Dispby: "navigation choices"

entry/volidated user

do: link os required

exit/user oction selected

Select other functions

• •

Select e-commerce (purchase) functionality

Select customization functionality

Next selection

Customizing

System status - "input reody"

Display: basic instructbns

entry/validated user

do: process user selection

exit/customizotion terminated

Select descriptive

content .

Room being defined^

All

rooms

defined

Defining room

Select descriptive

X content

Saving floor plan

System status * "input ready"

Dispby: room def. window

entry/room def. selected

do: run room queries

do: store room variables

exit/room completed

Select save floor plan

System stotus • "input reody"

Display: storage indicator

entry/room plan save selected

do: store floor plan

exit/save completed

Select enter room in floor plan

Room insertion completed

Building floor pbn

Select

descriptive

content

System status - "input ready"

Display: floor plan window

entry/floor plan selected

do: insert room in place

do: store floor pbn voricbles

exit/room insertion completed

is missing from the diagram, the Web engineer must re-evaluate the description of

analysis classes to determine if one or more classes is missing. Sequence diagrams

can be created for each use-case once analysis classes are defined for the use-case.

State diagrams. The UML state diagram (Chapter 8) provides another represen-

tation of the dynamic behavior of the WebApp as an interaction occurs. Like most

modeling representations used in Web engineering (or software engineering), the

state diagram can be represented at different levels of abstraction. Figure 1 8.6 de-

picts a partial, top-level (high level of abstraction) state diagram for the interaction

between a new customer and the SafeHomeAssured.com WebApp.

In the state diagram shown, six externally observable states are identified: vali-

dating user, selecting user action, customizing, defining room, buildingfloor plan, and

savingfoor plan. The state diagram indicates the events that are required to move

the new customer from one state to another, the information that is displayed as a

state is entered, the processing that occurs within a state, and the exit condition that

causes a transition from one state to another.

Because use-cases, sequence diagrams, and state diagrams all present related

information, it is reasonable to ask why all three are necessary. In some cases,

they are not. Use-cases may be sufficient in some situations. However, use-cases

CHAPTER 18 ANALYSIS FOR WEBAPPS 551

Some Web engineers

prefer o pencil and

paper storyboard of

major WebApp pages

(screens). Although

such storyboards con

be developed very

quickly, the navigation

flow is less obvious

than with an opera-

tional prototype.

provide a rather one-dimensional view of the interaction. Sequence diagrams

present a second dimension that is more procedural (dynamic) in nature. State di-

agrams provide a third dimension that is more behavioral and contains informa-

tion about potential navigation pathways that is not provided by use-cases or the

sequence diagram. When all three .dimensions are used, omissions or inconsis-

tencies that might escape discovery in one dimension become obvious when a

second (or third) dimension is examined. It is for this reason that large complex

WebApps can benefit from an interaction model that encompasses all three

representations.

User interface prototype. The layout of the user interface, the content it

presents, the interaction mechanisms it implements, and the overall aesthetic of

the user-WebApp connections have much to do with user satisfaction and the

overall acceptance of the WebApp. Although it can be argued that the creation of

a user interface prototype is a design activity, it is a good idea to perform it dur-

ing the creation of the analysis model. The sooner that a physical representation

of a user interface can be reviewed, the higher the likelihood that end-users will

get what they want. User interface analysis and design are discussed in detail in

Chapter 12.

Because WebApp development tools are plentiful, relatively inexpensive, and

functionally powerful, it is best to create the interface prototype using such tools. The

prototype should implement the major navigational links and represent the overall

screen layout in much the same way that it will be constructed.

18.5 Tbs Functional Model

TheJunctional model addresses two processing elements of the WebApp, each rep-

resenting a different level of procedural abstraction: (1) user observable functional-

ity that is delivered by the WebApp to end-users, and (2) the operations contained

within analysis classes that implement behaviors associated with the class.

User-observable functionality encompasses any processing functions that are ini-

tiated directly by the user. For example, a financial Web site might implement a va-

riety of financial functions (e.g., a college tuition savings calculator or a retirement

savings calculator). These functions may actually be implemented using operations

within analysis classes, but from the point ofview of the end-user, the function (more

correctly, the data provided by the function) is the visible outcome.

At a lower level of procedural abstraction, the analysis model describes the pro-

cessing to be performed by analysis class operations. These operations manipulate

class attributes and are involved as classes collaborate with one another to accom-

plish some required behavior.

Regardless of the level of procedural abstraction, the UML activity diagram can be

used to represent processing details. Figure 18.7 depicts an activity diagram for the

552 PART THREE APPLYING WEB ENGINEERING

Activity

diagram lor

computePriceO
operation

& an alternative, you

can also write a simple

processing narrative or

program design

Icnguoge representa-

tion (Chapter 1 1).

However, mony people

prefer a graphical

representation.

computePriceO operation that is part of the BillOfMaterials analysis class.
6 As we

noted in Chapter 8, the activity diagram is similar to the flowchart, illustrating the

processing flow and logical decisions with the flow, it should be noted that two ad-

ditional operations are invoked within the procedural flow: calcShippingCostf), which

calculates the cost of shipping depending upon the shipping method chosen by the

customer, and delermineDiscourrtO, which determines any special discounts for the

SafeHome components that were selected for purchase. The construction details in-

dicating how these operations are invoked and the interface details for each opera-

tion are not considered until WebApp design commences.

6 A review of the BillOfMaterials analysis class might determine that in the interest of cohesion, the

computePriceO operation might best be placed within an Invoice class. This suggestion has merit.

However, it remains within the BillOfMaterials analysis class for the purposes of this example

CHAPTER 18 ANALYSIS FOR WEBAPPS 553

Although it's very

important to consider

oil configurations thot

ore likely to be used,

remember thot o

WebApp must be engi-

neered to serve its

enrhisers, not the idio-

syncrasies of o partic-

ular browser.

1Sul

The Configuration Model —
WebApps must be designed and implemented in a manner that accommodates a va-

riety of environments on both the server-side and the client-side The WebApp can

reside on a server that provides access via the internet, an Intranet, or an Extranet.

Server hardware and operating system environment must be specified. In addition,

interoperability considerations on the server-side should be considered. It the

WebApp must access a large database or interoperate with corporate applications

that exist on the server side, appropriate interfaces, communication protocols, and

related collaborative information must be specified.

Client-side software provides the infrastructure that enables access to the

WebApp from the user's location. In general, browser software is used to deliver the

WebApp content and functionality that is downloaded from the server. Although

standards do exist, each browser has its own peculiarities. For this reason, the

WebApp must be thoroughly tested within every browser configuration that is spec-

ified as part of the configuration model.

In some cases, the configuration model is nothing more than a list of server-side

and client-side attributes. However, for more complex WebApps, a variety of config-

uration complexities (e g., distributing load among multiple servers, caching archi-

tectures, remote databases, multiple servers serving various objects on the same

Web page) may have an impact on analysis and design. The UML deployment dia-

gram (Chapter 10) can be used in situations in which complex configuration archi-

tectures must be considered.

Relationship-Navigation Analysis

The elements of the analysis model described in the preceding sections identify con-

tent and functional elements along with the manner in which they are used to im-

plement user interaction. As analysis evolves into design, these elements become

part of the WebApp architecture. In the context of Web applications, each architec-

tural element has the potential to be linked to all other architectural elements. But

as the number of links increases, navigational complexity throughout the WebApp

also increases. The question, then, is how to establish the appropriate links between

content objects and among the functions that provide user-required capabilities.

"[Novigation] is not only the action of jumping from page to page, but the idea of moving through an information

space."

A. Reina and J. Torres

7 The server -side hosts the WebApp and all related system features that enable multiple users to gain

access to the WebApp via a network. The client-side provides a software environment (e.g.,

browsers) that enable end-users to interact with the WebApp on the user's desktop.

554 PART THREE APPLYING WEB ENGINEERING

How do

• we assess

analysis model

elements to

understand the

relationships

between them?

Relationship-navigation analysis (RNA) provides a series of analysis steps that strive

to identify relationships among the elements uncovered as part of the creation of the

analysis model.8 Yoo and Bieber [YOOOO] describe RNA in the following manner:

RNA provides systems analysts with a systematic technique for determining the rela-

tionship structure of an application, helping them to discover all potentially useful re-

lationships in application domains. These later may be implemented as links. RNA also

helps determine appropriate navigational structures on top of these links. RNA en

hances system developers' understanding of application domains by broadening and

deepening their conceptual model of the domain. Developers can then enhance their

implementation by including additional links, metainformation, and navigation.

The RNA approach is organized into five steps:

• Stakeholder analysis—identifies the various user categories (as described in

Section 18.1) and establishes an appropriate stakeholder hierarchy.

• Element analysis—identifies the content objects and functional elements that

are of interest to end-users (as described in Sections 18.3 and 18.5).

• Relationship analysis—describes the relationships that exist among the

WebApp elements.

• Navigation analysis—examines how users might access individual elements

or groups of elements.

• Evaluation analysis—considers pragmatic issues (e g., cost/benefit) associ-

ated with implementing the relationships defined earlier.

The first two steps in the RNA approach have been discussed earlier in this chapter.

In the sections that follow, we consider methods for establishing the relationships

that exist among content objects and functions.

18.7.1 Relationship Analysis—Key Questions

Yoo and Bieder [YOOOOj suggest a list of questions that a Web engineer or systems

analyst should ask about each element (content object or function) that has been

identified within the analysis model. The following list, adapted for WebApps, is rep-

resentative [YOQOOj:

• Is the element a member of a broader category of elements?

• What attributes or parameters have been identified for the element?

• Does descriptive information about the element already exist? If so, where is it?

• Does the element appear in different locations within the WebApp? If so,

where?

• Is the element composed of other smaller elements? If so, what are they?

8 It should be noted that RNA can be applied to any information system and was originally developed

for hypermedia systems in general. It can, however, be adapted nicely for Web engineering.

CHAPTER 18 ANALYSIS FOR WEBAPPS 555

• Is the element a member of a larger collection of elements? If so, what is it

and what is its structure?

• Is the element described by an analysis class?

. Are other elements similar to the element being considered? If so, is it

possible that they could be combined into one element?

• is the element used in a specific ordering of other elements? Does its appear-

ance depend on other elements?

• Does another element always follow the appearance of the element being

considered?

• What pre- and post -conditions must be met for the element to be used?

• Do specific user categories use the element? Do different user categories use

the element differently? If so, how?

• Can the element be associated with a specific formulation goal or objective?

With a specific WebApp requirement?

• Does this element always appear at the same time as other elements appear?

If so, what are the other elements?

• Does this element always appear in the same place (e.g., same location of

the screen or page) as other elements? If so, what are the other elements?

The answers to these and other questions help the Web engineer to position the ele-

ment in question within the WebApp and to establish relationships among elements.

It is possible to develop a relationship taxonomy and to categorize each relation-

ship identified as a result of the questions noted. The interested reader should refer

to [YOOOO] for more detail.

18.7.2 Navigation Analysis

Once relationships have been developed among elements defined within the

analysis model, the Web engineer must consider the requirements that dictate how

each user category will navigate from one element (e g., content object) to another.

The mechanics of navigation are defined as part of design. At this stage, develop-

ers should consider overall navigation requirements. The following questions

should be asked and answered:

• Should certain elements be easier to reach (require fewer navigation steps)

than others? What is the priority for presentation?

• Should certain elements be emphasized to force users to navigate in their

direction?

• How should navigation errors be handled?

• Should navigation to related groups of elements be given priority over navi-

gation to a specific element?

^ What

* questions

should be asked

to better

understand

navigation

requirements?

556 PART THREE APPLYING WEB ENGINEERING

As you analyze naviga-

tional requirements,

remember that the

user must always

know where she is ami

where she can go. Jo

do this, the user needs

a *mop.'

lfi*&

• Should navigation be accomplished via links, via search-based access, or by
some other means?

• Should certain elements be presented to users based on the context of

previous navigation actions?

• Should a navigation log be maintained for users?

• Should a full navigation map or menu (as opposed to a single "back" link or

directed pointer) be available at every point in a user’s interaction?

• Should navigation design be driven by the most commonly expected user

behaviors or by the perceived importance of the defined WebApp elements?

• Can a user "store" his previous navigation through the WebApp to expedite

future usage?

• For which user category should optimal navigation be designed?

• How should links external to the WebApp be handled? Overlaying the

existing browser window? As a new browser window? As a separate frame?

These and many other questions should be asked and answered as part of naviga-

tion analysis,

The Web engineering team and its stakeholders must also determine overall re-

quirements for navigation. For example, will a "site map" be provided to give users

an overview of the entire WebApp structure? Can a user take a "guided tour" that will

highlight the most important elements (content objects and functions) that are avail-

able? Will a user be able to access content objects or functions based on defined at-

tributes of those elements (e g., a user might want to access all photographs of a

specific building or all functions that allow computation of weight).

Summary
Formulation, requirements gathering, and analysis modeling are performed as part

of requirements analysis for WebApps. The intent of these activities is to (1) describe

the basic motivation (goals) and objectives for the WebApp; (2) define the categories

of users; (3) note the content and functional requirements for the WebApp; and

(4) establish a basic understanding ofwhy the WebApp is to be built, who will use it,

and what problem(s) it will solve for its users.

Use-cases are the catalyst for all requirements analysis and modeling activities. Use-

cases can be organized into functional packages, and each package is assessed to en-

sure that it is comprehensible, cohesive, loosely coupled, and hierarchically shallow.

Four analysis activities contribute to the creation of a complete analysis model:

content analysis identifies the full spectrum of content to be provided by the

WebApp; interaction analysis describes the manner in which the user interacts with

the WebApp; functional analysis defines the operations that will be applied to

WebApp content and describes other processing functions that are independent of

CHAPTER 18 ANALYSIS FOR WEBAPPS 557

content but necessary to the end-user, and configuration analysis describes the en-

vironment and infrastructure in which the WebApp resides.

The content model describes the spectrum of content objects that are to be in-

corporated into a WebApp. These content objects must be developed or acquired for

integration into the WebApp architecture. A data tree can be used to represent a con-

tent object hierarchy. Analysis classes (derived from use-cases) provide another

means for representing key objects that the WebApp will manipulate.

The interaction model is constructed with use-cases, UML sequence diagrams,

and UML state diagrams to describe the “conversation’' between the user and the

WebApp. In addition, an interface prototype may be constructed to assist in devel-

oping layout and navigation requirements.

The functional model describes user-observable functions and class operations us-

ing the UML activity diagram. The configuration model describes the environment

that the WebApp will require on both the server-side and the client-side of the system.

Relationship-navigation analysis identifies relationships among the content and

functional elements defined in the analysis model and establishes requirements for

defining appropriate navigation links throughout the system. A series of questions

help to establish relationships and identify characteristics that will have an influence

on navigation design.

References
[CONOOl Conallen

,)., Building Web Applications with UML, Addison-Wesley, 2000.

[FRA01] Franklin, S„ "Planning Your Web Site with UML," webReview, available at

http://www.webrevtew.com/2001/05_l 8/developers/index0 1 shtml.

[SR101] Sridhar, M., and N. Mandyam, "Effective Use of Data Models in Building Web Appli-

cations," 2001, available at http://www2002.org/CDROM/alternate/698/.

[Y0099I Yoo
,)., and M Bieber, "A Systematic Relationship Analysis for Modeling information

Domains," 1999, download from http://citeseer.nj.nec.com/ 312025. html.

[YOOOO] Yoo,)., and M. Bieber. "Toward a Relationship Navigation Analysis," Proc. 33rd Hawaii

Conf. On System Sciences, vol. 6., IEEE, January 2000, download from www.cs.njit.edu/

~bieber/pub/hicssO0/INWEBO2.pdf.

Problems and Points to Ponder
18.1. Use-cases or use-case packages are assessed to ensure that they are comprehensible, co-

hesive, loosely coupled, and hierarchically shallow. Describe what these terms mean in your own

words.

18.2. if you were forced to do "analysis modeling lite"—that is, minimal analysis modeling—

what representations, diagrams, and information would you define during this Web engineer-

ing activity?

18.3. Using the vast array of resources on agile software development available on the Web,

do a bit of research and make an argument against analysis modeling for WebApps. Do you be-

lieve that your argument applies in all cases?

18.4. What does a use-case package represent?

18.5. Using a diagram similar to the one shown in Figure 18.1
,
establish a user hierarchy for

(a) a financial services Web site or (b) a book-seller Web site.

558 PART THREE APPLYING WEB ENGINEERING

Select a WebApp that you visit regularly from one of the following categories: (a) news or sports,

(b) entertainment, (c) e-commerce, (d) gaming, (e) computer-related, (0 a WebApp recom-
mended by your instructor. Perform the activities noted in Problems 1 8.6 through 18.12:

18 .6 . Develop one or more use-cases that describe specific user behavior for the WebApp.

18 . 7 . Select a content object or function that is part of the WebApp architecture and answer
the relationship-navigation questions listed in Section 1 8.7. 1

.

18 .8 . Develop a UML sequence diagram and a UML state diagram that describes a specific in-

teraction within the WebApp.

18 .9 . Consider the existing WebApp interface. Prototype a change to the interface that you be-

lieve will improve it.

18.10. Considering the existing WebApp, answer the relationship-navigation questions listed

in Section 18.7.2.

18. 11. Represent a partial content hierarchy and define at least three analysis classes for the

WebApp.

18.12. Select a user observable function provided by the WebApp and model it using a UML
activity diagram

Further Readings and Information Sources

Many books dedicated to analysis modeling for conventional software—with particular empha-
sis on use-cases and UML notation—contain much useful information that can be readily

adapted by Web engineers. Use-cases form the foundation of analysis modeling for WebApps.
Books by Kulak and his colleagues (Use Cases: Requirements in Context, second edition. Addi-

son-Wesley, 2004), Bittner and Spence (Use Case Modeling, Addison-Wesley, 2002), Cockbum
(Wilting Effective Use Cases. Addison-Wesley, 200 1) ,

Armour and Miller (,Advanced Use-Case Mod-
eling: Software Systems, Addison-Wesley. 2000), Rosenberg and Scott (Use Case Driven Object

Modeling with UML A Practical Approach, Addison-Wesley, 1999), and Schneider, Winters, and
Jacobson (Applying Use Cases. A Practical Guide, Addison-Wesley, 1998) provide worthwhile
guidance in the creation and use of this important requirements representation mechanism.
Worthwhile discussions of UML have been written by Arlow and Neustadt (UML and the Unified

Process, Addison-Wesley, 2002), Schmuiler (7each Yourself UML, Sams Publishing, 2002), Booch
and his colleagues (The UML User Guide, Addison-Wesley, 1998), and Rumbaugh and his col-

leagues (The Unified Modeling Language Reference Manual, Addison-Wesley, 1998).

Books dedicated to Web site design often contain one or two chapters that discuss analysis is-

sues (although these are often cursory discussions). The following books contain one or more as-

pects ofanalysis within the context ofWeb engineering: Van Duyne and his colleagues (The Design

ofSites, Addison-Wesley, 2002), Rosenfeld and Morville (Information Architecturefor the World Wide

Web, O'Reilly & Associates, 2002), Wodtke (Information Architecture, New Riders Publishing, 2002),

Garrett (The Elements ofUser Experience: User Centered Designfor the Web, New Riders Publishing.

2002), Niederst (Web Design in a Nutshell, O'Reilly & Associates, 2001), Lowe and Hall (Hypertext

and the Web: An Engineering Approach, Wiley, 1 999) ,
and Powell (Web Site Engineering, Prentice-

Hall, 1998) provide reasonably complete coverage. Norris, West, and Watson (Media Engineering:

A Guide to Developing Information Products, Wiley, 1997), Navarro and Khan (Effective Web Design:

Master the Essentials, Sybex, 1998), and Fleming and Koman (Web Navigation: Designing the User

Experience, O'Reilly & Associates, 1998) provide additional guidance for analysis and design.

A wide variety of information sources on analysis modeling for Web engineering is available

on the Internet. An up-to-date list of World Wide Web references can be found under "software

engineering resources" at the SEPA Web site:

http://www.mhhe.com/pressman.

Design for
WebApps

CHAPTER

Key
Concepts
aesthetic design

architecture design

component-level

design

content architecture

content design

interface design

MVC architecture

navigation design

OOHDM

metrics

patterns

quality attributes

19

I
n his authoritative book on Web design, Jakob Nielsen [NIEOO] states: "There

are essentially two basic approaches to design: the artistic ideal of expressing

yourself and the engineering ideal of solving a problem for a customer." Dur-

ing the first decade of Web development, the artistic idea was the approach that

many developers chose. Design occurred in an ad hoc manner and was usually

conducted as HTML was generated. Design evolved out of an artistic vision that

itself evolved as WebApp construction occurred.

Even today, the most "extreme" proponents of agile software development

(Chapter 4) use Web applications as poster children for "limited design." They

argue that WebApp immediacy and volatility mitigate against formal design,

that design evolves as an application is built (coded), and that relatively little

time should be spent on creating a detailed design model. This argument has

merit, but only for relatively simple WebApps. When content and function are

complex; when the size of the WebApp encompasses hundreds of content ob-

jects, functions, and analysis classes; when the success of the WebApp will

have a direct impact on the success of the business, design cannot and should

not be taken lightly.

This reality leads us to Nielsen's second approach—"the engineering ideal of

solving a problem for a customer." Web engineering adopts this philosophy, and

a more rigorous approach to WebApp design enables developers to achieve it.

What is it? Design for WebApps
encompasses technical and non-

technical activities. The look and

feel of content r$ developed as part

of graphic design; the aesthetic layout of the

user interface is created as part of interface

design; and the technical structure of the

WebApp is modeled as part of architectural

and navigational design. In every instance, a

design model should be created before con-

struction begins, but a good Web engineer

recognizes that the design will evolve as more

is learned about stakeholder requirements as

the WebApp is built.

Who does it? Web engineers, graphic design-

ers, content developers, and other stakeholders

all participate in the creation of a design model

for Web engineering.

Why is it important? Design allows a Web
engineer to create a model that can be assessed

for quality and improved before content and

code are generated, tests are conducted, and

end-users become involved in large numbers.

Design is the place where WebApp quality is es-

tablished.

What are the steps? WebApp design encom-

passes six major steps that are driven by infor-

mation obtained during analysis modeling.

559

560 PART THREE APPLYING WEB ENGINEERING

Content design uses information contained

within the analysis model as a basis for estab-

lishing the design of content objects and their

relationships. Aesthetic design (also called

graphic design) establishes the look and feel that

the end-user sees. Architectural design focuses

on the overall hypermedia structure of all content

objects and functions. Interface design estab-

lishes the overall layout and interaction mecha-

nisms that define the user interface. Navigation

design defines how the end-user navigates

through the hypermedia structure, and compo-

nent design represents the detailed internal

structure of functional elements of the WebApp.

What is the work product? A design model

that encompasses content, aesthetics, architec-

ture, interface, navigation, and component-level

design issues is the primary work product of

Web engineering design.

How do I ensure that I've done it right?

Each element of the design model is reviewed

by the Web engineering team (and selected

stakeholders) in an effort to uncover errors, in-

consistencies, or omissions. In addition, alterna-

tive solutions are considered, and the degree to

which the current design model will lead to an

effective implementation is also assessed.

1_9.i|pesign Issues for Wee Engineering .

When design is applied within the context ofWeb engineering, both generic and spe-

cific issues must be considered. From a generic viewpoint, design results in a mode)

that guides the construction of the WebApp. The design model, regardless of its form,

should contain enough information to reflect how stakeholder requirements (defined

in an analysis model) are to be translated into content and executable code. But de-

sign must also be specific. It must address key attributes of a WebApp in a manner

that enables a Web engineer to build and test effectively.

19.1.1 Design and WebApp Quality

In earlier chapters, we noted that design is the engineering activity that leads to a

high-quality product. This leads us to a recurring question that is encountered in all

engineering disciplines: What is quality? In this section we examine the answer

within the context of Web engineering.

Every person who has surfed the Web or used a corporate Intranet has an opinion

about what makes a "good" WebApp. Individual viewpoints vary widely. Some users

enjoy flashy graphics, others want simple text. Some demand copious information,

others desire an abbreviated presentation. Some like sophisticated analytical tools or

database access, others like to keep it simple. In fact, the user's perception of "good-

ness" (and the resultant acceptance or rejection of the WebApp as a consequence)

might be more important that any technical discussion of WebApp quality.

But how is WebApp quality perceived? what attributes must be exhibited to

achieve goodness in the eyes of end-users and at the same time exhibit the techni-

cal characteristics of quality that will enable a Web engineer to correct, adapt, en-

hance, and support the application over the long term?

CHAPTER 19 DESIGN FOR WEBAPPS 561

In reality, all of the general characteristics ofsoftware quality discussed in Chapters

9, 15, and 26 apply to WebApps. However, the most relevant of these characteristics—

usability, functionality, reliability, efficiency, and maintainability—provide a useful ba-

sis for assessing the quality of Web-based systems.

"If products are designed to better fit the natural tendencies of human behavior,

more fulfilled, and more productive.”

then people will be more satisfied,

Susan Weinscbenk

What are

• the major

attributes of

quality for

WebApps?

Olsina and his colleagues [OLS991 have prepared a "quality requirement tree" that

identifies a set of technical attributes—usability, functionality, reliability, efficiency,

and maintainability—that lead to high-quality WebApps. 1 Figure 19.1 summarizes

their work. The criteria noted in the figure are of particular interest to Web engineers

who must design, build, and maintain WebApps over the long term.

Offutt [OFF02] extends the five major quality attributes noted in Figure 19.1 by

adding the following attributes:

Security. WebApps have become heavily integrated with critical corporate and

government databases. E-commerce applications extract and then store sensitive

customer information. For these and many other reasons, WebApp security is para-

mount in many situations. The key measure of security is the ability of the WebApp

and its server environment to rebuff unauthorized access and/or thwart an outright

Global site understandability

On-line feedback and help features

Interface and aesthetic features

Special features

Searching and retrieving capability

Navigation and browsing features

Application domain-related features

Correct link processing

Error recovery

User input validation and recovery

Response time performance

Page generation speed

Graphics generation speed

Ease of correction

Adaptability

Extensibility

1 These quality attributes are quite similar to those presented in Chapters 9, 1 5, and 26. The implica-

tion: quality characteristics are universal for all software.

562 PART THREE APPLYING WEB ENGINEERING

malevolent attack. A detailed discussion of WebApp security is beyond the scope of

this book. The interested reader should see [MCC01], [NOR02], or [KAL03],

Availability. Even the best WebApp will not meet users' needs if it is unavailable.

In a technical sense, availability is the measure of the percentage of time that a

WebApp is available for use. The typical end-user expects WebApps to be available

24/7/365. Anything less is deemed unacceptable.2 But "up-time" is not the only in-

dicator of availability. Offutt [OFF02] suggests that “using features available on only

one browser or one platform" makes the WebApp unavailable to those with a differ-

ent browser/platform configuration. The user will invariably go elsewhere.

Scalability. Can the WebApp and its server environment be scaled to handle 1 00,

1 000, 1 0,000, or 1 00,000 users? Will the WebApp and the systems with which it is in-

terfaced handle significant variation in volume or will responsiveness drop dramat-

ically (or cease altogether)? It is not enough to build a WebApp that is successful. It

is equally important to build a WebApp that can accommodate the burden of success

(significantly more end-users) and become even more successful.

Time-to-market. Although time to market is not a true quality attribute in the

technical sense, it is a measure of quality from a business point of view. The first

WebApp in the market often captures a disproportionate number of end-users.

WebApp Design Quality Checklist

The following checklist, adapted from ,

information presented at Webreference.com,

provides a set of questions that will help both Web ,

engineers and end-users assess overall WebApp quality: ,

V

Can content and/or function and/or navigation

options be tailored to the user's preferences?

Can content and/or functionality be customized to the

bandwidth over which the user communicates.

Have graphics ond other nontext media been used

appropriately? Are graphics file sizes optimized for

display efficiency?

Are tables organized and sized in a manner that

makes them understandable and displayed efficiently?

Is HTML optimized to eliminate inefficiencies?

Is the overoll page design easy to read and navigate?

Do all pointers (links) provide links to information that

is of interest to users?

Is it likely that most links have persistence on the Web?

Is the WebApp instrumented with site management

utilities that include tools for usage fracking, link testing,

local searching, and security?

J
Billions ofWeb pages are available for those in search of information on the World

Wide Web. Even well-targeted Web searches result in an avalanche of content. With

so many sources of information to choose from, how does the user assess the qual-

ity (eg., veracity, accuracy, completeness, timeliness) of the content that is presented

within a WebApp? Tillman [T1L00] suggests a useful set of criteria for assessing the

quality of content:

2 This expectation is, of course, unrealistic. Major WebApps must schedule "downtime” for fixes and

upgrades.

CHAPTER 19 DESIGN FOR WEBAPPS 563

What should

• we consider

when assessing

content quality?

• Can the scope and depth of content be easily determined to ensure that it

meets the user's needs?

• Can the background and authority of the content's authors be easily identified?

• Is it possible to determine the currency of the content, the last update, and

what was updated?

• Is the content and its location stable (i.e., will it remain at the referenced URL)?

In addition these content-related questions, the following might be added:

• Is content credible?

• Is content unique? That is, does the WebApp provide some unique benefit to

those who use it?

• Is content valuable to the targeted user community?

• Is content well-organized? Indexed? Easily accessible?

The checklists noted in this section represent only a small sampling of the issues that

should be addressed as the design of a WebApp evolves. An important goal of Web
engineering is to develop systems in which affirmative answers are provided to all

quality-related questions,

“Just because you can, doesn't mean you should."

Jean Kaiser

19.1.2 Design Goals

In her regular column on Web design, Jean Kaiser [KAI02] suggests the following de-

sign goals that are applicable to virtually every WebApp regardless of application do-

main, size, or complexity:

Simplicity. Although it may seem old-fashioned, the aphorism "all things in moder-

ation" applies to WebApps. There is a tendency among some designers to provide the

end-user with "too much"—exhaustive content, extreme visuals, intrusive animation,

enormous Web pages, the list is long. Better to strive for moderation and simplicity.

Consistency. This design goal applies to virtually every element of the design

model. Content should be constructed consistently (e.g., text formatting and font

styles should be the same across all text documents; graphic art should have a con-

sistent look, color scheme, and style). Graphic design (aesthetics) should present a

consistent look across all parts of the WebApp. Architectural design should establish

templates that lead to a consistent hypermedia structure. Interface design should de
fine consistent modes of interaction, navigation, and content display. Navigation

mechanisms should be used consistently across all WebApp elements.

Identity. The aesthetic, interface, and navigational design of a WebApp must be con-

sistent with the application domain for which it is to be built. A Web site for a hip-hop

564 PART THREE APPLYING WEB ENGINEERING

group will undoubted have a different look and feel than a WebApp designed for a fi-

nancial services company. The WebApp architecture will be entirely different, inter-

faces will be constructed to accommodate different categories of users, navigation will

be organized to accomplish different objectives, A Web engineer (and other design

contributors) shouldwork to establish an identity for the WebApp through the design.

Robustness. Based on the identity that has been established, a WebApp often

makes an implicit "promise" to a user. The user expects robust content and functions

that are relevant to the user's needs. If these elements are missing or insufficient, it

is likely that the WebApp will fail.

Navigability, we have already noted that navigation should be simple and consis-

tent. It should also be designed in a manner that is intuitive and predictable. That is,

the user should understand how to move about the WebApp without having to

search for navigation links or instructions.

Visual appeal, of all software categories, Web applications are unquestionably the

most visual, the most dynamic, and the most unapologetically aesthetic. Beauty (visual

appeal) is undoubtedly in the eye of the beholder, but many design characteristics (e.g.

,

the look and feel of content, interface layout, color coordination, the balance of text,

graphics and other media, navigation mechanisms) do contribute to visual appeal.

Compatibility, a WebApp will be used in a variety of environments (e.g. ,
different

hardware, Internet connection types, operating systems, browsers) and must be de-

signed to be compatible with each.

“To some, Web design focuses on visual look and feel ... To others, Web design is about structuring information and

navigation through the document space. Others might even consider Web design to be about the technology used to

build interactive Web applications. In reolity, design includes all of these things and maybe more.

Thomas Powell

19.2 The WebE Design Pyramid.

POINT
WebE encompasses

six different types

of design. Each

connibures to the

overall quality of

the WebApp.

What is design in the context of Web engineering? This simple question is more dif-

ficult to answer than one might believe. Design leads to a model that contains the

appropriate mix of aesthetics, content, and technology The mix will vary depending

upon the nature of the WebApp, and as a consequence the design activities that are

emphasized will also vary.

Figure 1 9.2 depicts a design pyramid for Web engineering. Each level of the pyra-

mid represents one of the following design activities:

• Interface design—describes the structure and organization of the user

interface. Includes a representation of screen layout, a definition of the

modes of interaction, and a description of navigation mechanisms.

CHAPTER 19 DESIGN FOR WEBAPPS 565

The WebE
design

pyramid

• Aesthetic design—also called graphic design, describes the "look and feel" of

the WebApp. Includes color schemes, geometric layout, text size, font and

placement, the use of graphics, and related aesthetic decisions.

• Content design—defines the layout, structure, and outline for all content that

is presented as part of the WebApp. Establishes the relationships between

content objects.

• Navigation design—represents the navigational flow between content objects

and for all WebApp functions.

• Architecture design—identifies the overall hypermedia structure for the

WebApp.

• Component design—develops the detailed processing logic required to

implement functional components.

Each of these design activities are considered in more detail in the sections that

follow.

19.3 WebApp Interface Design 3

Every user interface—whether it is designed for a WebApp, a traditional software ap-

plication, a consumer product, or an industrial device—should exhibit the following

characteristics: easy to use, easy to learn, easy to navigate, intuitive, consistent,

efficient, error-free, and functional. It should provide the end-user with a satisfying

3 Most, if not all. of the guidelines presented in Chapter 1 2 apply equally to the design ofWebApp in-

terfaces. Ifyou have not already done so. read Chapter 12 at this time

566

If it is likely that users

may enter your

Webipp at various

locations and levels in

the content hierarchy,

be sure to design every

page with navigation

features that will lead

the user to other points

of interest.

POINT
A good WebApp

interface is

understandable ond

forgiving, providing the

user with o sense of

control.

PART THREE APPLYING WEB ENGINEERING

and rewarding experience. Interface design concepts, principles, and methods pro-

vide the Web engineer with the tools required to achieve this list of attributes.

In Chapter 12, we noted that interface design begins not with a consideration of

technology, but with a careful examination of the end-user. During analysis modeling

for Web engineering (Chapter 18), a user hierarchy is developed. Each user category

may have subtly different needs, may want to interact with the WebApp in different

ways, and may require unique functionality and content. This information is derived

during requirements analysis, but it is revisited as the first step in interface design.

“If a site is perfectly usable but it locks an elegant and appropriate design style, it will fail.”

Curt Cloainger

Dix [DIX99] argues that a Web engineer must design an interface so that it an-

swers three primary questions for the end-user:

Where am /’The interface should (1) provide an indication of the WebApp that

has been accessed4 and (2) inform the user of her location in the content hierarchy.

What can I do now? The interface should always help the user understand his

current options—what functions are available, what links are live, what content is

relevant.

Where have I been; where am I going? The interface must facilitate navigation.

Hence, it must provide a "map" (implemented in a way that is easy to understand)

of where the user has been and what paths may be taken to move elsewhere

within the WebApp.

An effective WebApp interface must provide answers for each of these questions as

the end-user navigates through content and functionality.

19.3.1 Interface Design Principles and Guidelines

Bruce Tognozzi [TOGOl] defines a set of fundamental characteristics that all inter-

faces should exhibit and, in doing so, establishes a philosophy that should be fol-

lowed by every WebApp interface designer:

Effective interfaces are visually apparent and forgiving, instilling in their users a sense of

control. Users quickly see the breadth of their options, grasp how to achieve their goals,

and do their work.

Effective interfaces do not concern the user with the inner workings of the system.

Work is carefully and continuously saved, with full option for the user to undo any activ-

ity at anytime.

Effective applications and services perform a maximum of work, while requiring a

minimum of information from users,

4 Each of us has bookmarked a Web-site page, only to revisit later and have no indication ofthe web

site or the context for the page (as well as no way to move to another location within the site).

CHAPTER 19 DESIGN FOR WEBAPPS 567

r
POINT

A WebApp inferfoce

should be designed to

conform to the set of

principles noted here.

In order to design interfaces that exhibit these characteristics, Tognozzi [TOGO II

identifies a set of overriding design principles:5

Anticipation—A WebApp should be designed so that it anticipates the user's next

move. For example, consider a customer support WebApp developed by a manu-
facturer of computer printers. A user has requested a content object that presents

information about a printer driver for a newly released operating system. The de-

signer of the WebApp should anticipate that the user might request a download of

the driver and should provide navigation facilities that allow this to happen without

requiring the user to search for this capability.

Communication—The interface should communicate the status ofany activity initi-

ated by the user Communication can be obvious (e.g., a text message) or subtle

(e g., a sheet of paper moving through a printer to indicate that printing is under-

way). The interface should also communicate user status (e.g., the user's identifi-

cation) and location within the WebApp content hierarchy.

Consistency'—The use ofnavigation controls, menus, icons, and aesthetics (e.g.,

color, shape, layout) should be consistent throughout the WebApp. For example, if

underlined blue text implies a navigation link, content should never incorporate

blue underlined text that does not imply a link. Every feature of the interface

should respond in a manner that is consistent with user expectations.6

Controlled autonomy—The interface shouldfacilitate user movement throughout

the WebApp, but it should do so in a manner that enforces navigation conventions that

have been establishedfor the application. For example, navigation to secure portions

of the WebApp should be controlled by userlD and password, and there should be
no navigation mechanism that enables a user to circumvent these controls.

Efficiency—The design of the WebApp and its interface should optimize the user's

work efficiency, not the efficiency ofthe Web engineer who designs and builds it or the

client-server environment that executes it. Tognozzi [TOGOl
1
discusses this when he

writes: "This simple truth is why it is so important for everyone involved in a soft-

ware project to appreciate the importance of making user productivity goal one
and to understand the vital difference between building an efficient system and
empowering an efficient user."

Flexibility—The interface should befexiblc enough to enable some users to accom-
plish tasks directly and others to explore the WebApp in a somewhat randomfashion.
In every case, it should enable the user to understand where he is and provide the

user with functionality that can undo mistakes and retrace poorly chosen naviga-

tion paths.

5 Tognozzi's original principles have been adapted and extended for use in this book. See (TOGOl)
for further discussion of these principles

6 Tognozzi [TOGOl) notes that the only way to be sure that user expectations are properly under-
stood is through comprehensive user testing (Chapter 20).

568

WebRef
A search on the Web

will uncover mony

avoiioble libiories, e.g.,

Java API packages,

mletfoces, and dosses

at java.sun.com or

COM. DCOM, ond Type

libraries at

msdn.Microsoft.

com.

PART THREE APPLYING WEB ENGINEERING

Focus—The WebApp interface /and the content it presents) should stayfocused on

the user task(s) at hand. In all hypermedia there is a tendency to route the user to

loosely related content. Why? Because it's very easy to do! The problem is that the

user can rapidly become lost in many layers of supporting information and lose site

of the original content that she wanted in the first place.

Fitt's Law—"The time to acquire a target is aJunction ofthe distance to and size oj

the target' [TOGOl]. Based on a study conducted in the 1950s [FIT54], Fitt's Law "is

an effective method of modeling rapid, aimed movements, where one appendage

(like a hand) starts at rest at a specific start position, and moves to rest within a

target area" [ZHA02], If a sequence of selections or standardized inputs (with many

different options within the sequence) is defined by a user task, the first selection

(e.g., mouse pick) should be physically close to the next selection. For example,

consider a WebApp home page interface at an e-commerce site that sells con-

sumer electronics.

Each user option implies a set of follow-on user choices or actions. For exam-

ple, a "buy a product" option requires that the user enter a product category fol-

lowed by the product name. The product category (e.g., audio equipment,

televisions, DVD players) appears as a pull-down menu as soon as "buy a product"

is picked. Therefore, the next choice is immediately obvious (it is nearby), and the

time to acquire it is negligible. If, on the other hand, the choice appeared on a

menu that was located on the other side of the screen, the time for the user to ac-

quire it (and then make the choice) would be far too long.

Human interface objects—A vast library ofreusable human interface objects has

been developedfor WebApps. Use them. Any interface object that can be "seen,

heard, touched or otherwise perceived" [TOGOl] by an end-user can be acquired

from any one of a number of object libraries.

Latency reduction—Rather than making the user waitfor some internal operation to

complete (e.g., downloading a complex graphical image), the WebApp should use mul-

titasking in a way that lets the user proceed with work as if the operation has been

completed. In addition to reducing latency, delays must be acknowledged so that

the user understands what is happening. This includes (1) providing audio feed-

back (e.g., a click or bell tone) when a selection does not result in an immediate

action by the WebApp; (2) displaying an animated clock or progress bar to indicate

that processing is under way; (3) provide some entertainment (e.g., an animation

or text presentation) while lengthy processing occurs.

“The best journey is the one with the fewest steps. Shorten the distance between the user and their goal.'

Author unknown

Leamability—A WebApp interface should be designed to minimize learning time,

and once learned, to minimize relearning required when the WebApp is revisited. In

CHAPTER 19 DESIGN FOR WEBAPPS
569

Metaphors ore on

excellent idea because

they mirror real wodd

experience, lust be

sure that the metaphor

you choose is well

known among end-

users.

general the interface should emphasize a simple, intuitive design that organizes

content and functionality into categories that are obvious to the user.

Metaphors—Art interface that uses an interaction metaphor is easier to learn and

easier to use, as long as the metaphor is appropriatefor the application and the uset. A

metaphor should call on images and concepts from the user's experience, but it

does not need to be an exact reproduction of a real world experience. For example,

an e-commerce site that implements automated bill paying for a financial institu-

tion uses a checkbook metaphor (not surprisingly) to assist the user in specifying

and scheduling bill payments. However, when a user "writes" a check, he need not

enter the complete payee name but can pick from a list of payees or have the sys-

tem select based on the first few typed letters. The metaphor remains intact, but

the user gets an assist from the WebApp.

Maintain work product integrity. A work product (e.g., aform completed by the

user, a user specified list) must be automatically saved so that it will not be lost ifan er-

ror occurs. Each of us has experienced the frustration associated with completing a

lengthy WebApp form only to have the content lost because of an error (made by

us, by the WebApp, or in transmission from client to server). To avoid this, a

WebApp should be designed to auto-save all user specified data.

Readability—All information presented through the interface should be readable by

young and old. The interface designer should emphasize readable type styles, font

sizes, and color background choices that enhance contrast.

Track state—When appropriate, the state ofthe user interaction should be tracked and

stored so that a user can log-offand return later to pick up where she left off. In general,

cookies can be designed to store stale information. However, cookies are a contro-

versial technology, and other design solutions may be more palatable for some usets

Visible navigation-A well-designed WebApp interface provides "the illusion that

users are in the same place, with the work brought to them " [TOGO 1]
When this ap-

proach is used, navigation is not a user concern. Rather, the user letrieves content

objects and selects functions that are displayed and executed through the interface.

SafeHome

Interface Design Review

LJ The scene: Doug Miller's office.

The players: Doug Miller (manager of the SafeHome

software engineering group) and Vinod Raman, a member

of the SafeHome product software engineering team.

The conversation:

Doug: Vinod, have you and the team had a chance to

review the SafeHomeAssured.com e-commerce interface

prototype?

Vinod: Yeah . . . we all went through it from a technical

point of view, ond I have a bunch of notes. I e-moiled 'em

to Sharon [manager of the Web engineering team for the

outsourcing vendor for the SafeHome e-commerce Web

site] yesterday.

Doug: You and Sharon can get together and discuss the

small stuff . . .
give me a summary of the important

issues.

570 PART THREE APPLYING WEB ENGINEERING

Vinod: Overall, they've done a good job, nothing

ground breaking, but its a typical e-commerce interface,

decent aesthetics, reasonable layout. The/ve hit all the

important functions. . . .

Doug (smiling ruefully): But?

Vinod: Well, there are a few things.

Doug: Such as ... ?

Vinod (showing Doug a sequence of
storyboards for the interface prototype): Here's

the major functions menu that's displayed on the home
page:

Learn about SafeHome
Describe your home
Get SafeHome component recommendations
Purchase a SafeHome system
Get technical support

The problem isn't with these functions, they're all okay,

but the level of abstraction isn't right.

Doug: The/re all major functions, aren't they?

Vinod: They are, but here's the thing . .
. you can

purchase a system by inputting a list of components

no real need to describe the house, if you don't want to.

I'd suggest only four menu options on the home page:

Learn about SafeHome
Specify the SafeHome system you need
Purchase a SafeHome system
Get technical support

When you select specify the SafeHome system
you need, you'll then have the following options:

Select SafeHome components
Get SafeHome component recommendations

If you're a knowledgeable user, you'll select components
from a set of categorized pull-down menus for sensors,

cameras, control panels, etc. If you need help, you'll ask
for a recommendation and that will require that you
describe your house. I think it's a bit more logical.

Doug: I agree. Have you talked with Sharon about this?

Vinod: No, I want to discuss this with marketing first,

and then I'll give her a call.

Nielsen and Wagner [NIE96] suggest a few pragmatic interface design guidelines
(based on their redesign of a major WebApp) that provide a nice complement to the
principles suggested earlier in this section:

• Reading speed on a computer monitor is approximately 25 percent slower
than reading speed for hardcopy. Therefore, do not force the user to read
voluminous amounts of text, particularly when the text explains the

operation of the WebApp or assists in navigation.

• Avoid "under construction" signs—they raise expectations and cause an
unnecessary link that is sure to disappoint.

• Users prefer not to scroll. Important information should be placed within the

dimensions of a typical browser window.

• Navigation menus and head bars should be designed consistently and should
be available on all pages that are available to the user. The design should not
rely on browser functions to assist in navigation.

• Aesthetics should never supersede functionality. For example, a simple

button might be a better navigation option than an aesthetically pleasing, but
vague image or icon whose intent is unclear.

CHAPTER 19 DESIGN FOR WEBAPPS
571

What

• interaction

mechanisms

are available

to WebApp

designers?

• Navigation options should be obvious, even to the casual user. The user

shouldn't have to search the screen to determine how to link to other content

or services.

A well-designed interface improves the user's perception of the content or services

provided by the site. It need not necessarily be flashy, but it should always be well-

structured and ergonomically sound.

“People hove very little patience for poorly designed WWW sites.'

Jakob Nielsen and Annette Wagner

19.3.2 Interface Control Mechanisms

The objectives of a WebApp interface are to (1) establish a consistent window into

the content and functionality provided by the interface, (2) guide the user through a

series of interactions with the WebApp, and (3) organize the navigation options and

content available to the user. To achieve a consistent interface, the designer must

first use aesthetic design (Section 19.4) to establish a coherent "look" for the inter-

face. This encompasses many characteristics, but must emphasize the layout and

form of navigation mechanisms. To guide user interaction, the interlace designer

may draw on an appropriate metaphor7 that enables the user to gain an intuitive un-

derstanding of the interface. To implement navigation options, the designer selects

from one of a number of interaction mechanisms:

• Navigation menus—keyword menus (organized vertically or horizontally) that

list key content and or functionality. These menus may be implemented so

that the user can choose from a hierarchy of subtopics that is displayed when

the primary menu option is selected.

• Graphic icons—button, switches, and similar graphical images that enable the

user to select some property or specify a decision.

• Graphic images—some graphical representation that is selectable by the user

and implements a link to a content object or WebApp functionality.

It is important to note that one or more of these control mechanisms should be pro-

vided at every level of the content hierarchy.

19.3.3 Interface Design Workflow

Although an in-depth discussion of interface design for WebApps is best left to text-

books that are dedicated to the subject (e.g.
,
[GAL02], [RASOOJ, or [NIEOO)), a brief

overview of the key design tasks is worthwhile. In Chapter 12, we noted that user

interface design begins with the identification of user, task, and environmental

7 in this context, a metaphor is a representation (drawn for the user's real word experience) that can

be modeled within the context of the interface. A simple example might be a slider switch that is

used to control the auditory volume of an .mpg file.

572 PART THREE APPLYING WEB ENGINEERING

Mapping user

objectives into

interface

actions

Menu bar

major functions

List of user objectives

Objective #1'

Objective #2

,

j

Objective #3

j

Objective #4

Objective #5

Objective #n

Navigation

menu

requirements. Once user tasks have been identified, user scenarios (use-cases) are

created and analyzed to define a set of interface objects and actions. This work is

represented as part of the WebApp analysis model discussed in Chapter 1 8.

The following tasks represent a rudimentary work flow for WebApp interface design:

1 . Review information contained in the analysis model and refine as re-

quired.

2. Develop a rough sketch of the WebApp interface layout. An interface

prototype (including the layout) may have been developed as part of the

analysis modeling activity. If the layout already exists, it should be reviewed
and refined as required If the interface layout has not been developed, the

Web engineering team should work with stakeholders to develop it at this

time. A schematic first-cut layout sketch is shown in Figure 19.3.

3. Map user objectives into specific interface actions. For the vast major-

ity of WebApps, the user will have a relatively small (typically between four

and seven) set of primary objectives. These should be mapped into specific

interface actions as shown in Figure 1 9.3.

4. Define a set of user tasks that are associated with each action. Each
interface action (e.g., "buy a product") is associated with a set of user tasks.

These tasks have been identified during analysis modeling. During design,

they must be mapped into specific interactions that encompass navigation is-

sues, content objects, and WebApp functions.

5. Storyboard screen images for each interface action. As each action is

considered, a sequence of storyboard images (screen images) should be ere-

CHAPTER 19 DESIGN FOR WEBAPPS 573

ated to depict how the interface responds to user interaction. Content ob-

jects should be identified (even if they have not yet been designed and de-

veloped), WebApp functionality should be shown, and navigation links

should be indicated.

6. Refine interface layout and storyboards using input from aesthetic

design. Rough layout and storyboarding is completed by Web engineers,

but the aesthetic look and feel for a major commercial site is often devel-

oped by artistic, rather than technical, professionals.

7. Identify user interface objects that are required to implement the in-

terface. This task may require a search through an existing object library to

find those reusable objects (classes) that are appropriate for the WebApp in-

terface. In addition, any custom classes are specified at this time.

8. Develop a procedural representation of the user's interaction with

the interface. This optional task uses UML sequence diagrams and/or ac-

tivity diagrams (discussed in Chapter 18) to depict the flow of activities (and

decisions) that occur as the user interacts with the WebApp.

9. Develop a behavioral representation of the interface. This optional

task makes use of UML state diagrams (discussed in Chapter 18) to repre-

sent state transitions and the events that cause them. Control mechanisms

(i.e„ the objects and actions available to the user to alter a WebApp state)

are defined.

10. Describe the interface layout for each state. Using design information

developed in Tasks 2 and 5, associate a specific layout or screen image with

each WebApp state described in Task 9.

1 1 . Refine and review the interface design model. Review of the interface

should focus on usability (Chapter 12).

It is important to note that the final task set chosen by a web engineering team must

be adapted to the special requirements of the application that is to be built.

19.4 Aesthetic Design

No!my Web engineer

(or software engineer)

has artistic (aesthetic)

talent Ifyou foil into

this category, hire on

experienced graphic

designer for aesthetic

design work.

Aesthetic design, also called graphic design, is an artistic endeavor that complements

the technical aspects of Web engineering. Without it, a WebApp may be functional,

but unappealing. With it, a WebApp draws its users into a world that embraces them

on a visceral, as well as an intellectual, level.

But what is aesthetic? There is an old saying, "beauty exists in the eye of the be-

holder." This is particularly appropriate when aesthetic design for WebApps is con-

sidered. To perform effective aesthetic design, we again return to the user hierarchy

developed as part of the analysis model (Chapter 1 8) and ask, who are the WebApp's

users and what "look" do they desire?

574 PART THREE APPLYING WEB ENGINEERING

"We find that people quickly evaluate a site by visual design alone."

Stanford Guidelines for Web Credibility

19.4.1 Layout Issues

Evety Web page has a limited amount of "real estate" that can be used to support non-

functional aesthetics, navigation features, information content, and user-directed

functionality. The "development" of this real estate is planned during aesthetic design.

Like all aesthetic issues, there are no absolute rules when screen layout is de-

signed. However, a number of general layout guidelines are worth considering:

Don 't be afraid ofwhite space. It is inadvisable to pack every square inch of a

Web page with information. The resulting clutter makes it difficult for the user to

identify needed information or features and creates visual chaos that is not pleas-

ing to the eye.

Emphasize content. After all, that's the reason the user is there. Nielsen [NIEOO]

suggests that the typical Web page should be 80 percent content with the remain-

ing real estate dedicated to navigation and other features.

Organize layout elementsfrom top-left to bottom-right. The vast majority of users

will scan a Web page in much the same way as they scan the page of a book—top-left

to bottom-right. 8
If layout elements have specific priorities, high-priority elements

should be placed in the upper-left portion of the page real estate.

Group navigation, content, andJunction geographically within the page. Humans
look for patterns in virtually all things. If there are no discernable patterns within a

Web page, user frustration is likely to increase (due to unnecessary' searching for

needed information).

Don't extendyour real estate with the scrolling bar. Although scrolling is often

necessary, most studies indicate that users would prefer not to scroll. It is better to

reduce page content or to present necessary content on multiple pages.

Consider resolution and browser window size when designing layout Rather than

defining fixed sizes within a layout, the design should specify all layout items as a

percentage of available space [NIEOO]

.

19.4.2 Graphic Design Issues

Graphic design considers every aspect of the look and feel of a WebApp. The graphic

design process begins with layout (Section 1 9.4. 1) and proceeds into a consideration

of global color schemes, typefaces, sizes, and styles, the use of supplementaiy me-

dia (e.g., audio, video, animation), and all other aesthetic elements of an application.

The interested reader can obtain design tips and guidelines from many Web sites that

8 There are exceptions that are cultural and language-based, but this rule does hold for most users.

CHAPTER 19 DESIGN FOR WEBAPPS 575

are dedicated to the subject (e.g., www.graphic-design.com, www.grantasticde-

signs.com, www.wpdfd.com) or from one or more print resources (e.g., [BAG01],

ICLOOl], or [HEI021).

Well-Designed Web Sites

Sometimes, the best way to understand good

WebApp design is to look at a few examples.

In his article, "The Top Twenty Web Design Tips," Marcelle

Toor (http://www.graphic-design.com/Web/feature/

tips.html) suggests the following Web sites os examples of

good graphic design:

www.primo.com—a design firm headed by Primo Angeli.

www.workbook.com—this site showcases work by

illustrators and designers.

www.pbs.org/riverofsong—a television series for public

TV and radio about American music.

www.RKDINC.com—a design firm with an on-line

portfolio and good design tips.

www.commarts.com/career/index.html—Communication

Arts magazine, a trade periodical for graphic

designers. A good source for other well-designed sites.

www.btdnyc.com—a design firm headed by Beth

Toudreau.

l.g...5.-.CflMlEliI.. P.fiSISN

Content design focuses on two different design issues, each addressed by individuals

with different skill sets. Content design develops a design representation for content

objects and represents the mechanisms required to instantiate their relationships to

one another. This design activity is conducted by Web engineers.

In addition, content design is concerned with the representation of information

within a specific content object—a design activity that is conducted by copywriters,

graphic designers, and others who generate the content to be used within a WebApp.

"Good designers can create normalcy out of chaos; they con clearly communicate ideas through the organizing and

manipulating of words and pictures.’

Jeffery Veen

19.5.1 Content Objects

The relationship between content objects defined as part of the WebApp analysis

model (e.g., Figure 18.3) and design objects representing content is analogous to the

relationship between analysis classes and design components described in Chapter

1 1 . In the context ofWeb engineering, a content object is more closely aligned with a

data object for conventional software. A content object has attributes that include

content specific information (normally defined during WebApp analysis modeling)

and implementation specific attributes that are specified as part of design.

As an example, consider the analysis class developed for the SafeHome

e-commerce system named ProductComponent that was developed in Chapter 18

and represented as shown in Figure 19.4. In Chapter 18, we noted an attribute description

576 PART THREE APPLYING WEB ENGINEERING

Design repre-

sentation ol

content objects

ProduclComponenf

partNumber
portNome
pariType

description

price

l Is port of

createNewltem(

)

disployDescriptior.(
)

display TechSpec

Sensor Camera Control Panel Softfearure

CompDescription

IT 0..I 1

Marketing Description Photograph Schematic Video

text color

font style

font size

line spocing

text usage size

background color

horizontcl dimension

vertical dimension

border style

horizontal dimension

vertical dimension

border style

horizontal dimension

vertical dimension j

border style

audio volume

TecKDescrlplion

text color

font style

font size

line spocing

text image size

background color

that is represented here as a design class named CompDescription composed of

five content objects: MarketingDescription, Photograph, TechDescription,

Schematic, and Video shown as shaded objects noted in the figure. Information con-

tained within the content object is noted as attributes. For example, Photograph (a .jpg

image) has the attributes horizontal dimension, vertical dimension, and border style.

UML association and an aggregation9 may be used to represent relationships

between content objects. For example, the UML association shown in Figure 19.4 in-

dicates that one CompDescription is used for each instance of the ProductCom-

ponent class CompDescription is composed of the five content objects shown.

However, the multiplicity notation shown indicates that Schematic and Video are

optional (0 occurrences are possible), one MarketingDescription and TechDe-

scription is required, and one or more instances of Photograph is used.

19.5.2 Content Design Issues

Once all content objects are modeled, the information that each object is to deliver

must be authored and then formatted to best meet the customer's needs. Content au-

thoring is the job of specialists who design the content object by providing an out-

line of information to be delivered and an indication of the types of generic content

9 Both of these representations are discussed in Chapter 8.

CHAPTER 19 DESIGN FOR WE2APPS 577

Users tend to tolerote

vertical scrolling more

readily than horizontal

scrolling. Avoid wide

page formats.

JJL&

objects (e g., descriptive text, graphic images, photographs) that will be used to de-

liver the information. Aesthetic design (Section 19.4) may also be applied to repre-

sent the proper look and feel for the content.

As content objects are designed, they are "chunked" [POWOO] to form WebApp

pages. The number of content objects incorporated into a single page is a function

of user needs, constraints imposed by download speed of the Internet connections,

and restrictions imposed by the amount of scrolling that the user will tolerate.

ABS-miESim fiman
Architecture desigr, is tied to the goals established for a WebApp, the content to be

presented, the users who will visit, and the navigation philosophy that has been es-

tablished. The architectural designer must identify content architecture and WebApp

architecture. Content architecture'
0 focuses on the manner in which content objects

(or composite objects such as Web pages) are structured for presentation and navi-

gation. WebApp architecture addresses the manner in which the application is struc-

tured to manage user interaction, handle internal processing tasks, effect navigation,

and present content.

"[T]he architectural structure of a well designed site is not always apparent to the user—nor should it be."

Thomas Powell

In most cases, architecture design is conducted in parallel with interface, aes-

thetic, and content design. Because the WebApp architecture may have a strong in-

fluence on navigation, the decisions made during this design activity will influence

work conducted during navigation design.

19.6.1 Content Architecture

The design of content architecture focuses on the definition of the overall hyperme-

dia structure of the WebApp. The design can choose from four different content

structures [POWOO]:

Linear structures (Figure 1 9.5) are encountered when a predictable sequence of

interactions (with some variation or diversion) is common. A classic example

might be a tutorial presentation in which pages of information along with related

graphics, short videos, or audio are presented only after prerequisite information

has been presented. The sequence of content presentation is predefined and gen-

erally linear. Another example might be a product order entry sequence in which

specific information must be specified in a specific order. In such cases, the struc-

tures shown in Figure 19.5 are appropriate. As content and processing become

more complex, the purely linear flow shown on the left of the figure gives way to

1 0 The term information architecture is also used to connote structures that lead to better organization,

labeling, navigation, and searching of contenl objects.

578 PARI THREE APPLYING WEB ENGINEERING

Linear

structures

more sophisticated linear structures in which alternative content may be invoked

or a diversion to acquire complementary content (structure shown on the right side

of Figure 19.5) occurs.

Grid structures (Figure 19.6) are an architectural option that can be applied when

WebApp content can be organized categorically in two (or more) dimensions. For ex-

ample, consider a situation in which an e-commerce site sells golf clubs. The hori-

zontal dimension of the grid represents the type of club to be sold (e.g., woods, irons,

wedges, putters). The vertical dimension represents the offerings provided by vari-

ous golf club manufacturers. Hence, a user might navigate the grid horizontally to

find the putters column and then vertically to examine the offerings provided by

those manufacturers that sell putters. This WebApp architecture is useful only when

highly regular content is encountered [POWOO].

CHAPTER 19 DESIGN FOR WEBAPPS 579

Hierarchical

structure

Hierarchical structures (Figure 19.7) are undoubtedly the most common WebApp
architecture. Unlike the partitioned software hierarchies discussed in Chapter 10 that

encourage flow of control only along vertical branches of the hierarchy, a WebApp
hierarchical structure can be designed in a manner that enables (via hypertext

branching) flow of control horizontally, across vertical branches of the structure.

Hence, content presented on the far left-hand branch of the hierarchy can have hy-

pertext links that lead to content that exists in the middle or right-hand branch of the

structure. It should be noted, however, that although such branching allows rapid

navigation across WebApp content, it can lead to confusion on the part of the user.

A networked or "pure web" structure (Figure 19 8) is similar in may ways to the ar-

chitecture that evolves for object-oriented systems. Architectural components (in

this case Web pages) are designed so that they may pass control (via hypertext links)

to virtually every other component in the system. This approach allows considerable

navigation flexibility, but at the same time can be confusing to a user.

The architectural structures discussed in the preceding paragraphs can be combined

to fonn composite structures. The overall architecture of a WebApp may be hierarchical,

but part of the structure may exhibit linear characteristics, while another part of the ar-

chitecture may be networked. The goal for the architectural designer is to match the

WebApp structure to the content to be presented and the processing to be conducted.

19.6.2 WebApp Architecture

WebApp architecture describes an infrastructure that enables a Web-based system or

application to achieve its business objectives. Jacyntho and his colleagues [JAC02]

describe the basic characteristics of this infrastructure in the following manner:

Applications should be built using layers in which different concerns are taken into

account; in particular, application data should be separated from the page's contents

580 PART THREE APPLYING WEB ENGINEERING

Network
structure

(navigation nodes) and these contents, in turn, should be clearly separated from the in-

terface look-and-feel (pages).

POINT
The MVC orchitecture

decouples Hie user

interfoce from WebApp

functionality and

information content.

The authors suggest a three-layer design architecture that decouples interface from

navigation and from application behavior, and argue that keeping interface, appli-

cation. and navigation separate simplifies implementation and enhances reuse.

The Model-View-Controller (MVC) architecture [KRA88]" is one of a number of sug-

gested WebApp infrastructure models that decouples the user interface from the

WebApp functionality and informational content. The model (sometimes referred to as

the "model object") contains all application specific content and processing logic, in-

cluding all content objects, access to external data/information sources, and all pro-

cessing functionality that are application specific. The view contains all interface

specific functions and enables the presentation of content and processing logic, in-

cluding all content objects, access to external data/information sources, and all pro-

cessing functionality required by the end-user. The controller manages access to the

model and the view and coordinates the flow of data between them. In a WebApp, "view

is updated by the controller with data from the model based on user input” [WMT02]

.

A schematic representation of the MVC architecture is shown in Figure 19.9.

Referring to the figure, user requests or data are handled by the controller. The

controller also selects the view object that is applicable based on the user request.

Once the type of request is determined, a behavior request is transmitted to the

model, which implements the functionality or retrieves the content required to ac-

commodate the request. The model object can access data stored in a corporate

database, as part of a local data store or as a collection of independent files. The data

developed by the model must be formatted and organized by the appropriate view

1 1 it should be noted that MVC is actually an architectural design pattern developed tor the Smalltalk

environment (see http://www.cetusiinks.org/oo_smalltalk.html) and can be used tor any inter-

active application.

CHAPTER 19 DESIGN FOR WEBAPPS 581

The MVC architecture (adapted trom [JAC02])

object and then transmitted from the application server back to the client-based

browser for display on the customer's machine.

In many cases, WebApp architecture is defined within the context of the develop-

ment environment in which the application is to be implemented (e.g., ASP.net, JWAA,

or J2EE) . The interested reader should see |FOW03| for further discussion ofmodem de-

velopment environments and their role in the design of Web application architectures.

19.7 Nayisaiipn Design

Once the WebApp architecture has been established and the components (pages,

scripts, applets, and other processing functions) of the architecture have been iden-

tified, the designer must define navigation pathways that enable users to access

WebApp content and functions. To accomplish this, the designer should (1) identify

the semantics of navigation for different users of the site, and (2) define the me-

chanics (syntax) of achieving the navigation.

"Just wait, Gretel, until the moon rises, ond then we sholl see the crumbs of bread which I hove strewn about, they

will show us our way home again.”

from Hansel and Gretel

19.7.1 Navigation Semantics

Like many Web engineering activities, navigation design begins with a consideration of

the user hierarchy and related use-cases (Chapter 18) developed for each category of

user (actor). Each actor may use the WebApp somewhat differently and therefore have

different navigation requirements. In addition, the use-cases developed for each actor

582 PART THREE APPLYING WEB ENGINEERING

POINT
A NSU describes

the novigotion

requirements for each

uswase. In essence,

the NSU shows how

on actor moves

between content

objects or WebApp

functions.

will define a set of classes that encompass one or more content objects or WebApp

functions. As each user interacts with the WebApp, she encounters a series of naviga-

tion semantic units (NSUs)—"a set of information and related navigation structures that

collaborate in the fulfillment of a subset of related user requirements” [CAC02J.

Gnaho and Larcher [GNA99] describe the NSU in the following way:

The structure of a NSU is composed of a set of navigational sub-structures that we call

ways of navigating (WoN). A WoN represents the best navigation way or path for users

with certain profiles to achieve their desired goal or sub-goal. Therefore, the concept of

WoN is associated to the concept of User Profile.

The structure of a WoN is made out of a set of relevant navigational nodes (NN| con-

nected by navigational links, including sometimes other NSUs. That means that NSUs may

themselves be aggregated to form a higher-level NSU, or may be nested to any depth.

To illustrate the development of an NSU, consider the use-case, select SafeHome

components, described in Section 1 8. 1 .2 and reproduced here:

Use-case: select SafeHome components

The WebApp will recommend product components (e.s.. control panels, sensors,

cameras) and other features (e g., PC-based functionality implemented in software) for

each room and exterior entrance. If 1 request alternatives, the WebApp will provide them,

if thev exist. I will be able to set descriptive and pricing information for each product com-

ponent. The WebApp will create and display a bill-of-materials as I select various com-

ponents. I'll be able to give the bill-of-materials a name and save it for future reference

(see use-case: save configuration).

The underlined items in the use-case description represent classes and content objects

that will be incorporated into one or more NSUs that will enable a new customer to

perform the scenario described in the select SafeHome components use-case.

Figure 19.10 depicts a partial semantic analysis of the navigation implied by the

select SafeHome component use-case, Using the terminology introduced earlier, the

figure also represents a way of navigating (WoN) for the SafeHomeAssured.com

WebApp. important problem domain classes are shown along with selected content

objects (in this case the package of content objects named CompDesoription, an attrib-

ute of the ProdiictComponent class). These items are navigation nodes. Each of

the arrows represents a navigation link
12 and is labeled with the use-initiated action

that causes the link to occur.

The WebApp designer creates a NSU for each use-case associated with each user

role [GNA99]. For example, a new customer (Figure 18.1) may have three different

use-cases, all resulting in access to different information and WebApp functions. A

NSU is created for each goal.

During the initial stages of navigation design, the WebApp content architecture is

assessed to determine one or more WoN for each use-case. As noted above, a WoN

12 These are sometimes referred to as navigation semantic links (NSL) [CAC02],

CHAPTER 19 DESIGN FOR WEBAPPS 583

Creating a NSU

ccnavigation link»
select Room

«naviaation link»
view BillOfMaterials

Room

«navigation link»
recommend component(s)

«navigation link»
request alternative

n
ProductComponent

«navigarion link»
»how ProductComponent

^«navigotion link» \ «navigation link»\
return to Room s' ccnavigarion link» \show description

'purchase ProductComponent

BillOfMaterials

«novigation link»
purchase ProductComponent

CompDescription

MorketingDescripfion

jtechDescription
|

photograph
|

j
schematic

j
|

video :

identifies navigation nodes (e.g., content) and the links that enable navigation be-

tween them. The WoN are then organized into NSUs.

"The problem of Web site navigotion is conceptual tethr.rcol, spatial, philosophical and logistic. Consequently,

solutions tend to call for complex impfovisatiooal combinations of art, science, and organizational psychology.”

Tim Horgwi

19.7.2 Navigation Syntax

As design proceeds, the mechanics of navigation are defined. Among many possible

options are:

• Individual navigation link—text-based links, icons, buttons and switches, and

graphical metaphors.

• Horizontal navigation tor—lists major content or functional categories in a

bar containing appropriate links. In general, between four and seven cate-

gories are listed.

• Vertical navigation column— (l) lists major content or functional categories,

or (2) lists virtually all major content objects within the WebApp. if the

second option is chosen, such navigation columns can "expand" to present

content objects as part of a hierarchy.

• Tabs—a metaphor that is nothing more than a variation of the navigation bar

or column, representing content or functional categories as tab sheets that

are selected when a link is required.

• Site maps—provide an all-inclusive table of contents for navigation to all

content objects and functionality contained within the WebApp.

In most situations,

choose either hori-

zontal or vertical navi-

gation mechanisms,

but not both.

584 PART THREE APPLYING WEB ENGINEERING

The site map should be

accessible from every

page. The map itself

should be organized so

that the structure of

WebApp information is

readily apparent.

L2JL

12J2.

In addition to choosing the mechanics of navigation, the designer should also

establish appropriate navigation conventions and aids. For example, icons and

graphical links should look "clickable" by beveling the edges to give the image a

three-dimensional look, Audio or visual feedback should be designed to provide

the user with an indication that a navigation option has been chosen. For text-

based navigation, color should be used to indicate navigation links and to provide

an indication of links already traveled. These are but a few of dozens of design

conventions that make navigation user-friendly.

Component Level Design

Modern Web applications deliver increasingly sophisticated processing functions

that (1) perform localized processing to generate content and navigation capability

in a dynamic fashion; (2) provide computation or data processing capability that are

appropriate for the webApp's business domain; (3) provide sophisticated database

query' and access; (4) establish data interfaces with external corporate systems. To

achieve these (and many other) capabilities, the Web engineer must design and con-

struct program components that are identical in form to software components for

conventional software.

In Chapter 1 1, we consider component-level design in some detail. The design

methods discussed in Chapter 1 1 apply to WebApp components with little, if any,

modification. The implementation environment, programming languages, and

reusable patterns, frameworks, and software may vary somewhat, but the overall

design approach remains the same.

Hypermedia Design Patterns.,

Design patterns that are used in Web engineering encompass two major classes:

(1) generic design patterns that are applicable to all types of software (e g., [BUS96]

and [GAM95]) and (2) hypermedia design patterns that are specific to WebApps.

Generic design patterns have been discussed in Chapter 9. A number of hypermedia

patterns catalogs and repositories can be accessed via the Internet. 13

"Each pottem is o three-part rule which expresses a relationship between a certain context, o problem, and o solution."

Christopher Alexander

As we noted earlier in this book, design patterns are a generic approach for solv-

ing some small design problem that can be adapted to a much wider variety of spe-

cific problems. In the context of Web-based systems German and Cowan [GEROO]

suggest the following patterns categories:

13 See the sidebar at the end of this section.

CHAPTER 19 DESIGN FOR WEBAPPS 585

Architectural patterns. These patterns assist in the design of content and

WebApp architecture. Sections 19.6.1 and 19.6.2 present architectural patterns for

content and WebApp architecture. In addition, many related architectural patterns

are available (e g., Java Blueprints at java.sun.com/blueprints/) for Web engineers

who must design WebApps in a variety of business domains.

Component construction patterns. These patterns recommend methods for com-

bining WebApp components (e.g., content objects, functions) into composite compo-

nents. When data processing functionality is required within a WebApp, the

architectural and component-level design patterns proposed by [BUS96], [GAM95], and

others are applicable.

Navigation patterns. These patterns assist in the design of NSUs, navigation

links, and the overall navigation How of the WebApp.

Presentation patterns. These patterns assist in the presentation of content as it

is presented to the user via the interface. Patterns in this category address how to or-

ganize user interface control functions tor better usability; how to show the rela-

tionship between an interface action and the content objects it affects; how to

establish effective content hierarchies; and many others.

Behavior/user interaction patterns. These patterns assist in the design of user-

machine interaction. Patterns in this category address how the interface informs the

user of the consequences of a specific action; how a user expands content based on

usage context and user desires; how to best describe the destination that is implied by

a link; how to inform the user about the status of an on-going interaction and others.

Sources of information on hypermedia design patterns have expanded dramati-

cally in recent years. Interested readers should see |GAR97], [PER99], and [GEROOj.

Hypermedia Design Patterns Repositories

Software Tools

The lAWiki Web site (http://iawiki.net/

WebsitePattems) is a collaborative discussion

space (or information architects that contains many useful

resources. Among them are links to a number of useful

hypermedia patterns catalogs and repositories. Hundreds

of design patterns are represented:

Hypermedia Design Patterns Repository

http://www.designpattem.lu.unisi.ch/

InteractionPatterns by Tom Erickson

http://www.pliant.org/personal/Tom_Erickson/lnteraction

Patterns.html

Web Design Patterns by Martijn vanWelie

http://www.welie.com/patterns/

Improving Web Information Systems with

Navigational Patterns

http://www8.org/w8-papers/5b-hypertext-

media/improving/improving.html

An HTML 2.0 Pattern Language

http://www.anamorph.com/docs/patterns/default.html

Common Ground
http://www.mit.edu/~jtidwell/interaction_patterns.html

Patterns for Personal Web Sites

http://www.rdrop.com/~half/Creations/Writings/Web.

patterns/index.html

Indexing Pattern Language
http://www.cs.brown.edu/~rms/lnformationStructures/ln

dexing/Overview.html

586 PART THREE APPLYING WEB ENGINEERING

12..

I

P Object-Oriented Hypermedia design method (qqhdm^
A number ot design methods for Web applications have been proposed over the past
decade. To date, no single method has achieved dominance. In this section we pres-
ent a brief overview of one of the most widely discussed WebApp design methods—
OOHDM. 14

Object-Oriented Hypermedia Design Method (OOHDM) was originally proposed by
Daniel Schwabe and his colleagues [SCH95, SCH98J. OOHDM is composed of four
different design activities: conceptual design, navigational design, abstract inter-

face design, and implementation. A summary ot these design activities is shown in

Figure 19.11 and discussed briefly in the sections that follow.

19.10.1 Conceptual Design for OOHDM
OOHDM conceptual design creates a representation of the subsystems, classes, and
relationships that define the application domain for the WebApp. UML may be used 15

to create appropriate class diagrams, aggregations and composite class representa-

Summary of the OOHDM method (adapted from [SCH95])

,=, = rr=
1 I Al _ r

Conceptual design Navigational design design Implementation

Work products

Nodes links, access Abstract interface
Classes, sub-systems, structures, navigational objects, responses to executable
relationships, attributes contexts, navigational external events, WebApp

transformations transformations

Design mechonisms

Classification,

composition. Mapping between Mapping between
Resource

aggregation, conceptual and navigation and provided by

generalization navigation objects perceptible objects
,Qr9ef

specialization environment

Design concerns

Modeling semantics “fm&Sg Correctness;

of the application Pro,l 'e and task
'

. . chosen metaohors Application

domain ^tT C09n 'f'Ve
Describe interface for

Performance;
°SpeCfS

' navigational objects
c°mP |e'eness

14 A comprehensive comparison of 10 hypermedia design methods has been developed by Koch
[KOC99J.

15 OOHDM does not prescribe a specific notation; however, the use of UML is common when this

method is applied.

CHAPTER 19 DESIGN FOR WESAPPS 587

tions, collaboration diagrams, and other information that describes the application

domain (see Part 2 of this book for more detail).

As a simple example of OOHDM conceptual design, we again consider the Safe-

HomeAssured.com e-commerce application. A partial "conceptual schema" for Safe-

HomeAssured.com is shown in Figure 1912. The class diagrams, aggregations, and

related information developed as part of WebApp analysis are reused during con-

ceptual design to represent relationships between classes.

19.10.2 Navigational Design for OOHDM

Navigational design identifies a set of "objects" that are derived from the classes de-

fined in conceptual design. A series of 'navigational classes" or "nodes" are defined

to encapsulate these objects. UML may be used to create appropriate use-cases,

state charts, and sequence diagrams—all representations that assist the designer in

better understanding navigational requirements. In addition, design patterns for

navigation design may be used as the design is developed. OOHDM uses a prede-

fined set of navigation classes—nodes, links, anchors, and access structures

[SCH98], Access structures are more elaborate and include mechanisms such as a

WebApp index, a site map, or a guided tour.

Partial conceptual schema for SafeHomeAssured.com

customer selects component

588 PART THREE APPLYING WEB ENGINEERING

Once navigation classes are defined, OOHDM "structures the navigation space by

grouping navigation objects into sets called contexts" (SCH981. Schwabe describes a

context in the following manner:

Each context definition includes, besides which elements are included in it, the specifi-

cation of its internal navigation structure, an entry point, access restrictions in terms of

user classes and operations, and an associated access structure.

A context template (analogous to CRC cards discussed in Chapter 8) is developed and

may be used to track the navigation requirements of each category of user through

the various contexts defined in OOHDM. Doing this, specific navigation paths (what

we called WoN in Section 19.7.1) emerge.

19.10.3 Abstract Interface Design and Implementation

The abstract interface design activity specifies the interface objects that the user sees

as WebApp interaction occurs. A formal model of interface objects, called an abstract

data view (ADV), is used to represent the relationship between interface objects and

navigation objects, and the behavioral characteristics of interface objects.

The ADV model defines a "static layout" jSCH98] that represents the interface

metaphor and includes a representation of navigation objects within the interface

and the specification of the interface objects (e g., menus, buttons, icons) that assist

in navigation and interaction. In addition, the ADV model contains a behavioral

component (similar to the UML state diagram) that indicates how external events

"trigger navigation and which interface transformations occur when the user inter-

acts with the application" [SCH01]. For a detailed discussion of the ADV, the inter-

ested reader should see [SCH98] and [SCH01],

The OOHDM implementation activity represents a design iteration that is specific

to the environment in which the WebApp will operate. Classes, navigation, and the

interface are each characterized in a manner that can be constructed for the

client/server environment, operating systems, support software, programming lan-

guages, and other environmental characteristics that are relevant to the problem.

19.11 Design Metrics fob WebApps

Design metrics should be characterized in a manner that provides Web engineers

with a real-time indication quality. In essence, a useful set of measures and metrics

provides quantitative answers to the following questions:

• Does the user interface promote usability?

• Are the aesthetics of the WebApp appropriate for the application domain and

pleasing to the user?

• Is the content designed in a manner that imparts the most information with

the least effort?

CHAPTER 19 DESIGN FOR WEBAPPS 589

• Is navigation efficient and straightforward?

• Has the WebApp architecture been designed to accommodate the special

goals and objectives of WebApp users, the structure of content and function-

ality, and the flow of navigation required to use the system effectively?

• Are components designed in a manner that reduces procedural complexity

and enhances correctness, reliability, and performance?

Today, each of these questions can be addressed qualitatively, 16 but a validated suite

of metrics that would provide quantitative answers does not yet exist.

Metrics for WebApp design are in their infancy, and few have been validated

widely. The interested reader should see [IVOOl] and [MEN01] for a sampling of pro-

posed WebApp design metrics.

Technical Metrics for WebApps

Objective: To assist Web engineers in

developing meaningful WebApp metrics that

provide insight into the overall quality of an application.

Mechanics: Tool mechanics vary.

Representative Tools ’ 7

Netmechanic Tools, developed by Netmechanic

(www.netmechanic.com), is a collection of tools that

help to improve Web-site performance, focusing on

implementation-specific issues.

NIST Web Metrics Testbed, developed by The National

Institute of Standards and Technology (zing.ncsl.nist.gov/

WebTools/), encompasses the following collection of

useful tools that are available for download:

Software Tools
\

Web Static Analyzer Tool (WebSAT)—checks web page

HTML against typical usability guidelines.

Web Category Analysis Tool fWebCAT)—lets the usability

engineer construct and conduct a Web category

analysis.

Web Variable Instrumenter Program (WebVIP

I

—
instruments a Web site to capture a log of user

interaction.

Framework for Logging Usability Data (FLUD)
—

implements a file formatter and parser for

representation of user interaction logs.

VisVIP Tool—produces a 3D visualization of user

navigation paths through a Web site.

TreeDec—adds navigation aids to the pages of a Web site.

19.12 Summary

The quality of a WebApp—defined in terms of usability, functionality, reliability, effi-

ciency, maintainability, security, scalability, and time-to-market—is introduced dur-

ing design. To achieve these quality attributes, a good WebApp design should exhibit

simplicity, consistency, identity, robustness, navigability, and visual appeal.

Interface design describes the structure and organization of the user interface. It

includes a representation of screen layout, a definition of the modes of interaction,

and a description of navigation mechanisms.

16 See Chapter 16 (Section 16.4) and Section 19.1.1 for a qualitative discussion of WebApp quality

1 7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category'.

590 PART THREE APPLYING WEB ENGINEERING

Aesthetic design, also called graphic design, describes the "look and feel" of the

WebApp and includes color schemes, geometric layout, text size, font and place-

ment, the use of graphics, and related aesthetic decisions. A set of graphic design

guidelines provides the basis for a design approach.

Content design defines the layout, structure, and outline for all content that is

presented as part of the WebApp and establishes the relationships between con-

tent objects. Content design begins with the representation of content objects,

their associations, and relationships. A set of browsing primitives establishes the

basis for navigation design.

Architecture design identifies the overall hypermedia structure for the WebApp
and encompasses both content architecture and WebApp architecture Architectural

styles for content include linear, grid, hierarchical, and network structures. WebApp
architecture describes an infrastructure that enables a Web-based system or appli-

cation to achieve its business objectives.

Navigation design represents the navigational flow between content objects and

for all WebApp functions. Navigation is defined by describing a set of navigation se-

mantic units. Each unit is composed ofways ofnavigation and navigational links and

nodes. Navigation syntax mechanisms are used for effecting the navigation de-

scribed as part of the semantics.

Component design develops the detailed processing logic required to implement

WebApp functional components. Design techniques described in Chapter 1 1 apply to

the engineering of WebApp components.

Patterns for WebApp design encompass generic design patterns that apply to all

types of software and hypermedia patterns that are especially relevant for WebApps.

Architecture, navigation, component, presentation, and behavior/user design pat-

terns have been proposed.

The Object-Oriented Hypermedia Design Method (OOHDM) is one of a number of

methods proposed for WebApp design. OOHDM suggests a design process that in-

cludes conceptual design, navigational design, abstract interface design, and imple-

mentation.

Design metrics for Web engineering are in their infancy and have yet to be fully

validated. However, a variety of measures and metrics have been proposed to ad-

dress each of the design activities discussed within this chapter.

References

[AME96] Amento, B., et al„ "Fitt's Law," CS 5724. Models and Theories ofHuman-Computer In-

teractions, Virginia Tech, 1996, available at http://ei.cs.vt.edu/ ~cs5724/gl /.

IBAG01] Baggerman, L., and S. Bowman, Web Design That Works, Rockport Publishers, 2001.
[BUS96| Buschmann, F., et al„ Pattern-Oriented Software Architecture, Wiley, 1996.

ICAC02I Cachero, C., et al„ "Conceptual Navigation Analysis: a Device and Platform Indepen-
dent Navigation Specification," Proc. 2nd inti. Workshop on Web-Oriented Technology, June
2002, download from www.dsic.upv.es/~west/iwwost02/papers/cachero.pdf.

CHAPTER 19 DESIGN FOR WEBAPPS 591

(CLOOII Cloninger, C„ Fresh Stylesfor Web Designers, New Riders Publishing, 2001

.

[D1X99] Dix, A., "Design of User interfaces for the Web,” Proc. OfUser Interfaces to Data Systems

Conference, September 1999, downloadfrom http:/Avmv.comp.lancs. ac.uk/computing/users/

dixa/topics/webarch/.

[FIT54I Fitts, P., 'The Information Capacity ofthe Human Motor System in Controlling the Amplitude

ofMovement, Journal of Experimental Psychology, vol. 47, 1954, pp. 381-391,

[FOW03] Fowler, M., et al., Patterns ofEnterprise Application Architecture, Addison-Wesley, 2003.

[GAL02J Galitz, W., The Essential Guide to User Interface Design, Wiley, 2002.

(GAM95) Gamma, E. et al., Design Patterns, Addison-Wesley, 1995.

[GAR97] Garrido, A., G. Rossi, and D. Schwabe, "Patterns Systems for Hypermedia," 1997, down-
load at www.inf.puc-rio.br/~schwabe/papers/PloP97.pdf.

(GER00| German, D., and D. Cowan, "Toward a Unified Catalog of Hypermedia Design Patterns,"

Proc. 33rd Hawaii Inti. Conf. on System Sciences, IEEE, vol. 6, Maui, Hawaii, June 2000, down-
load from www.turingmachine.org/~dmg/research/papers/dmg_hicss2000.pdf

[GNA99] Gnaho, C., and F. Larcher, "A User-Centered Methodology for Complex and Customizable

Web Engineering," Proc. 1st ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1 999.

[HEI02] Heinicke, E., Layout: Fast Solutionsfor Hands-On Design, Rockport Publishers, 2002.

[IVO01
]
Ivory, M., R. Sinha, and M. Hearst, "Empirically Validated Web Page Design Metrics, ACM

S1GCHI '01, Seattle, WA, April 2001. available at http://www.rashmisinha.com/articies/

WebTangoCHlOl .html.

[JAC02] Jacyntho, D., D. Schwabe, and G. Rossi, "An Architecture for Structuring Complex Web
Applications," 2002, available at http://www2002.org/CDROM/altemate/478/.

[KA102] Kaiser, J., "Elements of Effective Web Design," About, Inc., 2002, available at

http://webdesign.about.com/library/weekly/aa091998.htm.

[KAL03] Kalman, S., Web Security Field Guide, Cisco Press, 2003.

[KOC99] Koch, N., "A Comparative Study of Methods for Hypermedia Development, Technical

Report 9905, Ludwig-Maximilians Universitat, Munich, Germany, 1999, download from

http://www.dsic.upv.es/~west200I/iwwost01/files/contributions/NoraKoch/hypdev.pdf.

[KRA88] Krasner, G., and S. Pope, "A Cookbook for Using the Model-View Controller User In-

terface Paradigm in Smalltalk-80," Journal of Object-Oriented Programming, vol. 1, no. 3,

August/September 1988, pp. 26-49.

[LOW98] Lowe, D., and W. Hail, eds., Hypertext and the Web—An Engineeiing Approach, John Wi-
ley & Sons, 1 998.

[MCCOlj McClure, S., J. Scambray, and G. Kurtz, Hacking Exposed, McGraw-Hill/
Osborne, 2001

.

[MEN01] Mendes, E., N. Mosley, and S. Counsell, "Estimating Design and Authoring Effort" IEEE
Multimedia, January-March 2001, pp. 50-57.

[MI LOO] Miller, E., "The Website Quality Challenge," Software Research, Inc., 2000,

http://www.soft.com/eValid/Technology/White.Papers/website.quality.challenge.html.

[NIE96] Nielsen, J., and A. Wagner, "User Interface Design for the WWW," Proc. CHI '96 Conf.

On Human Factors in Computing Systems, ACM Press, 1996, pp. 330-331.

[NIEOO] Nielsen, J.. Designing Web Usability, New Riders Publishing, 2000.

[NOR02] Northcutt, S., and J. Novak, Network Intrusion Detection, New Riders Publishing, 2002.

[OFF02] Offutt, J., "Quality Attributes of Web Software Applications," IEEE Sofhvare,
March/April, 2002, pp. 25-32.

[OLS98] Olsina, L., "Building a Web-Based Information System Applying the Hypermedia Flexi-

ble Process Modeling Strategy," Proc. 1st Inti. Workshop on Hypermedia Development, 1998.

[OLS991 Olsina, L. et al., "Specifying Quality Characteristics and Attributes for Web Sites," Proc.

1st ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1 999,

[PER991 Perzel, K„ and D. Kane, "Usability Patterns for Applications on the World Wide Web," 1999,

download at http://jeny.cs.uiuc.edu/~plop/plop99/proceedings/Kane/perzeLkane.pdf.

[POWOOl Powell, T., Web Design, McGraw-Hill/Osborne, 2000.

[RASOO] Raskin, J., The Humane Interface, Addison-Wesley, 2000.

[RH098] Rho, Y., and T. Gedeon, "Surface Structures in Browsing the Web," Proc. Australasian

Computer Human Interaction Conference, IEEE, December, 1998.

592 PART THREE APPLYING WEB ENGINEERING

(SCH95] Schwabe, D„ and G. Rossi, “The Object-Oriented Hypermedia Design Model," CACM.
vol. 38, no. 8, August 1995, pp. 45-46.

|SCH98j Schwabe, D., and G. Rossi, Developing Hypermedia Applications Using OOHDM, Proc.

Workshop oil Hypermedia Dei'elopment Process, Methods and Models, Hypertext ‘98, 1998,

download from http://citeseer.nj.nec.com/schwabe 98developing.html.

[SCH01
1
Schwabe, D., G. Rossi, and S. Barbosa, "Systematic Hypermedia Application Design Us-

ing OOHDM, 2001, available at http://www-di.inf.puc-rio.br/~schwabe/HT96WWW/sec-

tionl.html.

[TILOOj Tillman, H N, "Evaluating Quality On the Net," Babson College, May 30, 2000, available

at http://www.hopetillman.eom/findqual.html#2.

(TOGOI] Tognozzi, B., "First Principles," askTOG, 2001, available at http://wvw.asktog.com/
basics/firstPrinciples.html.

|WMT02j Web Mapping Testbed Tutorial, 2002, available at http://www.webmapping.org/

vcgdocuments/vcgTutorial/.

[ZHA02j Zhao, H., "Fitt's Law: Modeling Movement Time in HCl," Theories in Computer Human
Interaction, University of Maryland, October 2002, available at http://www.cs.umd edu/

class/fall2002/cmsc838s/tichi/fitts.html.

.EgflaiEMS AMfl. P PINTS,.,XQ..P,PHPEfi

19 . 1 . What is the most aesthetically pleasing Web site you have ever visited and why?

1

9

.2 . You are a WebApp designer for a distance learning company. You intend to implement
an Internet based "learning engine" that will enable you to deliver course content to students.

The learning engine provides the basic infrastructure for delivering learning content on any sub-

ject (content designers will prepare appropriate content). Develop a prototype interface design

for the learning engine-

19 .3 . Design a prototype interface for the SafeHomeAssured.com WebApp. Try to be innova-

tive, but at the same time, be certain the interface conforms to the principles for good interface

design.

19 .4 . Review Tognozzi's interface design principles discussed in Section 19.3. 1 . Consider each

principle for an operational WebApp with which you are familiar. Grade the WebApp (use A, B,

C, D, or F grades) relative to the degree to which it has achieved the principle. Explain the rea-

son for each grade.

19 .5 . Reconsidering the "learning engine" described in Problem 19.2, select a content archi-

tecture that would be appropriate for the WebApp. Discuss why you made the choice.

19 .6 . What is the difference between content architecture and WebApp architecture?

1

9

. 7 . In this chapter we discuss a broad array of quality attributes for WebApps. Select the three

that you believe are most important and make an argument that explains why each should be

emphasized in Web engineering design work.

1

9

.8 . Have you encountered interface control mechanisms that are different from those noted

in Section 19.3.2? If so, describe them briefly.

1

9

.9 . Add at least five additional questions to the WebApp Design—Quality Checklist presented

in a sidebar in Section 1 9. 1 . 1

.

19.10. Why is the "artistic ideal" an insufficient design philosophy when modern WebApps are

built? Is there ever a case in which the artistic ideal is the philosophy to follow?

19.1 1. Consider the content object order, generated once a user of SafeHomeAssured.com

has completed the selection of all components and is ready to finalize his purchase. Develop a

UML description for order along with all appropriate design representations.

CHAPTER 19 DESIGN FOR WEBAPPS 593

1 9. 1 2. Use UML to develop three or four design representations for content objects that would be

encountered as the "learning engine" described in Problem 19.2 is designed.

1 9. 1 3. Do a bit of additional research on the MVC architecture and decide whether it would be

an appropriate WebApp architecture for the "learning engine" discussed in Problem 19.2.

19.14. What is the difference between navigation syntax and navigation semantics?

19.15. Do some research and present two or three complete hypermedia design patterns to

your class.

19.16. Define two or three NSUs for the SafeHomeAssured.com WebApp Describe each in

some detail.

BHLREAPfflSS AND flMAIJ.Pfl-Sa.U&g.ES.

Although hundreds of books have been written on "Web design," very few discuss any mean-
ingful technical methods for doing design work. At best, a variety of useful guidelines for

WebApp design are presented, worthwhile examples of Web pages and Java programming are

shown, and the technical details important for implementing modern WebApps are discussed.

Among the many offerings in this category, Powell's encyclopedic discussion [POWOO] is worth

considering. In addition, books by Galitz [GAL02j
,
Heinicke (HEI02), Schmitt (Designing CSS Web

Pages, New Riders Publishing, 2002), Donnelly (Designing Easy-to-Use Websites, Addison-

Wesley, 2001), and Nielsen [NIE001 provide much useful guidance.

The agile view of design (and other topics) for WebApps is presented by Wallace and his col-

leagues (Extreme Programmingfor Web Projects, Addison-Wesley, 2003). Conallen (Building Web
Applications with UML, second edition, Addison-Wesley, 2002) and Rosenberg and Scott (Apply-

ing Use Case Driven Object Modeling with UML, Addison-Wesley, 2001) present detailed exam-
ples of WebApps modeled using UML.

Van Duyne and his colleagues (The Design of Sites: Patterns, Principles and Processes,

Addison-Wesley, 2002) have written an excellent book that covers most important aspects of

the Web engineering design process. Design process models and design patterns are covered in

detail. Wodtke (Information Architecture, New Riders Publishing, 2003), Rosenfeld and Morville

(Information Architecturefor the World Wide Web, O'Reilly & Associates. 2002), and Reiss (Prac

heal Information Architecture, Addison-Wesley, 2000) address content architecture and other

topics.

Design techniques are also mentioned in books written about specific development envi-

ronments. interested readers should examine books on J2EE, Java, ASP.NET, CSS, XML, Perl, and
a variety ofWebApp creation applications (Dreamweaver, Homepage, Frontpage, Goldve, Macro-
Media Flash, etc.) for useful design tidbits.

A wide variety of information sources on design for Web engineering is available on the in-

ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Testing for
WebApps

Key
Concepts

error chorocterisliu

quality dimensions

strategy

testing

compatibility

component-level

configuration

content

database

load

performance

navigation

stress

usability

user interface

T
here is an urgency that always pervades the Web engineering process. As

formulation, planning, analysis, design, and construction are conducted,

stakeholders—concerned about competition from other WebApps, coerced

by customer demands, and worried that they’ll miss a market window—press to

get the WebApp on-line. As a consequence, technical activities that often occur

late in the Web engineering process, such as WebApp testing, are sometimes

given short shrift. This can be a catastrophic mistake. To avoid it, the Web engi-

neering team must ensure that each WebE work product exhibits high quality.

Wallace and his colleagues (WAL03) note this when they state;

Testing shouldn't wait until the project is finished. Start testing before you write one

line of code. Test constantly and effectively, and you will develop a much more durable

Web site.

Since analysis and design models cannot be tested in the classical sense, the Web

engineering team should conduct formal technical reviews (Chapter 26) as well

as executable tests. The intent is to uncover and correct errors before the WebApp

is made available to its end-users.

• What is it? WebApp testing is a

collection of related activities with a

single goal: to uncover errors in Web-

App content, function, usability, navi-

gability, performance, capacity,' and security. To

accomplish this, a testing strategy that encom-

passes both reviews and executable testing is ap-

plied throughout the Web engineering process.

Who does it? Web engineers and other project

stakeholders (managers, customers, end-users)

all participate in WebApp testing.

Why is it important? If end-users encounter

errors that shake their faith in the WebApp, they

will go elsewhere for the content and function

they need, and the WebApp will fail. For this

594

reason, Web engineers must work to eliminate

as many errors as possible before the WebApp
goes on-line.

What are the steps? The WebApp testing

process begins by focusing on user-visible as-

pects of the WebApp and proceeds to tests that

exercise technology and infrastructure. Seven

testing steps are performed: content, interface,

navigation, component, configuration, perform-

ance, and security testing.

What is the work product? In some instances

a WebApp test plan is produced. In every in-

stance, a suite of test cases is developed for

every testing step and an archive of test results is

maintained for future use.

CHAPTER 20 TESTING FOR WEBAPPS 595

How do I ensure that I've done it right?

Although you can never be sure that you've

performed every test that is needed, you can be

certain that testing has uncovered errors (and

that those errors have been corrected). In addi-

tion, if you've established a test plan, you can

check to ensure that all planned tests have been

conducted.

2Q.1 Testing Concepts for WesApps

^ How do we
• assess

quality within the

context of a

WebApp and its

environment?

In Chapter 13, we noted that testing is the process of exercising software with the in-

tent of finding (and ultimately correcting) errors. This fundamental philosophy does

not change for WebApps. In fact, because Web-based systems and applications re-

side on a network and interoperate with many different operating systems, browsers

(or other interface devices such as PDAs or mobile phones), hardware platforms,

communications protocols, and "backroom" applications, the search for errors rep-

resents a significant challenge for Web engineers.

To understand the objectives of testing within a Web engineering context, we
must consider the many dimensions of WebApp quality.

1

In the context of this dis-

cussion, we consider quality dimensions that are particularly relevant in any discus-

sion of testing for Web engineering work. We also consider the nature of the errors

that are encountered as a consequence of testing, and the testing strategy that is ap-

plied to uncover these errors.

20.1.1 Dimensions of Quality

Quality is incorporated into a Web application as a consequence of good design. It is

evaluated by applying a series of technical reviews that assess various elements of

the design model and by applying a testing process that is discussed throughout this

chapter. Both reviews and testing examine one or more of the following quality di-

mensions [MILOOj:

• Content is evaluated at both a syntactic and semantic level. At the syntactic

level, spelling, punctuation, and grammar are assessed for text-based

documents. At a semantic level, correctness (of information presented),

consistency (across the entire content object and related objects), and lack of

ambiguity are all assessed.

• Function is tested to uncover errors that indicate lack of conformance to

customer requirements. Each WebApp function is assessed for correctness,

instability, and general conformance to appropriate implementation

standards (e.g.i Java or XML language standards).

^ How do we
• assess

quality within the

context of a

WebApp and its

environment?

I WebApp quality has also been considered in Chapter 1 9.

596 PART THREE APPLYING WEB ENGINEERING

• Structure is assessed to ensure that it properly delivers WebApp content and

function, that it is extensible, and that it can be supported as new content or

functionality is added.

• Usability is tested to ensure that each category of user is supported by the

interface; can leam and apply all required navigation syntax and semantics.

• Navigability is tested to ensure that all navigation syntax and semantics are

exercised to uncover any navigation errors (e g., dead links, improper links,

erroneous links)

.

• Performance is tested under a variety of operating conditions, configurations,

and loading to ensure that the system is responsive to user interaction and

handles extreme loading without unacceptable operational degradation.

• Compatibility is tested by executing the WebApp in a variety of different host

configurations on both the client and server sides. The intent is to find errors

that are specific to a unique host configuration.

• Interoperability is tested to ensure that the WebApp properly interfaces with

other applications and/or databases.

• Security is tested by assessing potential vulnerabilities and attempting to

exploit each. Any successful penetration attempt is deemed a security failure.

A strategy and tactics for WebApp testing has been developed to exercise each of

these quality dimensions and is discussed later in this chapter.

“Innovation is a bittersweet deal for software testers. Just when it seems that we know how to test a particular

technology, a new one [WebApps] comes along and all bets are off.'

James Bach

20.1.2 Errors within a WebApp Environment

We have already noted that the primary intent of testing in any software context is

to uncover errors. (and correct them). Errors encountered as a consequence of suc-

cessful WebApp testing have a number of unique characteristics [NGUOO]:

^ What makes

• errors

encountered

during WebApp

execution

somewhat

different from

those encountered

for conventional

software?

1 . Because many types of WebApp tests uncover problems that are first evi-

denced on the client side (i.e., via an interface implemented on a specific

browser or a PDA or a mobile phone), the Web engineer sees a symptom of

the error, not the error itself.

2. Because a WebApp is implemented in a number of different configurations

and within different environments, it maybe difficult or impossible to repro-

duce an error outside the environment in which the error was originally en-

countered.

CHAPTER 20 TESTING FOR WEBAPPS 597

3. Although some errors are the result of incorrect design or improper HTML (or

other programming language) coding, many errors can be traced to the Web-

App configuration.

4. Because WebApps reside within a client/server architecture, errors can be

difficult to trace across three architectural layers: the client, the server, or the

network itself.

5. Some errors are due to the static operating environment (i.e., the specific con-

figuration in which testing is conducted), while others are attributable to the

dynamic operating environment (i,e„ instantaneous resource loading or

time-related errors).

These five error attributes suggest that environment plays an important role in the

diagnosis of all errors uncovered during the Web engineering process. In some situ-

ations (e.g., content testing), the site of the error is obvious, but in many other types

ofWebApp testing (e.g., navigation testing, performance testing, security testing) the

underlying cause of the error may be considerably more difficult to determine.

20. 1 .3 Testing Strategy

The strategy for WebApp testing adopts the basic principles for all software testing

(Chapter 13) and applies a strategy and tactics that have been recommended for

object-oriented systems (Chapter 14). The following steps summarize the approach:

POINT
The overall strategy for

WebApp testing con be

summorized in the 10

steps noted here.

X . The content model for the WebApp is reviewed to uncover errors.

2. The interface model is reviewed to ensure that all use-cases can be accom-

modated.

3. The design model for the WebApp is reviewed to uncover navigation errors.

4. The user interface is tested to uncover errors in presentation and/or naviga-

tion mechanics.

WebRef
HcsHentofltdeson

WebApp testing ton

be found at

www.stickyminds.

com/testing.asp.

5. Selected functional components are unit tested.

6. Navigation throughout the architecture is tested.

7 . The WebApp is implemented in a variety of different environmental configu-

rations and is tested for compatibility with each configuration.

8. Security tests are conducted in an attempt to exploit vulnerabilities in the

WebApp or within its environment.

9. Performance tests are conducted.

10.

The WebApp is tested by a controlled and monitored population of end-

users; the results of their interaction with the system are evaluated for con-

tent and navigation errors, usability concerns, compatibility concerns, and

WebApp reliability and performance.

PART THREE APPLYING WEB ENGINEERING598

Because many WebApps evolve continuously, WebApp testing is an on-going activ-

ity conducted by Web support staff who use regression tests derived from the tests

developed when the WebApp was first engineered.

20. 1 .4 Test Planning

The use of the word planning (in any context) is anathema to some Web developers.

As we noted in earlier chapters, these developers just start—hoping that a killer Web-

App will emerge. A Web engineer recognizes that planning establishes a roadmap

for all work that follows. It's worth the effort.

In their book on WebApp testing, Splaine and Jaskiel [SPL01] state:

S*

POINT
The test plan identifies

a testing tosk set, the

work products to be

developed, ond the

way in which results

ore to be evaluated,

recorded, and reused.

Except for the simplest of Web sites, it quickly becomes apparent that some sort of test

planning is needed. Ail too often, the initial number of bugs found from ad hoc testing is

large enough that not all of them are fixed the first time they’re detected This puts an ad-

ditional burden on people who test Web sites and applications. Not only must they con-

jure up imaginative new tests, but they must also remember how previous tests were

executed in order to reliably re-test the Web site/application, and ensure that known

bugs have been removed and that no new bugs have been introduced.

The question for every Web engineer is: How do we "conjure up imaginative new

tests,” and what should those tests focus on? The answers to these questions are

contained within a test plan.

A WebApp test plan identifies (1) a task set
2
to be applied as testing commences,

(2) the work products to be produced as each testing task is executed, and (3) the

manner in which the results of testing are evaluated, recorded, and reused when re-

gression testing is conducted. In some cases, the lest plan is integrated with the proj-

ect plan. In others, the test plan is a separate document.

20.2 The Testing Process—An Overview

The testing process for Web engineering begins with tests that exercise content and

interface functionality that is immediately visible to end-users. As testing proceeds,

aspects of the design architecture and navigation are exercised. The user may or may

not be cognizant of these WebApp elements. Finally, the focus shifts to tests that ex-

ercise technological capabilities that are not always apparent to end-users—WebApp

infrastructure and installation/implementation issues.

'In general, the software testing techniques [Chapters 1 3 and 1 4] that are applied to other applications are the same

as those applied to Web-bosed applications ... The difference between the two types of testing is that the technology

variables in the Web environment multiply.”

Hung Nguyen

2 Task sets are discussed in Chapter 2. A related term—workflow—has also been used in this book

to describe a series of tasks required to accomplish a software engineering activity.

CHAPTER 20 TESTING FOR WEBAPPS 599

The testing

process

Figure 20.1 juxtaposes the WebApp testing process with the design pyramid dis-

cussed in Chapter 19. Note that as the testing flow proceeds from left to right and top

to bottom, user visible elements of the WebApp design (top elements of the pyramid)

are tested first, followed by infrastructure design elements.

Content testing (and reviews) attempts to uncover errors in content. This testing

activity is similar in many respects to copy-editing for a written document. In fact, a

large Web site might enlist the services of a professional copy editor to uncover ty-

pographical errors, grammatical mistakes, errors in content consistency, errors in

graphical representations, and cross referencing errors. In addition to examining

static content for errors, this testing step also considers dynamic content derived

from data maintained as part of a database system that has been integrated with the

WebApp.

interface testing exercises interaction mechanisms and validates aesthetic aspects

of the user interface. The intent is to uncover errors that result from poorly imple-

mented interaction mechanisms or omissions, inconsistencies or ambiguities that

have been introduced into the interface inadvertently.

Navigation testing applies use-cases, derived as part of the analysis activity, in the

design of test cases that exercise each usage scenario against the navigation design.

600 PART THREE APPLYING WEB ENGINEERING-

%
POINT
The strategy for

integration testing

depends upon the

WebApp architecture

that has been chosen

during design.

Navigation mechanisms (e.g., menu bars) implemented within the interface layout

are tested against use-cases and NSUs (Chapter 19) to ensure that any errors that

impede completion of a use-case are identified and corrected.

Component testing exercises content and functional units within the WebApp.

When WebApps are considered, the concept of the unit (introduced in Chapter 13)

changes. The "unit" of choice within the content architecture (Chapter 1 9) is the Web

page. Each Web page encapsulates content, navigation links, and processing ele-

ments (forms, scripts, applets) . A "unit" within the WebApp architecture may be a de-

fined functional component that provides service directly to an end-user or an

infrastructure component that enables the WebApp to perform all of its capabilities.

Each functional component is tested in much the same way as an individual module

is tested in conventional software. In most cases, tests are black-box oriented. How-

ever, if processing is complex, white-box tests may also be used.3
In addition to func-

tional testing, database capabilities are also exercised.

As the WebApp architecture is constructed, navigation and component testing are

used as integration tests. The strategy for integration testing depends on the content

and WebApp architecture that has been chosen (Chapter 19). If the content architec-

ture has been designed with a linear, grid, or simple hierarchical structure, it is pos-

sible to integrate Web pages in much the same way as we integrate modules for

conventional software. However, if a mixed hierarchy or network (Web) architecture

is used, integration testing is similar to the approach used for OO systems. Thread-

based testing (Chapter 14) can be used to integrate the set ofWeb pages (a NSU may

be used to define the appropriate set) required to respond to a user event Each

thread is integrated and tested individually. Regression testing is applied to ensure

that no side effects occur. Cluster testing integrates a set of collaborating pages (de-

termined by examining the use-cases and NSU). Test cases are derived to uncover

errors in the collaborations.

Each element of the WebApp architecture is unit tested to the extent possible. For

example, in a MVC architecture (Chapter 19) the model, view and controller compo-

nents are each tested individually. Upon integration, the flow of control and data

across each of these elements is assessed in detail.

Configuration testing attempts to uncover errors that are specific to a particular

client or server environment. A cross-reference matrix that defines all probable op-

erating systems, browsers,4 hardware platforms, and communications protocols is

created. Tests are then conducted to uncover errors associated with each possible

configuration.

3 Black-box and white-box testing techniques are discussed in Chapter 1 4.

4 Browsers are notorious for implementing their own subtly different "standard" interpretations of

HTML and Javascript.

CHAPTER 20 TESTING FOR WEBAPPS
601

Security testing incorporates a series of tests designed to exploit vulnerabilities in
the WebApp and its environment. The intent is to demonstrate that a security breach
is possible.

Performance testing encompasses a series of tests that are designed to assess
(1) how WebApp response time and reliability are affected by increased user traffic,

(2) which WebApp components are responsible for performance degradation and
what usage characteristics cause degradation to occur, and (3) how performance
degradation impacts overall WebApp objectives and requirements.

WebApp Testing

1 . Review stakeholder requirements.

Identify key user goals and objectives.

Review use-cases for each user

category.

Establish priorities to ensure that each user goal and
objective will be adequately tested.

Define WebApp testing strategy by describing the

types of tests (Section 20.2) that will be conducted.

Develop a test plan.

Define a test schedule and assign responsibilities

for each test.

Specify automated tools for testing.

Define acceptance criteria for each class of test.

Specify defect tracking mechanisms.

Define problem reporting mechanisms.

€Z51131s

Perform "unit" tests.

Review content for syntax and semantics errors.

Review content for proper clearances and
permissions.

Test interface mechanisms for correct operation.

Test each component (e.g., script) to ensure proper

function.

Perform "integration" tests.

Test interface semantics against use-cases.

Conduct navigation tests.

Perform configuration tests.

Assess client-side configuration compatibility.

Assess server-side configurations.

Conduct performance tests.

Conduct security tests.

2IL.3 Content Testing

Errors in WebApp content can be as trivial as minor typographical errors or as sig-

nificant as incorrect information, improper organization, or violation of intellectual

property laws. Content testing attempts to uncover these and many other problems
before the user encounters them.

Content testing combines both reviews and the generation of executable test cases.

Review is applied to uncover semantic errors in content (discussed in Section 20.3.1).

Executable testing is used to uncover content errors that can be traced to dynamically
derived content driven by data acquired from one or more databases.

^ADVICE^.

Although formal

technical reviews are

not o port of testing,

content review should

be performed to

ensure that content

has guality.

20.3.1 Content Testing Objectives

Content testing has three important objectives: (1) to uncover syntactic errors (e.g., ty-

pos, grammar mistakes) in text-based documents, graphical representations, and

602 PART THREE APPLYING WEB ENGINEERING

POINT
Content testing

objectives are (1) to

uncovec syntactic errors

in content, (2) to

uncover semantic

errors, (3) to find

structural errots.

other media, (2) to uncover semantic errors (i.e., errors in the accuracy or complete-

ness of information) in any content object presented as navigation occurs, and (3) to

find errors in the organization or structure of content that is presented to the end-user.

To accomplish the first objective, automated spelling and grammar checkers may

be used. However, many syntactic errors evade detection by such tools and must be

discovered by a human reviewer (tester). As we noted in the preceding section, copy

editing is the single best approach for finding syntactic errors.

Semantic testing focuses on the information presented within each content ob-

ject. The reviewer (tester) must answer the following questions.

*) What

• questions

should be asked

and answered to

uncover semantic

errors in content?

• Is the information factually accurate?

• Is the information concise and to the point?

• Is the layout of the content object easy for the user to understand?

• Can information embedded within a content object be found easily?

• Have proper references been provided for all information derived fiom othei

sources?

• Is the information presented consistent internally and consistent with iniot-

mation presented in other content objects?

• Is the content offensive, misleading, or does it open the door to litigation?

• Does the content infringe on existing copyrights or trademarks?

• Does the content contain internal links that supplement existing content? Are

the links correct?

. Does the aesthetic style of the content conflict with the aesthetic style of the

interface?

Obtaining answers to each of these questions tor a large WebApp (containing hun-

dreds of content objects) can be a daunting task. However, failure to uncover se-

mantic errors will shake the user's faith in the WebApp and can lead to failure of the

Web-based application.

Content objects exist within an architecture that has a specific style (Chaptei 19)

During content testing, the structure and organization of the content architecture is

tested to ensure that required content is presented to the end-user in the proper oi -

der and relationships. For example, the SafeHomeAssured.com WebApp5 presents a

varietv ofinformation about sensors that are used as part of security and surveillance

products. Content objects provide descriptive information, technical specifications,

a photographic representation and related information. Tests of the SaieHomeAs-

sured.com content architecture strive to uncover errors in the presentation of this in-

formation (e.g., a description of Sensor X is presented with a photo ot Sensor V).

5 The SafeHomeAssured.com WebApp has been used as an example throughout Part 3 of this book.

CHAPTER 20 TESTING FOR WEBAPPS 603

What issues

• complicate

database testing

for WebApps?

20.3.2 Database Testing

Modem Web applications do much more than present static content objects. In many

application domains, WebApps interface with sophisticated database management

systems and build dynamic content objects that are created in real-time using the

data acquired from a database.

For example, a financial services WebApp can produce complex text-based, tab-

ular, and graphical information about a specific equity (e.g., a stock or mutual tund).

The composite content object that presents this information is created dynamically

after the user has made a request for information about a specific equity. To accom-

plish this, the following steps are required: (1) a large equities database is queried,

(2) relevant data are extracted from the database, (3) the extracted data must be or-

ganized as a content object, and (4) this content object (representing customized in-

formation requested by an end-user) is transmitted to the client environment for

display. Errors can and do occur as a consequence of each of these steps. The ob-

jective of database testing is to uncover these errors.

Database testing for WebApps is complicated by a variety of factors:

1 . The original client-side requestfor information is rarely presented in theform

(e.g., structured query language, SQL) that can be input to a database manage-

ment system (DBMS). Therefore, tests should be designed to uncover errors

made in translating the user's request into a form that can be processed by

these DBMS.

2. The database may be remote to the setver that houses the WebApp. Therefore,

tests that uncover errors in communication between the WebApp and the re-

mote database should be developed.
6

3. Raw data acquiredfrom the database must be transmitted to the WebApp server

and properlyformattedfor subsequent transmittal to the client. Therefore, tests

that demonstrate the validity of the raw data received by the WebApp server

should be developed, and additional tests that demonstrate the validity of the

transformations applied to the raw data to create valid content objects must

also be created.

4. The dynamic content objects) must be transmitted to the client in aform that

can be displayed to the end-user. Therefore, a series of tests should be de

signed to (a) uncover errors in the content object format, and (b) test compat-

ibility with different client environment configurations.

Considering these four factors, test case design methods should be applied for each

of the "layers of interaction" [NGU01] noted in Figure 20.2. Testing should ensure that

(I) valid information is passed between the client and server from the interface layer;

6 These tests can become complex when distributed databases are encountered or when access to a

data warehouse (Chapter 10) is required.

604 PART THREE APPLYING WEB ENGINEERING

Layers of inter-

action

(2) the WebApp processes scripts correctly and properly extracts or formats user

data; (3) user data are passed correctly to a server side data transformation function

that formats appropriate queries (e g., SQL); (4) queries are passed to a data man-
agement layer 7

that communicates with database access routines (potentially lo-

cated on another machine).

Data transformation, data management, and database access layers shown in

Figure 20.2 are often constructed with reusable components that have been vali-

dated separately and as a package. If this is the case, WebApp testing focuses on the

design of test cases to exercise the interactions between the client layer and the first

two server layers (WebApp and data transformation) shown in the figure.

The user interface layer is tested to ensure that HTML scripts are properly con-

structed for each user query and properly transmitted to the server side. The Web-
App layer on the server side is tested to ensure that user data are properly extracted

from HTML scripts and properly transmitted to the data transformation layer on the

server side.

The data transformation functions are tested to ensure that correct SQL is created

and passed to appropriate data management components.

A detailed discussion of the underlying technology that must be understood to ad-

equately design these database tests is beyond the scope of this book. The interested

reader should see [SCE02j, [NGU01I, and [BRQ01).

7 The data management layer typically incorporates an SQL call-level interface (SQL-CLI) such as Mi-

crosoft OLE/ADO or Java Database Connectivity ODBC).

CHAPTER 20 TESTING FOR WEBAPPS 605

2SL±

With the exception of

WebAppuriented

specifics, the interface

strategy noted here is

applicable to all types

of client/server

software.

"As e-customers (whether business or consumer), we ore unlikely to hove confidence in a Web site thot suffers

frequent downtime, hongs in the middle of a transaction, or hos o poor sense of usability. Testing, therefore, hos o

crucial role in the overall development process.”

Wing lam

User Interface Testing

Verification and validation of a WebApp user interface occurs at three distinct points

in the Web engineering process. During formulation and requirements analysis

(Chapters 17 and 18), the interface model is reviewed to ensure that it conforms to

customer requirements and to other elements of the analysis model. During design

(Chapter 19), the interface design model is reviewed to ensure that generic quality

criteria established for all user interfaces have been achieved and that application-

specific interface design issues have been properly addressed. During testing, the fo-

cus shifts to the execution of application-specific aspects of user interaction as they

are manifested by interface syntax and semantics. In addition, testing provides a fi-

nal assessment of usability.

20.4. 1 Interface Testing Strategy

The overall strategy for interface testing is to (1)
uncover errors related to specific in-

terface mechanisms (e.g., errors in the proper execution of a menu link or the way

data are entered in a form) and (2) uncover errors in the way the interface imple-

ments the semantics of navigation, WebApp functionality, or content display. To ac-

complish this strategy, a number of objectives must be achieved:

• Interfacefeatures are tested to ensure that design rules, aesthetics, and related

visual content are availablefor the user without error. Features include type

fonts, the use of color, frames, images, borders, tables, and related elements

that are generated as WebApp execution proceeds.

• individual interface mechanisms are tested in a manner that is analogous to unit

testing. For example, tests are designed to exercise all forms, client-side

scripting, dynamic HTML, CGI scripts, streaming content, and application

specific interface mechanisms (e.g., a shopping cart for an e-commerce

application). In many cases, testing can focus exclusively on one of these

mechanisms (the "unit") to the exclusion of other interface features and

functions.

• Each interface mechanism is tested within the context ofa use-case or NSU

(Chapter 19)for a specifc user category. This testing approach is analogous to

integration testing (Chapter 13) in that tests are conducted as interface mech-

anisms are integrated to allow a use-case or NSU to be executed.

• The complete interface is tested against selected use-cases and NSUs to uncover

errors in the semantics ofthe interface. This testing approach is analogous to

606

external link testing

should occur

throughout the life of

the WebApp. Port of o

support strategy should

be regularly scheduled

link tests.

Client-side scripting

rests ond tests associ-

ated with dynamic

Hf/Aj. should be

repeated whenever o

new version of o

popular browser is

released.

PART THREE APPLYING WEB ENGINEERING

validation testing (Chapter 13) because the purpose is to demonstrate confor-

mance to specific use-case or NSU semantics. It is at this stage that a series

of usability tests are conducted.

• The interface is tested within a variety ofenvironments (eg., browsers) to ensure

that it will be compatible. In actuality, this series of tests can also be consid-

ered to be part of configuration testing.

20.4.2 Testing Interface Mechanisms

When a user interacts with a WebApp, the interaction occurs through one or more
interface mechanisms. In the paragraphs that follow, we present a brief overview of

testing considerations for each interface mechanism [SPLOl],

Links. Each navigation link is tested to ensure that the proper content object or

function is reached 8 The Web engineer builds a list of all links associated with the

interface layout (e.g., menu bars, index items) and then executes each individually.

In addition, links within each content object must be exercised to uncover bad URLs
or links to improper content objects or functions. Finally, links to external WebApps
should be tested for accuracy and also evaluated to determine the risk that they will

become invalid over time.

Forms. At a macroscopic level, tests are performed to ensure that (l) labels cor-

rectly identify fields within the form and that mandatory fields are identified visually

for the user; (2) the server receives all information contained within the form and that

no data are lost in the transmission between client and server; (3) appropriate de-

faults are used when the user does not select from a pull-down menu or set of but-

tons; (4) browser functions (e.g., the "back" arrow) do not corrupt data entered in a
form; and (5) scripts that perform error checking on data entered work properly and
provide meaningful error messages.

At a more targeted level, tests should ensure that (1) form fields have proper width

and data types; (2) the form establishes appropriate safeguards that preclude the user

from entering text strings longer than some predefined maximum; (3) all appropriate

options for pull-down menus are specified and ordered in a way that is meaningful to

the end-user; (4) browser "auto-fill" features do not lead to data input errors; and

(5) the tab key (or some other key) initiates proper movement between form fields.

Client-side scripting. Black-box tests are conducted to uncover any errors in pro-

cessing as the script (e.g., Javascript) is executed. These tests are often coupled with

forms testing, because script input is often derived from data provided as part of

forms processing. A compatibility test should be conducted to ensure that the script-

ing language that has been chosen will work properly in the environmental config-

uration (s) that supports the WebApp. In addition to testing the script itself, Spiaine

8 These tests can be performed as part of either interface or navigation testing.

CHAPTER 20 TESTING FOR WEBAPPS 607

and Jaskiel [SPL011 suggest that "you should ensure that your company's [WebApp]

standards state the preferred language and version of scripting language to be used

for client-side (and server-side) scripting."

Dynamic HTML. Each Web page that contains dynamic HTML is executed to en-

sure that the dynamic display is correct. In addition, a compatibility test should be

conducted to ensure that the dynamic HTML works properly in the environmental

configuration(s) that supports the WebApp.

Pop-up windows .
9 A series of tests ensure that (1) the pop-up is properly sized

and positioned; (2) the pop-up does not cover the original WebApp window; (3) the

aesthetic design of the pop-up is consistent with the aesthetic design of the interface;

and (4) scroll bars and other control mechanisms appended to the pop-up work, are

properly located, and function as required.

CGI scripts. Black-box tests are conducted with an emphasis on data integrity (as

data are passed to the CGI script) and script processing once validated data have

been received. In addition, performance testing can be conducted to ensure that the

server-side configuration can accommodate the processing demands of multiple in-

vocations of CGI scripts [SPL01].

Streaming content. Tests should demonstrate that streaming data are up-to-

date, properly displayed, and can be suspended without error and restarted without

difficulty.

Cookies. Both server-side and client-side testing are required. On the server side,

tests should ensure that a cookie is properly constructed (contains correct data) and

properly transmitted to the client side when specific content or functionality is re-

quested. In addition, the proper persistence of the cookie is tested to ensure that its

expiration date is correct. On the client side, tests determine whether the WebApp

properly attaches existing cookies to a specific request (sent to the server).

Application specific interface mechanisms. Tests conform to a checklist of

functionality and features that are defined by the interface mechanism. For example,

Splaine and Jaskiel [SPLO 1 1
suggest the following checklist for shopping cart func-

tionality defined for an e-commerce application;

• Boundary test (Chapter 1 4) the minimum and maximum number of items that

can be placed in the shopping cart.

• Test a "check out" request for an empty shopping cart.

• Test proper deletion of an item from the shopping cart.

• Test to determine whether a purchase empties the cart of its contents.

9 Pop-ups have become pervasive and are a major irritant to many users. They should be used judi-

ciously or not at all.

608 PART THREE APPLYING WEB ENGINEERING

• Test to determine the persistence of shopping cart contents (this should be

specified as part of customer requirements).

• Test to determine whether the WebApp can recall shopping cart contents at

some future date (assuming that no purchase was made) if the user requests

that contents be saved.

20.4.3 Testing Interface Semantics

Once each interface mechanism has been "unit" tested, the focus of interface testing

changes to a consideration of interface semantics. Interface semantics testing "eval-

uates how well the design takes care of users, offers clear direction, delivers feed-

back, and maintains consistency of language and approach" [NGUO 1]

.

A thorough review of the interface design model can provide partial answers to

the questions implied by the preceding paragraph. However, each use-case scenario

(for each user category) should be tested once the WebApp has been implemented.

In essence, a use-case becomes the input for the design of a testing sequence. The

intent of the testing sequence is to uncover errors that will preclude a user from

achieving the objective associated with the use-case.

As each use-case is tested, the Web engineering team maintains a checklist to en-

sure that every menu item has been exercised at least one time and that every.' em-

bedded link within a content object has been used. In addition, the test sequence

should include improper menu selection and link usage. The intent is to determine

whether the WebApp provides effective error handling and recovery.

WebRef
A worthwhile guide to

uscbiNly testing ton be

found ot

www.ahref.com/

guides/design/

1 99806/061 5jef.

html.

20.4.4 Usability Tests

Usability testing is similar to interface semantics testing (Section 20.4.3) in the sense

that it also evaluates the degree to which users can interact effectively with the Web-

App and the degree to which the WebApp guides users' actions, provides meaning-

ful feedback, and enforces a consistent interaction approach. Rather than focusing

intently on the semantics of some interactive objective, usability reviews and tests

are designed to determine the degree to which the WebApp interface makes the

user's life easy.
10

Usability tests may be designed by a Web engineering team, but the tests them-

selves are conducted by end-users. The following sequence of steps is applied

[SPL01]:

1 . Define a set of usability testing categories and identify goals for each.

2. Design tests that will enable each goal to be evaluated.

10 The term "user-friendliness'' has been used in this context. The problem, of course, is that one

user's perception of a "friendly" interface may be radically different from another's.

CHAPTER 20 TESTING FOR WEBAPPS 609

O What charac-

• (eristics of

usability become

the focus of test-

ing, and what

specific objectives

are addressed?

3. Select participants who will conduct the tests.

4. instrument participants' interaction with the WebApp while testing is con-

ducted.

5. Develop a mechanism for assessing the usability of the WebApp.

Usability testing can occur at a variety of different levels of abstraction: (1) the us-

ability of a specific interface mechanism (e.g., a form) can be assessed; (2) the us-

ability of a complete Web page (encompassing interface mechanisms, data objects,

and related functions) can be evaluated; or (3) the usability of the complete WebApp

can be considered.

The first step in usability testing is to identify a set of usability categories and es-

tablish testing objectives for each category. The following test categories and objec-

tives (written in the form of a question) illustrate this approach: 11

Interactivity—Are interaction mechanisms (e.g., pull-down menus, buttons,

pointers) easy to understand and use 7

Layout—Are navigation mechanisms, content, and functions placed in a manner

that allows the user to find them quickly?

Readability—Is text well-written and understandable? 12 Are graphic representa-

tions easy to understand?

Aesthetics—Do layout, color, typeface, and related characteristics lead to ease of

use? Do users "feel comfortable" with the look and feel of the WebApp?

Display characteristics—Does the WebApp make optimal use of screen size and

resolution?

Time sensitivity—Can important features, functions, and content be used or ac-

quired in a timely manner?

Personalization—Does the WebApp tailor itself to the specific needs of different

user categories or individual users?

Accessibility—Is the WebApp accessible to people who have disabilities?

Within each of these categories, a series of tests is designed. In some cases, the "test"

may be a visual review of a Web page. In other cases interface semantics tests may
be executed again, but in this instance usability concerns are paramount.

As an example, we consider usability assessment for interaction and interface

mechanisms. Constantine and Lockwood [CON03j suggest that the following list of

interface features should be reviewed and tested for usability: animation, buttons,

color, control, dialogue, fields, forms, frames, graphics, iabels, links, menus,

1 1 For additional usability questions, see the "usability" sidebar in Chapter 12.

1 2 The FOG Readability index and others may be used to provide a quantitative assessment of read-

bility. See http://developer.gnome.org/documents/usability/usability-readability.html lor more

details.

610 PART THREE APPLYING WEB ENGINEERING

Qualitative

assessment of

usability

Ease of use

Awkward

Difficult to learn

Misleading

Easy to learn

Effective

Simple

Informative

Ease of understanding

Clear

Somewhat ambiguous

tonfusing

lnconsistenT°^-o^Generally uniform

Lacking uniformity '^0---«^Q
>>
Preclictoble

Predictability

*2

POINT
WebApps execute

within a voiiely

of client-side

environments.

The objective of

compatibility testing

is to uncover errors

associated with a

specific environment

(e.g., browser).

messages, navigation, pages, selectors, text, and tool bars. As each feature is as-

sessed, it is graded on a qualitative scale by the users who are doing the testing.

Figure 20.3 depicts a possible set of assessment "grades'' that can be selected by

users. These grades are applied to each feature individually, to a complete Web page,

or to the WebApp as a whole.

20.4.5 Compatibility Tests

WebApps must operate within environments that differ from one another. Different

computers, display devices, operating systems, browsers, and network connection

speeds can have a significant influence on WebApp operation. Each computing con-

figuration can result in differences in client-side processing speeds, display resolu-

tion, and connection speeds. Operating system vagaries may cause WebApp

processing issues. Different browsers sometimes produce slightly different results,

regardless of the degree ofHTML standardization within the WebApp. Required plug-

ins may or may not be readily available for a particular configuration.

In some cases, small compatibility issues present no significant problems, but in

others, serious errors can be encountered. For example, download speeds may be-

come unacceptable, lack of a required plug-in may make content unavailable,

browser differences can change page layout dramatically, font styles may be altered

and become illegible, or forms may be improperly organized. Compatibility testing

strives to uncover these problems before the WebApp goes on-line.

The first step in compatibility testing is to define a set of "commonly encountered"

client-side computing configurations and their variants. In essence, a tree structure

is created, identifying each computing platform, typical display devices, the operat-

ing systems supported on the platform, the browsers available, likely Internet con-

nection speeds, and similar information. Next, the Web engineering team derives a

series of compatibility validation tests, derived from existing interface tests, naviga-

CHAPTER 20 TESTING FOR WEBAPPS 611

tion tests, performance tests, and security tests. The intent of these tests is to un-

cover errors or execution problems that can be traced to configuration differences.

SafeHome

WebApp Testing

The scene: Doug Miller's office.

The players: Doug Miller (manager of the SafeHome

software engineering group) and Vinod Raman, a

member of the product software engineering team.

The conversation:

Doug: What do you think of the SafeHomeAssured.com

e-commerce WebApp V0.0?

Vinod: The outsourcing vendor's done a good job.

Sharon (development manager for the vendor] tells me
they're testing as we speak.

Doug: I'd like you and the rest of the team to do a little

informal testing on the e-commerce site.

Vinod (grimacing): I thought we were going to hire a

third-party testing company to validate the WebApp.
We're still killing ourselves trying to get the product

software out the door.

Doug: We're going to hire a testing vendor for

performance and security testing, and our outsourcing

vendor is already testing. Just thought another point of

view would be helpful, and besides, we'd like to keep

costs in line, so . . ,

Vinod (sighs): What are you looking for?

Doug: I want to be sure that the interface and all

navigation are solid.

Vinod: I suppose we can start with the use-cases lor

each of the major interface functions:

Learn about SafeHome
Specify the SafeHome system you need
Purchase a SafeHome system

Get technical support

Doug: Good. But take the navigation paths all the way
to their conclusion.

Vinod (looking through a notebook of use-

cases): Yeah, when you select Specify the

SafeHome system you need, that'll take you to:

Select SafeHome components
Get SafeHome component recommendations

We can exercise the semantics of each path.

Doug: While you're there, check out the content that

appears at each navigation node.

Vinod: Of course . . . and the functional elements as

well. Who's testing usability?

Doug: Oh ... the testing vendor will coordinate

usability testing. We've hired a market research firm to

line up 20 typical users for the usability study, but if you

guys uncover any usability issues . .

.

Vinod: I know, pass them along.

Doug: Thanks, Vinod.

2.Q.5 Component-Level Testing

Component-level testing, also calledfunction testing, focuses on a set of tests that at-

tempt to uncover errors in WebApp functions. Each WebApp function is a software

module (implemented in one of a variety of programming or scripting languages)

and can be tested using black-box (and, in some cases, white-box) techniques dis-

cussed in Chapter 14.

Component-level test cases are often driven by forms-level input. Once forms
data are defined, the user selects a button or other control mechanism to initiate ex-

ecution. The following test case design methods (Chapter 14) are typical:

612 PART THREE APPLYING WEE ENGINEERING

• Equivalence partitioning—The input domain of the function is divided into

input categories or classes from which test cases are derived. The input form

is assessed to determine what classes of data are relevant for the function.

Test cases for each class of input are derived and executed while other

classes of input are held constant. For example, an e-commerce application

may implement a function that computes shipping charges. Among a variety

of shipping information provided via a form is the user's postal code. Test

cases are designed in an attempt to uncover errors in postal code processing

by specifying postal code values that might uncover different classes of errors

(e.g., an incomplete postal code, a correct postal code, a nonexistent postal

code, an erroneous postal code format).

• Boundary value analysis—Forms data are tested at their boundaries. For

example, the shipping calculation function noted previously requests the

maximum number of days required for product delivery. A minimum of 2

days and a maximum of 14 are noted on the form. However, boundary value

tests might input values of 0, 1,2, 13, 14, and 15 to determine how the

function reacts to data at and outside the boundaries of valid input.
13

• Patli testing—If the logical complexity of the function is high,
14 path testing (a

white-box test case design method) can be used to ensure that every inde-

pendent path in the program has been exercised.

In addition to these test case design methods, a technique calledforced error testing

[NGUOlj is used to derive test cases that purposely drive the WebApp component

into an error condition. The purpose is to uncover errors that occur during error-

handling (e.g., incorrect or nonexistent error messages, WebApp failure as a conse-

quence of the error, erroneous output driven by erroneous input, side-effects that are

related to component processing).

Each component-level test case specifies all input values and the expected output

to be provided by the component. The actual output produced as a consequence of

the test is recorded for future reference during support and maintenance.

In many situations, the correct execution of a WebApp function is tied to proper

interfacing with a database that may be external to the WebApp. Therefore, database

testing becomes an integral part of the component-testing regime. Hower [HOW97]

discusses this when he writes:

Database-driven Web sites can involve a complex interaction among Web browsers, op-

erating systems, plug-in applications, communications protocols, Web servers, data-

bases, [scripting language] programs security enhancements, and firewalls. Such

13 In this case, a better input design might eliminate potential errors. The maximum number of days

could be selected from a pull- down menu, precluding the user from specifying out-of-bounds input.

14 Logical complexity can be determined by computing cyciomatic complexity of the algorithm. See

Chapter 1 4 for additional details.

CHAPTER 20 TESTING FOR WEBAPPS 613

WebRef

A widely of testing

resources con be found

ol

www.pantos.org/

atw/xref.html.

complexity makes it impossible to test every possible dependency and everything that

could go wrong with a site. The typical Web site development project will also be on an

aggressive schedule, so the best testing approach will employ risk analysis to determine

where to focus testing efforts. Risk analysis should include consideration of how closely

the test environment will match the real production environment. . . Other typical con-

siderations in risk analysis include:

• Which functionality in the Web site is most critical to its purpose?

• Which areas of the site require the heaviest database interaction?

• Which aspects of the site's CGI, applets, ActiveX components, and so on are most

complex?

• What types of problems would cause the most complaints or the worst publicity?

• What areas of the site will be the most popular?

• What aspects of the site have the highest security risks?

Each of the risk-related issues discussed by Hower should be considered when de-

signing test cases for WebApp components and related database functions.

20.6 Navigation Testing

A user travels through a WebApp in much the same way as a visitor walks through

a store or museum. There are many pathways that can be taken, many stops that can

be made, many things to learn and look at, activities to initiate, and decisions to

make. As we have already discussed, this navigation process is predictable in the

sense that every visitor has a set of objectives when he arrives. At the same time, the

navigation process can be unpredictable because the visitor, influenced by some-

thing he sees or learns, may choose a path or initiate an action that is not typical for

the original objective. The job of navigation testing is (l) to ensure that the mecha-

nisms that allow the WebApp user to travel through the WebApp are all functional

and (2) to validate that each navigation semantic unit (NSU) can be achieved by the

appropriate user category.

“We re not lost. We're locotionolly challenged.''

John M. Ford

20.6.1 Testing Navigation Syntax

The first phase of navigation testing actually begins during interface testing. Navi-

gation mechanisms are tested to ensure that each performs its intended function.

Splaine and Jaskiel [SPL01] suggest that each of the following navigation mecha-
nisms should be tested:

• Navigation links—internal links within the WebApp, external links to other

WebApps, and anchors within a specific Web page should be tested to

614 PART THREE APPLYING WEB ENGINEERING

ensure that proper content or functionality is reached when the link is

chosen.

• Redirects—these links come into play when a user requests a nonexistent

URL or selects a link whose destination has been removed or whose name

has changed. A message is displayed for the user, and navigation is redi-

rected to another page (e.g., the home page). Redirects should be tested by

requesting incorrect internal links or external URLs and assessing how the

WebApp handles these requests.

• Bookmarks—although bookmarks are a browser function, the WebApp

should be tested to ensure that a meaningful page title can be extracted as

the bookmark is created.

• Frames andframesets—

e

ach frame contains the content of a specific Web

page; a frameset contains multiple frames and enables the display of multiple

Web pages at the same time. Because it is possible to nest frames and

framesets within one another, these navigation and display mechanisms

should be tested for correct content, proper layout and sizing, download

performance, and browser compatibility.

• Site maps—entries should be tested to ensure that the link takes the user to

the proper content or functionality.

• Internal search engines—complex WebApps often contain hundreds or even

thousands of content objects. An internal search engine allows the user to

perform a keyword search within the WebApp to find needed content. Search

engine testing validates the accuracy and completeness of the search, the

error-handling properties of the search engine, and advanced search features

(e.g., the use of Boolean operators in the search field).

Some of the tests noted can be performed by automated tools (e.g., link checking)

while others are designed and executed manually. The intent throughout is to ensure

that errors in navigation mechanics are found before the WebApp goes on-line.

9 What

• questions

must be asked

and answered

as each NSU is

tested?

20.6.2 Testing.Navigation Semantics

In Chapter 19 we defined a navigation semantic unit (NSU) as "a set of information

and related navigation structures that collaborate in the fulfillment of a subset of re-

lated user requirements" [CAC02] . Each NSU is defined by a set of navigation paths

(called "ways of navigating") that connect navigation nodes (e.g., Web pages, con-

tent objects, or functionality). Taken as a whole, each NSU allows a user to achieve

specific requirements defined by one or more use-cases for a user category. Naviga-

tion testing exercises each NSU to ensure that these requirements can be achieved.

As each NSU is tested, the Web engineering team must answer the following

questions:

• is the NSU achieved in its entirety without error?

CHAPTER 20 TESTING FOR WEBAPPS 615

^OVICE^.

If NSUs have not been

created as part of Web

engineering onalpis or

design, you con apply

use<asesforthe

design of navigation

test coses. Ihe same

set of Questions are

asked and answered.

• Is every navigation node (defined for a NSU) reachable within the context of

the navigation paths defined for the NSU?

• If the NSU can be achieved using more than one navigation path, has every

relevant path been tested?

• If guidance is provided by the user interface to assist in navigation, are direc-

tions correct and understandable as navigation proceeds?

• Is there a mechanism (other than the browser "back" arrow) for returning to

the preceding navigation node and to the beginning of the navigation path?

• Do mechanisms for navigation within a large navigation node (i.e., a long

Web page) work properly?

• If a function is to be executed at a node and the user chooses not to provide

input, can the remainder of the NSU be completed?

• If a function is executed at a node and an error in function processing occurs,

can the NSU be completed?

• is there a way to discontinue the navigation before all nodes have been

reached, but then return to where the navigation was discontinued and

proceed from there?

• Is every node reachable from the site map? Are node names meaningful to

end-users?

• If a node within a NSU is reached from some external source, is it possible to

process to the next node on the navigation path? is it possible to return to the

previous node on the navigation path?

• Does the user understand his location within the content architecture as the

NSU is executed?

Navigation testing, like interface and usability testing, should be conducted by as

many different constituencies as possible. Early stages of testing are conducted by

Web engineers, but later stages should be conducted by other project stakeholders,

an independent testing team, and ultimately, by nontechnical users. The intent is to

exercise WebApp navigation thoroughly.

Configuration Testing

Configuration variability and instability are important factors that make Web engi-

neering a challenge. Hardware, operating system(s), browsers, storage capacity,

network communication speeds, and a variety of other client-side factors are diffi-

cult to predict for each user. In addition, the configuration for a given user can
change (e g., OS updates, new ISP and connection speeds) on a regular basis. The
result can be a client-side environment that is prone to errors that are both subtle

and significant. One user's impression of the WebApp and the manner in which he

616 PART THREE APPLYING WEB ENGINEERING

interacts with it can differ significantly from another user’s experience, if both users

are not working within the same client-side configuration.

The job of configuration testing is not to exercise every possible client-side con-

figuration. Rather, it is to test a set of probable client-side and server-side configu-

rations to ensure that the user experience will be the same on all of them and to

isolate errors that may be specific to a particular configuration.

20.7.1 Server-Side Issues

On the server side, configuration test cases are designed to verify that the projected

server configuration (i.e., WebApp server, database server, operating system(s), fire-

wall software, concurrent applications) can support the WebApp without error. In

essence, the WebApp is installed within the server-side environment and tested with

the intent of finding configuration-related errors.

As server-side configuration tests are designed, the Web engineer should con-

sider each component of the server configuration. Among the questions that need to

be asked and answered during server-side configuration testing are:

What

• questions

must be asked

and answered as

server-side

configuration

testing is

conducted?

, Is the WebApp fully compatible with the server OS?

. Are system files, directories, and related system data created correctly when

the WebApp is operational?

. Do system security measures (e.g., firewalls or encryption) allow the

WebApp to execute and service users without interference or performance

degradation?

. Has the WebApp been tested with the distributed server configuration 15
(if

one exists) that has been chosen?

, Is the WebApp properly integrated with database software? Is the WebApp

sensitive to different versions of database software?

. Do server-side WebApp scripts execute properly?

. Have system administrator errors been examined for their affect on WebApp

operations?

. If proxy servers are used, have differences in their configuration been

addressed with on-site testing?

20.7.2 Client-Side Issues

On the client side, configuration tests focus more heavily on WebApp compatibility

with configurations that contain one or more permutation of the following compo-

nents [NGUOlj:

15 For example, a separate applicaiion server and database server may be used. Communication be-

tween the two machines occurs across a network connection.

CHAPTER 20 TESTING FOR WEBAPPS 617

. Hardware—CPU
,
memory, storage, and printing devices.

Operating systems—Linux, Macintosh OS, Microsott Windows, a mobile-

based OS.

• Browser software—Internet Explorer, Mozilla/Netscape, Opera, Safari, and

others.

• User interface components—Active X, Java applets, and others.

• Plug-ins—QuickTime, RealPlayer, and many others.

• Connectivity—cable, DSL, regular modem, Tl.

In addition to these components, other variables include networking software, the

vagaries of the ISP, and applications running concurrently.

To design client-side configuration tests, the Web engineering team must reduce

the number of configuration variables to a manageable number .

16 To accomplish

this, each user category is assessed to determine the likely configurations to be en-

countered within the category. In addition, industry market share data may be used

to predict the most likely combinations of components. The WebApp is then tested

within these environments.

20.8 Security Testing

WebApp security is a complex subject that must be fully understood before effective

security testing can be accomplished .

'

7 WebApps and the client-side and server-side

environments in which they are housed represent an attractive target for externa!

hackers, disgruntled employees, dishonest competitors, and anyone else who

wishes to steal sensitive information, maliciously modify content, degrade perform-

ance, disable functionality, or embarrass a person, organization, or business.

The Internet is a risky plate to conduct business or store assets. Hackers, crackers, snoops, spoofers, . . . thieves,

vandals, virus launchers, and rogue program purveyors run loose."

Dorothy and Peter Denning

Security tests are designed to probe vulnerabilities of the client-side environment,

the network communications that occur as data are passed from client to server and

back again, and the server-side environment. Each of these domains can be at-

tacked, and it is the job of the security tester to uncover weaknesses that can be ex-

ploited by those with the intent to do so.

1 6 Running tests on every possible combination of configuration components is far too time consuming.

17 Books by Trivedi [TRE03), McClure and his colleagues [MCC03], and Garfmkel and Spafford

[GAR02] provide useful information about the subject.

618 PART THREE APPLYING WEB ENGINEERING

If the WebAppis

business critical,

maintains sensitive

data, ocis a likely

target of backers, it's a

good idea to outsource

security testing to a

vendor who specializes

in it.

K
POINT
Security tests should

be designed to

exercise firewalls,

authentication,

encryption, ond

outhorizotion.

On the client-side, vulnerabilities can often be traced to pre-existing bugs in

browsers, e-mail programs, or communication software. Nguyen [NGU01) describes

a typical security hole:

One of the commonly mentioned bugs is Buffer Overflow, which allows malicious code
to be executed on the client machine. For example, entering a URL into a browser that is

much longer than the buffer size allocated for the URL will cause a memory overwrite

(buffer overflow) error if the browser does not have error detection code to validate the

length of the input URL. A seasoned hacker can cleverly exploit this bug by writing a long

URL with code to be executed that can cause the browser to crash or alter security set-

tings (from high to low), or, at worst, to corrupt user data.

Another potential vulnerability on the client-side is unauthorized access to cookies

placed within the browser. Web sites created with malicious intent can acquire in-

formation contained within legitimate cookies and use this information in ways that

jeopardize the user's privacy, or worse, set the stage for identity theft.

Data communicated between the client and server are vulnerable to spoofing.

Spoofing occurs when one end of the communication pathway is subverted by an
entity with malicious intent. For example, a user can be spoofed by a malicious Web
site that acts as if it is the legitimate WebApp server (identical look and feel). The in-

tent is to steal passwords, proprietary information, or credit data.

On the server-side, vulnerabilities include denial-of-service attacks and mali-

cious scripts that can be passed along to the client side or used to disable sewer op-

erations. in addition, server-side databases can be accessed without authorization

(data theft).

To protect against these (and many other) vulnerabilities, one or more of the fol-

lowing security elements is implemented [NGU01]:

• Firewalls—a filtering mechanism that is a combination of hardware and
software that examines each incoming packet of information to ensure that it

is coming from a legitimate source, blocking any data that are suspect.

• Authentication—

a

verification mechanism that validates the identity of all

clients and servers, allowing communication to occur only when both sides

are verified.

• Encryption—an encoding mechanism that protects sensitive data by

modifying it in a way that makes it impossible to read by those with

malicious intent. Encryption is strengthened by using digital certificates that

allow the client to verify the destination to which the data are transmitted.

• Authorization—

a

filtering mechanism that allows access to the client or

server environment only by those individuals with appropriate authorization

codes (e.g., userlD and password)

The intent of security testing is to expose holes in these security elements that

can be exploited by those with malicious intent. The actual design of security tests

CHAPTER 20 TESTING FOR WEBAPPS 619

2£L1

Some aspects of

WebApp performance,

at least as it is

perceived by the end-

user, are difficult to

test, including network

loading, the vagaries

of network interfacing

hardware, and similar

issues.

requires in-depth knowledge of the inner workings of each security element and

a comprehensive understanding of a full range of networking technologies, in

many cases, security testing is outsourced to firms that specialize in these tech-

nologies.

Performance Testing— —
Nothing is more frustrating than a WebApp that takes minutes to load content when

competitive sites download similar content in seconds. Nothing is more aggravating

than trying to log-in to a WebApp and receiving a "server-busy" message, with the

suggestion that you try again later. Nothing is more disconcerting than a WebApp

that responds instantly in some situations, and then seems to go into an infinite wait-

state in other situations. All of these occurrences happen on the Web every day, and

all of them are performance-related.

Performance testing is used to uncover performance problems that can result from

lack of server-side resources, inappropriate network bandwidth, inadequate data-

base capabilities, faulty or weak operating system capabilities, poorly designed Web-

App functionality, and other hardware or software issues that can lead to degraded

client-server performance. The intent is twofold: (1) to understand how the system

responds to loading (i.e., number of users, number of transactions, or overall data

volume), and (2) to collect metrics that will lead to design modifications to improve

performance.

20.9.1 Performance Testing Objectives

Performance tests are designed to simulate real-world loading situations. As the

number ofsimultaneous WebApp users grows, or the number of on-line transactions

increases, or the amount of data (downloaded or uploaded) increases, performance

testing will help answer the following questions:

• Does the server response time degrade to a point where it is noticeable and

unacceptable?

• At what point (in terms of users, transactions, or data loading) does perform-

ance become unacceptable?

• What system components are responsible for performance degradation?

• What is the average response time for users under a variety of loading condi-

tions?

• Does performance degradation have an impact on system security?

• Is WebApp reliability or accuracy affected as the load on the system grows9

• What happens when loads that are greater than maximum server capacity

are applied?

620

If a WebApp uses

multiple servers to

provide significant

capacity, load testing

must be performed in

o multisem environ-

ment.

POINT
The intent of stress

testing is tc better

understand how o

system foils os it is

stressed beyond its

operational limits.

PART THREE APPLYING WEB ENGINEERING

To develop answers to these questions, two different performance tests are con-

ducted:

• Load testing—real world loading is tested at a variety of load levels and in a

variety of combinations.

• Stress testing—loading is increased to the breaking point to determine how
much capacity the WebApp environment can handle.

Each of these testing strategies is considered in the sections that follow.

20.9.2 Load Testing

The intent of load testing is to determine how the WebApp and its server-side envi-

ronment will respond to various loading conditions. As testing proceeds, permuta-

tions to the following variables define a set of test conditions:

N, the number of concurrent users

71 the number of on-line transactions per user per unit time

D, the data load processed by the server per transaction

In every case, these variables are defined within normal operating bounds of the sys-

tem. As each test condition is run, one or more of the following measures are col-

lected: average user response, average time to download a standardized unit of data,

or average time to process a transaction. The Web engineering team examines these

measures to determine whether a precipitous decrease in performance can be traced

to a specific combination of N, T, and D.

Load testing can also be used to assess recommended connection speeds for

users of the WebApp. Overall throughput, P, is computed in the following manner:

P = N x T x D

As an example, consider a popular sports news site. At a given moment, 20,000 con-

current users submit a request (a transaction, T) once every two minutes on aver-

age. Each transaction requires the WebApp to download a new article that averages

3 K bytes in length. Therefore, throughput can be calculated as:

P = [20,000 X 0.5 X 3 Kbj/60 = 500 Kbytes/sec

= 4 megabits per second

The network connection for the server would therefore have to support this data rate

and should be tested to ensure that it does.

20.9.3 Stress Testing

Stress testing (Chapter 13) is a continuation of load testing, but in this instance the

variables, N, T, and D are forced to meet and then exceed operational limits. The in-

tent of these tests is to answer each of the following questions:

• Does the system degrade "gently” or does the server shut down as capacity is

exceeded?

CHAPTER 20 TESTING FOR WEBAPPS 621

• Does server software generate "server not available" messages? More

generally, are users aware that they cannot reach the server?

• Does the server queue requests for resources and empty the queue once

capacity demands diminish? -*

• Are transactions lost as capacity is exceeded?

• Is data integrity affected as capacity is exceeded?

• What values of N, £ ;
and D force the server environment to fail? How does

failure manifest itself? Are automated notifications sent to technical support

staff at the server site?

• If the system does fail, how long will it take to come back on-line?

• Are certain WebApp functions (e.g., compute intensive functionality, data

streaming capabilities) discontinued as capacity reaches the 80 or 90 percent

level?

A variation of stress testing is sometimes referred to as spike/bounce testing

[SPLO 1] . In this testing regime, load is spiked to capacity, then lowered quickly to nor-

mal operating conditions, and then spiked again. By bouncing system loading a

tester can determine how well the server can marshall resources to meet very high

demand and then release them when normal conditions reappear (so that they are

ready for the next spike).

Software Tools

Tools Taxonomy for WebApp Testing

In his paper on the testing of e-commerce

systems, Lam [LAM01
]
presents a useful

taxonomy of automated tools that have direct applicability

for testing in a Web engineering context. We have

appended representative tools in each category.
8

Configuration and content management tools

manage version and change control of WebApp content

objects and functional components.

Representative tool(sl:

Comprehensive list at www.daveeaton.com/scm/

CMTools.html

Database performance tools measure database

performance, such as the time to perform selected database

queries. These tools facilitate database optimization.

Representative tool(s): BMC Software (www.bmc.com)

Debuggers are typical programming tools that find and

resolve software defects in the code. They are part of most

modern application development environments.

Representative tool(s):

Accelerated Technology (www.acceleratedtechnology.com)

IBM VisualAge Environment (www.ibm.com)

JDebugTool (www.debugtools.com)

Defect management systems record defects and

track their status and resolution. Some include reporting

tools to provide management information on defect spread

and defect resolution rates.

Representative tooi(s):

EXCEL Ouickbugs (www.excelsoftware.com)

V

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category,

in addition, tool names are registered trademarks of the companies noted.

622 PART THREE APPLYING WEB ENGINEERING

r
McCabe TRUETrack (www.mccabe.com)

Rational ClearQuest (www.rational.com)

Network monitoring tools watch the level of network

traffic. They are useful for identifying network bottlenecks

and testing the link between front* and back-end systems.

Representative tool(s):

Comprehensive list at www.slac.stanford.edu/xorg/

nmtf/nmtf-tools.html

Regression testing tools store test cases and test data

and can reapply the test cases after successive software

changes.

Representative tool(s):

Compuware QARun (www.compuware.com/products/

qacenter/qarun)

Rational VisualTest (www.rational.com)

Seque Software (www.seque.com)

Site monitoring tools monitor a site's performance,

often from a user perspective. Use them to compile

statistics such as end-to-end response time and throughput,

and to periodically check a site's availability.

Representative tool(s):

Keynote Systems (www.keynote. com)

Stress tools help developers explore system behavior

under high levels of operational usage and find a system's

breakpoints.

Representative tool(s):

Mercury Interactive (www.merc-int.com)

Scapa Technologies (www.scapatech.com)

System resource monitors are part of most OS
i server and Web server software; they monitor

A
resources such as disk space, CPU usage, and

memory.

Representative toolfs):

Successful Hosting.com (www.successfulhosting.com)

Quest Software Foglight (www.quest.com)

Test data generation tools assist users in generating

test data.

Representative tool(s):

Comprehensive list at www.softwareqatest.com/

qatwebl .html

Test result comparators help compare the results of

one set of testing to that of another set. Use them to check

that code changes have not introduced adverse changes in

system behavior.

Representative tool/sl:

Useful list at www.aptest.com/resources.html

Transaction monitors measure the performance of

high-volume transaction processing systems.

Representative tool(s):

QuotiumPro (www.quotium.com)

Software Research eValid (www.soft.com/eValid/index.

html)

Web-site security tools help detect potential security

problems. You can often set up security probing and

monitoring tools to run on a scheduled basis.

Representative toolfs):

Comprehensive list at www.timbedinetechnologies.com/

products/www.html)

20.10 Summary

The goal of WebApp testing is to exercise each of the many dimensions of WebApp

quality with the intent of finding errors or uncovering issues that may lead to quality

failures. Testing focuses on content, function, structure, usability, navigability, per-

formance, compatibility, interoperability, capacity, and security. Testing also incor-

porates reviews that occur as the WebApp is designed.

The WebApp testing strategy exercises each quality dimension by initially ex-

amining "units" of .content, functionality, or navigation. Once individual units have

been validated, the focus shifts to tests that exercise the WebApp as a whole. To

accomplish this, many tests are derived from the users' perspectives and are driven

by information contained in use-cases. A Web engineering test plan is developed

CHAPTER 20 TESTING FOR WEBAPPS 623

and identifies testing steps, work products {e.g., test cases), and mechanisms for

the evaluation of test results. The testing process encompasses seven different

types of testing.

Content testing (and reviews) focus on various categories of content. The intent

is to uncover both semantic or syntactic errors that affect the accuracy of content or

the manner in which it is presented to the end-user. Interface testing exercises the

interaction mechanisms that enable a user to communicate with the WebApp and

validates aesthetic aspects of the interface. The intent is to uncover errors that result

from poorly implemented interaction mechanisms, or omissions, inconsistencies, or

ambiguities in interface semantics.

Navigation testing applies use-cases, derived as part of the analysis activity, in the

design of test cases that exercise each usage scenario against the navigation design.

Navigation mechanisms are tested to ensure that any errors impeding completion of

a use-case are identified and corrected. Component testing exercises content and

functional units within the WebApp. Each Web page encapsulates content, naviga-

tion links, and processing elements that form a "unit" within the WebApp architec-

ture. These units must be tested.

Configuration testing attempts to uncover errors and/or compatibility problems

that are specific to a particular client or server environment. Tests are then con-

ducted to uncover errors associated with each possible configuration. Security test-

ing incorporates a series of tests designed to exploit vulnerabilities in the WebApp

and its environment. The intent is to find security holes. Performance testing en-

compasses a series of tests that are designed to assess WebApp response time and

reliability as demands on server-side resource capacity increase.

RffEBENCES
IBROOl] Brown, B., OracleSi Web Development, McGraw-Hill, 2nd ed., 2001

.

1CAC02) Cachero, C., et al., "Conceptual Navigation Analysis: A Device and Platform Indepen-

dent Navigation Specification," Proc. 2nd Inti Workshop on Web-Oriented Technology, June

2002, download from www.dsic.upv.es/--west/iwwost02/papers/cachero.pdf.

[CON03] Constantine, L., and L. Lockwood, Softwarefor Use, Addison-Wesley. 1999; see also

http://www.foruse.com/.

[GAR02] Garfinkel, S., and G. Spafiford, Web Security, Privacy and Commerce, O'Reilly & Associ-

ates, 2002.

[HOW97] Hower, Rick, "Beyond Broken Links," internet Systems, 1997 available at

http://www.dbmsmag.com/9707i03.html.

[LAM01) Lam, W., "Testing E-Commerce Systems: A Practical Guide," IEEE IT Pro, March /April

2001, pp. 19-28.

[MCC03] McClure, S., S. Shah, and S. Shah, Web Hacking: Attacks and Defense, Addison -Wesley,

2003.

[MIL001 Miller, E., "WebSite Testing," 2000, available at http://www.soft.com/ eValid/Technology/
White. Papers/website, testing.html.

INGUOO] Nguyen, H., "Testing Web-Based Applications," Software Testing and Quality Engineer-

ing, May/June, 2000, available at http://www.stqemagazine.com.

624 PART THREE APPLYING WEB ENGINEERING

[NGU01| Nguyen, H., TestingApplications on the Web, Wiley, 2001.

[SCE02] Sceppa, D., Microsoft ADO.NET, Microsoft Press, 2002.

[SPLOI] Splaine, S., and S. Jaskiel, The Web Testing Handbook. STQE Publishing, 2001.

[TRE03] Trivedi, R., Professional Web Services Security, Wrox Press, 2003.

[WAL03J Wallace, D.. I. Raggett, and J. Aufgang, ExtremeProgramming for Web Projects, Addison-
Wesley, 2003.

-Eboelems anp Points iq, Ponder
20. 1 . What is the objective of security testing? Who performs this testing activity?

20 .2 . In your own words, discuss the objectives of testing in a Web engineering context.

20 .3 . Compatibility is an important quality dimension. What must be tested to ensure that

compatibility exists for a WebApp?

20 .4 . Which errors tend to be more serious—client-side errors or server-side errors? Why?

20 .5 . Are there any situations in which WebApp testing should be totally disregarded?

20 .6 . is it always necessary to develop a formal written test plan? Explain.

20 . 7 . Is it fair to say that the overall WebApp testing strategy begins with user- visible elements
and moves toward technology elements? Are there exceptions to this strategy?

20 .8 . Assume that you are developing an on-line pharmacy (CornerPharmacy.com) that

caters to senior citizens. The pharmacy provides typical functions, but also maintains a data

base for each customer so that it can provide drug information and warn of potential drug in-

teractions. Discuss any special usability tests for this WebApp.

20 .9 . Describe the steps associated with database testing for a WebApp. Is database testing

predominantly a client-side or server-side activity?

20 . 10 . is it possible to test every configuration that a WebApp is likely to encounter on the

server-side? On the client-side? if it is not, how does a Web engineer select a meaningful set of

configuration tests?

20.1

1

. What elements of the WebApp can be "unit tested"? What types of tests must be con-

ducted only after the WebApp elements are integrated?

20 . 12 . CornerPharmacy.com (Problem 20.8) has become wildly successful and the number of

users has increased dramatically in the first two months of operation. Draw a graph that depicts

probable response time as a function of number of users for a fixed set of server-side resources.

Label the graph to indicate points of interest on the "response curve
"

20 . 13 . What is the' difference between testing for navigation syntax and for navigation se-

mantics?

20 . 14 . What is the difference between testing that is associated with interface mechanisms
and testing that addresses interface semantics?

20 . 1

5

. Is content testing realty testing in a conventional sense? Explain.

20 . 16 . Assume that you have implemented a drug interaction checking function for Corner-

Pharmacy.com (Problem 20 8). Discuss the types of component-level tests that would have to

be conducted to ensure that this function works properly. [Note: a database would have to be
used to implement this function.]

20 . 1

7

. In response to its success CornerPharmacy.com (Problem 20.8) has implemented a spe-

cial server solely to handle prescription refills. On average, 1 000 concurrent users submit a re-

CHAPTER 20 TESTING FOR WEBAPPS 625

refill request once every two minutes. The WebApp downloads a 500 byte block of data in re-

sponse. What is the approximate required throughput for this sewer in megabits per second?

20 . 18 . What is the difference between load testing and stress testing’

Xusmm Readings anp lNFQRMAiigji..S.OAi.RC.£s

The literature for WebApp testing is still evolving. Books by Ash (The Web Testing Companion,

Wiley, 2003), Dustin and his colleagues (Quality Web Systems, Addison-Wesley, 2002), Nguyen
(NGU01], and Splaine and Jaskiel 1SPL01] are among the most complete treatments of the sub-

ject published to date. Mosley [Client-Server Software Testing on the Desktop and the Web,

Prentice-Hall, 1999) addresses both client-side and server-side testing issues.

Useful information on WebApp testing strategies and methods, as well as a worthwhile dis-

cussion of automated testing tools is presented by Stottlemeyer [Automated Web Testing Toolkit,

Wiley, 2001). Graham and her colleagues [Software Test Automation, Addison-Wesley, 1999)

present additional material on automated tools.

Nguyen and his colleagues [Testing Applicationsfor the Web second edition. Wiley. 2003)

have developed a major update to [NGU01] and provide unique guidance for testing mobile

applications. Although Microsoft (Performance Testing Microsoft .NET Web Applications, Mi-

crosoft Press, 2002) focuses predominantly on its .NET environment, its comments on per-

formance testing can be useful to anyone interested in the subject.

Splaine [Testing Web Security, Wiley, 2002), Klevinsky and his colleagues [Hack I.T: Security

through Penetration Testing, Addison-Wesley. 2002), Chirillo [Hack Attacks Revealed, second edi-

tion, Wiley, 2003), and Skoudis [Counter Hack. Prentice-Hall, 2001) provide much useful infor-

mation for those who must design security tests.

A wide variety of information sources on testing for Web engineering is available on the in-

ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

630 PART POUR MANAGING SOFTWARE PROJECTS

In this context, the

tern product is used to

encompass any

software that is built at

the request of others.

It includes not only

shrink-wrapped

software products, but

also computer-based

systems, embedded

software, WebApps,

and problem-solving

software (e.g.,

programs for

engineering/scientific

problem solving).

Ihose who adhere

to the agile process

philosophy (Chapter 4)

argue that their

ptocess is leaner than

otheis. Jhotmaybe

true, but they still have

o process, and agile

software engineering

still requires discipline.

21.1.2 The Product

Before a project can be planned, product objectives and scope should be established,

alternative solutions should be considered, and technical and management con-

straints should be identified. Without this information, it is impossible to define rea-

sonable (and accurate) estimates of the cost, an effective assessment of risk, a

realistic breakdown of project tasks, or a manageable project schedule that provides

a meaningful indication of progress.

The software developer and customer must meet to define product objectives and

scope. In many cases, this activity begins as part of the system engineering or business

process engineering (Chapter 6) and continues as the first step in software requirements

engineering (Chapter 7). Objectives identify the overall goals for the product (from the

customer's point of view) without considering how these goals will be achieved. Scope

identifies the primary data, functions, and behaviors that characterize the product, and

more importantly, attempts to bound these characteristics in a quantitative manner.

Once the product objectives and scope are understood, alternative solutions are

considered. Although relatively little detail is discussed, the alternatives enable man-

agers and practitioners to select a "best" approach, given the constraints imposed by

delivery deadlines, budgetary restrictions, personnel availability, technical inter-

faces, and myriad other factors.

21.1.3 The Process

A software process (Chapters 2, 3, and 4) provides the framework from which a com-

prehensive plan for software development can be established. A small number of

framework activities are applicable to all software projects, regardless of their size or

complexity. A number of different task sets—tasks, milestones, work products, and

quality assurance points—enable the framework activities to be adapted to the char-

acteristics of the software project and the requirements of the project team. Finally,

umbrella activities—such as software quality assurance, software configuration man-

agement, and measurement—overlay the process model. Umbrella activities are in-

dependent of any one framework activity and occur throughout the process.

21.1.4 The Project

We conduct planned and controlled software projects for one primary reason—it is the

only known way to manage complexity. And yet, we still struggle. In 1 998, industiy data

indicated that 26 percent of software projects failed outright and 46 percent experi-

enced cost and schedule overruns [REE99). Although the success rate for software proj-

ects has improved somewhat, our project failure rate remains higher than it should be.
1

I Given these statistics, it's reasonable to ask how the impact of computers continues to grow expo-

nentially. Part of the answer, I think, is that a substantial number of these "failed" projects are ill-

conceived in the first place. Customers lose interest quickly (because what they've requested

wasn't really as important as they first thought), and the projects are cancelled.

CHAPTER 21 PROJECT MANAGEMENT 631

i

— — —
"A project is like o road trip. Some projects ore simple and routine, like driving to the store in brood daylight. But

most projects worth doing ore more like driving o truck off-rood, in the mountoins, ot night."

__
Cem Kaner, James Bach, and Bret Pettichord

To avoid project failure, a software project manager and the software engineers

who build the product must heed a set of common warning signs, understand the

critical success factors that lead to good project management, and develop a com-
monsense approach for planning, monitoring, and controlling the project. Each of

these issues is discussed in Section 2 1 .5 and in the chapters that follow.

21.2 People

In a study published by the IEEE [CUR88), the engineering vice presidents of three

major technology companies were asked the most important contributor to a suc-
cessful software project. They answered in the following way:

VP 1 : I guess ifyou had to pick one thing out that is most important in our environment,
I'd say it's not the tools that we use, it’s the people.

VP 2: The most important ingredient that was successful on this project was having
smart people . . . very little else matters in my opinion ... The most important thing you
do for a project is selecting the staff . . . The success of the software development orga-

nization is very, very much associated with the ability to recruit good people

VP 3: The only rule I have in management is to ensure I have good people—real good
people—and that i grow good people—and that I provide an environment in which good
people can produce.

Indeed, this is a compelling testimonial on the importance of people in the software

engineering process. And yet, all ol us, from senior engineering vice presidents to

the lowliest practitioner, often take people for granted. Managers argue (as the pre-

ceding group had) that people are primary, but their actions sometimes belie their

words in this section we examine the stakeholders who participate in the software
process and the manner in which they are organized to perform effective software
engineering.

21.2.1 The Stakeholders

The software process (and every software project) is populated by stakeholders who
can be categorized into one of five constituencies:

1. Senior managers who define business issues that often have significant influ-

ence on the project.

2 . Project (technical) managers who must plan, motivate, organize, and control

the practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessaiy to engineer a
product or application.

632 PART FOUR MANAGING SOFTWARE PROJECTS

^ What do

• we look lor

when choosing

someone to lead a

software project?

4. Customers who specify the requirements for the software to be engineered

and other stakeholders who have a peripheral interest in the outcome.

5 . End-users who interact with the software once it is released for production use.

Ever}' software project is populated by people who fall within this taxonomy. 2 To be

effective, the project team must be organized in a way that maximizes each person's

skills and abilities. And that's the job of the team leader.

21.2.2 Team Leaders

Project management is a people-intensive activity, and for this reason, competent

practitioners often make poor team leaders. They simply don't have the right mix of

people skills. And yet, as Edgemon states: "Unfortunately and all too frequently it

seems, individuals just fall into a project manager role and become accidental proj-

ect managers"[EDG95].

In an excellent book of technical leadership, Jerry Weinberg [WEI86] suggests a

MOI model of leadership:

Motivation. The ability to encourage (by "push or pull") technical people to

produce to their best ability.

Organization. The ability to mold existing processes (or invent new ones) that

will enable the initial concept to be translated into a final product.

Ideas or innovation. The ability to encourage people to create and feel cre-

ative even when they must work within bounds established for a particular soft-

ware product or application.

Weinberg suggests that successful project leaders apply a problem solving manage-

ment style. That is, a software project manager should concentrate on understand-

ing the problem to be solved, managing the flow of ideas, and at the same time,

letting everyone on the team know (by words and, far more important, by actions)

that quality counts and that it will not be compromised.

"In simplest terms, a leader is one who knows where he wonts to go, and gets up, and goes.

John Erskine

Another view [EDG95] of the characteristics that define an effective project man-

ager emphasizes four key traits:

Problem solving. An effective software project manager can diagnose the

technical and organizational issues that are most relevant, systematically structure

a solution or properly motivate other practitioners to develop the solution, apply

2 When Web applications are developed (Part 3 of this book), other nontechnical people may be in-

volved in content creation.

CHAPTER 21 PROJECT MANAGEMENT 633

lessons learned from past projects to new situations, and remain flexible enough to

change direction if initial attempts at problem solution are fruitless.

Managerial identity. A good project manager must take charge of the project.

She must have the confidence to assume control when necessary and the assur-

ance to allow good technical people to follow their instincts.

Achievement. To optimize the productivity of a project team, a manager must

reward initiative and accomplishment and demonstrate through his own actions

that controlled risk taking will not be punished.

Influence and team building. An effective project manager must be able to

"read" people; she must be able to understand verbal and nonverbal signals and

react to the needs of the people sending these signals. The manager must remain

under control in high-stress situations.

21.2.3 The Software Team

There are almost as many human organizational structures for software develop-

ment as there are organizations that develop software. For better or worse, organi-

zational structure cannot be easily modified. Concern with the practical and political

consequences of organizational change are not within the software project man-

ager's scope of responsibility. However, the organization of the people directly in-

volved in a software project is within the project manager's purview.

"Not every group is o teom, ond not every teom is effective."

Glenn Parker

The "best" team structure depends on the management style ofyour organization,

the number of people who will populate the team and their skill levels, and the over-

all problem difficulty. Mantei [MAN81] describes seven project factors that should be

considered when planning the structure of software engineering teams:

• The difficulty of the problem to be solved.

• The "size" of the resultant program(s) in lines of code or function points

(Chapter 22).

• The time that the team will stay together (team lifetime).

• The degree to which the problem can be modularized.

• The required quality and reliability of the system to be built.

• The rigidity of the delivery date.

• The degree of sociability (communication) required for the project.

^ What factors

• should be

considered when

the structure of a

software team is

chosen?

"If you want to be incrementally better: Be competitive. If you wont to be exponentially better: Be cooperative.'

Author unknown

634 PART POUR MANAGING SOFTWARE PROJECTS

Constantine [CON93] suggests four "organizational paradigms" for software en-

gineering teams:

9 What

* options do

we hove when

defining the

structure of a

software team?

1 . A closed paradigm structures a team along a traditional hierarchy of authority.

Such teams can work well when producing software that is quite similar to

past efforts, but they will be less likely to be innovative when working within

the closed paradigm.

2. A random paradigm structures a team loosely and depends on individual ini-

tiative of the team members. When innovation or technological breakthrough

is required, teams following the random paradigm will excel. But such teams

may struggle when "orderly performance" is required.

3. An open paradigm attempts to structure a team in a manner that achieves

some of the controls associated with the closed paradigm but also much of

the innovation that occurs when using the random paradigm. Work is per-

formed collaboratively. Heavy communication and consensus-based decision

making are the trademarks of open paradigm teams. Open paradigm team

structures are well suited to the solution of complex problems but may not

perform as efficiently as other teams.

4. A synchronous paradigm relies on the natural compartmentalization of a

problem and organizes team members to work on pieces of the problem with

little active communication among themselves.

"Working with people is difficult, but not impossible."

Peter Drucker

As an historical footnote, one of the earliest software team organizations was a

closed paradigm structure originally called the chiefprogrammer team. This structure

was first proposed by Harlan Mills and described by Baker [BAK72]. The nucleus of

the team is composed of a senior engineer (the chief programmer), who plans, coor-

dinates, and reviews all technical activities of the team; technical staff(normally two
to five people), who conduct analysis and development activities; and a backup en-

gineer, who supports the senior engineer in his or her activities and can replace the

senior engineer with minimum loss in project continuity.

The chief programmer may be served by one or more specialists (e g., telecom-

munications expert, database designer), support staff (e.g., technical writers, clerical

personnel), and a software librarian.

As a counterpoint to the chief programmer team structure, Constantine's random
paradigm [CON93] suggests a software team with creative independence whose ap-

proach to work might best be termed innovative anarchy. Although the free-spirited

approach to software work has appeal, channeling creative energy into a high-

performance team must be a central goal of a software engineering organization. To

achieve a high-performance team;

CHAPTER 21 PROJECT MANAGEMENT 635

O What is a

• "jelled"

team?

^ Why do

• teams fail

to jell?

• Team members must have trust in one another.

« The distribution of skills must be appropriate to the problem.

• Mavericks may have to be excluded from the team, if team cohesiveness is to

be maintained.

Regardless of team organization, the objective for every project manager is to

help create a team that exhibits cohesiveness, in their book, Peopleware, DeMarco

and Lister [DEM98] discuss this issue:

We tend to use the word team fairly loosely in the business world, calling any group of

people assigned to work together a “team." But many of these groups just don't seem like

teams. They don't have a common definition of success or any identifiable team spirit.

What is missing is a phenomenon that we call jell.

A jelled team is a group of people so strongly knit that the whole is greater than the

sum of the parts . .

.

Once a team begins to jell, the probability of success goes way up. The team can be-

come unstoppable, a juggernaut for success . . They don't need to be managed in the

traditional way, and they certainly don't need to be motivated. They've got momentum.

DeMarco and Lister contend that members ofjelled teams are significantly more pro-

ductive and more motivated than average. They share a common goal, a common

culture, and in many cases, a "sense of eliteness" that makes them unique.

But not all teams jell. In fact, many teams suffer from what Jackman [JAC98] calls

"team toxicity." She defines five factors that "foster a potentially toxic team environ-

ment": (1) a frenzied work atmosphere, (2) high frustration that causes friction

among team members, (3) a "fragmented or poorly coordinated" software process,

(4) an unclear definition of roles on the software team, and (5) "continuous and re-

peated exposure to failure."

To avoid a frenzied work environment, the project manager should be certain that

the team has access to all information required to do the job and that major goals

and objectives, once defined, should not be modified unless absolutely necessary. A

software team can avoid frustration (and stress) if it is given as much responsibility

for decision making as possible. An inappropriate process (e.g„ unnecessary or bur-

densome work tasks or poorly chosen work products) can be avoided by under-

standing the product to be built and the people doing the work, and by allowing the

team to select its own process model. The team itself should establish mechanisms

for accountability (formal technical reviews and pair programming are excellent

ways to accomplish this) and define a series of corrective approaches when a mem-

ber of the team fails to perform. And finally, the key to avoiding an atmosphere of

failure is to establish team-based techniques for feedback and problem solving.

"Do or do not. There is no try.”

Yoda from Star Wars

636 PART FOUR MANAGING SOFTWARE PROJECTS

In addition to the five toxins described by Jackman, a software team often strug-

gles with the differing human traits of its members. Some team members are extro-

verts; others are introverted. Some people gather information intuitively, distilling

broad concepts from disparate facts. Others process information linearly, collecting

and organizing minute details from the data provided. Some team members are

comfortable making decisions only when a logical, orderly argument is presented.

Others are intuitive, willing to make a decision based on "feel." Some practitioners

want a detailed schedule populated by organized tasks that enable them to achieve

closure for some element of a project. Others prefer a more spontaneous environ-

ment in which open issues are okay. Some work hard to get things done long before

a milestone date, thereby avoiding stress as the date approaches, while others are

energized by the rush to make a last minute deadline. A detailed discussion of the

psychology of these traits and the ways in which a skilled team leader can help peo-

ple with opposing traits to work together is beyond the scope of this book.3 However,

it is important to note that recognition of human differences is the first step toward

creating teams that jell.

21.2.4 Agile Teams

In recent years, agile software development (Chapter 4) has been proposed as a an-

tidote to many of the problems that have plagued software project work. To review,

the agile philosophy encourages customer satisfaction and early incremental deliv-

ery of software; small highly motivated project teams; informal methods; minimal

software engineering work products, and overall development simplicity.

The small, highly motivated project team, also called an agile team, adopts many

of the characteristics of successful software project teams discussed in the preceding

section and avoids many of the toxins that create problems. However, the agile phi-

losophy stresses individual (team member) competency coupled with group collabo-

ration as critical success factors for the team. Cockbum and Highsmith [COCO!] note

this when they write:

If the people on the project are good enough, they can use almost any process and ac-

complish their assignment. If they are not good enough, no process will repair their in-

adequacy—"people trump process" is one way to say this. However, lack of user and

executive support can kill a project—"politics trump people." inadequate support can

keep even good people from accomplishing the job . .

.

To make effective use of the competencies of each team member and to foster ef-

fective collaboration through a software project, agile teams are self-organizing. A

self-organizing team does not necessarily maintain a single team structure but in-

3 An excellent introduction to these issues as they relate to software project teams can be found in

(FER98).

1

CHAPTER 21 PROJECT MANAGEMENT 637

stead uses elements of Constantine's random, open, and synchronous paradigms

discussed in Section 21 .2.3.

"Collective ownership is nothing more thon on instantiation of the idea that products should be attributable to the

[agile] team, not individuals who make up the team."

Jim Highsmith

POINT
An ogile team is o self-

organizing team that

has autonomy to plan

and make technical

decisions.

Many agile process models (e.g., Scrum) give the agile team significant auton-

omy to make the project management and technical decisions required to get the

job done. Planning is kept to a minimum, and the team is allowed to select its own

approach (e.g., process, methods, tools), constrained only by business require-

ments and organizational standards. As the project proceeds, the team self-

organizes to focus individual competency in a way that is most beneficial to the

project at a given point in time. To accomplish this, an agile team might conduct

brief daily team meetings to coordinate and synchronize the work that must be ac-

complished for that day.

Based on information obtained during these meetings, the team adapts its ap-

proach in a way that accomplishes an increment of work. As each day passes, con-

tinual self-organization and collaboration move the team toward a completed

software increment.

21.2.5 Coordination and Communication Issues

There are many reasons that software projects get into trouble. The scale of many

development efforts is large, leading to complexity, confusion, and significant diffi-

culties in coordinating team members. Uncertainty is common, resulting in a con-

tinuing stream of changes that ratchets the project team. Interoperability has

become a key characteristic ofmany systems. New software must communicate with

existing software and conform to predefined constraints imposed by the system or

product.

These characteristics of modern software—scale, uncertainty, and interoper-

ability—are facts of life. To deal with them effectively, a software engineering team

must establish effective methods for coordinating the people who do the work. To

accomplish this, mechanisms for formal and informal communication among

team members and between multiple teams must be established. Formal commu-

nication is accomplished through "writing, structured meetings, and other rela-

tively noninteractive and impersonal communication channels" [KRA95]. Informal

communication is more personal. Members of a software team share ideas on an

ad hoc basis, ask for help as problems arise, and interact with one another on a

daily basis.

638 PART FOUR MANAGING SOFTWARE PROJECTS

SafeHome

Team Structure

The scene: Doug Miller's office prior

to the initiation of the SafeHome software project.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman, Jamie

Lazar, and other members of the product software

engineering team.

The conversation:

Doug: Have you guys had a chance to look over the

preliminary info on SafeHome that marketing's prepared?

Vinod (nodding and looking at his

teammates): Yes. But we have a bunch of questions.

Doug: Let's hold on that for a moment. I'd like to talk

about how we're going to structure the team, who's

responsible for what. . . .

Jamie: I'm really into the agile philosophy, Doug. I think

we should be a self-organizing team.

Vinod: I agree. Given the tight time line and some of

the uncertainty, and that fact that we're all really

competent [laughs], that seems like the right way to go.

Doug: That's okay with me, but you guys know the drill.

Jamie (smiling and talking as if she were
reciting something): We make tactical decisions,

about who does what and when, but it's our responsibility

to get product out the door on time.

Vinod: And with quality.

Doug: Exactly. But remember there are constraints.

Marketing defines the software increments to be

produced—in consultation with us, of course.

Jamie: And?

Doug: And, we're going to use UML as our modeling

approach.

Vinod: But keep extraneous documentation to an

absolute minimum.

Doug: Who is the liaison with me?

Jamie: We decided that Vinod will be the tech lead

—

he's got the most experience, so Vinod is your liaison, but

feel free to talk to any of us.

Doug (laughing): Don't worry, I will.

21.3 The Product

A software project manager is confronted with a dilemma at the very beginning of a

software engineering project. Quantitative estimates and an organized plan are re-

quired, but solid information is unavailable. A detailed analysis of software require-

ments would provide necessary information for estimates, but analysis often takes

weeks or months to complete. Worse, requirements may be fluid, changing regularly

as the project proceeds. Yet, a plan is needed "now!"

Therefore, we must examine the product and the problem it is intended to solve

at the very beginning of the project. At a minimum, the scope of the product must be

established and bounded.

21.3.1 Software Scope

The first software project management activity is the determination of software

scope. Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or

business context, and what constraints are imposed as a result of the context?

CHAPTER 21 PROJECT MANAGEMENT 639

If you can't bound o

characteristic of the

sollv/are you intend to

build, list the character-

istic as a project risk

(Chapter 25).

To develop a reason-

able project plan, you

must decompose the

problem. Jhis can be

accomplished using a

list of functions, or

with use-coses, or for

agile work, user

stories.

Information objectives. What customer-visible data objects (Chapter 8) are

produced as output from the software? What data objects are required for input?

Function and performance. What functions does the software perform to

transform input data into output? Are there any special performance characteris-

tics to be addressed?

Software project scope must be unambiguous and understandable at the manage-

ment and technical levels. A statement of software scope must be bounded. That is,

quantitative data (e.g., number of simultaneous users, size of mailing list, maximum

allowable response time) are stated explicitly; constraints and/or limitations (e.g.,

product cost restricts memory size) are noted, and mitigating factors (e.g., desired

algorithms are well understood and available in C++) are described.

21.3.2 Problem Decomposition

Problem decomposition, sometimes called partitioning or problem elaboration, is an

activity that sits at the core of software requirements analysis (Chapters 7 and 8).

During the scoping activity no attempt is made to fully decompose the problem.

Rather, decomposition is applied in two major areas-. (1) the functionality that must

be delivered and (2) the process that will be used to deliver it.

Human beings tend to apply a divide-and-conquer strategy when they are con-

fronted with a complex problem. Stated simply, a complex problem is partitioned

into smaller problems that are more manageable. This is the strategy that applies as

project planning begins. Software functions, described in the statement of scope, are

evaluated and refined to provide more detail prior to the beginning of estimation

(Chapter 23). Because both cost and schedule estimates are functionally oriented,

some degree of decomposition is often useful.

As an example, consider a project that will build a new word-processing product.

Among the unique features of the product are continuous voice as well as keyboard

input, extremely sophisticated "automatic copy edit" features, page layout capability,

automatic indexing and table of contents, and others. The project manager must first

establish a statement of scope that bounds these features (as well as other more

mundane functions such as editing, file management, document production, and the

like). For example, will continuous voice input require that the product be "trained"

by the user? Specifically, what capabilities will the copy edit feature provide? Just

how sophisticated will the page layout capability be?

As the statement ofscope evolves, a first level of partitioning naturally occurs. The

project team learns that the marketing department has talked with potential cus-

tomers and found that the following functions should be part of automatic copy edit-

ing: (1) spell checking, (2) sentence grammar checking, (3) reference checking for

large documents (e.g., is a reference to a bibliography entry found in the list of entries

in the bibliography?), and (4) section and chapter reference validation for large

640 PART FOUR MANAGING SOFTWARE PROJECTS

documents. Each of these features represents a subfunction to be implemented in

software. Each can be further refined if the decomposition will make planning easier.

2±JL

An automated project

scheduling tool can be

used to create o "task

network" (Chapter

24). The network is

loaded with estimated

resource requirements,

stort/end dates, and

other pertinent data.

This resource loaded

network can then be

used for project

tracking and control.

Ths Process —
The framework activities (Chapter 2) that characterize the software process are ap-

plicable to all software projects. The problem is to select the process model that is

appropriate for the software to be engineered by a project team.

The project manager must decide which process model is most appropriate for

(1) the customers who have requested the product and the people who will do the

work, (2) the characteristics of the product itself, and (3) the project environment in

which the software team works. When a process model has been selected, the team

then defines a preliminary project plan based on the set of process framework ac-

tivities. Once the preliminary plan is established, process decomposition begins.

That is, a complete plan, reflecting the work tasks required to populate the frame-

work activities, must be created. We explore these activities briefly in the sections

that follow and present a more detailed view in Chapter 24.

21.4.1 Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each func-

tion to be engineered by the software team must pass through the set of framework

activities that have been defined for a software organization. Assume that the or-

ganization has adopted the following set of framework activities (Chapter 2): com-

munications, planning, modeling, construction, and deployment.

The team members who work on a product function will apply each of the frame-

work activities to it. In essence, a matrix similar to the one shown in Figure 21.1 is

created. Each major product function (the figure notes functions for the word-

Melding the

problem and
the process

COMMON PROCESS
FRAMEWORK ACTIVITIES

/f/i»/
///// }
/ f/ / <?w

Software Engineering Tasxs

Product Functions

Text input

Editing and formatting

>| %-<1 _

Paqe layout capability -

Automatic indexinq and TOC

File management

Document production

CHAPTER 21 PROJECT MANAGEMENT 641

3s

POINT
The process framework

establishes o skeleton

foi project planning. It

is adapted by

allocating a task set

that is appropriate to

the project.

processing software discussed earlier) is listed in the left-hand column. Framework

activities are listed in the top row. Software engineering work tasks (for each frame-

work activity) would be entered in the following row.
11 The job of the project man-

ager (and other team members) is to estimate resource requirements for each matrix

cell, start and end dates for the tasks associated with each cell, and work products

to be produced as a consequence of each task. These activities are considered in

Chapter 24.

21.4.2 Process Decomposition

A software team should have a significant degree of flexibility in choosing the soft-

ware process model that is best for the project and the software engineering tasks

that populate the process model once it is chosen. A relatively small project that is

similar to past efforts might be best accomplished using the linear sequential ap-

proach. If very tight time constraints are imposed and the problem can be heavily

compartmentalized, the RAD model is probably the right option. If the deadline is so

tight that full functionality cannot reasonably be delivered, an incremental strategy

might be best. Similarly, projects with other characteristics (e.g., uncertain require-

ments, breakthrough technology, difficult customers, significant reuse potential) will

lead to the selection of other process models. 5

Once the process model has been chosen, the process framework is adapted to it.

In every case, the generic framework discussed earlier—communication, planning,

modeling, construction, and deployment—can be used. It will work for linear mod-

els, for iterative and incremental models, for evolutionary models, and even for con-

current or component assembly models. The process framework is invariant and

serves as the basis for all software work performed by a software organization.

But actual work tasks do vary. Process decomposition commences when the proj-

ect manager asks, "How do we accomplish this framework activity?" For example, a

small, relatively simple project might require the following work tasks for the com-

munication activity:

1 . Develop list of clarification issues.

2. Meet with customer to address clarification issues.

3. jointly develop a statement of scope.

4. Review the statement of scope with all concerned.

5. Modify the statement of scope as required.

These events might occur over a period of less than 48 hours. They represent a

process decomposition that is appropriate for the small, relatively simple project.

4 It should be noted that work tasks must be adapted to the specific needs of the project.

5 Recall that project characteristics also have a strong bearing on the structure of the software team

(Section 21 .2.3)

642 PART FOUR MANAGING SOFTWARE PROJECTS

Now, we consider a more complex project, which has a broader scope and more
significant business impact. Such a project might require the following work tasks

for the communication activity:

1 . Review the customer request.

2. Plan and schedule a formal, facilitated meeting with the customer.

3. Conduct research to specify the proposed solution and existing approaches.

4. Prepare a "working document" and an agenda for the formal meeting.

5. Conduct the meeting.

6. Jointly develop mini-specs that reflect data, function, and behavioral features

of the software. Alternatively, develop use-cases that describe the software

from the user's point of view.

7. Review each mini-spec or use-case for correctness, consistency, and lack of

ambiguity.

8 . Assemble the mini-specs into a scoping document.

9. Review the scoping document or collection of use-cases with all concerned.

1

0.

Modify the scoping document or use-cases as required.

Both projects perform the framework activity that we call "communication," but the

first project team performed half as many software engineering work tasks as the

second.

21, 5 The Project

To manage a successful software project, we must understand what can go wrong

(so that problems can be avoided). In an excellent paper on software projects, John

Reel [REE99] defines 10 signs that indicate that an information systems project is in

jeopardy:

What are the

• signs that a

software project

is in jeopardy?

1 . Software people don't understand their customer's needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.

4. The chosen technology changes.

5. Business needs change [or are ill-defined],

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost [or was never properly obtained],

9. The project team lacks people with appropriate skills.

1

0.

Managers [and practitioners] avoid best practices and lessons teamed.

CHAPTER 21 PROJECT MANAGEMENT 643

Jaded industry professionals often refer (half-facetiously) to the 90-90 rule when

discussing particularly difficult software projects: The first 90 percent of a system ab-

sorbs 90 percent of the allotted effort and time. The last 10 percent takes the other

90 percent of the allotted effort and time [ZAH94], The seeds that lead to the 90-90

rule are contained in the signs noted in the preceding list.

"We don't hove time to stop for gas, we're already late.’

M. Cieron

But enough negativity! How does a manager act to avoid the problems just noted?

Reel [REE99] suggests a five-part common-sense approach to software projects:

1 . Start on the rightfoot. This is accomplished by working hard (very hard) to

understand the problem that is to be solved and then setting realistic objec-

tives and expectations for everyone who will be involved in the project. It is

reinforced by building the right team (Section 21 .2.3) and giving the team the

autonomy, authority, and technology needed to do the job.

2. Maintain momentum. Many projects get off to a good start and then slowly

disintegrate. To maintain momentum, the project manager must provide in-

centives to keep turnover of personnel to an absolute minimum, the team

should emphasize quality in every task it performs, and senior management

should do everything possible to stay out of the team’s way.6

3. Track progress. For a software project, progress is tracked as work products

(e.g., models, source code, sets of test cases) are produced and approved (us-

ing formal technical reviews) as part of a quality assurance activity. In addi-

tion, software process and project measures (Chapter 22) can be collected

and used to assess progress against averages developed for the software de-

velopment organization.

4. Make smart decisions. In essence, the decisions of the project manager and the

software team should be to "keep it simple." Whenever possible, decide to use

commercial off-the-shelf software or existing software components, decide to

avoid custom interfaces when standard approaches are available, decide to

identify and then avoid obvious risks, and decide to allocate more time than

you think is needed to complex or risky tasks (you’ll need every minute).

5. Conduct a postmortem analysis. Establish a consistent mechanism for ex-

tracting lessons learned for each project. Evaluate the planned and actual

schedules, collect and analyze software project metrics, get feedback from

team members and customers, and record findings in written form.

6 The implication of this statement is that bureaucracy is reduced to a minimum, extraneous meet-

ings are eliminated, and dogmatic adherence to process and project rules is eliminated. The team

should be self-organizing and autonomous.

644 PART FOUR MANAGING SOFTWARE PROJECTS

21.6 The W 5HH Principle

^ How do

• we define

key project

characteristics?

in an excellent paper on software process and projects, Barry Boehm (BOE96J states:

"you need an organizing principle that scales down to provide simple [project] plans

for simple projects." Boehm suggests an approach that addresses project objectives,

milestones and schedules, responsibilities, management and technical approaches,

and required resources. He calls it the WSHH principle, after a series of questions that

lead to a definition of key project characteristics and the resultant project plan:

Why is the system being developed? The answer to this question enables all parties

to assess the validity of business reasons for the software work. Stated in another

way, does the business purpose justify the expenditure of people, time, and money?

What will be done? The answer to this question establishes the task set that will

be required for the project.

When will it be done? The answer to this question helps the team to establish a

project schedule by identifying when project tasks are to be conducted and when

milestones are to be reached.

Who is responsibleforafunction? Earlier in this chapter, we noted that the role

and responsibility of each member of the software team must be defined. The an-

swer to this question helps accomplish this.

Where are they organizationally located? Not all roles and responsibilities reside

within the software team itself. The customer, users, and other stakeholders also

have responsibilities.

How will thejob be done technically and managerially? Once product scope is es-

tablished, a management and technical strategy for the project must be defined.

How much ofeach resource is needed? The answer to this question is derived by

developing estimates (Chapter 23) based on answers to earlier questions.

Boehm s WSHH principle is applicable regardless of the size or complexity of a soft-

ware project. The questions noted provide an excellent planning outline for the proj-

ect manager and the software team.

21.7 Critical Practices—
The Airlie Council 7 has developed a list of "critical software practices for performance-

based management." These practices are "consistently used by, and considered criti-

cal by, highly successful software projects and organizations whose 'bottom line'

performance is consistently much better than industry averages" IA1R99].

7 The Airlie Council is a team of software engineering experts chartered by the U S. Department of

Defense to help develop guidelines for best practices in software project management and software

engineering.

CHAPTER 21 PROJECT MANAGEMENT 645

Critical practices8 include: metrics-based project management (Chapter 22), empir-

ical cost and schedule estimation (Chapters 23 and 24), earned value tracking (Chap-

ter 24), formal risk management (Chapter 25), defect tracking against quality targets

(Chapter 26), and people-aware management (Section 21.2). Each of these critical

practices is addressed throughout Part 4 of this book.

Software Tools for Project Managers
The "tools" listed here are generic and apply to

a broad range of activities performed by

project managers. Specific project management tools

(e.g., scheduling tools, estimating tools, risk analysis tools)

are considered in later chapters).

Software Tools
%

Representative Tools9

The Software Program Manager's Network

(www.spmn.com) has developed a simple tool called

Project Control Panel which provides project managers

with a direct indication of project status. The tool has

"gauges" much like a dashboard and is implemented

with Microsoft Excel. It is available for download at

http://www.spmn.com/products_software.html.

Ganthead.com has developed a set of useful checklists for

project managers that can be downloaded from

http://www.gantthead.com/.

Ittoolkit.com (www.ittoolkit.com) provides "a collection of

planning guides, process templates and smart

worksheets" available on CD-ROM.

21 .,.8, Summary
Software project management is an umbrella activity within software engineering. It

begins before any technical activity is initiated and continues throughout the defini-

tion, development, and support of computer software.

Four P's have a substantial influence on software project management—people,
product, process, and project. People must be organized into effective teams, moti-

vated to do high-quality software work, and coordinated to achieve effective com-
munication. The product requirements must be communicated from customer to

developer, partitioned (decomposed) into their constituent parts, and positioned for

work by the software team. The process must be adapted to the people and the prob-

lem. A common process framework is selected, an appropriate software engineering

paradigm is applied, and a set ofwork tasks is chosen to get the job done. Finally, the

project must be organized in a manner that enables the software team to succeed.

The pivotal element in all software projects is people. Software engineers can be

organized in a number of different team structures that range from traditional

control hierarchies to "open paradigm" teams. A variety of coordination and com-
munication techniques can be applied to support the work of the team. In general,

8 Only those critical practices associated with "project integrity" are noted here.

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

646 PART FOUR MANAGING SOFTWARE PROJECTS

formal reviews and informal person-to-person communication have the most value

for practitioners.

The project management activity encompasses measurement and metrics, esti-

mation and scheduling, risk analysis, tracking, and control. Each of these topics is

considered in the chapters that follow.

References
[AIR991 Airiie Council, "Performance Based Management: The Program Manager's Guide Based

on the 16-Point Plan and Related Metrics," Draft Report, March 8, 1999.

1BAK721 Baker, F. T., "Chief Programmer Team Management of Production Programming," IBM

Systems Journal, vol. 1 1, no. 1. 1972, pp. 56-73.

[BOE96] Boehm, B
,
"Anchoring the Software Process," IEEE Software, vol. 13, no. 4, July 1996,

pp. 73-82.

[COCO 1 1
Cockburn, A., and J. Highsmith, "Agile Software Development: The People Factor," IEEE

Computer, vol. 34, no. 11, November 2001
,
pp. 131-133.

[CON931 Constantine, L., "Work Organization: Paradigms for Project Management and Organi-

zation," CACM, vol. 36, no. 10, October 1993, pp. 34-43.

ICOU80] Cougar. J., and R. Zawacki, Managing and Motivating Computer Personnel, Wiley. 1980.

[CUR88I Curtis, B„ et al„ "A Field Study of the Software Design Process for Large Systems," IEEE

Trans. Software Engineering, vol. SE-31,no. 11, November 1988, pp. 1268-1287.

[CUR94| Curtis, B. ,
et at.. People Management Capability Maturity Model, Software Engineering In-

stitute, 1994.

[DEM98] DeMarco, T., and T. Lister, Peopleware, 2nd ed., Dorset House, 1998.

IEDG95) Edgemon, J., “Right Stuff: How to Recognize it When Selecting a Project Manager," Ap-

plication Development Trends, vol. 2, no. 5, May 1995, pp. 37-42.

[FER98] Ferdinandi, P L„ "Facilitating Communication," IEEE Software. September 1998.

pp. 92-96.

(JAC98| Jackman, M„ "Homeopathic Remedies for Team Toxicity," IEEE Software, July 1998,

pp. 43-45.

[KRA951 Kraul, R., and L. Streeter, "Coordination in Software Development," CACM, vol. 38,

no. 3, March 1995, pp. 69-81.

[MAN81] Mantei, M., "The Effect of Programming Team Structures on Programming Tasks,"

CACM, vol. 24, no. 3, March 1981
,
pp. 106-1 13.

(PAG85) Page-Jones, M„ Practical Project Management, Dorset House, 1 985, p. vii.

[REE99] Reel, J. S., "Critical Success Factors in Software Projects," IEEE Software, May, 1999,

pp. 18-23.

[WEI86J Weinberg, G., On Becoming a Technical Leader, Dorset House, 1986

1W1T941 Whitaker, K-„ Managing Software Maniacs, Wiley, 1994.

[ZAH94] Zahniser, R., "Timeboxing for Top Team Performance," Software Development, March

1 994, pp. 35-38.

Problems and Points to Pqndeb——
21.1. The Software Engineering Institute's people management capability maturity model (PM-

CMM) takes an organized look at "key practice areas" that cultivate good software people. Your

instructor will assign you one KPA for analysis and summary.

2

1

.2 . Describe three real-life situations in which the customer and the end-user are the same.

Describe three situations in which they are different.

21 .3 . Based on information contained in this chapter and your own experience, develop 10

commandments" for empowering software engineers. That is, make a list of 10 guidelines that

will lead to software people who work to their full potential.

CHAPTER 21 PROJECT MANAGEMENT 647

21 .4 . The decisions made by senior management can have a significant impact on the effec-
tiveness of a software engineering team. Provide five examples to illustrate that this is true.

21 .5 . You have been appointed a project manager for a major software products company.
Your job is to manage the development of the next generation version of its widely used word-
processing software. Because new revenue must be generated, tight deadlines have been es-
tablished and announced. What team structure would you choose and why? What software
process model(s) would you choose and why?

2 1 .6. Do a first level functional decomposition of the page layout function discussed briefly in
Section 2 1 .3.2

21 . 7 . You have been asked to develop a small application that analyzes each course offered by
a university and reports the average grade obtained in the course (for a given term), Write a
statement of scope that bounds this problem.

21 .8 . You have been appointed a project manager for a small software products company. Your
job is to build a breakthrough product that combines virtual reality hardware with state-of-the-
art software. Because competition for the home entertainment market is intense, there is sig-
nificant pressure to get the job done. What team structure would you choose and why? What
software process model(s) would you choose and why?

2

1

.9 . You have been appointed a software project manager for a company that services the ge-
netic engineering world. Your job is to manage the development of a new software product that
will accelerate the pace of gene typing. The work is R&D oriented, but the goal is to produce a
product within the next year. What team structure would you choose and why? What software
process model (s) would you choose and why?

21.10. Review a copy of Weinberg’s book [WE186] and write a two- or three-page summary of
the issues that should be considered in applying the MOI model.

21.11. You have been appointed a project manager within an information systems organiza-
tion. Youi job is to build an application that is quite similar to others your team has built, al-
though this one is larger and more complex. Requirements have been thoroughly documented
by the customer. What team structure would you choose and why? What software process
model(s) would you choose and why?

JEII.RTHER Readings and Information Sources
The Project Management institute

(Guide to the Project Management Body of Knowledge, PMI,
2001) covers all important aspects of project management Murch [Project 'Management: Best
Practicesfor IT Professionals. Prentice-Hall, 2000) teaches basic skills and provides detailed guid-
ance for all phases of an IT project. Lewis [Project Managers Desk Reference, McGraw-Hill, 1999)
presents a 16-step process for planning, monitoring, and controlling any type of project Mc-
Connell (Professional Software Development, Addison-Wesley, 2004) offers" pragmatic advice for
achieving "shorter schedules, higher quality products, and more successful projects."

An excellent four-volume series written by Weinberg [Quality Software Management, Dorset
House, 1992, 1993, 1994, 1996) introduces basic systems thinking and management concepts;
explains how to use measurements effectively; and addresses "congruent action," the ability to
establish "fit" between the manager's needs, the needs of technical staff, and the needs of the
business. It will provide both new and experienced managers with useful information. Futreli
and his colleagues (Quality Software Project Management, Prentice-Hall, 2002) present a volumi-
nous treatment of project management.

Phillips (IT Project Management: On Track from Start to Finish, McGraw-Hill/
Osborne, 2002), Charvat (Project Management Nation, Wiley, 2002), Schwalbe

(Information
Technology Project Management, second edition, Course Technology, 2001) and Hoitsnider
and Jaffe (IT Manager’s Handbook, Morgan Kaufmann Publishers, 2000) are representative of
the many books that have been written on software project management. Brown and his

648 PART FOUR MANAGING SOFTWARE PROJECTS

colleagues (AntiPaltems in Project Management, Wiley, 2000) discuss what not to do during

the management of a software project

Brooks (The Mythical Man-Month, Anniversary Edition, Addison-Wesley, 1995) has updated

his classic book to provide new insight into software project and management issues. Mc-

Connell (Software Project Survival Guide, Microsoft Press, 1 997) presents excellent pragmatic

guidance for those who must manage software projects, Purba and Shah (How to Manage a Sue

cessful Software Project, second edition, Wiley, 2000) present a number of case studies that indi-

cate why some projects succeed and others fail. Bennatan (On Time IVfthin Budget, third edition,

Wiley, 2000) presents useful tips and guidelines for software project managers.

It can be argued that the most important aspect of software project management is people

management. Cockburn (Agile Software Development, Addison-Wesley, 2002) presents one of the

best discussions of software people written to date. DeMarco and Lister JDEM98] have written

the definitive book on software people and software projects. In addition, the following books

on this subject have been published in recent years and are worth examining:

Beaudouin-Lafon, M., Computer Supported Cooperative Work, Wiley-Liss, 1999.

Carmel, E„ Global Software Teams: Collaborating Across Bordets and TimeZones, Prentice Hall,

1999.

Constantine, L„ Peopleware Papers: Notes on the Human Side ofSofhvare, Prentice-Hall, 200 1

.

Humphrey, W. S., Managing Technical People: Innovation, Teamwork, and the Software Process,

Addison-Wesley, 1997.

Humphrey, W. S., Introduction to the Team Software Process, Addison-Wesley, 1 999.

Jones, P. H„ Handbook ofTeam Design: A Practitioner’s Guide to Team Systems Development,

McGraw-Hill, 1997.

Karolak, D. S„ Global Software Development: Managing Virtual Teams and Environments, IEEE

Computer Society, 1998.

Ensworth (The Accidental Project Manager. Wiley, 2001) provides much useful guidance to

those who must survive "the transition from techie to project manager. Another excellent book

by Weinberg (WEI86] is must reading for every project manager and every team leader. It will

give you insight and guidance that will enable you to do your job more effectively.

Even though they do not relate specifically to the software world and sometimes suffer from

over-simplification and broad generalization, best-selling "management' books by Bossidy (Ex-

ecution: The Discipline ofGetting Things Done. Crown Publishing, 2002), Drucker (Management

Challengesfor the 2 1st Century, Harper Business, 1999), Buckingham and Coffman (First, Break

All the Pules- What the World's Greatest Managers Do Differently, Simon and Schuster, 1999) and

Christensen (The Innovator's Dilemma. Harvard Business School Press, 1997) emphasize "new

rules" defined by a rapidly changing economy. Older titles such as Who Moved My Cheese?, The

One-Minute Manager, and In Search ofExcellence continue to provide valuable insights that can

help you to manage people and projects more effectively.

A wide variety of information sources on software project management is available on the

Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

Metrics for Process
and Projects

CHAPTER

Key
Concepts
DRE

metrics

function-oriented

object-oriented

private

project

process

public

quality

siie-oriented

use-cose

WebApp

metrics baseline

metrics programs

SSPI

22

M easurement enables us to gain insight into the process and the project

by providing a mechanism for objective evaluation. Lord Kelvin once

said:

When you can measure what you ate speaking about and express it in numbers, you

know something about it; but when you cannot measure, when you cannot express it

in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the be-

ginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage

of a science.

The software engineering community has taken Lord Kelvin's words to heart. But

not without frustration and more than a little controversy!

Measurement can be applied to the software process with the intent of im-

proving it on a continuous basis. Measurement can be used throughout a soft-

ware project to assist in estimation, quality control, productivity assessment, and

project control. Finally, measurement can be used by software engineers to help

assess the quality of work products and to assist in tactical decision-making as a

project proceeds (Chapter 15).

in their guidebook on software measurement, Park, Goethert, and Florae

[PAR96] note the reasons that we measure; (1) to characterize in an elfort to gain

an understanding "of processes, products, resources, and environments, and to

establish baselines for comparisons with future assessments"; (2) to evaluate "to

detennine status with respect to plans"; (3) to predict by "gaining understandings

What is it? Software process and

project metrics are quantitative

measures that enable software engi-

neers to gain insight into the efficacy

of the software process and the projects that are

conducted using the process as a framework.

Basic quality and productivity data are collected.

These data are then analyzed, compared

against past averages, and assessed to deter-

mine whether quality and productivity improve-

ments have occurred. Metrics are also used to

pinpoint problem areas so that remedies can be

developed and the software process can be im-

proved.

Who does it? Software metrics are analyzed

and assessed by software managers. Measures

are often collected by software engineers.

Why is it important? If you don't measure,

judgment can be based only on subjective eval-

uation. With measurement, trends (either good

or bad) can be spotted, belter estimates can be

made, and true improvement can be accom-

plished over time.

What are the steps? Begin by defining a lim-

ited set of process and project measures that are

easy to collect. These measures are often nor-

malized using either size- or function-oriented

metrics. The result is analyzed and compared to

649

650 PART FOUR MANAGING SOFTWARE PROJECTS

past averages for similar projects performed
within the organization. Trends are assessed
and conclusions are generated.

What is the work product? A set of software

metrics that provides insight into the process and
an understanding of the project.

How do I ensure that I've done it right?
By applying a consistent, yet simple measure-
ment scheme that is never used to assess, re-

ward, or punish individual performance.

12ul

%
POINT

Process metrics have

long-term impact. Their

intent is to improve the

process itself. Project

metrics often

contribute to the

development of

process metrics.

of relationships among processes and products and building models of these rela-

tionships"; and (4) to improve by "identifying) roadblocks, root causes, inefficiencies,

and other opportunities for improving product quality and process performance."
Measurement is a management tool. If conducted properly, it provides a project

manager with insight. And as a result, it assists the project manager and the software
team in making decisions that will lead to a successful project.

-Metrics in the Process and Project Domains

Process metrics are collected across all projects and over long periods of time. Their

intent is to provide a set ofprocess indicators that lead to long-term software process

improvement. Project metrics enable a software project manager to (1) assess the sta-

tus of an ongoing project, (2) track potential risks, (3) uncover problem areas before
they go "critical," (4) adjust work flow or tasks, and (5) evaluate the project team's
ability to control quality of software work products.

Measures that are collected by a project team and converted into metrics for use
during a project can also be transmitted to those with responsibility for software
process improvement. For this reason, many of the same metrics are used in both
the process and project domain.

22.1.1 Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the
process, develop a set of meaningful metrics based on these attributes, and then use
the metrics to provide indicators that will lead to a strategy for improvement. But be-

fore we discuss software metrics and their impact on software process improvement,
it is important to note that process is only one of a number of "controllable factors

in improving software quality and organizational performance" [PAU94J.

Referring to Figure 22. 1 ,
process sits at the center of a triangle connecting three

factors that have a profound influence on software quality and organizational per-

formance. The skill and motivation of people has been shown [BOE81] to be the sin-

gle most influential factor in quality and performance. The complexity of the product
can have a substantial impact on quality and team performance. The technology

(i.e., the software engineering methods and tools) that populates the process also

has an impact.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 651

Determinants

lor software

quality and
organizational

effectiveness

(adapted from

[PAU94])

Product

%
POINT

Hie skill and

motivation of the

software people doing

the work ore the most

important factors that

influence software

quality.

What is the

• difference

between private

and public uses

for software

metrics?

In addition, the process triangle exists within a circle of environmental conditions

that include the development environment (e.g., CASE tools), business conditions

(e.g., deadlines, business rules), and customer characteristics (e.g., ease of commu-

nication and collaboration).

We measure the efficacy of a software process indirectly. That is, we derive a set

of metrics based on the outcomes that can be derived from the process. Outcomes

include measures of errors uncovered before release of the software, defects deliv-

ered to and reported by end-users, work products delivered (productivity), human et-

fort expended, calendar time expended, schedule conformance, and other measuies.

We also derive process metrics by measuring the characteristics of specific software

engineering tasks. For example, we might measure the effort and time spent per-

forming the generic software engineering activities described in Chapter 2.

"Software metrics let you know when to laugh and when to cry."

Tom Gilb

Grady [GRA92] argues that there are "private and public" uses for different types

of process data. Because it is natural that individual software engineers might be

sensitive to the use of metrics collected on an individual basis, these data should be

private to the individual and serve as an indicator for the individual only. Examples

of private metrics include defect rates by individual, defect rates by software compo-

nent, and errors found during development.

The "private process data" philosophy conforms well with the personal software

process approach (Chapter 2) proposed by Humphrey [HUM95]. Humphrey recognizes

652 PART FOUR MANAGING SOFTWARE PROJECTS

that software process improvement can and should begin at the individual level. Pri-

vate process data can serve as an important driver as the individual software engineer
works to improve.

Some process metrics are private to the software project team but public to all

team members. Examples include defects reported for major software functions
(that have been developed by a number of practitioners), errors found during formal
technical reviews, and lines of code or function points per component or function. 1

These data are reviewed by the team to uncover indicators that can improve team
performance.

Public metrics generally assimilate information that originally was private to in-

dividuals and teams. Project level defect rates (absolutely not attributed to an indi-

vidual), effort, calendar times, and related data are collected and evaluated in an
attempt to uncover indicators that can improve organizational process performance.

Software process metrics can provide significant benefit as an organization works
to improve its overall level of process maturity. However, like all metrics, these can
be misused, creating more problems than they solve. Grady [GRA92J suggests a

"software metrics etiquette" that is appropriate for both managers and practitioners

as they institute a process metrics program:

What

* guidelines

should be applied

when we collect

software metrics?

• Use common sense and organizational sensitivity when interpreting

metrics data.

• Provide regular feedback to the individuals and teams who collect measures
and metrics.

• Don't use metrics to appraise individuals.

• Work with practitioners and teams to set clear goals and metrics that will be
used to achieve them.

• Never use metrics to threaten individuals or teams.

• Metrics data that indicate a problem area should not be considered

"negative." These data are merely an indicator for process improvement.

• Don't obsess on a single metric to the exclusion of other important metrics.

As an organization 'becomes more comfortable with the collection and use of

process metrics, the derivation of simple indicators gives way to a more rigorous ap-
proach called statistical software process improvement (SSPI). In essence, SSPI uses
software failure analysis to collect information about all errors and defects2 encoun-
tered as an application, system, or product is developed and used.

1 Lines of code and function point metrics are discussed in Sections 22.2. 1 and 22.2.2

2 in this book, an error is delined as some flaw in a software engineering work product that is un-
covered before the software is delivered to the end-user. A defect is a flaw that is uncovered after

delivery to the end-user. It should be noted that others do not make this distinction. Further dis-

cussion is presented in Chapter 26.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 653

How should

• we use

metrics during the

project itself?

22. 1 .2 Project Metrics

Unlike software process metrics that are used for strategic purposes, software proj-

ect metrics are tactical. That is, project metrics and the indicators derived from them

are used by a project manager and a software team to adapt project workflow and

technical activities.

The first application of project metrics on most software projects occurs during

estimation. Metrics collected from past. projects are used as a basis from which ef-

fort and time estimates are made for current software work. As a project proceeds,

measures of effort and calendar time expended are compared to original estimates

(and the project schedule j. The project manager uses these data to monitor and con-

trol progress.

As technical work commences, other project metrics begin to have significance.

Production rates represented in terms of models created, review hours, function

points, and delivered source lines are measured, in addition, errors uncovered dur-

ing each software engineering task are tracked. As the software evolves from re-

quirements into design, technical metrics (Chapter 1 5) are collected to assess design

quality and to provide indicators that will influence the approach taken to code gen-

eration and testing.

The intent of project metrics is twofold. First, these metrics are used to minimize

the development schedule by making the adjustments necessary to avoid delays and

mitigate potential problems and risks. Second, project metrics are used to assess

product quality on an ongoing basis and, when necessary, modify the technical ap-

proach to improve quality.

As quality improves, defects are minimized, and as the defect count goes down,

the amount of rework required during the project is also reduced. This leads to a re-

duction in overall project cost.

SafeHome

Establishing a Metrics Approach

The scene: Doug Miller's office as

the SafeHome software project is about to begin.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman and Jamie

Lazar, members of the product software engineering team.

The conversation:

Doug: Before we start work on this project, I'd like you

guys to define and collect a set of simple metrics. To start,

you'll have to define your goals.

Vinod (frowning): We've never done that before,

and . . .

Jamie (interrupting): And based on the timeline

management has been talking about, we'll never have the

time. What good are metrics anyway?

Doug (raising his hand to stop the onslaught):

Slow down and take a breath, guys. The fact that we've

never done it before is all the more reason to start now,

and the metrics work I'm talking about shouldn't take

much time at all . . . in fact, it just might save us time.

Vinod: How?

Doug: Look, we're going to be doing a lot more in-

house software engineering as our products get more

654 PART FOUR MANAGING SOFTWARE PROJECTS

intelligent, become Web enabled, all that . . . and we

need to understand the process we use to build software

. . . and improve it so we can build software better. The

only way to do that is to measure,

Jamie: But we're under time pressure, Doug. I'm not in

favor of more paper pushing ... we need the time to do

our work, not collect data.

Doug (calmly): Jamie, an engineer's work involves

collecting data, evaluating it, and using the results to

improve the product and the process. Am I wrong?

Jamie: No, but . .

Doug: What if we hold the number of measures we

collect to no more than five or six and focus on quality?

Vinod: No one can argue against high quality .

Jamie: True . . . but, I don't know, I still think this isn't

necessary.

Doug: I'm going to ask you to humor me on this one.

How much do you guys know about software metrics?

Jamie (looking at Vinod): Not much.

Doug: Here are some Web refs . . . spend a few hours

getting up to speed.

Jamie (smiling): I thought you said this wouldn't take

any time.

Doug: Time you spend learning is never wasted ... go

do it and then we'll establish some goals, ask a few

questions, and define the metrics we need to collect.

22.2 Software Measurement

In Chapter 1 5, we noted that software measurement can be categorized in two ways:

(1) direct measures of the software process (e.g. , cost and effort applied) and product

(e.g., lines ofcode (LOC) produced, execution speed, and defects reported over some

set period of time), and (2) indirect measures of the product that include functional-

ity, quality, complexity, efficiency, reliability, maintainability, and many other "-abilities"

discussed in Chapter 15.

"Nol everything that tan be counted counts, and not everything that counts con be counted.”

Albert Einstein

Become many factors

affect software work,

don't use metrics to

compare individuals or

teams.

Project metrics can be consolidated to create process metrics that are public to

the software organization as a whole. But how does an organization combine met-

rics that come from different individuals or projects?

To illustrate, we consider a simple example. Individuals on two different project

teams record and categorize all errors that they find during the software process.

Individual measures are then combined to develop team measures. Team A found

342 errors during the software process prior to release. Team B found 184 errors.

All other things being equal, which team is more effective in uncovering errors

throughout the process? Because we do not know the size or complexity of the

projects, we cannot answer this question. However, if the measures are normal-

ized, it is possible to create software metrics that enable comparison to broader or-

ganizational averages. Both size- and function-oriented metrics are normalized in

this manner.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 655

22.2.1 Size-Oriented Metrics

POINT
Size-oriented metrics

ore widely used, but

debote about their

validity and

applicability continues.

Size-oriented software metrics are derived by normalizing quality and/or productiv-

ity measures by considering the size of the software that has been produced. If a soft-

ware organization maintains simple records, a table of size-oriented measures, such

as the one shown in Figure 22.2, can be created. The table lists each software de-

velopment project that has been completed over the past few years and correspon-

ding measures for that project. Referring to the table entry (Figure 22.2) for project

alpha: 12, 100 lines of code were developed with 24 person-months of effort at a cost

of $168,000. It should be noted that the effort and cost recorded in the table repre-

sent all software engineering activities (analysis, design, code, and test), not just

coding. Further information for project alpha indicates that 365 pages of documen-

tation were developed, 134 errors were recorded before the software was released,

and 29 defects were encountered after release to the customer within the first year

of operation. Three people worked on the development ofsoftware for project alpha.

To develop metrics that can be assimilated with similar metrics from other proj-

ects, we choose lines ofcode as our normalization value. From the rudimentary data

contained in the table, a set ofsimple size-oriented metrics can be developed for each

project: errors per KLOC (thousand lines of code), defects per KLOC, $ per KLOC,

pages ofdocumentation per KLOC. In addition, other interesting metrics can be com-

puted: errors per person-month, KLOC per person-month, $ per page ofdocumentation.

Size-oriented metrics are not universally accepted as the best way to measure the

software process [JON86]. Most of the controversy swirls around the use of lines of

code as a key measure. Proponents of the LOC measure claim that LOC is an "arti-

fact" of all software development projects that can be easily counted, that many ex-

isting software estimation models use LOC or KLOC as a key input, and that a large

body of literature and data predicated on LOC already exists. On the other hand,

Si2e-oriented

metrics

Project LOC Effort $(0O0) Pp. doc.

alpha

beta

gamma

12,100
27.200
20.200

24
62
43

168
440
314

365
1224
1050

134
321
256

29
86
64

3
5

6

656 PART FOUR MANAGING SOFTWARE PROJECTS

opponents argue that LOC measures are programming language dependent, that

when productivity is considered, they penalize well-designed but shorter programs,

that they cannot easily accommodate nonprocedural languages, and that their use

in estimation requires a level of detail that may be difficult to achieve (i.e.
,
the plan-

ner must estimate the LOC to be produced long before analysis and design have been

completed).

22.2.2 Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by

the application as a normalization value. The most widely used function-oriented

metric is thefunction point (FP), Computation of the function point is based on char-

acteristics of the software's information domain and complexity. The mechanics of

FP computation has been discussed in Chapter 15.
!

The function point, like the LOC measure, is controversial. Proponents claim

that FP is programming language independent, making it ideal for applications us-

ing conventional and nonprocedural languages, and that it is based on data that

are more likely to be known early in the evolution of a project, making FP more

attractive as an estimation approach. Opponents claim that the method requires

some "sleight of hand" in that computation is based on subjective rather than ob-

jective data, that counts of the information domain (and other dimensions) can be

difficult to collect after the fact, and that FP has no direct physical meaning—it's

just a number.

22.2.3 Reconciling LOC and FP Metrics

The relationship between lines of code and function points depends upon the pro-

gramming language that is used to implement the software and the quality' of the de-

sign. A number of studies have attempted to relate FP and LOC measures. To quote

Albrecht and Gaffney [ALB83j:

The thesis of this work is that the amount of function to be provided by the application

(program) can be estimated from the itemization of the major components1 of data to be

used or provided by it. Furthermore, this estimate of function should be correlated to both

the amount of LOC to be developed and the development effort needed.

The following table
5 [QSM02] provides rough estimates of the average number of

lines of code required to build one function point in various programming languages:

3 See Section 15.3.1 for a detailed discussion of FP computation.

4 It is important to note that "the itemization of major components" can be interpreted in a variety of

ways. Software engineers who work in an object-oriented development environment use the num-

ber of classes or objects as the dominant size metric. A maintenance organization might view proj-

ect size in terms of the number of engineering change orders (Chapter 27). An information systems

organization might view the number of business processes affected by an application.

5 Used with permission of Quantitative Software Management (www.qsm.com), copyright 2002.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 657

Programming
Language LOC per Function point

Access

Avg.

35

Median

38

Low

15

High

47
Ado 154 — 104 205
APS 86 83 20 184

ASP 69 62 — 32 127
Assembler 337 315 91 694
c 162 109 33 704
C+ + 66 53 29 178

Clipper 38 39 27 70
COBOL 77 77 14 400
Cool;Gen/IEF 38 31 10 180

Culprit 51 — — —
DBase IV 52 — — —
Easytrieve+ 33 34 25 41

Excel47 46 — 31 63
Focus 43 42 32 56
FORTRAN — — — —
FoxPro 32 35 25 35
Ideal 66 52 34 203
IEF/Cool:Gen 38 31 10 180
Informix 42 31 24 57
Java 63 53 77 —
JovoScript 58 63 42 75
JCL 91 123 26 150

JSP •59 — — —
Lotus Notes 21 22 15 25
Mantis 71 27 22 250
Mapper 118 81 16 245
Natural 60 52 22 141

Oracle 30 35 4 217
PeopleSoft 33 32 30 40
Perl 60 — — —
PL/I 78 67 22 263
PowerBuilder 32 31 1

1

105

REXX 67 — — —
RPG ll/lll 61 49 24 155
SAS 40 41 33 49
Smalltalk 26 19 10 55
SOL 40 37 7 1 10
VBScript36 34 27 50 —
Visual Basic 47 42 16 158

A review of these data indicates that one LOC ofC++ provides approximately 2.4 times

the "functionality" (on average) as one LOC of C. Furthermore, one LOC of a Smalltalk

provides at least four times the functionality of a LOC for a conventional programming

language such as Ada, COBOL, or c. Using the information contained in the table, it is

possible to "backfire" [JON98] existing software to estimate the number of function

points, once the total number of programming language statements are known.

658

It is not uncommon for

multiple scenario

scripts to mention the

same functionality or

data objects.

Therefore, be careful

when using script

counts.

Classes can my in

size and complexity.

Therefore, it's north

considering classifying

class counts by size

and complexity.

PART FOUR MAN'AGINS SOFTWARE FROJECTS

Function points and LOC-based metrics have been found to be relatively accurate

predictors of software development effort and cost. However, to use LOC and FP for

estimation (Chapter 23), a historical baseline of information must be established.

Within the context of process and project metrics, we are concerned primarily

with productivity and quality—measures of software development "output" as a

function of effort and time applied and measures of the "fitness for use" of the work

products that are produced. For process improvement and project planning pur-

poses, our interest is historical. What was software development productivity on past

projects? What was the quality of the software that was produced? How can past pro-

ductivity and quality data be extrapolated to the present? How can it help us improve

the process and plan new projects more accurately?

22.2.4 Object-Oriented Metrics

Conventional software project metrics (LOC or FP) can be used to estimate object-

oriented software projects. However, these metrics do not provide enough granular-

ity for the schedule and effort adjustments that are required as we iterate through an

evolutionary or incremental process. Lorenz and Kidd |LOR94] suggest the following

set of metrics for OO projects:

Number of scenario scripts. A scenario script (analogous to use-cases dis-

cussed throughout Parts 2 and 3 of this book) is a detailed sequence of steps that de-

scribes the interaction between the user and the application. The number ofscenario

scripts is directly correlated to the size of the application and to the number of test

cases that must be developed to exercise the system once it is constructed

Number of key classes. Key classes are the "highly independent components"

[LOR94] that are defined early in object-oriented analysis (Chapter 8).
6 Because key

classes are central to the problem domain, the number of such classes is an indica-

tion of the amount of effort required to develop the software and also an indication

of the potential amount of reuse to be applied during system development.

Number of support classes. Support classes are required to implement the system

but are not immediately related to the problem domain. Examples might be U1 classes,

database access and manipulation classes, and computation classes. In addition, sup-

port classes can be developed for each of the key classes. The number of support

classes is an indication of the amount of effort required to develop the software and an

indication of the potential amount of reuse to be applied during system development.

Average number of support classes per key class. In general, key classes are

known early in the project. Support classes are defined throughout. If the average

number of support classes per key class were known for a given problem domain,

estimating (based on total number of classes) would be much simplified. Lorenz and

6 Key classes were referred to as analysis classes in Part 2 of this book.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 659

Kidd suggest that applications with a GUI have between two and three times the

number of support classes as key classes. Non-GUI applications have between one
and two times the number of support classes as key classes.

Number of subsystems. A subsystem is an aggregation of classes that support a

function that is visible to the end-user of a system. Once subsystems are identified,

it is easier to lay out a reasonable schedule in which work on subsystems is partitioned

among project staff.

To be used effectively in an object-oriented software engineering environment,

metrics similar to those noted above must be collected along with project measures
such as effort expended, errors and defects uncovered, and models or documenta-
tion pages produced. As the database grows (after a number of projects have been
completed), relationships between object-oriented measures and project measures
will provide metrics that can aid in project estimation.

22.2.5 Use-Case Oriented Metrics

It would seem reasonable to apply the use-case 7 as a normalization measure simi-

lar to LOC or FP. Like FP, the use-case is defined early in the software process, al-

lowing it to be used for estimation before significant modeling and construction

activities are initiated. Use-cases describe (indirectly, at least) user-visible functions

and features that are basic requirements for a system. The use-case is independent

of programming language. In addition, the number of use-cases is directly propor-

tional to the size of the application in LOC and to the number of test cases that will

have to be designed to fully exercise the,application.

Because use-cases can be created at vastly different levels of abstraction, there

is no standard size for a use-case. Without a standard measure of what a use-case

is, its application as a normalization measure (e.g., effort expended per use-case) is

suspect. Although a number of researchers (e.g., [SMI99D, have attempted to derive

use-case metrics, much work remains to be done.

22.2.6 Web Engineering Project Metrics

The objective of all Web engineering projects (Part 3 of this book) is to build a Web
application (WebApp) that delivers a combination of content and functionality to the

end-user. Measures and metrics used for traditional software engineering projects

are difficult to translate directly to WebApps. Yet, a Web engineering organization

should develop a database that allows it to assess its internal productivity and qual-

ity over a number of projects. Among the measures that can be collected are;

Number of static Web pages. Web pages with static content (i.e., the end-user
has no control over the content displayed on the page) are the most common of all

WebApp features. These pages represent low relative complexity and generally

7 Use-cases are discussed throughout Parts 2 and 3 of this book

660 PART FOUR MANAGING SOFTWARE PROJECTS

require less effort to construct than dynamic pages. This measure provides an indi-

cation of the overall size of the application and the effort required to develop it.

Number of dynamic Web pages. Web pages with dynamic content (i.e., end-

user actions result in customized content displayed on the page) are essential in all

e-commerce applications, search engines, financial applications, and many other

WebApp categories. These pages represent higher relative complexity and require

more effort to construct than static pages. This measure provides an indication of

the overall size of the application and the effort required to develop it.

Number of internal page links. Internal page links are pointers that provide a

hyperlink to some other Web page within the WebApp. This measure provides an

indication of the degree of architectural coupling within the WebApp. As the num-

ber of page links increases, the effort expended on navigational design and con-

struction also increases.

Number of persistent data objects. One or more persistent data objects

(e.g„ a database or data file) may be accessed by a WebApp. As the number of per-

sistent data objects grows, the complexity of the WebApp also grows, and effort to

implement it increases proportionally.

Number of external systems interfaced. WebApps must often interlace with

"backroom" business applications. As the requirement for interfacing grows, sys-

tem complexity and development effort also increase.

Number of static content objects. Static content objects encompass static

text-based, graphical, video, animation, and audio information that are incorpo-

rated within the WebApp. Multiple content objects may appear on a single Web

page.

Number of dynamic content objects. Dynamic content objects are gener-

ated based on end-user actions and encompass internally generated text-based,

graphical, video, animation, and audio information that are incorporated within

the WebApp. Multiple content objects may appear on a single Web page.

Number of executable functions. An executable function (e.g., a script or ap-

plet) provides some computational service to the end-user. As the numbei of exe-

cutable functions increases, modeling and construction effort also increase.

Each of the measures noted above can be determined at a relatively early stage of

the Web engineering process.

For example, we can define a metric that reflects the degree of end-user cus-

tomization that is required for the WebApp and correlate it to the effort expended on

the WebE project and/or the errors uncovered as reviews and testing are conducted.

To accomplish this, we define

Nsp
= number of static Web pages

Ndp = number of dynamic Web pages

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 661

Then,

Customization index, C = Ndp/(Ndp + N^,)

The value of C ranges from 0 to 1 . As C grows larger the level of WebApp cus-

tomization becomes a significant technical issue.

Similar Web application metrics can be computed and correlated with project

measures such as effort expended, errors and defects uncovered, and models or doc-

umentation pages produced. As the database grows (after a number of projects have

been completed), relationships between the WebApp measures and project mea-

sures will provide indicators that can aid in project estimation.

Project and Process Metrics

Objective: To assist in the definition,

collection, evaluation, and reporting of

software measures and metrics.

Mechanics: Each tool varies in its application, but all

provide mechanisms for collecting and evaluating data

that lead to the computation of software metrics.

Representative Tools8

Function Point WORKBENCH, developed by Charismatek

(www.charismatek.com.au), offers a wide array of FP-

orie'nted metrics.

MetricCenter, developed by Distributive Software

(www.distributive.com), supports automated data

collection, analysis, chart formatting, report

generation, and other measurement tasks.

Software Tools
\

PSM Insight, developed by Practical Software and Systems

Measurement (www.psmsc.com), assists in the creation

and subsequent analysis of a project measurement

database.

SUM tool set, developed by QSM (www.qsm.com),

provides a comprehensive set of metrics and estimation

tools.

SPR tool set, developed by Software Productivity Research

(www.spr.com), offers a comprehensive collection of

FP-oriented tools.

TychoMetrics, developed by Predicate Logic, Inc.

(www.predicate.com), is a tool suite for management

metrics collection and reporting.

22,3 Metrics for Soeimuie Duality

The overriding goal of software engineering is to produce a high-quality system, ap-

plication, or product within a timeframe that satisfies a market need. To achieve this

goal, software engineers must apply effective methods coupled with modern tools

within the context of a mature software process. In addition, a good software engi-

neer (and good software engineering managers) must measure if high quality is to

be realized.

Private metrics collected by individual software engineers are assimilated to

provide project-level results. Although many quality measures can be collected, the

8 Tools noted here do not represent an endorsement.but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

662 PART FOUR MANAGING SOFTWARE PROJECTS

primary thrust at the project level is to measure errors and defects. Metrics derived

from these measures provide an indication of the effectiveness of individual and

group software quality assurance and control activities.

Metrics such as work product (e.g., requirements or design) errors per function

point, errors uncovered per review hour, and errors uncovered per testing hour pro-

vide insight into the efficacy ofeach of the activities implied by the metric. Error data

can also be used to compute the defect removal efficiency (DRE) for each process

framework activity. DRE is discussed in Section 22.3.2.

WebRef
An excellent source

of information on

software quality and

rotated topics

(including metrics)

con be found at

www.quality

world.com

22.3.1 Measuring Quality

Although there are many measures of software quality,9 correctness, maintainabil-

ity, integrity, and usability provide useful indicators for the project team. Gilb [GIL88]

suggests definitions and measures for each.

Correctness. A program must operate correctly or it provides little value to its

users. Correctness is the degree to which the software performs its required function.

The most common measure for correctness is defects per KLOC, where a defect is de-

fined as a verified lack of conformance to requirements. When considering the overall

quality of a software product, defects are those problems reported by a user of the

program after the program has been released for general use. For quality assessment

purposes, defects are counted over a standard period of time, typically one year.

Maintainability. Software maintenance accounts for more effort than any other

software engineering activity. Maintainability is the ease with which a program can

be corrected if an error is encountered, adapted if its environment changes, or en-

hanced if the customer desires a change in requirements. There is no way to mea-

sure maintainability directly; therefore, we must use indirect measures. A simple

time-oriented metric is mean-time-to-change (MTTC), the time it takes to analyze

the change request, design an appropriate modification, implement the change,

test it, and distribute the change to all users. On average, programs that are main-

tainable will have a lower MTTC (for equivalent types of changes) than programs

that are not maintainable.

Integrity. Software integrity has become increasingly important in the age of

cyber-terrorists and hackers. This attribute measures a system's ability to with-

stand attacks (both accidental and intentional) to its security. Attacks can be made

on all three components of software: programs, data, and documents.

To measure integrity, two additional attributes must be defined: threat and se-

curity. Threat is the probability (which can be estimated or derived from empirical

evidence) that an attack of a specific type will occur within a given time. Security is

the probability (which can be estimated or derived from empirical evidence) that

9 A detailed discussion of the factors that influence software quality and the metrics that can be used

to assess software quality has been presented in Chapter 1 5.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 663

the attack of a specific type will be repelled. The integrity of a system can then be

defined as:

integrity = X [1 - (threat x (I - security))]

For example, if threat (the probability that an attack will occur) is 0.25 and secu-

rity (the likelihood of repelling an attack) is 0.95, the integrity of the system is 0.99

(very high). If, on the other hand, the threat probability is 0.50 and the likelihood of

repelling an attack is only 0.25, the integrity of the system is 0.63 (unacceptably low).

Usability. If a program is not easy to use, it is often doomed to failure, even if

the functions that it performs are valuable. Usability is an attempt to quantify ease-

of-use and can be measured in terms of characteristics presented in Chapter 12.

The four factors just described are only a sampling of those that have been proposed

as measures for software quality. Chapter 15 considers this topic in additional detail.

22.3.2 Defect Removal Efficiency

A quality metric that provides benefits at both the project and process level is deject

removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of qual-

ity assurance and control activities as they are applied throughout all process frame-

work activities.

When considered for a project as a whole, DRE is defined in the following manner:

DRE = £/(£-1- D)

Gad

IfDUE is low as you

move through analysis

and design, spend

some time improving

the way you conduct

formal technical

reviews.

where £ is the number of errors found before delivery of the software to the end-user,

and D is the number of defects found after delivery.

The ideal value for DRE is 1 . That is, no defects are found in the software. Realisti-

cally, D will be greater than 0, but the value of DRE can still approach 1 . As E increases

(for a given value ofD), the overall value of DRE begins to approach 1. In fact, as E in-

creases, it is likely that the final value ofD will decrease (errors are filtered out before

they become defects) . If used as a metric that provides an indicator of the filtering abil-

ity of quality control and assurance activities, DRE encourages a software project team

to institute techniques for finding as many errors as possible before deliveiy.

DRE can also be used within the project to assess a team's ability to find errors

before they are passed to the next framework activity or software engineering task.

For example, the requirements analysis task produces an analysis model that can be

reviewed to find and correct errors. Those errors that are not found during the re-

view of the analysis model are passed on to design (where they may or may not be

found). When used in this context, we redefine DRE as

DRE, = £,/(£, + £,.,)

where £, is the number of errors found during software engineering activity / and £,+l

is the number of errors found during software engineering activity i + 1 that are

traceable to errors that were not discovered in software engineering activity i.

664 PART FOUR MANAGING SOFTWARE PROJECTS

A quality objective for a software team (or an individual software engineer) is to

achieve DRE, that approaches 1 . That is, errors should be filtered out before they are

passed on to the next activity.

SafeHome

Establishing a Metrics Approach

Lil*b The scene: Doug Miller's office two

days after initial meeting on software metrics.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman and Jamie

Lazar, members of the product software engineering team.

The conversation:

from one framework activity to the next. It'll encourage us

to find errors at each step.

Vinod: I'd also like to collect the number of hours we

spend on reviews.

Jamie: And the overall effort we spend on each

software engineering task.

Doug: You both had a chance to learn a little about

process and project metrics?

Vinod and Jamie: [Both nod]

Doug: It's always a good idea to establish goals when

you adopt any metrics. What are yours?

Vinod: Our metrics should focus on quality. In fact, our

overall goal is to keep the number of errors we pass on

from one software engineering activity to the next to an

absolute minimum.

Doug: And be very sure you keep the number of defects

released with the product to as close to zero as possible.

Vinod (nodding): Of course.

Jamie: I like DRE as a metric, and I think we can use it

for the entire project. Also, we can use it as we move

Doug: You can compute a review-to-development ratio

. . . might be interesting.

Jamie: I'd like to track some use-case data as well. Like

the amount of effort required to develop a use-case, the

amount of effort required to build software to implement

a use-case, and . . .

Doug (smiling): I thought we were going to keep this

simple.

Vinod: We should, but once you get into this metrics

stuff, there's a lot of interesting things to look at.

Doug: I agree, but let's walk before we run, and stick to

our goal. Limit data to be collected to five or six items,

and we're ready to go.

22.4 Integrating Metrics within THE SOFTWARE PROCESS

The majority of software developers still do not measure, and sadly, most have little

desire to begin. As we noted earlier in this chapter, the problem is cultural. Attempt-

ing to collect measures where none had been collected in the past often precipitates

resistance. "Why do we need to do this?" asks a harried project manager. "I don't see

the point," complains an overworked practitioner.

In this section, we consider some arguments for software metrics and present an

approach for instituting a metrics collection program within a software engineering

organization. But before we begin, some words of wisdom are suggested by Grady

and Caswell [GRA87]:

Some of the things we describe here will sound quite easy. Realistically, though, estab-

lishing a successful company-wide software metrics program is hard work. When we say

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 665

that you must wait at least three years before broad organizational trends are available,

you get some idea of the scope ot such an effort.

The caveat suggested by the authors is well worth heeding, but the benetits of mea-

surement are so compelling that the hard work is worth it.

22.4.1 Arguments for Software Metrics

Why is it so important to measure the process of software engineering and the prod-

uct (software) that it produces? The answer is relatively obvious. If we do not mea-

sure, there is no real way of determining whether we are improving. And if we are

not improving, we are lost.

By requesting and evaluating productivity and quality measures, a software team

(and their management) can establish meaningful goals for improvement of the soft-

ware process. In Chapter 1 we noted that software is a strategic business issue for

many companies. If the process through which it is developed can be improved, a di-

rect impact on the bottom line can result. But to establish goals for improvement, the

current status of software development must be understood. Hence, measurement

is used to establish a process baseline from which improvements can be assessed.

"We monage things by the numbers in many aspects of our lives . . These numbers give us insight and help steer

our actions."

Michael Mah and Larry Putnam

The day-to-day rigors of software project work leave little time for strategic think-

ing. Software project managers are concerned with more mundane (but equally

important) issues: developing meaningful project estimates, producing higher-quality

systems, getting product out the door on time. By using measurement to establish a

project baseline, each of these issues becomes more manageable. We have already

noted that the baseline serves as a basis for estimation. Additionally, the collection of

quality metrics enables an organization to "tune" its software process to remove the

"vital few" causes of defects that have the greatest impact on software development. 10

^ What is

• a metrics

baseline, and

what benefit

does it provide

to a software

engineer?

22.4.2 Establishing a Baseline

By establishing a metrics baseline, benefits can be obtained at the process, project,

and product (technical) levels. Yet the information that is collected need not be fun-

damentally different. The same metrics can serve many masters. The metrics base-

line consists of data collected from past software development projects and can be

as simple as the table presented in Figure 22.2 or as complex as a comprehensive

database containing dozens of project measures and the metrics derived from them.

1 0 These ideas have been formalized into an approach called statistical software quality assurance and

are discussed in detail in Chapter 26.

666 PART FOUR MANAGING SOFTWARE PROJECTS

Software

metrics collec-

tion process

Software

engineering

process

Software

project

Data
collection

Metrics

computation Metrics

Metrics

evaluation Indicators

Measures

To be an effective aid in process improvement and/or cost and effort estimation,

baseline data must have the following attributes: (1) data must be reasonably

accurate—"guestimates" about past projects are to be avoided; (2) data should be

collected for as many projects as possible; (3) measures must be consistent, for ex-

ample, a line of code must be interpreted consistently across all projects for which
data are collected; (4) applications should be similar to work that is to be estimated—

it makes little sense to use a baseline for batch information systems work to estimate

a real-time, embedded application.

POINT
Baseline metrics data

should be collected

from a large

representative

sampling of past

software projects.

22.4.3 Metrics Collection, Computation, and Evaluation

The process for establishing a metrics baseline is illustrated in Figure 22.3. Ideally,

data needed to establish a baseline has been collected in an on-going manner. Sadly,

this is rarely the case. Therefore, data collection requires a historical investigation of

past projects to reconstruct required data. Once measures have been collected (un-

questionably the most difficult step), metrics computation is possible. Depending on
the breadth of measures collected, metrics can span a broad range of application-

oriented metrics (e.g., LOC, FP, object-oriented, WebApp) as well as other quality-

and project-oriented metrics. Finally, metrics should be evaluated and applied dur-

ing estimation, technical work, project control, and process improvement. Metrics

evaluation focuses on the underlying reasons for the results obtained and produces

a set of indicators that guide the project or process.

22.5 Metrics for Small Organizations

The vast majority of software development organizations have fewer than 20 soft-

ware people. It is unreasonable, and in most cases unrealistic, to expect that such

organizations will develop comprehensive software metrics programs. However, it

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 667

If You're just storting to

collect metrics data,

remember to keep it

simple. If you bury

yourself with data, your

metrics effort will fail.

^ How should

• we derive o

set of "simple"

software metrics?

is reasonable to suggest that software organizations of all sizes measure and then

use the resultant metrics to help improve their local software process and the qual-

ity and timeliness of the products they produce.

A common-sense approach to the implementation of any software process re-

lated activity is: keep it simple, customize to meet local needs, and be sure it adds

value. In the paragraphs that follow, we examine how these guidelines relate to met-

rics for small shops. 11

"Keep it simple" is a guideline that works reasonably well in many activities.

But how do we derive a "simple" set of software metrics that still provides value,

and how can we be sure that these simple metrics will meet the needs of a partic-

ular software organization? We begin by focusing not on measurement but rather

on results. The software group is polled to define a single objective that requires

improvement. For example, "reduce the time to evaluate and implement change

requests." A small organization might select the following set of easily collected

measures:

• Time (hours or days) elapsed from the time a request is made until evaluation

is complete, tqMue .

• Effort (person-hours) to perform the evaluation, WeTO) .

• Time (hours or days) elapsed from completion of evaluation to assignment of

change order to personnel, t^.

• Effort (person-hours) required to make the change, Wchange-

• Time required (hours or days) to make the change, td,„nge .

• Errors uncovered during work to make the change, Echa„sc.

• Defects uncovered after change is released to the customer base, Dchange .

Once these measures have been collected for a number of change requests, it is pos-

sible to compute the average total elapsed time from change request to implemen-

tation of the change and the percentage of elapsed time absorbed by initial queuing,

evaluation and change assignment, and change implementation. Similarly, the per-

centage of effort required for evaluation and implementation can be determined.

These metrics can be assessed in the context of quality data, Echange and Dchangc . The

percentages provide insight into where the change request process slows down and

may lead to process improvement steps to reduce tqacM , Wmah tOT/,
WchanSe, and/or

Echangc- In addition, the defect removal efficiency can be computed as

DRE — EffrQnge/ {Echange + Dchange)

DRE can be compared to elapsed time and total effort to determine the impact of

quality assurance activities on the time and effort required to make a change.

1 1 This discussion is equally relevant to software teams that have adopted an agile software develop-

ment process (Chapter 4)

668 PART FOUR MANAGING SOFTWARE PROJECTS

22.6 Establishing a Software Metrics Program

WebRef

k Guidebook lor Gool

Driven Soltwote

Measurement ton be

downloaded from:

www.sei.ami.edii.

The Software Engineering Institute has developed a comprehensive guidebook

[PAR96] for establishing a "goal-driven" software metrics program. The guidebook

suggests the following steps:

1 - Identify your business goals.

2. Identify what you want to know or leam.

3. Identify your subgoals.

4. identify the entities and attributes related to your subgoals.

5. Formalize your measurement goals.

6. Identify quantifiable questions and the related indicators that you will use to

help you achieve your measurement goals.

7 . Identify the data elements that you will collect to construct the indicators that

help answer your questions.

8. Define,the measures to be used, and make these definitions operational.

9. Identify the actions that you will take to implement the measures.

1

0.

Prepare a plan for implementing the measures.

K
POINT
The software metrics

you choose should be

driven by the business

ond technical goals

you wish to

accomplish.

A detailed discussion of these steps is best left to the SETs guidebook. However, a

brief overview of key points is worthwhile.

Because software supports business functions, differentiates computer-based

systems or products, or acts as a product in itself, goals defined for the business can

almost always be traced downward to specific goals at the software engineering

level. For example, consider a company that makes advanced home security systems

which have substantial software content. Working as a team, software engineering

and business managers can develop a list of prioritized business goals:

l Improve our customers' satisfaction with our products.

2. Make our products easier to use.

3. Reduce the time it takes us to get a new product to market.

4. Make support for our products easier.

5. Improve our overall profitability.

The software organization examines each business goal and asks: What activities

do we manage or execute, and what do we want to improve within these activities?

To answer these questions the SEI recommends the creation of an "entity-question

list" in which all things (entities) within the software process that are managed or in-

fluenced by the software organization are noted. Examples of entities include devel-

opment resources, work products, source code, test cases, change requests,

software engineering tasks, and schedules. For each entity listed, software people

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 669

develop a set of questions that assess quantitative characteristics of the entity (e.g.,

size, cost, time to develop). The questions derived as a consequence of the creation

of an entity-question list lead to the derivation of a set of subgoals that relate diiectly

to the entities created and the activities performed as part of the software piocess.

Consider the fourth goal: "Make support for our products easier." The following

list of questions might be derived for this goal [PAR96]:

• Do customer change requests contain the information we require to

adequately evaluate the change and then implement it in a timely manner?

• How large is the change request backlog?

• Is our response time for fixing bugs acceptable, based on customer need?

• Is our change control process (Chapter 27) followed?

• Are high-priority changes implemented in a timely manner?

Based on these questions, the software organization can derive the following sub-

goal: Improve the performance of the change management process. The software

process entities and attributes that are relevant to the subgoal are identified, and

measurement goals associated with them are delineated.

The SEI [PAR96] provides detailed guidance for steps 6 through 10 of its goal-

driven measurement approach. In essence, a process ol stepwise refinement is ap-

plied in which goals are refined into questions that are further refined into entities

and attributes that are then refined into metrics.

r Establishing a Metrics Program

i The Software Productivity Center (www.spc.ca)

suggests an eight-step approach for

Questions to be answered are defined; e.g., how

many errors found in one framework activity can

be traced to the preceding framework activity?

Create measures and metrics to be collected and
establishing a metrics program within a software

organization that can be used as an alternative to the SEI

approach described in Section 22.6. Their approach is

summarized in this sidebar.

computed.

4. Identify the measures and metrics to be collected and

1 . Understand the existing software process.

Framework activities (Chapter 2) are identified.

Input information for each activity is described.

Tasks associated with each activity are defined.

Quality assurance functions are noted.

Work products that are produced are listed.

computed.

5. Establish a measurement collection process by

2. Define the goals to be achieved by establishing a

metrics program.

Examples: improve accuracy of estimation,

improve product quality.

answering these questions:

What is the source of the measurements?

Can tools be used to collect the data?

Who is responsible for collecting the data?

When are data collected and recorded?

How are data stored?

What validation mechanisms are used to ensure

that the data are correct?

6. Acquire appropriate tools to assist in collection and

assessment.
/

670 PART FOUR MANAGING SOFTWARE PROJECTS

Establish a metrics database.

The relative sophistication of the database is

established.

Use of related tools (e.g., a SCM repository.

Chapter 27) is explored.

Existing database products are evaluated.

Define appropriate feedback mechanisms.

Who requires on-going metrics information?

How is the information to be delivered?

What is the format of the information?

A

A considerably more detailed description of these eight

steps con be downloaded from: http://www.spc.ca/

resources/metrics/.

J

21J, SVMMARY

Measurement enables managers and practitioners to improve the software process;

assist in the planning, tracking, and control of a software project; and assess the qual-

ity of the product (software) that is produced. Measures of specific attributes of the

process, project, and product are used to compute software metrics. These metrics can

be analyzed to provide indicators that guide management and technical actions.

Process metrics enable an organization to take a strategic view by providing in-

sight into the effectiveness of a software process. Project metrics are tactical. They
enable a project manager to adapt project workflow and a technical approach in a

real-time manner.

Both size- and function-oriented metrics are used throughout the industry. Size-

oriented metrics use the line ofcode as a normalizing factor for other measures such

as person-months or defects. The function point is derived from measures of the

information domain and a subjective assessment of problem complexity. In addition,

object-oriented metrics and Web application metrics can be used.

Software quality metrics, like productivity metrics, focus on the process, the proj-

ect, and the product. By developing and analyzing a metrics baseline for quality, an

organization can correct those areas of the software process that are the cause of

software defects.

Measurement results in cultural change. Data collection, metrics computation,

and metrics analysis are the three steps that must be implemented to begin a met-

rics program. In general, a goal-driven approach helps an organization focus on the

right metrics for its business. By creating a metrics baseline—a database containing

process and product measurements—software engineers and their managers can

gain better insight into the work that they do and the product that they produce.

BfiEERfiHCE5

(ALB83] Albrecht, A. J., and J. E. Gaffney, ''Software Function, Source Lines of Code and Devel-
opment Effort Prediction: A Software Science Validation," IEEE nans Sofhvare Engineering,
November 1 983, pp. 639-648.

[BOE81] Boehm, B„ Sofhvare Engineering Economics, Prentice-Hall, 1981.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 671

IGRA87I Grady, R. B., and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,
Prentice-Hall. 1987.

|GRA92] Grady, R. G., Practical Software Metricsfor Project Management and Process Improvement,

Prentice-Hall, 1992.

IGIL88] Gilb, T., Principles ofSoftware Project Management, Addison-Wesley, 1988,

IHET93] Hetzel, W., Making Software Measurement Work, QED Publishing Group, 1 993.

[HUM95] Humphrey, W., A Disciplinefor Software Engineering, Addison-Wesley, 1995.

|!EE93] IEEE Software Engineering Standards, Standard 610.12-1990, pp. 47-48.

(JON86J Jones, C., Programming Productivity, McGraw-Hill, 1986.

[ION9I] Jones, C., Applied Software Measurement, McGraw-Hill, 1991.

IJON98] Jones, C., Estimating Software Costs, McGraw-Hill, 1998.

[LQR94] Lorenz, M., and J Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.

rPAR96] Park, R. E„ W B, Goelhert, and W. A. Florae, Goal Driven Software Measurement—

A

Guidebook, CMU/SEI-96-BH-002, Software Engineering Institute, Carnegie Mellon Univer-

sity, August 1 996.

[PAU94J Paulish, D., and A. Carleton, "'Case Studies of Software Process Improvement Measure-

ment," Computet; vol. 27, no. 9, September 1994, pp. 50-57.

IQSM02) "QSM Function Point Language Gearing Factors," Version 2.0, Quantitative Software

Management, 2002, http://www.qsm.com/FPGearing.html.

[RAG951 Ragland, B., "Measure, Metric or Indicator: What's the Difference?" Crosstalk, vol. 8, no.

3, March 1995, p.29-30.

[SM199] Smith, J., "The Estimation of Effort Based on Use-Cases," a white paper by Rational Cor-

poration, 1999, downloaded from http://www.rational.com/products/rup/whitepapers.jsp.

Problems amp Pqimis tq Ponder
22 . 1 . Using the table presented in Section 22.2.3, make an argument against the use of as-

sembler language based on the functionality delivered per statement of code. Again referring to

the table, discuss why C++ would present a better alternative than C.

22 .2 . Why should some software metrics be kept "private"? Provide examples of three metrics

that should be private. Provide examples of three metrics that should be public.

22 .3 . Describe the difference between process and project metrics in your own words.

22 .4 . Compute the function point value for a project with the following information domain
characteristics:

Number of external inputs: 32

Number of external outputs: 60

Number of external inquiries: 24

Number of internal logical files: 8

Number of external interface files: 2

Assume that all complexity adjustment values are average. Use the algorithm noted in Chapter 1 5.

22 .5 . Present an argument against lines of code as a measure for software productivity. Will

your case hold up when dozens or hundreds of projects are considered?

22 .6 . Team A found 342 errors during the software engineering process prior to release. Team
B found 184 errors. What additional measures would have to be made for projects A and B to

determine which of the teams eliminated errors more efficiently? What metrics would you pro-

pose to help in making the determination? What historical data might be useful?

22 . 7 . Grady suggests an etiquette for software metrics. Can you add three more rules to those

noted in Section 22. 1 . 1 ?

22 .8 . What is an indirect measure, and why are such measures common in software metrics

work?

672 PART FOUR MANAGING SOFTWARE PROJECTS

22 .9 . A software increment is delivered to end-users by a sottware team. The users uncover 8

defects during the first month of use. Prior to delivery, the software team found 242 errors dur-

ing formal technical reviews and ail testing tasks. What is the overall DRE for the project?

22 . 1

0

. A Web engineering team has built a e-commerce WebApp that contains 1 45 individual

pages. Of these pages, 65 are dynamic; i.e., they are internally generated based on end-user in-

put. What is the customization index for this application?

22 . 11 . The software used to control a photocopier requires 32,000 of C and 4200 lines of

Smalltalk. Estimate the number of function points for the software inside the copier.

22 . 12 . At the conclusion of a project that used the Unified Process (Chapter 3), it has been de-

termined that 30 errors were found during the elaboration phase and 1 2 errors were found dur-

ing construction phase that were traceable to errors that were not discovered in the elaboration

phase. What is the DRE for these two phases?

22 . 13 . A WebApp and its support environment has not been fully fortified against attack. Web

engineers estimate that the likelihood of repelling an attack is only 30 percent. The system does

not contain sensitive or controversial information, so the threat probability is 25 percent. What

is the integrity of the WebApp?

FURTHER REAPINSS AMfl lNf.QRMAXl.9N SOURCES
Software process improvement (SP1) has received a significant amount of attention over the past

two decades. Since measurement and software metrics are key to successfully improving the

software process, many books on SP1 also discuss metrics. Worthwhile sources of information

on process metrics include;

Burr, A., and M. Owen, Statistical Methodsfor Software Quality, International Thomson Pub-

lishing, 1996.

El Emam, K., and N. Madhavji (eds.j. Elements ofSoftware Process Assessment and Improve-

ment, IEEE Computer Society, 1999.

Florae, W. A., and A. D. Carleton. Measuring the Software Process: Statistical Process Control

for Software Process Improvement, Addison-Wesley, 1999.

Garmus, D., and D. Herron, Measuring the Software Process: A Practical Guide to Functional

Measurements, Prentice-Hall, 1996.

Humphrey, W., Introduction to the Team Software Process, Addison-Wesley/Longman, 2000.

Kan, S. H., Metiics and Models in Software Quality Engineering. Addison-Wesley. 1995.

McGarry and his colleagues (
Practical Software Measurement, Addison-Wesley, 2001) present in-

depth advice for assessing the software process. A worthwhile collection ofpapers has been ed-

ited by Haug and his colleagues (Software Process Improvement: Medics, Measurement, and

Process Modeling, Sp'ringer-Verlag, 2001). Florae and Carlton (Measuring the Software Process,

Addison-Wesley, 1 999) and Fenton and Pfleeger (Software Metrics: A Rigorous and Practical Ap

proach, Revised, Brooks/Coie Publishers, 1998) discuss how software metrics can be used to

provide the indicators necessary' to improve the software process.

Putnam and Myers (Five Core Metrics, Dorset House, 2003) draw on a database of more the

6000 software projects to demonstrate how five core metrics—time, effort, size, reliability, and

process productivity—can be used to control software projects. Maxwell (Applied Statistics for

Software Managers, Prentice-Hall, 2003) presents techniques for analyzing software project

data. Munson (Software Engineering Measurement. Auerbach, 2003) discusses a broad array of

software engineering measurement issues, jones (Software Assessments, Benchmarks and Best

Practices, Addison-Wesley, 2000) describes both quantitative measurement and qualitative fac-

tors that help an organization assess its software process and practices. Garmus and Herron

(Function Point Analysis: Measurement Practicesfor Successful Software Projects, Addison-Wesley,

2000) discuss process metrics with an emphasis on function point analysis.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 673

Lorenze and Kidd |LOR94] and DeChampeax (Object-Oriented Development Process and Met-

rics, Prentice-Hall, 1996) consider the OO process and describe a set of metrics for assessing it.

Whitmire (Object-Oriented Design Measurement. Wiley, 1997) and Henderson Sellers (Object-

Oriented Metiics: Measures ofComplexity, Prentice-Hall, 1 995) focus on technical metrics for OO
work, but also consider measures and metrics that can be used at the process and product level.

Relatively little has been published on metrics for Web engineering work. However, Stem
{Web Metrics: Proven Methodsfor Measuring Web Site Success, Wiley, 2002), Inan and Kean (Mea-
suring the Success ofYour Website, Longman. 2002), and Nobles and Grady {Web Site Analysis and
Reporting, Premier Press, 2001) address Web metrics from a business and marketing perspective.

The latest research in the metrics area is summarized by the IEEE (Symposium on Software

Metrics, published yearly). A wide variety of information sources on the process and project met-
rics is available on the internet. An up-to-date list of World Wide Web references can be found
at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Estimation

Key
Concepts
complexity

estimation

concepts

FP-bosed

IOC-based

process-based

reconciliation

use-cases

feasibility

project planning

resources

scope

software sizing

S
oftware project management begins with a set of activities that are collec-

tively called project planning. Before the project can begin, the project man-

ager and the software team must estimate the work to be done, the

resources that will be required, and the time that will elapse from start to finish.

Once these activities are accomplished, the software team must establish a proj-

ect schedule that defines software engineering tasks and milestones, identifies

who is responsible for conducting each task, and specifies the inter-task depend-

encies that may have a strong bearing on progress.

In an excellent guide to "software project survival," Steve McConnell (MCC98]

presents a real-world view of project planning:

Many technical workers would rather do technical work than spend time planning.

Many technical managers do not have sufficient training in technical management to

feel confident that their planning will improve a project's outcome. Since neither party

wants to do planning, it often doesn't get done.

But failure to plan is one of the most critical mistakes a project can make . . . effective

planning is needed to resolve problems upstream learly in the project) at low cost,

rather than downstream [late in the project) at high cost. The average project spends

SO percent of its time on rework—fixing mistakes that were made earlier in the project.

McConnell argues that every' project can find the time to plan (and to adapt the plan

throughout the project) simply by taking a small percentage of the time that would

have been spent on rework that occurs because planning was not conducted.

What is it? A real need for soft-

ware has been established; stake-

holders are on-board; software

engineers are ready to start; and the

project is about to begin. But how do you pro-

ceed? Software project planning encompasses

five major activities—estimation, scheduling, risk

analysis, quality management planning, and

change management planning. In the context of

this chapter, we consider only estimation—your

attempt to determine how much money, effort, re-

sources, and time it will take to build a specific

software-based system or product.

Who does it? Software project managers

—

using information solicited from stakeholders

and software engineers and software metrics

data collected from past projects.

Why is it important? Would you build a house

without knowing how much you were about to

spend, the tasks you needed to perform, and the

timeline for the work to be conducted? Of course

not, and since most computer-based systems

and products cost considerably more to build

than a large house, it would seem reasonable to

develop an estimate before you start creating the

software.

674

CHAPTER 23 ESTIMATION 675

What are the steps? Estimation begins with a
description of tbe scope of the product. The

problem is then decomposed into a set of smaller

problems, and each of these is estimated using

historical data and experience as guides. Prob-

lem complexity and risk are considered before a
final estimate is made.

What is the work product? A simple table

delineating the tasks to be performed, the func-

tions to be implemented, and the cost, effort, and
time involved for each is generated.

How do I ensure that I've done it right?

That's hard, because you won't really know until

the project has been completed. However, if you

have experience and follow a systematic ap-

proach, generate estimates using solid historical

data, create estimation data points using at least

two different methods, establish a realistic

schedule, and continually adapt it as the project

moves forward, you can feel confident that

you've given it your best shot.

22^.1-...QBSERVATIONS ON ESTIMATION

Planning requires technical managers and members of the software team to make
an initial commitment, even though it's likely that this "commitment" will be proven

wrong. Whenever estimates are made, we look into the future and accept some de-

gree of uncertainty as a matter of course. To quote Frederick Brooks [BR075]:

|0|ur techniques of estimating are poorly developed. More seriously, they reflect an un-

voiced assumption that is quite untrue, i.e., that all will go well . . . Because we are un-

certain of our estimates, software managers often lack the courteous stubbornness to

make people wait for a good product.

Although estimating is as much art as it is science, this important activity need not

be conducted in a haphazard manner. Useful techniques for time and effort estima-

tion do exist. Process and project metrics can provide historical perspective and

powerful input for the generation of quantitative estimates. Past experience (of all

people involved) can aid immeasurably as estimates are developed and reviewed.

Because estimation lays a foundation for all other project planning activities, and

project planning provides the road map for successful software engineering, we
would be ill-advised to embark without it.

"Good estimating approaches and solid historical data offer the best hope that reality will win out over impossible

demands."

Capers Jones

Estimation of resources, cost, and schedule for a software engineering effort re-

quires experience, access to good historical information (metrics), and the courage

to commit to quantitative predictions when qualitative information is all that exists.

Estimation carries inherent risk 1

,
and this risk leads to uncertainty.

I Systematic techniques for risk analysis are presented in Chapter 25

676 PART POUR MANAGING SOFTWARE PROJECTS

The availability of historical information has a strong influence on estimation risk.

By looking back, we can emulate things that worked and improve areas where prob-

lems arose. When comprehensive software metrics (Chapter 22) are available for

past projects, estimates can be made with greater assurance, schedules can be es-

tablished to avoid past difficulties, and overall risk is reduced.

'It is the mork of on instructed mind to rest satisfied with the degree of precision that the noture of the subject

admits, and not to seek exactness when only an approximation of the truth is possible.'

Aristotle

Estimation risk is measured by the degree of uncertainty in the quantitative estimates

established for resources, cost, and schedule. If project scope is poorly understood or

project requirements are subject to change, uncertainty and estimation risk become

dangerously high. The planner, and more importantly, the customer should recognize

that variability in software requirements means instability in cost and schedule.

However, a project manager should not become obsessive about estimation.

Modern software engineering approaches (e g., incremental process models) take an

iterative view of development. In such approaches, it is possible—although not al-

ways politically acceptable—to revisit the estimate (as more information is known)

and revise it when the customer makes changes to requirements.

2UL

The more you know,

the better you

estimate. Therefore,

update your estimates

as the project

progresses.

The Project Planning Process.

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. In addition,

estimates should attempt to define best-case and worst-case scenarios so that proj-

ect outcomes can be bounded. Although there is an inherent degree of uncertainty,

the software team embarks on a plan that has been established as a consequence of

planning tasks. Therefore, the plan must be adapted and updated as the project pro-

ceeds. In the following sections, each of the activities associated with software proj-

ect planning is discussed.

Task Set for Project Planning

1 . Establish project scope

2. Determine feasibility

3. Analyze risks (Chapter 25)

4. Define required resources

a. Determine human resources required

b. Define reusable software resources

c. Identify environmental resources

5. Estimate cost and effort

a. Decompose the problem

b. Develop two or more estimates using size,

function points, process tasks, or use-cases

c. Reconcile the estimates

6.

Develop a project schedule (Chapter 24)

a. Establish a meaningful task set

b. Define a task network

c. Use scheduling tools to develop a timeline chart

d. Define schedule tracking mechanisms

J

CHAPTER 23 ESTIMATION 677

2lUL

K
POINT

Although there ore

many reasons for

uncertainly, incomplete

information about

problem requirements

dominates.

Project feasibility is

important, but o

consideration of

business need is even

more important. It

does no good to build

o high-tech system or

product that no one

wants.

23.4

...Software Scope and Feasibility

Software scope describes the functions and features that are to be delivered to end-

users, the data that are input and output, the "content" that is presented to users as

a consequence of using the software, and the performance, constraints, interfaces,

and reliability that bound the system. Scope is defined using one of two techniques:

1 • A narrative description of software scope is developed after communication

with all stakeholders.

2. A set of use-cases2
is developed by end-users.

Functions described in the statement of scope (or within the use-cases) are evalu-

ated and in some cases refined to provide more detail prior to the beginning of esti-

mation. Because both cost and schedule estimates are functionally oriented, some
degree of decomposition is often useful. Performance considerations encompass
processing and response time requirements. Constraints identify limits placed on the

software by external hardware, available memory, or other existing systems.

Once scope has been identified (with the concurrence of the customer), it is rea-

sonable to ask: Can we build software to meet this scope? Is the project feasible? All

too often, software engineers rush past these questions (or are pushed past them by

impatient managers or customers), only to become mired in a project that is doomed
from the onset. Putnam and Myers [PUT97aj address this issue when they write:

[N]ot everything imaginable is feasible, not even in software, evanescent as it may appear

to outsiders. On the contrary', software feasibility has four solid dimensions: Technology—
Is a project technically feasible? Is it within the state of the art? Can defects be reduced to

a level matching the application's needs? Finance—is it financially feasible? Can devel-

opment be completed at a cost the software organization, its client, or the market can af

ford? Time—Will the project's time-to-market beat the competition? Resources—Does the

organization have the resources needed to succeed?

Putnam and Myers correctly suggest that scoping is not enough. Once scope is un-

derstood, the software team and others must work to determine if it can be done
within the dimensions just noted. This is a crucial, although often overlooked, part

of the estimation process.

Resources

The second planning task is estimation of the resources required to accomplish the

software development effort. Figure 23.1 depicts the three major categories of soft-

ware engineering resources—people, reusable software components, and the devel

opment environment (hardware and software tools). Each resource is specified with

2 Use-cases have been discussed in detail throughout Parts 2 and 3 of this book. A use-case is a

scenario-based description of the user's interaction with the software from the user's point of view.

678 PART FOUR MANAGING SOFTWARE PROJECTS

Project

resources

four characteristics: description of the resource; a statement of availability; time

when the resource will be required; duration of time that resource will be applied.

The last two characteristics can be viewed as a Owe 'window. Availability of the re-

source for a specified window must be established at the earliest practical time.

23.4.1 Human Resources

The planner begins by evaluating software scope and selecting the skills required to

complete development. Both organizational position (e.g., manager, senior software

engineer) and specialty (e.g., telecommunications, database, client/server) are spec-

ified. For relatively small projects (a few person-months), a single individual may

perform all software engineering tasks, consulting with specialists as required. For

larger projects, the software team may be geographically dispersed across a number

of different locations. Hence, the location of each human resource is specified.

The number of people required for a software project can be determined only af-

ter an estimate of development effort (e.g., person-months) is made. Techniques for

estimating effort are discussed later in this chapter.

23.4.2 Reusable Software Resources

Component-based software engineering (Chapter 30) emphasizes reusability—that

is, the creation and reuse of software building blocks [H0091]. Such building blocks,

often called components, must be cataloged for easy reference, standardized for easy

application, and validated for easy integration.

CHAPTER 23 ESTIVATION 679

Bennatan [BEN92] suggests four software resource categories that should be con-

sidered as planning proceeds:

Never forget that inte-

grating a variety of

reusoble components

con be a significant

chellenge. The integra-

tion problem often

resurfaces as various

components are

upgraded

.

Off-the-shelfcomponents. Existing software can be acquired from a third party or

has been developed internally for a past project. COTS (commercial off-the-shelf)

components are purchased from a third party, are ready for use on the current

project, and have been fully validated.

Full-experience components. Existing specifications, designs, code, or test data

developed for past projects are similar to the software to be built for the current

project. Members of the current software team have had full experience in the ap-

plication area represented by these components. Therefore, modifications required

for full-experience components will be relatively low-risk

Partial-experience components. Existing specifications, designs, code, or test data

developed for past projects are related to the software to be built for the current

project but will require substantial modification. Members of the current software

team have only limited experience in the application area represented by these

components. Therefore, modifications required for partial-experience components
have a fair degree of risk.

New components. Software components must be built by the software team
specifically for the needs of the current project.

ironically, reusable software components are often neglected during planning, only

to become a paramount concern during the development phase of the software

process. It is better to specify software resource requirements early. In this way
technical evaluation of the alternatives can be conducted and timely acquisition

can occur.

23.4.3 Environmental Resources

The environment that supports a software project, often called the software engi

neering environment (SEE), incorporates hardware and software. Hardware provides

a platform that supports the tools (software) required to produce the work products

that are an outcome of good software engineering practice.-’ Because most software

organizations have multiple constituencies that require access to the SEE, a project

planner must prescribe the time window required for hardware and software and
verify that these resources will be available

When a computer-based system (incorporating specialized hardware and software)

is to be engineered, the software team may require access to hardware elements be-

ing developed by other engineering teams. For example, software for a numerical con-

trol (iMC) used on a class of machine tools may require a specific machine tool (e g., an

3 Other hardware—the target environment—is the computer(s) on which the software will execute
when it has been released to the end-user.

680 PART FOUR MANAGING SOFTWARE PROJECTS

Although software

engineering effort is o

dominant element of

project cost, it's

important to remember

that other costs teg.,

development environ-

ment and tools, novel,

/rawing, office space,

hardware) must also

be considered.

NC lathe) as part of the validation test step; a software project for advanced page-

layout may need a high-quality printer at some point during development. Each hard-

ware element must be specified by the software project planner.

Software Project EstimatioM—

Software is the most expensive element of virtually all computer-based systems. For

complex, custom systems, a large cost estimation error can make the difference be-

tween profit and loss. Cost overrun can be disastrous for the developer.

"In on age of outsourcing ond increased competition, the ability to estimate more accurately . . . hos emerged as a

critical success factor for many IT groups."

Rob Thomsett

Software cost and effort estimation will never be an exact science.4 Too many

variables—human, technical, environmental, political—can affect the ultimate cost

of software and effort applied to develop it. However, software project estimation

can be transformed from a black art to a series of systematic steps that provide esti-

mates with acceptable risk. To achieve reliable cost and effort estimates, a number

of options arise;

1 . Delay estimation until late in the project (obviously, we can achieve 1 00 per-

cent accurate estimates after the project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost and

effort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimates

must be provided "up front.” However, we should recognize that the longer we wait,

the more we know, and the more we know, the less likely we are to make serious er-

rors in our estimates.

The second option can work reasonably well, if the current project is quite simi-

lar to past efforts and other project influences (e.g., the software team, the customer,

business conditions, the SEE, deadlines) are roughly equivalent. Unfortunately, past

experience has not always been a good indicator of future results.

The remaining options are viable approaches to software project estimation. Ide-

ally, the techniques noted for each option should be applied in tandem; each used as

a cross-check for the other. Decomposition techniques take a "divide and conquer"

approach to software project estimation. By decomposing a project into major func-

4 Bennatan |BEN03| reports that 40 percent of software developers continue to struggle with esti-

mation and that software size and development time are very difficult to estimate accurately.

CHAPTER 23 ESTIMATION 681

tions and related software engineering activities, cost and effort estimation can be per-

formed in a stepwise fashion. Empirical estimation models can be used to complement

decomposition techniques and offer a potentially valuable estimation approach in

their own right. These models are discussed in Section 23.7.

Each of the viable software cost estimation options is only as good as the histor-

ical data used to seed the estimate. If no historical data exist, costing rests on a very

shaky foundation. In Chapter 22, we examined the characteristics of some of the

software metrics that provide the basis for historical estimation data.

23.6 Decomposition Techniques

Software project estimation is a form of problem solving, and in most cases, the prob-

lem to be solved (i.e., developing a cost and effort estimate for a software project) is too

complex to be considered in one piece. For this reason, we decompose the problem,

recharacterizing it as a set of smaller (and hopefully, more manageable) problems.

In Chapter 21, the decomposition approach was discussed from two different

points of view: decomposition of the problem and decomposition of the process. Es-

timation uses one or both forms of partitioning. But before an estimate can be made,

the project planner must understand the scope of the software to be built and gen-

erate an estimate of its ' size."

POINT
The 'size" of softwore

to be built con be

estimoted using o direct

meosure, LOC, or on

indirect meosure, FP

^ How do

• we size the

software that

we're planning

to build?

23.6.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) the degree to which the planner has properly estimated the size of the product to

be built; (2) the ability to translate the size estimate into human effort, calendar time,

and dollars (a function of the availability of reliable software metrics from past proj-

ects); (3) the degree to which the project plan reflects the abilities of the software

team; and (4) the stability of product requirements and the environment that sup-

ports the software engineering effort.

In this section, we consider the software sizing problem. Because a project esti-

mate is only as good as the estimate of the size of the work to be accomplished, siz-

ing represents the project planner’s first major challenge. In the context of project

planning, size refers to a quantifiable outcome of the software project, if a direct ap-

proach is taken, size can be measured in lines of code (LOC). If an indirect approach

is chosen, size is represented as function points (FP).

Putnam and Myers (PUT92) suggest four different approaches to the sizing

problem:

• "Fuzzy logic" sizing. To apply this approach, the planner must identify the type

of application, establish its magnitude on a qualitative scale, and then refine

the magnitude within the original range.

• Function point sizing. The planner develops estimates of the information

domain characteristics discussed in Chapter 15.

682

What do

• LOC- and FP-

based estimation

have in common?

When collecting

productivity metrics for

projects, be sure to

establish o taxonomy

of project types. This

will enable you to

compute domoin-

specific averages,

making estimation

more accurate.

PART POUR MANAGING SOFTWARE PROJECTS

• Standard component sizing. Software is composed of a number of different

"standard components" that are generic to a particular application area. For

example, the standard components for an information system are subsys-

tems, modules, screens, reports, interactive programs, batch programs, files,

LOC, and object-level instructions. The project planner estimates the number

of occurrences of each standard component and then uses historical project

data to determine the delivered size per standard component.

• Change sizing. This approach is used when a project encompasses the use of

existing software that must be modified in some way as part of a project. The

planner estimates the number and type (e.g., reuse, adding code, changing

code, deleting code) of modifications that must be accomplished.

Putnam and Myers suggest that the results of each of these sizing approaches be

combined statistically to create a three-point or expected-value estimate. This is ac-

complished by developing optimistic (low), most likely, and pessimistic (high) val-

ues for size and combining them using Equation (23-1) described in the next

section.

23.6.2 Problem-Based Estimation

In Chapter 22, lines of code and function points were described as measures from

which productivity metrics can be computed. LOC and FP data are used in two ways

during software project estimation: (1) as an estimation variable to "size" each ele-

ment of the software and (2) as baseline metrics collected from past projects and

used in conjunction with estimation variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a num-
ber of characteristics in common. The project planner begins with a bounded state-

ment of software scope and from this statement attempts to decompose software

into problem functions that can each be estimated individually. LOC or FP (the esti-

mation variable) is then estimated for each function. Alternatively, the planner may
choose another component for sizing such as classes or objects, changes, or busi-

ness processes affected.

Baseline productivity metrics (e.g., LOC/pm or FP/pm5
) are then applied to the

appropriate estimation variable, and cost or effort for the function is derived. Func-

tion estimates are combined to produce an overall estimate for the entire project.

It is important to note, however, that there is often substantial scatter in produc-

tivity metrics for an organization, making the use of a single baseline productivity

metric suspect. In general, LOC/pm or FP/pm averages should be computed by proj-

ect domain. That is, projects should be grouped by team size, application area, com-

plexity, and other relevant parameters. Local domain averages should then be

computed. When a new project is estimated, it should first be allocated to a domain,

S The acronym pm means person-month of effort.

CHAPTER 23 ESTIMATION 683

POINT
For FP estimates,

decomposition focuses

on information domain

characteristics.

^ How do we

• compute the

"expected value"

for software

size?

and then the appropriate domain average for productivity should be used in gener-

ating the estimate.

The LOC and FP estimation techniques differ in the level of detail required for de-

composition and the target of the partitioning. When LOC is used as the estimation

variable, decomposition is absolutely essential and is often taken to considerable

levels of detail. The greater the degree of partitioning, the more likely reasonably ac-

curate estimates of LOC can be developed.

For FP estimates, decomposition works differently. Rather than focusing on func-

tion, each of the five information domain characteristics as well as the 1 4 complex-

ity adjustment values discussed in Chapter 1 5 are estimated. The resultant estimates

can then be used to derive a FP value that can be tied to past data and used to gen-

erate an estimate.

Regardless of the estimation variable that is used, the project planner begins by

estimating a range of values for each function or information domain value. Using

historical data or (when all else fails) intuition, the planner estimates an optimistic.,

most likely, and pessimistic size value for each function or count for each informa-

tion domain value. An implicit indication of the degree of uncertainty is provided

when a range of values is specified.

A three-point or expected-value can then be computed. The expected-value for the

estimation variable (size), S, can be computed as a weighted average of the opti-

mistic (sopt), most likely <sm), and pessimistic (Sp**) estimates. For example,

5 = (s0pt + 4sm + 5pCSs)/6 (23 1)

gives heaviest credence to the "most likely" estimate and follows a beta probability

distribution. We assume that there is a veiy small probability the actual size result

will fall outside the optimistic or pessimistic values.

Once the expected value for the estimation variable has been determined, histor-

ical LOC or FP productivity data are applied. Are the estimates correct? The only rea-

sonable answer to this question is: We can't be sure. Any estimation technique, no

matter how sophisticated, must be cross-checked with another approach. Even then,

common sense and experience must prevail.

23.6.3 An Example of LOC-Based Estimation

As an example of LOC and FP problem-based estimation techniques, let us consider

a software package to be developed for a computer-aided design application for me-

chanical components. The software is to execute on an engineering workstation and

must interface with various peripherals including a mouse, digitizer, high-resolution

color display, and laser printer. A preliminary statement of software scope can be de-

veloped:

The mechanical CAD software will accept two- and three-dimensional geometric data

from an engineer. The engineer will interact and control the CAD system through a user

interface that will exhibit characteristics of good human/machine interface design. All

684 PART FOUR MANAGING SOFTWARE PROJECTS

Many modem opplica-

tions reside on a

network or ore part ol

o client/server archi-

tecture. therefore, be

sure that your

estimates include the

effort required to

develop ‘'infrastruc-

ture" software.

Bo notsuccumb to the

temptation to use this

result as your project

estimate. You should

derive another result

using o different

approach.

geometric data and other supporting information will be maintained in a CAD database.

Design analysis modules will be developed to produce the required output, which will

be displayed on a variety of graphics devices. The software will be designed to control

and interact with peripheral devices that include a mouse, digitizer, laser printer, and

plotter.

This statement of scope is preliminary—it is not bounded. Every' sentence would

have to be expanded to provide concrete detail and quantitative bounding. For ex-

ample, before estimation can begin, the planner must determine what "characteris-

tics of good human/machine interface design" means or what the size and

sophistication of the "CAD database" are to be.

For our purposes, we assume that further refinement has occurred and that the

major software functions listed in Figure 23.2 are identified. Following the de-

composition technique for LOC, an estimation table, shown in Figure 23.2, is de-

veloped. A range of LOC estimates is developed for each function. For example,

the range of LOC estimates for the 3D geometric analysis function is optimistic—

4600 LOC, most likely—6900 LOC, and pessimistic—8600 LOC. Applying Equation

(23-1), the expected value for the 3D geometric analysis function is 6800 LOC.

Other estimates are derived in a similar fashion. By summing vertically in the es-

timated LOC column, an estimate of33,200 lines of code is established for the CAD
system.

A review of historical data indicates that the organizational average productivity

for systems of this type is 620 LOC/pm. Based on a burdened labor rate of $8,000 per

month, the cost per line of code is approximately $13. Based on the LOC estimate

and the historical productivity data, the total estimated project cost is $431,000 and

the estimated effort is 54 person-months.6

Estimation

table lor the

LOC methods

Function Estimated LOC

User interface and control facilities (UICF) 2,300

Two-dimensional geometric analysis (2DGA) 5,300

Three-dimensional geometric analysis |3DGA) 6,800

Database management (DBM) 3,350

Computer graphics display facilities (CGDF) 4,950

Peripheral control function (PCF) 2,100

Design analysis modules (DAM) 8,400

Estimated lines of code 33,200

6 Estimates are rounded to the nearest SI ,000 and person month. Further precision is unnecessary

and unrealistic, given the limitation of estimation accuracy.

23 ESTIMATION 685

SafeHome

:
Estimating

The scene: Doug Miller's office os

project planning begins.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman, Jamie

Lazar, and other members of the product software

engineering team.

The conversation:

Doug: We need to develop an effort estimate for the

project, and then we've got to define a micro-schedule for

the first increment and a macro schedule for the

remaining increments.

Vinod (nodding): Okay, but we haven't defined any

increments yet.

Doug: True, but that's why we need to estimate.

Jamie (frowning): You want to know how long it's

going to take us?

Doug: Here's what I need. First, we need to functionally

decompose the SafeHome software ... at a high level

. . . then we've got to estimate the number of lines of code

that each function will take . . . then. . . .

Jamie: Whoa! How are we supposed to do that?

Vinod: I've done it on past projects. You use use-cases,

determine the functionality required to implement each,

guesstimate the LOC count for each piece of the function.

The best approach is to have everyone do it

independently and then compare results.

Doug: Or you can do a functional decomposition for the

entire project.

Jamie: But that'll take forever, and we've got to get

started.

Vinod: No ... it can be done in a few hours . . . this

morning, in fact.

Doug: I agree ... we can't expect exactitude, just a

ball park idea of what the size of SafeHome will be.

Jamie: I think we should just estimate effort . . . that's

all.

Doug: Well do that too. Then use both estimates as a

cross check.

Vinod: Let's go do if. . .

23.6.4 An Example of FP-Based Estimation

Decomposition for FP-based estimation focuses on information domain values

rather than software functions. Referring to the table presented in Figure 23.3, the

project planner estimates external inputs, external outputs, external inquiries, inter-

nal logical Files, and external interface files for the CAD software. FP are computed

using the technique discussed in Chapter 15. For the purposes of this estimate, the

Estimating

information

domain values

Information domain value Opt. Likely Pess.

Est.

count Weight
FP

count

Number of external inputs 20 24 30 24 4 97

Number of external outputs 12 15 22 16 5 78

Number of external inquiries 16 22 28 22 5 88

Number of internal logical files 4 4 5 4 10 42

Number of external interface files 2 2 3 2 7 15

Count total 320

686 PART FOUR MANAGING SOFTWARE PROJECTS

complexity weighting factor is assumed to be average. Figure 23.3 presents the re-

sults of this estimate.

Each of the complexity weighting factors is estimated and the value adjustment

factor is computed as described in Chapter 15:

Factor Value

1 Bockup ond recover 4

2. Data communications 2

3. Distributed processing 0

4. Performance critical 4

5. Existing operating environment 3

6. On-line data entry 4

7. Input transaction over multiple screens 5

8 ILFs updated online 3

9. Information domain values complex 5

10. Internal processing complex 5

11. Code designed for reuse 4

12 . Conversion/installation in design 3

13. Multiple installations 5

14. Application designed for change 5

Value adjustment Factor 1.17

Finally, the estimated number of FP is derived:

FPesimated = COUnt-tOtai X [0.65 + 0.01 X 2 (Fj))

PPcstimated “ 375

The organizational average productivity for systems of this type is 6.5 FP/pm. Based

on a burdened labor rate of $8,000 per month, the cost per FP is approximately

$1,230. Based on the FP estimate and the historical productivity data, the total esti-

mated project cost is $461,000 and the estimated effort is 58 person-months.

If time permits, use

finer granularity when

specifying tasks in

Figure 23.4. For

example, break

analysis into its major

tasks and estimate

each separately.

23.6.5 Process-Based Estimation

The most common technique for estimating a project is to base the estimate on the

process that will be used. That is, the process is decomposed into a relatively small

set of tasks and the effort required to accomplish each task is estimated.

Like problem-based techniques, process-based estimation begins with a delineation

of software functions obtained from the project scope. A series of framework activities

must be performed for each function. Functions and related framework activities
7 may

be represented as part of a table similar to the one presented in Figure 23.4.

7 The framework activities chosen for this project differ somewhat from the generic activities dis-

cussed in Chapter 2 . They are customer communication (CC), planning, risk analysis, engineering,

and construction/release.

CHAPTER 23 ESTIMATION 687

Process-based

estimation

table

Activity CC Planning
Risk

analysis
Engineering

Construction

release
CE Totals

Task— Anatys'5 Design Code Test

Function

Y
UICF 0.50 2.50 0.40 5.00 n/a 8.40

2DGA 0.75 4.00 0.60 2.00 n/a 7.35
3DGA 0.50 4.00 1.00 3 00 n/a 8.50

CGDF 0.50 3.00 1.00 1.50 n/a 6.00

DBM 0.50 3.00 0.75 1.50 n/a 5.75

PCF 0.25 2.00 0.50 1.50 n/a 4.25

DAM 0.50 2.00 0.50 2.00 n/a 5.00

.

Totals 0.25 0.25 0.25 3 50 20.50 4.50 16.50 46.00

% effort 1% 1% i % 8% 45% 10% 36%

CC = customer communication CE = customer evaluation

Once problem functions and process activities are melded, the planner estimates

the effort (e.g., person-months) that will be required to accomplish each software

process activity for each software function. These data constitute the central matrix

of the table in Figure 23.4. Average labor rates (i.e., cost/unit effort) are then applied

to the effort estimated for each process activity. It is very likely the labor rate will vary

for each task. Senior staff are heavily involved in early framework activities and are

generally more expensive than junior staff involved in construction and release.

Costs and effort for each function and framework activity are computed as the last

step. If process-based estimation is performed independently of LOC or FP estima-

tion, we now have two or three estimates for cost and effort that may be compared

and reconciled. If both sets of estimates show reasonable agreement, there is good

reason to believe that the estimates are reliable. If, on the other hand, the results of

these decomposition techniques show little agreement, further investigation and

analysis must be conducted.

"It’s best to understand the background of an estimate before you use it."

Barry Boehm and Richard Fairley

23.6.6 An Example of Process-Based Estimation

To illustrate the use of process-based estimation, we again consider the CAD soft-

ware introduced in Section 23.6.3. The system configuration and all software func-

tions remain unchanged and are indicated by project scope.

Referring to the completed process-based table shown in Figure 23.4, estimates

of effort (in person-months) for each software engineering activity are provided for

each CAD software function (abbreviated for brevity). The engineering and con-

struction release activities are subdivided into the major software engineering tasks

688 PART FOUR MANAGING SOFTWARE PROJECTS

9 Why is it

• difficult

to develop an

estimation

technique using

use-cases?

shown. Gross estimates of effort are provided for customer communication, plan-

ning, and risk analysis. These are noted in the total row at the bottom of the table.

Horizontal and vertical totals provide an indication of estimated effort required for

analysis, design, code, and test. It should be noted that 53 percent of all effort is ex-

pended on front-end engineering tasks (requirements analysis and design), indicat-

ing the relative importance of this work.

Based on an average burdened labor rate of $8,000 per month, the total estimated

project cost is $368,000, and the estimated effort is 46 person-months. If desired, la-

bor rates could be associated with each framework activity or software engineering

task and computed separately.

23.6.7 Estimation with Use-Cases

As we have noted throughout Parts 2 and 3 of this book, use-cases provide a software

team with insight into software scope and requirements. However, developing an es-

timation approach with use-cases is problematic for the following reasons [SMI99]:

• Use-cases are described using many different formats and styles—there is no

standard form.

• Use-cases represent an external view (the user's view) of the software and

are often written at different levels of abstraction.

• Use-cases do not address the complexity of the functions and features that

are described.

• Use-cases do not describe complex behavior (e.g„ interactions) that involves

many functions and features.

Unlike a LOC or a function point, one person's "use-case" may require months of ef-

fort while another person's use-case may be implemented in a day or two.

Although a number of investigators have considered use-cases as an estimation

input, no proven estimation method has emerged to date. Smith [SM199] suggests

that use-cases can be used for estimation, but only if they are considered within the

context of the "structural hierarchy" that the use-cases describe.

Smith argues that any level of this structural hierarchy can be described by no

more than 10 use-cases. Each of these use-cases would encompass no more than 30

distinct scenarios. Obviously, use-cases that describe a large system are written at a

much higher level of abstraction (and represent considerably more development ef-

fort) than use-cases that are written to describe a single subsystem. Therefore, be-

fore use-cases can be used for estimation, the level within the structural hierarchy is

established, the average length (in pages) of each use-case is determined, the type

of software (e.g., real-time, business, engineering/scientific, embedded) is defined,

and a rough architecture for the system is considered. Once these characteristics are

established, empirical data may be used to establish the estimated number of LOC or

CHAPTER 23 ESTIMATION 689

FP per use case (for each level of the hierarchy) . Historical data are then used to com-
pute the effort required to develop the system.

To illustrate how this computation might be made, consider the following rela-

tionship: 8

LOC estimate =Nx LOCavg + [<S0/S„ - 1) + (Pa/Ph - 1)) x LOCad|ust (23-2)

where

N = actual number of use-cases

LOCavg = historical average LOC per use-case for this type of subsystem

LOCadjua = represents an adjustment based on n percent of LOCavg where n is

defined locally and represents the difference between this project

and "average” projects

S„ = actual scenarios per use-case

Sh = average scenarios per use-case for this type of subsystem

P„ = actual pages per use-case

Ph = average pages per use-case for this type of subsystem

Expression (23-2) is used to develop a rough estimate of the number of LOC based

on the actual number of use-cases adjusted by the number of scenarios and the page

length of the use-cases. The adjustment represents up to n percent of the historical

average LOC per use case.

23.6.8 An Example of Use-Case Based Estimation

The CAD software introduced in Section 23.6.3 is composed of three subsystem

groups:

• User interface subsystem (includes UICF).

• Engineering subsystem group (includes the 2DGA subsystem, 3DGA
subsystem, and DAM subsystem).

• Infrastructure subsystem group (includes CGDF subsystem and PCF subsystem).

Six use-cases describe the user interface subsystem. Each use case is described by

no more than 10 scenarios and has an average length of six pages. The engineering

subsystem group is described by 1 0 use-cases (these are considered to be at a higher

level of the structural hierarchy). Each of these use-cases has no more than 20 sce-

narios associated with it and has an average length of eight pages. Finally, the infra-

structure subsystem group is described by five use-cases with an average of only six

scenarios and an average length of five pages.

8 It is important to note that Expression (23-2) is used for illustrative purposes only. Like all estima-

tion models, it must be validated locally before it can be used with confidence.

690 PART FOUR MANAGING SOFTWARE PROJECTS

Use-case

estimation

use-cases

User interface subsystem 6
Engineering subsystem group 1

0

Infrastructure subsystem group 5

Total LOC estimate

scenarios paqes scenarios paaes LOC LOC estimate

10 6 12 5 560 3.366

20 8 16 8 3100 31,233

6 5 10 6 1650 7,970

42,568

Using the relationship noted in Expression (23-2) with n - 30 percent, the table

shown in Figure 23.5 is developed. Considering the first row of the table, historical

data indicate that Ul software requires an average of 800 LOC per use-case when the

use-case has no more than 12 scenarios and is described in less than five pages.

These data conform reasonably well for the CAD system. Hence the LOC estimate for

the user interface subsystem is computed using Expression (23-2). Using the same

approach, estimates are made for both the engineering and infrastructure subsystem

groups. Figure 23.5 summarizes the estimates and indicates that the overall size of

the CAD software is estimated at 42,500 LOC.

Using 620 LOC/pm as the average productivity for systems of this type and a bur-

dened labor rate of $8,000 per month, the cost per line of code is approximately $13.

Based on the use-case estimate and the historical productivity data, the total esti-

mated project cost is $552,000 and the estimated effort is 68 person-months.

23.6.9 Reconciling Estimates

The estimation techniques discussed in the preceding sections result in multiple es-

timates which must be reconciled to produce a single estimate of effort, project du-

ration, or cost. To illustrate this reconciliation procedure, we again consider the CAD

software introduced in Section 23.6.3.

"Complicated methods might not yield o more accurate estimate, particularly when developers can incorporate their

own intuition into the estimate."

Philip Johnson et al.

Total estimated effort for the CAD software range from a low of 46 person-months

(derived using a process-based estimation approach) to a high of 68 person-months

(derived with use-case estimation). The average estimate (using all four approaches)

is 56 person-months. The variation from the average estimate is approximately 18

percent on the low side and 2
1
percent on the high side.

What happens when agreement between estimates is poor? The answer to this

question requires a reevaluation of information used to make the estimates. Widely

divergent estimates can often be traced to one of two causes:

l . The scope of the project is not adequately understood or has been misinter-

preted by the planner.

CHAPTER 23 ESTIMATION 691

2. Productivity data used for problem-based estimation techniques is inappro-

priate for the application, obsolete (in that it no longer accurately reflects the

software engineering organization), or has been misapplied.

The planner must determine the cause of divergence and then reconcile the estimates.

2.2,7 Empirical Estimation Models

POINT
An estimation model

reflects tfie population

of projects from which

it hos been derived.

Therefore, the model is

domain sensitive.

An estimation mode! for computer software uses empirically derived formulas to

predict effort as a function of LOC or FP.
9 Values for LOC or FP are estimated using

the approach described in Sections 23.6.3 and 23.6.4. But instead of using the tables

described in those sections, the resultant values for LOC or FP are plugged into the

estimation model.

The empirical data that support most estimation models are derived from a lim-

ited sample of projects. For this reason, no estimation model is appropriate for all

classes of software and in all development environments. Therefore, the results ob-
tained from such models must be used judiciously.

9 An empirical model using use-cases as Ihe independent variable is suggested in Section 23.6.7.

However, relatively few have appeared in the literature to date.

692

None of these models

should be used v/ithout

coreful calibration to

your environment.

WebRef
Detailed information on

COCOMO It, induing

cownkxidable

software, tan be

obtained at

suiiset.usc.eiio/

research/

COCOMOII/

cocomo_muin.

html.

PART POOR MANAGING SOFTWARE PROJECTS

An estimation model should be calibrated to reflect local conditions. The model

should be tested by applying data collected from completed projects, plugging the

data into the model, and then comparing actual to predicted results. If agreement is

poor, the model must be tuned and retested before it can be used.

23.7. 1 The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from

past software projects. The overall structure of such models takes the form [MAT94]

£ = A + B x (e,)
c (23~3'

where A, B. and C are empirically derived constants, £ is effort in person-months, and

ev is the estimation variable (either LOC or FP). In addition to the relationship noted

in Equation (23-3), the majority of estimation models have some form of project ad-

justment component that enables £ to be adjusted by other project characteristics

(e.g„ problem complexity, staff experience, development environment). Among the

many LOC-oriented estimation models proposed in the literature are

E = 5.2 x (KLOC) 091 Walston-Felix model

E = 5.5 + 0.73 X (KLOC)" 6 Bailey-Basili model

E = 3.2 x (KLOC) 1 05 Boehm simple model

E = 5.288 x (KLOC)' 047 Doty mode! for KLOC > 9

FP-oriented models have also been proposed. These include

E = -91.4 + 0.355 FP Albrecht and Gaffney model

E = -37 + 0.96 FP Kemerer model

E = - 12.88 + 0.405 FP small project regression model

A quick examination of these models indicates that each will yield a different result

for the same values of LOC or FP. The implication is clear. Estimation models must

be calibrated for local needs!

23.7.2 The COCOMO II Model

In his classic book on "software engineering economics,” Barry Boehm [BOE81] in-

troduced a hierarchy of software estimation models bearing the name COCOMO, for

COnstiuctive COst Model. The original COCOMO model became one of the most

widely used and discussed software cost estimation models in the industry. It has

evolved into a more comprehensive estimation model, called COCOMO II |BOE96,

BOE00). Like its predecessor, COCOMO II is actually a hierarchy of estimation mod-

els that address the following areas-.

• Application composition model. Used during the early stages of software engi-

neering, when prototyping of user interfaces, consideration of software and

system interaction, assessment of performance, and evaluation of technology

maturity are paramount.

CHAPTER 23 ESTIMATION 693

• Early design stage model. Used once requirements have been stabilized and

basic software architecture has been established.

• Post-architecture stage model. Used during the construction of the software.

Like all estimation models for software, the COCOMO II models require sizing infor-

mation. Three different sizing options are available as part of the model hierarchy:

object points, function points, and lines of source code.

The COCOMO II application composition model uses object points —an indirect

software measure that is computed using counts of the number of (1) screens (at the

user interface), (2) reports, and (3) components likely to be required to build the ap-

plication. Each object instance (e.g., a screen or report) is classified into one of three

complexity levels (i.e., simple, medium, or difficult) using criteria suggested by

Boehm [BOE96]. In essence, complexity is a function of the number and source of

the client and server data tables that are required to generate the screen or report

and the number of views or sections presented as part of the screen or report,

what is an °nce complexity is determined, the number of screens, reports, and components
• object point? are weighted according to the table illustrated in Figure 23.6. The object point count

is then determined by multiplying the original number of object instances by the

weighting factor in the figure and summing to obtain a total object point count. When
component-based development or general software reuse is to be applied, the per-

cent of reuse (%reuse) is estimated and the object point count is adjusted:

NOP = (object points) x [(100 - 96reuse)/IOO]

where NOP is defined as new object points.

To derive an estimate of effort based on the computed NOP value, a "productivity

rate" must be derived. Figure 23.7 presents the productivity rate

PROD = NOP/person-month

for different levels of developer experience and development environment maturity.

Once the productivity rate has been determined, an estimate of project effort can be

derived as

estimated effort = NOP/PROD

Complexity
weighting for

object types

[BOE96]

Object type
Complexity weight

Simple Medium Difficult

Screen I 2 3

Report 2 5 8

3GL component 10

694 PART FOUR MANAGING SOFT V/ARE PROJECTS

Productivity rate lor object points [BOE96]

Developer's experience/capability
Very

low
Low Nominal High

Very

high

Environment maturity/capability
Very

low
Low Nominal High

Very

high

PROD 4 7 13 25 50

In more advanced COCOMO 11 models, 10 a variety of scale factors, cost drivers,

and adjustment procedures are required. The interested reader should see [BOEOOj

or visit the COCOMO II Web site.

WebRef
loformolion on

sottwore cosl

esrimoiion tools thot

have evolved from Itie

software equation con

be found of

www.qsm.com.

23.7.3 The Software Equation

The software equation [PUT92] is a multivariable model that assumes a specific dis-

tribution of effort over the life of a software development project. The model has

been derived from productivity data collected for over 4000 contemporary software

projects. Based on these data, an estimation model of the form

E = [LOC x B° 333/P|3 x (1/t
4
)

(23-4)

where

E = effort in person-months or person-years

f = project duration in months or years

B = "special skills factor""

P = "productivity parameter" that reflects: overall process maturity and man-

agement practices, the extent to which good software engineering prac-

tices are used, the level of programming languages used, the state of the

software environment, the skills and experience of the software team, and

the complexity of the application.

Typical values might be P = 2000 for development of real-time embedded software;

P = 10,000 for telecommunication and systems software; P = 28,000 for business

systems applications. The productivity parameter can be derived for local conditions

using historical data collected from past development efforts.

It is important to note that the software equation has two independent parame-

ters: (1) an estimate of size (in LOC) and (2) an indication of project duration in cal-

endar months or years.

10 As noted earlier, these models use FP and KLOC counts for the size variable.

1 1 B increases slowly as "the need for integration, testing, quality assurance, documentation, and

management skills grows" |PUT92]. For small programs (KLOC = 5 to 15), 0 = 0.16. For programs

greater than 70 KLOC, B = 0.39.

CHAPTER 23 ESTIMATION 695

To simplify the estimation process and use a more common form for their esti-

mation model, Putnam and Myers (PUT92J suggest a set of equations derived from
the software equation. Minimum development time is defined as

fmin = 8. 14 (LOC/P)043 in months for fmin > 6 months (23-5a)

E = 1 80 Bf3 in person-months for £ a 20 person-months (23-5b)

Note that f in Equation (23-5b) is represented in years.

Using Equations (23-5) with P = 12,000 (the recommended value for scientific

software) for the CAD software discussed earlier in this chapter,

fmin = 8.14 (33200/ 12000)° 43

tmin =12.6 calendar months

£ = 180 x 0.28 x (1.05)
3

£ =58 person-months

The results of the software equation correspond favorably with the estimates devel-

oped in Section 23.6. Like the COCOMO model noted in the preceding section, the

software equation has evolved over the past decade. Further discussion of an ex-

tended version of this estimation approach can be found in [PUT97b],

2,3.8 Estimation for Object-Oriented Projects

It is worthwhile to supplement conventional software cost estimation methods with

an approach that has been designed explicitly for OO software. Lorenz and Kidd

[LOR94] suggest the following approach:

1 . Develop estimates using effort decomposition, FP analysis, and any other

method that is applicable for conventional applications.

2. Using object-oriented analysis modeling (Chapter 8), develop use-cases and
determine a count. Recognize that the number of use-cases may change as

the project progresses.

3. From the analysis model, determine the number of key classes (called analy-

sis classes in Chapter 8).

4. Categorize the type of interface for the application, and develop a multiplier

for support classes.-

Interface type Multiplier

No GUI 2.0

Text-based user interface 2.25

GUI 2.5

Complex GUI 3.0

696 PART FOUR MANAGING SOFTWARE PROJECTS

2&JL

How are

W' estimates

developed when

an agile process is

applied?

In the context of

estimation for agile

projects, "volume" is

an estimate of the

overall size of a usei

scenario in LOC or FP.

Multiply the number of key classes (step 3) by the multiplier to obtain an esti-

mate for the number of support classes.

5. Multiply the total number of classes (key + support) by the average number

of work-units per class. Lorenz and Kidd suggest 15 to 20 person-days per

class.

6. Cross-check the class-based estimate by multiplying the average number of

work-units per use-case.

Specialized Estimation Techniques

The estimation techniques discussed in Sections 23.6, 23.7 and 23.8 can be used for

any software project. However, when a software team encounters an extremely

short project duration (weeks rather than months) that is likely to have a continuing

stream of changes, project planning in general and estimation in particular should

be abbreviated. 12
In the sections that follow, we examine two specialized estimation

techniques.

23.9.1 Estimation for Agile Development

Because the requirements for an agile project (Chapter 4) are defined as a set of user

scenarios (e.g., "stories" in Extreme Programming) it is possible to develop an esti-

mation approach that is informal, yet reasonably disciplined and meaningful within

the context of project planning for each software increment.

Estimation for agile projects uses a decomposition approach that encompasses

the following steps:

1 . Each user scenario (the equivalent of a mini-use-case created at the very

start of a project by end-users or other stakeholders) is considered sepa-

rately for estimation purposes.

2. The scenario is decomposed into the set of functions and the software engi-

neering tasks that will be required to develop them.

3a. Each task is estimated separately. Note: estimation can be based on histori-

cal data, an empirical model, or "experience."

3b. Alternatively, the "volume" (size) of the scenario can be estimated in LOC,

FP, or some other volume-oriented measure (e.g., object points).

4a. Estimates for each task are summed to create an estimate for the

scenario.

12 "Abbreviated" does not mean eliminated. Even short duration projects must be planned, and esti-

mation is the foundation of solid planning.

CHAPTER 23 ESTIMATION 697

4b. Alternatively, the volume estimate for the scenario is translated into effort

using historical data.

5. The effort estimates for all scenarios that are to be implemented for a

given software increment are summed to develop the effort estimate for

the increment.

Because the project duration required for the development of a software increment

is quite short (typically 3-6 weeks), this estimation approach serves two purposes:

(1) to ensure that the number of scenarios to be included in the increment conforms

to the available resources, and (2) to establish a basis for allocating effort as the in-

crement is developed.

23.9.2 Estimation for Web Engineering Projects

As we noted in Chapter 16, Web engineering projects often adopt the agile process

model. A modified function point measure, coupled with the steps outlined in Sec-

tion 23.9. 1 ,
can be used to develop an estimate for the WebApp.

Roetzheim [ROEOOj suggests the following information domain values when

adapting function points (Chapters 15 and 22) for WebApp estimation:

• Inputs are each input screen or form (for example, CGI or Java), each maintenance

screen, and if you use a tab notebook metaphor anywhere, each tab.

• Outputs are each static Web page, each dynamic Web page script (for example, ASP,

ISAPI, or other DHTML script), and each report (whether Web based or administrative

in nature).

• Tables are each logical table in the database plus, if you are using XML to store data in

a file, each XML object (or collection of XML attributes)

• Interfaces retain their definition as logical files (for example, unique record formats) into

our out-of-the-system boundaries.

• Queries are each externally published or use a message-oriented Interface. A typical ex-

ample is DCOM or COM external references.

Function points (computed using the information domain values noted) are a rea-

sonable indicator of volume for a WebApp.

Mendes and her colleagues [MEN01] suggest that the volume of a WebApp is best

determined by collecting measures (called "predictor variables") associated with the

application (e g., page count, media count, function count), its Web page character-

istics (e.g., page complexity, linking complexity, graphic complexity), media charac-

teristics (e.g„ media duration), and functional characteristics (e.g., code length,

reused code length). These measures can be used to develop empirical estimation

models for total project effort, page authoring effort, media authoring effort, and

scripting effort. However, further work remains to be done before such models can

be used with confidence.

698 PART FOUR MANAGING SOFTWARE PROJECTS

Effort and Cost Estimation

Objective: The objective of effort and cost

estimation tools is to provide a project team

with estimates of effort required, project duration, and cost

in a manner that addresses the specific characteristics of

the project at hand and the environment in which the

project is to be built.

Mechanics: In general, cost estimation tools make use of

a historical database derived from local projects, data

collected across the industry, and an empirical model

(e.g., COCOMO II) thot is used to derive effort, duration

and cost estimates. Characteristics of the project and the

development environment are input, and the tool provides

a range of estimation outputs.

Representative Tools 13

Costar, developed by Softstar Systems

(www.softstarsystems.com), uses the COCOMO II

model to develop software estimates.

Cost Xpert
,
developed by Cost Xpert Group, Inc.

(www.costxpert.com), integrates multiple estimation

models and a historical project database.

Software Tools
\

Estimate Professional, developed by the Software

Productivity Centre, Inc. (www.spc.com), is based on

COCOMO II and the SLIM Model.

Knowledge Plan, developed by Software Productivity

Research (www.spr.com), uses function point input as

the primary driver for a complete estimation package.

Price S, developed by Price Systems

(www.pricesystems.com), is one of the oldest and most

widely used estimating tools for large-scale software

development projects.

SEER/SEM, developed by Galorath Inc.,

(www.galorath.com), provides comprehensive

estimation capability, sensitivity analysis, risk

assessment, and other features.

SUM-Estimate, developed by QSM (www.qsm.com), draws

on comprehensive "industry knowledge bases" to

provide a "sanity check" for estimates derived using

local data.

2.3. IQ The Make /Bvy Decision

In many software application areas, it is often more cost effective to acquire rather

than develop computer software. Software engineering managers are faced with a

make/buy decision that can be further complicated by a number of acquisition op-

tions: (l) software may be purchased (or licensed) off the shelf, (2) "full-experience"

or "partial-experience" software components (see Section 23.4.2) may be acquired

and then modified and integrated to meet specific needs, or (3) software may be cus-

tom built by an outside contractor to meet the purchaser's specifications.

The steps involved in the acquisition ofsoftware are defined by the criticality of the

software to be purchased and the end cost. In the final analysis, the make/buy deci-

sion is made based on the following conditions: (1)
Will the software product be avail-

able sooner than internally developed software? (2) Will the cost of acquisition plus

the cost of customization be less than the cost of developing the software internally?

(3) Will the cost of outside support (e.g., a maintenance contract) be less than the cost

of internal support? These conditions apply for each of the acquisition options.

13 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 23 ESTIMATION 699

^ Is there a

• systematic

way to sort

through the

options associated

with the make/

buy decision?

23. 10. 1 Creating a Decision Tree

The steps just described can be augmented using statistical techniques such as de-

cision tree analysis [BOE89]. For example, Figure 23.8 depicts a decision tree for a

software-based system, X. In this case, the software engineering organization can

(1) build system X from scratch, (2) reuse existing "partial-experience" components

to construct the system, (3) buy an available software product arid modify it to meet

local needs, or (4) contract the software development to an outside vendor.

If the system is to be built from scratch, there is a 70 percent probability that the

job will be difficult. Using the estimation techniques discussed earlier in this chapter,

the project planner projects that a difficult development effort will cost $450,000. A

"simple" development effort is estimated to cost $380,000. The expected value for

cost, computed along any branch of the decision tree, is

expected cost = S (path probability),- x (estimated path cost),

where i is the decision tree path. For the build path,

expected costbuM = 0.30 ($380K) - 0.70 (S450K) = $429K

Following other paths of the decision tree, the projected costs for reuse, purchase

and contract, under a variety of circumstances, are also shown. The expected costs

for these paths are

expected COStreusc = 0.40 ($275K) + 0.60 [0.20 ($31 OK) + 0.80 ($490K)] = $382K

expected costbuy = 0.70 ($21 OK) + 0.30 ($400K)] = $267K

expected costC3n;.
acl

= 0.60 ($350K) + 0.40 ($500K)j = $41 OK

^ Is there a

• systematic

woy to sort

through the

options associated

with the make/

buy decision?

A decision tree

to support the

make/buy
decision

System X

Minor changes

(0.7C)

Major changes (0.30}

With changes (0.40)

700 PART FOUR MANAGING SOFTWARE PROJECTS

Based on the probability and projected costs that have been noted in Figure 23.8, the

lowest expected cost is the "buy" option.

It is important to note, however, that many criteria—not just cost—must be

considered during the decision-making process. Availability, experience of the

developer/vendor/contractor, conformance to requirements, local "politics," and

the likelihood of change are but a few of the criteria that may affect the ultimate de-

cision to build, reuse, buy, or contract.

23.10.2 Outsourcing

Sooner or later, eveiy company that develops computer software asks a fundamen-

tal question: Is there a way that we can get the software and systems we need at a

lower price? The answer to this question is not a simple one, and the emotional dis-

cussions that occur in response to the question always lead to a single word: out-

sourcing.

In concept, outsourcing is extremely simple. Software engineering activities are

contracted to a third party who does the work at lower cost and, hopefully, higher

quality. Software work conducted within a company is reduced to a contract man-

agement activity.
14

"As a rule outsourcing requires even more skillful manogement than in-house development."

Steve McConnefl

The decision to outsource can be either strategic or tactical. At the strategic level,

business managers consider whether a significant portion of all software work can

be contracted to others. At the tactical level, a project manager determines whether

part or all of a project can be best accomplished by subcontracting the software

work.

Regardless of the breadth of focus, the outsourcing decision is often a financial

one. A detailed discussion of the financial analysis for outsourcing is beyond the

scope of this book and is best left to others (e.g., [MIN9S]). However, a brief review

of the pros and cons of the decision is worthwhile.

On the positive side, cost savings can usually be achieved by reducing the num-

ber of software people and the facilities (e.g., computers, infrastructure) that support

them. On the negative side, a company loses some control over the software that it

needs. Since software is a technology that differentiates its systems, services, and

products, a company runs the risk of putting the fate of its competitiveness into the

hands of a third party.

14 Outsourcing can be viewed more generally as any activity that leads to the acquisition of software

or software components from a source outside the software engineering organization.

CHAPTER 23 ESTIMATION 701

SafeHome

Outsourcing

The scene: Meeting room at CPI

The players: Mai Golden, senior manager, product

development; Lee Warren, engineering manager; Joe

Camalleri, executive VP, business development; Doug

Miller, project manoger, software engineering.

The conversation:

Joe: We're considering outsourcing the SafeHome

software engineering portion of the product.

Doug (shocked): When did this happen?

Lee: We got a quote from an offshore developer. It

comes in at 30 percent below what your group seems to

believe it will cost. Here. [Hands the quote to Doug who

reads it.]

Mai: As you know, Doug, we're trying to keep costs

down, and 30 percent is 30 percent. Besides, these

people come highly recommended.

Doug (taking a breath and trying to remain

calm): You guys caught me by surprise here, but before

you make a final decision, a few comments?

Joe (nodding): Sure, go ahead.

Doug: We haven't worked with this outsourcing

company before, right?

Mai: Right, but. . . .

Doug: And they note that any changes to spec will be

billed at an additional rate, right?

Joe (frowning): True, but we expect that things will be

reasonably stable.

Doug: A bad assumption, Joe.

Joe: Well,

Doug: It's likely that we'll release new versions of this

product over the next few years. And it's reasonable to

assume that software will provide many of the new

features, right?

[All nod.]

Doug: Have we ever coordinated an international

project before?

Lee (looking concerned): No, but I'm told. . . .

Doug (trying to suppress his anger): So what

you're telling me is: (1)
we're about to work with an

unknown vendor, (2) the costs to do this are not as low as

they seem, (3) we're de facto committing to work with

them over many product releases, no matter what they do

on the first one, and (4) we're going to learn on-the-job

relative to an international project.

[All remain silent.]

Doug: Guys ... I think this is a mistake, and I'd like you

to take a day to reconsider. We'll have far more control if

we do the work in house. We have the expertise, and I

can guarantee that it won't cost us much more ... the risk

will be lower, and I know you're all risk averse, as I am.

Joe (frowning): You've made a few good points, but

you hove a vested interest in keeping this project in-

house.

Doug: That's true, but it doesn't change the facts.

Joe (with a sigh): Okay, let's table this for a day or

two, give it some more thought, and meet again for a

final decision. Doug, can I speak with you privately?

Doug: Sure ... I really do want to be sure we do the

right thing.

23.11 Summary _
The software project planner must estimate three things before a project begins: how

long it will take, how much effort will be required, and how many people will be in-

volved. In addition, the planner must predict the resources (hardware and software)

that will be required and the risk involved.

The statement of scope helps the planner develop estimates using one or more

techniques that fall into two broad categories: decomposition and empirical modeling.

702 PART FOUR MANAGING SOFTWARE PROJECTS

Decomposition techniques require a delineation of major software functions, followed

by estimates of either (1) the number of LOC, (2) selected values within the informa-

tion domain,. (3) the number of use-cases, (4) the number of person-months required

to implement each function, or (5) the number of person-months required for each

software engineering activity. Empirical techniques use empirically derived expres-

sions for effort and time to predict these project quantities. Automated tools can be

used to implement a specific empirical model.

Accurate project estimates generally use at least two of the three techniques just

noted. By comparing and reconciling estimates derived using different techniques,

the planner is more likely to derive an accurate estimate. Software project estima-

tion can never be an exact science, but a combination of good historical data and

systematic techniques can improve estimation accuracy.

References

(BEN92| Bennatan, E. M., Software Project Management: A Practitioner's Approach, McGraw-Hill,

1992.

[BEN03] Bennatan, E. M., '"'So What Is the State of Software Estimation?" The Cutter Edge (an

online newsletter), February 11, 2003, available from http:// www.cutter.com.
1BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.

[BOE89] Boehm, B., Risk Management, IEEE Computer Society Press, 1989.

[BOE96] Boehm, B., "Anchoring the Software Process," IEEE Software, vol. 13, no. 4, July 1996,

pp. 73-82.

[BOEOO] Boehm, B., et al., Software Cost Estimation in COCOMO II, Prentice-Hall, 2000.

[BR075] Brooks, F., The Mythical Man-Month, Addison-Wesley, 1975.

[GAU89J Gause, D. C., and G. M. Weinberg, Exploring Requirements: Quality Before Design, Dorset
House, 1989

[H009
1 1 Hooperj., and R. O. Chester, Software Reuse: Guidelinesand Methods. Plenum Press, 1991.

[JON96] Jones, C„ "How Software Estimation Tools Work," American Programmer, vol. 9, no. 7,

July 1996, pp. 19-27.

[LOR941 Lorenz, M., and J. Kidd, Object Oriented Software Metrics, Prentice-Hall, 1994

[MAT94] Matson, J., B. Barrett, and J. Mellichamp, "Software Development Cost Estimation Using

Function Points," IEEE Trans. Software Engineering, vol. SE-20, no. 4, April 1994, pp. 275-287.

[MCC98] McConnell, S., Software Project Survival Guide, Microsoft Press, 1998.

[MEN0I
|
Mendes, E., N. Mosley, and S. Counsell, "Web Metrics—Estimating Design and Author-

ing Effort," IEEE Multimedia, January-March 2001
,
pp. 50-57.

[MIN95| Minoli, D., Analyzing Outsourcing, McGraw-Hill, 1995.

(PH198] Phillips, D., The Software Project Managers Handbook, IEEE Computer Society Press, 1998.

[PUT78] Putnam, L., "A General Empirical Solution to the Macro Software Sizing and Estimation

Problem," IEEE Trans. Software Engineering, Vol SE-4, No. 4, July 1978, pp. 345-361.

[PUT92] Putnam, L., and W. Myers, Measuresfor Excellence, Yourdon Press, 1992.

[PUT97a] Putnam, L., and W. Myers, "How Solved Is the Cost Estimation Problem?" IEEE Soft

ware, November 1997. pp. 105-107.

(PUT97bl Putnam, L., and W. Myers, Industrial Strength Software: Effective Management Using

Measurement, IEEE Computer Society Press, 1997.

[ROE00] Roetzheim, W., "Estimating Internet Development," Software Development, August 2000,

available at http://www.sdmagazine.com/documents/s=74l/ sdm0008d/0008d.htm.

[SMI99J Smith, J., "The Estimation of Effort Based on Use Cases," Rational Software Corp
, 1999,

download from http://www.rational.com/media/whitepapers/ fmalTPl7I .PDF.

CHAPTER 23 ESTIMATION 703

PftPSLEMS AMP Pgm.IS,ia.,£am?.£B

23.

1

. Performance is an important consideration during planning. Discuss how performance can

be interpreted differently depending upon the software application area.

23 .2 . Assume that you are the project manager for a company that builds software for house-

hold robots. You have been contracted to build the software for a robot that mows the lawn for

a homeowner. Write a statement of scope that describes the software. Be sure your statement

of scope is bounded. Ifyou're unfamiliar with robots, do a bit of research before you begin writ-

ing. Also, state your assumptions about the hardware that will be required. Alternate: Replace

the lawn mowing robot with another robotics problem that is of interest to you.

23 .3 . Software project complexity influences estimation accuracy Develop a list of software

characteristics (e.g., concurrent operation, graphical output) that affect the complexity ofa proj-

ect. Prioritize the list.

23 .4 . Do a functional decomposition of the robot software you described in Problem 23.2. Es-

timate the size of each function in LOC. Assuming that your organization produces 450 LOC/pm
with a burdened labor rate of $7,000 per person-month, estimate the effort and cost required to

build the software using the LOC-based estimation technique described in this chapter.

23 .5 . Use the COCOMO II model to estimate the effort required to build software for a simple

ATM that produces 12 screens, 10 reports, and will require approximately 80 software compo-
nents. Assume average complexity and average developer/environment maturity. Use the ap-

plication composition model with object points.

23 .6 . It seems odd that cost and schedule estimates are developed during software project

planning—before detailed software requirements analysis or design has been conducted. Why
do you think this is done’ Are there circumstances when it should not be done?

23 . 7 . Use the software equation to estimate the lawn mowing robot software from Problem

23.2. Assume that Equations (23-5) are applicable and that P = 8000.

23 .8 . Compare the effort estimates derived in Problems 23.4 and 23.7. What is the standard de-

viation, and how does it affect your degree of certainty about the estimate?

23 .9 . Using the results obtained in Problem 23.8, determine whether it's reasonable to expect

that the software can be built within the next six months and how many people would have to

be used to get the job done.

23 . 1

1

. Develop a spreadsheet model that implements one or more of the estimation tech-

niques described in this chapter. Alternatively, acquire one or more on-iine models for software

project estimation from Web-based sources.

23 . 1

0

. For a project team, develop a software tool that implements each of the estimation tech-

niques developed in this chapter.

23 . 12 . Recompute the expected values noted for the decision tree in Figure 23.8 assuming that

every branch has a 50-50 probability. Would this change your final decision?

Further Readings and Information Sources

Most software project management books contain discussions of project estimation. The Project

Management institute (PMBOK Guide, PMI, 2001), Wysoki and his colleagues (Effective Project

Management, Wiley, 2000), Lewis (Project Planning Schedulingand Control, third edition, McGraw-
Hill, 2000), Bennatan (On Time, Within Budget . Software Project Management Practices and Tech-

niques, third edition, Wiley, 2000), and Phillips [PHI98J provide useful estimation guidelines.

704 PART FOUR MANAGING SOFTWARE PROJECTS

Jones {Estimating Software Costs, McGraw-Hill, 1998) has written one of the most compre-

hensive treatments of the subject published to date. His book contains models and data that are

applicable to software estimating in every application domain. Coombs {IT Project Estimation,

Cambridge University Press, 2002), Roetzheim and Beasley (Software Project Cost and Schedule

Estimating; Best Practices, Prentice-Hall, 1997), and Wellman (Software Costing, Prentice-Hall,

1992) present many useful models and suggest step-by-step guidelines for generating the best

possible estimates.

Putnam and Myer’s detailed treatment of software cost estimating ([PUT92] and [PUT97b]j

and Boehm's books on software engineering economics ([BOE81] and COCOMO II [BOEOO]) de-

scribe empirical estimation models. These books provide detailed analysis of data derived from

hundreds of software projects. An excellent book by DeMarco (Controlling Software Projects,

Yourdon Press, 1982) provides valuable insight into the management, measurement, and esti-

mation of software projects. Lorenz and Kidd (Object-Oriented Software Metrics, Prentice-Hail,

1994) and Cockburn (Surviving Object-Oriented Projects, Addison-Wesley, 1998) consider esti-

mation for object-oriented systems.

A wide variety of information sources on software estimation is available on the internet. An

up-to-date list of World Wide Web references can be found at the SEPA Web site.-

http://www.mhhe.com/pressman.

Project
Scheduling

Key
Concepts
basic principles

lateness

earned value

effort dislrfartion

people and effort

PNR curve

task network

task refinement

time-boxing

timeline charts

tracking

work breakdown

CHAPTER

24
I

n the late 1960s, a bright-eyed young engineer was chosen to "write" a com-

puter program for an automated manufacturing application. The reason for

his selection was simple. He was the only person in his technical group who

had attended a computer programming seminar. He knew the ins and outs of as-

sembly language and FORTRAN but nothing about software engineering and even

less about project scheduling and tracking.

His boss gave him the appropriate manuals and a verbal description ofwhat had

to be done. He was informed that the project must be completed in two months.

He read the manuals, considered his approach, and began writing code. After

two weeks, the boss called him into his office and asked how things were going.

"Really great," said the young engineer with youthful enthusiasm, "This was

much simpler than I thought. I'm probably close to 75 percent finished."

The boss smiled and encouraged the young engineer to keep up the good work.

They planned to meet again in a week's time.

A week later the boss called the engineer into his office and asked, "Where

are we?"

"Everything's going well," said the youngster, "but I've run into a few small

snags. I'll get them ironed out and be back on track soon."

"How does the deadline look?" the boss asked.

appropriate process

identified

What is it? You selected an

model; you

the software engineering

tasks that have to be performed; you

estimated the amount of work and the number of

people; you know the deadline; you even considered

the risks. Now it's time to connect the dots. That is,

you have to create a network of software

engineering tasks that will enable you to get the job

done on time. Once the network is created^ you have

to assign responsibility for each task, make sure it

gets done, and adapt the network as risks become

reality. In a nutshell, that's software project

scheduling and tracking.

Who does it? At the project level, software proj-

ect managers using information solicited from

software engineers. At an individual level, soft-

ware engineers themselves.

Why is it important? To build a complex sys-

tem, many software engineering tasks occur in

parallel, and the result of work performed dur-

ing one task may have a profound effect on

work conducted in another task. These interde-

pendencies are very difficult to understand with-

out a schedule. It's also virtually impossible to

assess progress on a moderate or large software

project without a detailed schedule.

What are the steps? The software engineer-

ing tasks dictated by the software process

model are refined for the functionality to be

built. Effort and duration are allocated to each

task, and a task network (also called an "ac-

tivity network") is created in a manner that en-

ables the software team to meet the delivery

deadline established.

705

706 PART FOUR MANAGING SOFTWARE PROJECTS

What is the work product? The project

schedule and related information are produced.

How do I ensure that I've done it right?

Proper scheduling requires that (1) all tasks ap-

pear in the network, (2) effort and timing are

intelligently allocated to each task, (3) interdepen-

dencies between tasks are properly indicated,

(4) resources are allocated for the work to be

done, and (5) closely spaced milestones are pro-

vided so that progress can be tracked.

"No problem," said the engineer. "I’m close to 90 percent complete.”

If you've been working in the software world for more than a few years, you can

finish the story. It'll come as no surprise that the young engineer 1 stayed 90 percent

complete for the entire project duration and finished (with the help of others) only

one month late.

This story has been repeated tens of thousands of times by software developers

during the past four decades. The big question is why?

2.1*L Basic,, Concepts

Although there are many reasons why software is delivered late, most can be traced

to one or more of the following root causes:

• An unrealistic deadline established by someone outside the software engi-

neering group and forced on managers and practitioners within the group.

• Changing customer requirements that are not reflected in schedule changes.

• An honest underestimate of the amount of effort and/or the number of

resources that will be required to do the job.

• Predictable and/or unpredictable risks that were not considered when the

project commenced.

• Technical difficulties that could not have been foreseen in advance.

• Human difficulties that could not have been foreseen in advance.

• Miscommunication among project staff that results in delays.

• A failure by. project management to recognize that the project is falling

behind schedule and a lack of action to correct the problem.

"Excessive or irrational schedules ore probably the single most destructive influence in oil of software."

Capers Jones

Aggressive (read "unrealistic") deadlines are a fact of life in the software business.

Sometimes such deadlines are demanded for reasons that are legitimate, from the

point of view of the person who sets the deadline. But common sense says that le-

gitimacy must also be perceived by the people doing the work.

I In case you were wondering, this story is autobiographical

CHAPTER 24 PROJECT SCHEDULING 707

What should

• we do when

management

demands that we

make a deadline

that is

impossible?

Napoleon once said: "Any commander-in-chief who undertakes to carry out a

plan which he considers defective is at fault; he must put forth his reasons, insist on

-the plan being changed, and finally tender his resignation rather than be the instru-

ment of his army's downfall." These are strong words that many software project

managers should ponder.

The estimation activities discussed in Chapter 23 and the scheduling techniques

described in this chapter are often implemented under the constraint of a defined

deadline. If best estimates indicate that the deadline is unrealistic, a competent proj-

ect manager should "protect his or her team from undue [schedule] pressure . .
.
[and]

reflect the pressure back to its originators" [PAG85],

To illustrate, assume that a software engineering team has been asked to build a

real-time controller for a medical diagnostic instrument that is to be introduced to

the market in nine months. After careful estimation and risk analysis (Chapter 25),

the software project manager comes to the conclusion that the software, as re-

quested, will require 1 4 calendar months to create with available staff. How does the

project manager proceed?

"I love deadlines. I like the whooshing sound they moke as they fly by."

Douglas Adams

It is unrealistic to march into the customer's office (in this case the likely customer

is marketing/sales) and demand that the delivery date be changed. External market

pressures have dictated the date, and the product must be released. It is equally fool-

hardy to refuse to undertake the work (from a career standpoint). So, what to do?

The following steps are recommended in this situation:

1 . Perform a detailed estimate using historical data from past projects. Deter-

mine the estimated effort and duration for the project.

2. Using an incremental process model (Chapter 3), develop a software engi-

neering strategy that will deliver critical functionality by the imposed dead-

line, but delay other functionality until later. Document the plan.

3. Meet with the customer and (using the detailed estimate), explain why the

imposed deadline is unrealistic. Be certain to note that all estimates are

based on performance on past projects. Also be certain to indicate the per-

cent improvement that would be required to achieve the deadline as it cur

rently exists.2 The following comment is appropriate:

"1 think we may have a problem with the delivery date for the XYZ controller

software. I've given each ofyou an abbreviated breakdown of production rates

2 If the required improvement is 1 0 to 2S percent, it may actually be possible to get the job done. But,

more likely, the required improvement in team performance will be greater than 50 percent. This

is an unrealistic expectation

708 PART FOUR MANAGING SOFTWARE PROJECTS

for past projects and an estimate that we've done a number of different ways.

You’ll note that I’ve assumed a 20 percent improvement in past production

rates, but we still get a delivery date that's 14 calendar months rather than 9

months away."

4. Offer the incremental development strategy as an alternative:

"We have a few options, and I'd like you to make a decision based on them.

First, we can increase the budget and bring on additional resources so that

we'll have a shot at getting this job done in nine months. But understand that

this will increase risk of poor quality due to the tight timeline.3 Second, we can

remove a number of the software functions and capabilities that you're re-

questing. This will make the preliminary version of the product somewhat less

functional, but we can announce all functionality and then deliver over the 14

month period. Third, we can dispense with reality and wish the project com-

plete in nine months. We'll wind up with nothing that can be delivered to a cus-

tomer. The third option, I hope you'll agree, is unacceptable. Past history and

our best estimates say that it is unrealistic and a recipe for disaster."

There will be some grumbling, but if solid estimates based on good historical data

are presented, it's likely that negotiated versions of option 1 or 2 will be chosen. The

unrealistic deadline evaporates.

24,2 Project, Scheduling

Ihe tasks required to

achieve o project

monoger's objective

should not be

performed manually.

Ihere ore many

excellent scheduling

tools. Use them.

Fred Brooks, the well-known author of The Mythical Man-Month [BR095], was once

asked how software projects fall behind schedule. His response was as simple as it

was profound: "One day at a time."

The reality of a technical project (whether it involves building a hydroelectric plant

or developing an operating system) is that hundreds of small tasks must occur to ac-

complish a larger goal. Some of these tasks lie outside the mainstream and may be

completed without worry about impact on project completion date. Other tasks lie

on the "critical path." If these "critical" tasks fall behind schedule, the completion

date of the entire project is put into jeopard}'.

The project manager's objective is to define all project tasks, build a network that

depicts their interdependencies, identify the tasks that are critical within the net-

work, and then track their progress to ensure that delay is recognized "one day at a

time." To accomplish this, the manager must have a schedule that has been defined

at a degree of resolution that allows progress to be monitored and the project to be

controlled.

3 You might also add that increasing the number of people does not reduce calendar time propor-

tionally.

CHAPTER 24 PROJECT SCHEDULING 709

Software project scheduling is an activity that distributes estimated effort across

the planned project duration by allocating the effort to specific software engineering

tasks. It is important to note, however, that the schedule evolves over time. During

early stages of project planning, a macroscopic schedule is developed. This type of

schedule identifies all major process framework activities and the product functions

to which they are applied. As the project gets under way, each entry on the macro-

scopic schedule is refined into a detailed schedule. Here, specific software tasks (re-

quired to accomplish an activity) are identified and scheduled.

"Overly optimistic scheduling doesn't result in shorter ocluol schedules, it results in longer ones."

Steve McConnell

Scheduling for software engineering projects can be viewed from two rather dif-

ferent perspectives. In the first, an end-date for release of a computer-based system

has already (and irrevocably) been established. The software organization is con-

strained to distribute effort within the prescribed time frame. The second view of

software scheduling assumes that rough chronological bounds have been discussed

but that the end-date is set by the software engineering organization. Effort is dis-

tributed to make best use of resources and an end-date is defined after careful analy-

sis of the software. Unfortunately, the first situation is encountered far more

frequently than the second.

24.2 . 1 Basic Principles

Like all other areas ofsoftware engineering, a number of basic principles guide soft-

ware project scheduling:

POINT
When you develop

o schedule,

compartmentalize

the wortc, note task

interdependencies,

allocate effort and

time to each task,

define responsibilities,

outcomes, and

milestones.

Compartmenlalization. The project must be compartmentalized into a number of

manageable activities, actions, and tasks. To accomplish compartmentalization,

both the product and the process are decomposed.

Interdependency. The interdependency of each compartmentalized activity, ac-

tion, or task must be determined. Some tasks must occur in sequence while others

can occur in parallel. Some actions or activities cannot commence until the work

product produced by another is available. Other actions or activities can occur in-

dependently.

Time allocation. Each task to be scheduled must be allocated some number of

work units (e.g., person-days of effort). In addition, each task must be assigned a

start date and a completion date that are a function of the interdependencies and

whether work will be conducted on a full-time or part-time basis.

Effort validation. Every project has a defined number of people on the software

team. As time allocation occurs, the project manager must ensure that no more

than the allocated number of people have been scheduled at any given time. For

example, consider a project that has three assigned software engineers (e.g., three

710

It you must add people

to a lote project, be

sure that you've

assigned them work

that is highly compart-

mentalized.

PART FOUR MANAGING SOFTWARE PROJECTS

person-days are available per day of assigned effort
4
). On a given day, seven con-

current tasks must be accomplished. Each task requires 0.50 person days of effort.

More effort has been allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a spe-

cific team member.

Defined outcomes. Eveiy task that is scheduled should have a defined outcome. For

software projects, the outcome is normally a work product (e.g., the design of a mod-

ule) or a part of a work product. Work products are often combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with a

project milestone. A milestone is accomplished when one or more work products

has been reviewed for quality (Chapter 26) and has been approved.

Each of these principles is applied as the project schedule evolves.

24.2.2 The Relationship Between People and Effort

In a small software development project a single person can analyze requirements,

perform design, generate code, and conduct tests. As the size of a project increases,

more people must become involved. (We can rarely afford the luxury of approaching

a 1 0 person-year effort with one person working for 10 years!)

There is a common myth that is still believed by many managers who are re-

sponsible for software development effort: "Ifwe fall behind schedule, we can always

add more programmers and catch up later in the project." Unfortunately, adding

people late in a project often has a disruptive effect on the project, causing sched-

ules to slip even further. The people who are added must learn the system, and the

people who teach them are the same people who were doing the work. During teach

ing, no work is done, and the project falls further behind.

In addition to the time it takes to learn the system, more people increase the num-

ber of communication paths and the complexity of communication throughout a

project. Although communication is absolutely essential to successful software de-

velopment, every new communication path requires additional effort and therefore

additional time.

Over the years, empirical data and theoretical analysis have demonstrated that

project schedules are elastic. That is, it is possible to compress a desired project com-

pletion date (by adding additional resources) to some extent. It is also possible to ex-

tend a completion date (by reducing the number of resources).

The Putnam-Norden-Rayieigh (PNR) Curve5 provides an indication of the relationship

between effort applied and delivery time for a software project. A version of the curve,

4 In reality. less than three person-days of effort are available because of unrelated meetings, sick-

ness, vacation, and a variety of other reasons. For our purposes, however, we assume 1 00 percent

availability.

5 Original research can be found in [NOR70I and [PUT78I.

CHAPTER 24 PROJECT SCHEDULING 711

The relationship between eifort and delivery time

POINT
if delivery can be

delayed, die PNR cun/e

indicates that project

costs can be reduced

substantially.

As the project deadline

becomes tighter and

tighter, you reach a

point at which the

work cannot be

completed on

schedule, regardless of

the number of people

doing the work. Face

reality and define a

new delivery date.

representing project effort as a function of delivery time, is shown in Figure 24. 1 . The

curve indicates a minimum value, t,„ that indicates the least cost time for delivery (i.e.,

the delivery time that will result in the least effort expended) . As we move left of t„ (i.e.

,

as we try to accelerate delivery), the curve rises nonlinearly.

As an example, we assume that a project team has estimated a level of effort, £„,

will be required to achieve a nominal delivery time, t,lf that is optimal in terms of sched

ule and available resources. Although it is possible to accelerate delivery, the curve

rises very sharply to the left of fd . In fact, the PNR curve indicates that the project de-

livery time cannot be compressed much beyond 0.75 t,i ft we attempt further com-

pression, the project moves into "the impossible region" and risk of failure becomes

very high. The PNR curve also indicates that the lowest cost delivery option, L = 2 td .

The implication here is that delaying project delivery' can reduce costs significantly. Of

course, this must be weighed against the business cost associated with the delay.

The software equation [PUT92] introduced in Chapter 23 is derived from the PNR

curve and demonstrates the highly nonlinear relationship between chronological

time to complete a project and human effort applied to the project. The number of

delivered lines of code (source statements), L, is related to effort and development

time by the equation:

I = Px E'
/3

t
A '3 ’

where £ is development effort in person-months, P is a productivity parameter that

reflects a variety of factors that lead to high-quality software engineering work (typ-

ical values for P range between 2000 and 12,000), and t is the project duration in cal-

endar months.

Rearranging this software equation, we can arrive at an expression for develop-

ment effort £:

£ = L3/(PY) (24-1)

712 PART FOUR MANAGING SOFTWARE PROJECTS

where £ is the effort expended (in person-years) over the entire life cycle for software

development and maintenance, and f is the development time in years. The equation

for development effort can be related to development cost by the inclusion of a bur-

dened labor rate factor ($/person-year),

This leads to some interesting results. Consider a complex, real-time software

project estimated at 33,000 LOC, 12 person-years of effort, if eight people are as-

signed to the project team, the project can be completed in approximately 1 .3 years.

If, however, we extend the end-date to 1 .75 years, the highly nonlinear nature of the

model described in Equation (24-1) yields:

£ = EV(P3
f
4
)
- 3.8 person-years.

This implies that, by extending the end-date six months, we can reduce the number

of people from eight to four! The validity of such results is open to debate, but the

implication is clear: benefit can be gained by using fewer people over a somewhat

longer time span to accomplish the same objective.

24.2.3 Effort Distribution

How should

• effort be

distributed across

the software

process

workflow?

Each of the software project estimation techniques discussed in Chapter 23 leads to

estimates of work units (e g., person-months) required to complete software devel-

opment. A recommended distribution of effort across the software process is often

referred to as the 40-20-40 rule. Forty percent of all effort is allocated to front-end

analysis and design. A similar percentage is applied to back-end testing. You can cor-

rectly infer that coding (20 percent of effort) is deemphasized.

This effort distribution should be used as a guideline only.6 The characteristics of

each project must dictate the distribution of effort. Work expended on project plan-

ning rarely accounts for more than 2-3 percent of effort, unless the plan commits an

organization to large expenditures with high risk. Requirements analysis may com-

prise 10-25 percent of project effort. Effort expended on analysis or prototyping

should increase in direct proportion with project size and complexity. A range of 20

to 25 percent of effort is normally applied to software design. Time expended for de-

sign review and subsequent iteration must also be considered.

Because of the' effort applied to software design, code should follow with rela-

tively little difficulty. A range of 1 5-20 percent of overall effort can be achieved. Test-

ing and subsequent debugging can account for 30-40 percent of software

development effort. The criticality of the software often dictates the amount of test-

ing that is required. If software is human rated (i.e., software failure can result in loss

of life), even higher percentages are typical.

6 Today, the 40-20-40 rule is under attack Some believe that more than 40 percent of overall effort

should be expended during analysis and design On the other hand, some proponents of agile de-

velopment (Chapter 4) argue that less time should be expended "up front" and that a team should

move quickly to construction

CHAPTER 24 PROJECT SCHEDULING 713

2AJl

WebRef

An adaptable process

model (APIA) bos been

developed to assist in

defining tosk sets fat

various software

projects. A complete

description of the APM

con be found ot

www.rspo.tom/

apm.

Defining a Task Set for the SqeiWARE PRQ.JE.CI

A number of different process models were described in Part l of this book. Regard-

less of whether a software team chooses a linear sequential model, an incremental

model, an evolutionary model, or some permutation, the process model is populated

by a set of tasks that enables a software team to define, develop, and ultimately sup-

port computer software.

No single task set is appropriate for all projects. The set of tasks that would be ap-

propriate for a large, complex system would likely be perceived as overkill for a

small, relatively simple software product. Therefore, an effective software process

should define a collection of task sets, each designed to meet the needs of different

types of projects.

As we noted in Chapter 2, a task set is a collection of software engineering work

tasks, milestones, and work products that must be accomplished to complete a par-

ticular project. The task set should provide enough discipline to achieve high soft-

ware quality. But, at the same time, it must not burden the project team with

unnecessary work.

To develop a project schedule, a task set must be distributed on the project time

line. The task set will vaiy depending upon the project type and the degree of rigor

with which the software team decides to do its work. Although it is difficult to de-

velop a comprehensive taxonomy of software project types, most software organi-

zations encounter the following projects:

1 . Concept development projects that are initiated to explore some new business

concept or application of some new technology.

2. New application development projects that are undertaken as a consequence

of a specific customer request.

3. Application enhancement projects that occur when existing software under-

goes major modifications to function, performance, or interfaces that are ob-

servable by the end- user.

4. Application maintenance projects that correct, adapt, or extend existing soft-

ware in ways that may not be immediately obvious to the end-user.

5. Reengineering projects that are undertaken with the intent of rebuilding an

existing (legacy) system in whole or in part.

Even within a single project type, many factors influence the task set to be chosen.

These include [PRE99] : size of the project, number of potential users, mission criti-

cality, application longevity, stability of requirements, ease of customer/developer

communication, maturity of applicable technology, performance constraints, em-

bedded and nonembedded characteristics, project staff, and reengineering factors.

When taken in combination, these factors provide an indication of the degree ofrigor

with which the software process should be applied.

714 PART FOUR VANAGING SOFTWARE PROJECTS

24.3.1 A Task Set Example

Each of the project types described may be approached using a process model that is

linear sequential, iterative (e.g., the prototyping or incremental models), or evolu-

tionary (e g., the spiral model). In some cases, one project type flows smoothly into

the next. For example, concept development projects that succeed often evolve into

new application development projects. As a new application development project

ends, an application enhancement project sometimes begins. This progression is both

natural and predictable and will occur regardless of the process model that is adopted

by an organization. Therefore, the major software engineering tasks described in the

sections that follows are applicable to all process model flows. As an example, we
consider the software engineering tasks for a concept development project.

Concept development projects are initiated when the potential for some new
technology must be explored. There is no certainty that the technology will be ap-

plicable, but a customer (e.g., marketing) believes that potential benefit exists. Con-

cept development projects are approached by applying the following major tasks:

1 . 1 Concept scoping determines the overall scope of the project.

1 .2 Preliminary concept planning establishes the organization's ability to

undertake the work implied by the project scope.

1 .3 Technology risk assessment evaluates the risk associated with the tech-

nology to be implemented as part of project scope.

1 .4 Proof of concept demonstrates the viability of a new technology in the

software context.

1.5 Concept implementation implements the concept representation in a

manner that can be reviewed by a customer and is used for "marketing"

purposes when a concept must be sold to other customers or management.

1 .6 customer reaction to the concept solicits feedback on a new technology

concept and targets specific customer applications.

A quick scan of these tasks should yield few suiprises. In fact, the software engi-

neering flow for concept development projects (and for all other types of projects as

well) is little more than common sense.

24.3.2 Refinement of Major Tasks

The major tasks described in the preceding section may be used to define a macro-

scopic schedule for a project. However, the macroscopic schedule must be refined to

create a detailed project schedule. Refinement begins by taking each major task and

decomposing it into a set of subtasks (with related work products and milestones).

As an example of task decomposition, consider Task 1.1, Concept Scoping. Task

refinement can be accomplished using an outline format, but in this book, a

process design language approach is used to illustrate the flow of the concept

scoping activity:

CHAPTER 24 PROJECT SCHEDULING 715

Task definition: Task 1.1 Concept Scoping

1.1.1 Identify need, benefits and potential customers:

1.1.2 Define desired output/control and input events that drive the application:

Begin Task 1.1.2

1.1.2.1 FTR: Review written description of need7

1.1.2.2 Derive a list of customer visible outputs/inputs

1.1.2.3 FTR: Review outputs/inputs with customer and revise as required:

endtask Task 1.1.2

1.1.3 Define the functionality/behavior for each major function:

Begin Task 1.1.3

1.1.3.1 FTR: Review output and input data objects derived in task 1.1.2:

1.1.3.2 Derive a model of functions/behaviors;

1. 1.3.3 FTR: Review functions/behaviors with customer and revise as required:

endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software:

1.1.5 Research availability of existing software;

1.1.6 Define technical feasibility:

1.1.7 Make quick estimate of size:

1.1.8 Create a Scope Definition;

endTask definition: Task 1.1

The tasks and subtasks noted in the process design language refinement form the

basis for a detailed schedule for the concept scoping activity.

24,4 Defining a TAS&-N.si,wfl.KiL

POINT
The task network is o

useful mechanism tot

depicting intertask

dependencies and

determining the critical

path.

Individual tasks and subtasks have interdependencies based on their sequence. In

addition, when more than one person is involved in a software engineering project,

it is likely that development activities and tasks will be performed in parallel. When

this occurs, concurrent tasks must be coordinated so that they will be complete when

later tasks require their work product(s).

A task network, also called an activity network, is a graphic representation of the

task flow for a project. It is sometimes used as the mechanism through which task

sequence and dependencies are input to an automated project scheduling tool. In its

simplest form (used when creating a macroscopic schedule), the task network de-

picts major software engineering tasks. Figure 24 .2 shows a schematic task network

for a concept development project.

The concurrent nature ofsoftware engineering activities leads to a number of im-

portant scheduling requirements. Because parallel tasks occur asynchronously, the

planner must determine intertask dependencies to ensure continuous progress

7 FTR indicates that a formal technical review (Chapter 26) is to be conducted.

716 PART FOUR MANAGING SOFTWARE PROJECTS

A task network lor concept development

U
Concept

scoping

\
j

1.2

Concept

planning

1.3a
|

Tech, risk I

assessment I\
1.3b

Tech, risk

assessment

1.3c

Tech, risk

assessment

V
J

1.4

Proof of

concept

1.5a

Concept

implementJ/ \
I— Concept I— 'n teg rote

J
implement I

b, c

\ / \

, Three 1.5 tasks are

applied in parallel to

3 different concept

functions

Integrate

a, b,

1.5c

Concept

implement
J

1.6

Customer

reaction

J

toward completion. In addition, the project manager should be aware of those tasks

that lie on the critical path. That is, tasks that must be completed on schedule if the

project as a whole is to be completed on schedule. These issues are discussed in

more detail later in this chapter.

It is important to note that the task network shown in Figure 24.2 is macroscopic.

In a detailed task network (a precursor to a detailed schedule), each activity shown

in the figure would be expanded. For example, Task 1 . 1 would be expanded to show

all tasks detailed in the refinement of Tasks 1.1 shown in Section 24.3.2.

21.5 Scheduling

Scheduling of a software project does not differ greatly from scheduling of any mul-

titask engineering effort. Therefore, generalized project scheduling tools and tech-

niques can be applied with little modification for software projects.

Program evaluation and review technique (PERT) and the critical path method (CPM)

are two project scheduling methods that can be applied to software development.

Both techniques are driven by information already developed in earlier project plan-

ning activities:

• Estimates of effort.

• A decomposition of the product function.

• The selection of the appropriate process model and task set.

• Decomposition of tasks.

interdependencies among tasks may be defined using a task network. Tasks, some-

times called the project work breakdown structure (WBS), are defined for the product

as a whole or for individual functions.

CHAPTER 24 PROJECT SCHEDULING 717

Both PERT and CPM provide quantitative tools that allow the software planner to

(1) determine the critical path—the chain of tasks that determines the duration of the

project; (2) establish "most likely" time estimates for individual tasks by applying sta-

tistical models; and (3) calculate "boundary times" that define a time "window" for a

particular task.

Project Scheduling

Objective: The objective of project scheduling

tools is to encble a project manager to define

work tasks, establish their dependencies, assign human

resources to tasks, and develop a variety of graphs,

charts, and tables that aid in tracking and control of the

software project.

Mechanics: In general, project scheduling tools require

the specification of a work breakdown structure or the

generation of a task network. Once the task breakdown

(an outline) or network is definec, start and end dates,

human resources, hard deadlines, and other data are

attached to eoch task. The tool then generates a variety of

timeline charts ond other tables that enable a manager to

assess the task flow of a project. These data can be

updated continually as the project is conducted.

Software Tools

Representative Tools8

AMS Realtime, developed by Advanced Management

Systems (www.amsusa.com), provides scheduling

capabilities for proiects of all sizes and types.

Microsoft Project, developed by Microsoft

(www.microsoft.coml, is the most widely used PC-

based project scheduling tool.

Viewpoint, developed by Artemis Internation Solutions

Corp. (www.atemispm.com), supports all aspects of

project planning including scheduling.

A comprehensive list of project management software

vendors and products can be found at

www.infogoal.com/pmc/pmcswr.htm.

J

24.5.1 Timeline Charts

'V
POINT
A timeline chart

enables you to

determine what tasks

wSI be conducted ot a

given point in time.

When creating a software project schedule, the planner begins with a set of tasks (the

work breakdown structure), if automated tools are used, the work breakdown! is in-

put as a task network or task outline. Effort, duration, and start date are then input

for each task. In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a timeline chan, also called a Gantt chan, is gen-

erated. A timeline chart can be developed for the entire project. Alternatively, sepa-

rate charts can be developed for each project function or for each individual working

on the project.

Figure 24.3 illustrates the format of a timeline chart. It depicts a part of a soft-

ware project schedule that emphasizes the concept scoping task for a word-pro-

cessing (WP) software product. All project tasks (for concept scoping) are listed in

8 Tools noted here do not represent ar endorsement, but rather a sampling of tools in this category,

in most cases, tooi names are trademarked by their respective developers.

718 PART FOUR MANAGING SOFTWARE PROJECTS

An example timeline chart

Week 4Work tasks Week 1 Week 2 Week 3 Week 5

1.1 1 Identify needs and benefits

Meet with customers

Identify needs and protect constraints

Establish product statement

Milestone; Product statement defined

1. 1 .2 Define desired outpuf/conlrol/inpuf (OCI)

Scope keyboard functions

Scope voice input functions

Scope nodes of nteroction

Scope document diagnosis

Scope other WP functions

Document OCI
FTR; Rev ew CCl with customer

Revise OCI os required

Milestone: OCI defined

I. 1 3 Define the functicn/behcvior

Define keyboard functions

Define voice input functions

Describe modes of interaction

Describe spell/crommar check

Describe other WP functions

FTR: Review OCI definition with custame'

Revise as required

Milestone. OCI definition complete

II. 4 Isolation software elements

Milestone: Software elements defined

1.1 .5 Research ovoilobility of existing software

Research text editing components

Research voice input components

Research file management components

Research speli/grammo? check components

Milestone: Reusable components identified

1. 1 .6 Define technical feasibility

Evciuate voice input

Evoiucte grammar checking

Milestone: Technical' feasibility assessed

1.

1

.7 Make quick estimate of size

1.18 Create 0 scope definition

Review scope document with custome"

Revise document as requirec

Milestone. Scope document complete

the left-hand column. The horizontal bars indicate the duration of each task. When

multiple bars occur at the same time on the calendar, task concurrency is implied.

The diamonds indicate milestones.

Once the information necessary for the generation of a timeline chart has been in-

put. the majority of software project scheduling tools produce project tables—

a

tabular

listing of ail project tasks, their planned and actual start- and end-dates, and a variety

of related information (Figure 24.4). Used in conjunction with the timeline chart, proj-

ect tables enable the project manager to track progress.

24.5.2 Tracking the Schedule

The project schedule provides a road map for a software project manager. If it has

been properly developed, the project schedule defines the tasks and milestones that

must be tracked and controlled as the project proceeds. Tracking can be accom-

plished in a number of different ways:

• Conducting periodic project status meetings in which each team member

reports progress and problems.

CHAPTER 24 PROJECT SCHEDULING 719

An example resource table

Work tasks
Planned

start

Actual
start

Planned
complete

U ' Identify needs ond benefits

Meet with customers wkl.dt wkl, cl wkl. d2
kteotify needs and project constraints wil, d2 wkl, c2 wk i , d2
Establish oroducf statement wkl, d3 wkl. d3
Milestone: Product statement defined wkl. d3 wkl, d3 wkl, d3

11.2 Define desired outpuf/confrd/inouf (OCI)

Scope keyboard functions wkl. d4 wkl. d4 wk2, d2
Scope voice input functions wkl d3 wkl. d3
Scope modes of interaction wk2, dl wk2. d3
Scope document diagnostics wk2 dl wk2. d2
Scope other WP functions wk 1 d4 wk 1 , d4
Document OCI wk2 dl wk2,d3
PT$: Review OCI with customer wk2. d3 wk2, d3
P.ev :se OCl as required wk2, d4
MiVestone. OCI definec wk2 d5 wk2. d5

1. 1 .3 Define the function/behoviar

Actual
complete

Assigned
person

Effort

allocated

wk1,d2
wkl, d2
wkl.a3
wkl, d3

BIS

JPP

BtS/JPP

MU.

BIS

JPP

MIL

2pd
1 p-d

1 pd

1 5 pd
2 pd
1 pd
1 5 pd
2pd
3 pd
3 pd
3 pd

Scoping will

require more

effort/bme

• Evaluating the results of all reviews conducted throughout the software engi-

neering process.

• Determining whether formal project milestones (the diamonds shown in

Figure 24.3) have been accomplished by the scheduled date.

• Comparing actual start-date to planned start-date for each project task listed

in the resource table (Figure 24.4).

• Meeting informally with practitioners to obtain their subjective assessment of

progress to date and problems on the horizon.

• Using earned value analysis (Section 24.6) to assess progress quantitatively,

m reality, all of these tracking techniques are used by experienced project managers.

"The basic rule of software status reporting can be summarized in a single phrase: No surprises."

Capers Jones

The best indication of

progress is the comple-

tion and successful

review of a defined

software work product.

Control is employed by a software project manager to administer project re

sources, cope with problems, and direct project staff. If things are going well (i.e.,

the project is on schedule and within budget, reviews indicate that real progress is

being made, and milestones are being reached), control is light. But when prob-

lems occur, the project manager must exercise control to reconcile them as quickly

as possible. After a problem has been diagnosed, additional resources may be fo-

cused on the problem area: staff may be redeployed or the project schedule can be
redefined.

720 PART FOUR MANAGING SOFTWARE PROJECTS

When faced with severe deadline pressure, experienced project managers some-

times use a project scheduling and control technique called time-boxing [ZAH95].

The time-boxing strategy recognizes that the complete product may not be deliver-

able bv the predefined deadline. Therefore, an incremental software paradigm

(Chapter 3) is chosen and a schedule is derived for each incremental delivery.

The tasks associated with each increment are then time-boxed. This means that

the schedule for each task is adjusted by working backward from the delivery date

for the increment. A "box” is put around each task. When a task hits the boundary' ot

its time box (plus or minus 10 percent), work stops and the next task begins.

The initial reaction to the time-boxing approach is often negative: If the work

isn't finished, how can we proceed? The answer lies in the way work is accom-

plished. By the time the time-box boundary is encountered, it is likely that 90 per-

cent of the task has been completed. 9 The remaining 10 percent, although

important, can (1) be delayed until the next increment or (2) be completed later if

required. Rather than becoming "stuck" on a task, the project proceeds toward the

delivery date.

24.5.3 Tracking Progress for an OO Project

Although an iterative model is the best framework for an OO project, task parallelism

makes project tracking difficult. The project manager can have difficulty establishing

meaningful milestones for an OO project because a number of different things are

happening at once. In general, the following major milestones can be considered

"completed" when the criteria noted have been met.

Technical milestone: OO analysis completed

• All classes and the class hierarchy have been defined and reviewed.

. Class attributes and operations associated with a class have been defined

and reviewed.

• Class relationships (Chapter 8) have been established and reviewed.

• A behavioral model (Chapter 8) has been created and reviewed.

• Reusable classes have been noted.

Technical milestone: OO design completed

• The set of subsystems (Chapter 9) has been defined and reviewed.

• classes are allocated to subsystems and reviewed.

. Task allocation has been established and reviewed.

• Responsibilities and collaborations (Chapters 8 and 9) have been identified.

9 A cynic might recall the saying: The first 90 percent of the system takes 90 percent of the time; the

remaining 10 percent of the system takes 90 percent of the lime

CHAPTER 24 PROJECT SCHEDULING 721

Debugging and tesiing

occur in concert with

one another. The

status of debugging is

often assessed by

considering the type

and number of "open'

errors (bugs).

• Design classes have been created and reviewed.

• The communication model has been created and reviewed.

Technical milestone: OO programming completed

• Each new class has been implemented in code from the design model.

• Extracted classes (from a reuse library) have been implemented.

• Prototype or increment has been built.

Technical milestone: OO testing

• The correctness and completeness ofOO analysis and design models has

been reviewed.

• A class-responsibility-collaboration network (Chapter 8) has been developed

and reviewed.

• Test cases are designed, and class-level tests (Chapter 14) have been

conducted for each class.

• Test cases are designed, and cluster testing (Chapter 14) is completed and the

classes are integrated.

• System level tests have been completed.

Recalling that the OO process model is iterative, each of these milestones may be re-

visited as different increments are delivered to the customer.

Tracking the Schedule

The scene: Doug Miller's office, prior

to the initiation of the SafeHome software project.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman, Jamie

Lazar, and other members of the product software

engineering team.

The conversation:

Doug (glancing at a Powerpoint slide): The

schedule for the first SafeHome increment seems

reasonable, but we're going to have trouble tracking

progress.

Vinod (a concerned look on his face): Why? We
have tasks scheduled on a daily basis, plenty of work

products, and we've been sure that we're not over-

allocoting resources.

Doug: All good, but how do we know when the analysis

model for the first increment is complete?

Jamie: Things are iterative, so that's difficult.

Doug: I understand that, but . . . well, for instance, take

analysis classes defined. You indicated that as a

milestone.

Vinod: We have.

Doug: Who makes that determination?

Jamie (aggravated): They're done when the/re

done.

Doug: That's not good enough, Jamie. We have to

schedule FTRs [formal technical reviews, Chapter 26],

and you haven't done that. The successful completion of a

review on the analysis model, for instance, is a

reasonable milestone. Understand?

Jamie (frowning): Okay, back to the drawing board

Doug: It shouldn't take more than an hour to make the

corrections . . . everyone else can get started now.

722 PART POOR MANAGING SOFTWARE PROJECTS

24.6 Earned Value Analysis

POINT
Earned value provides

o quontitotive

indication of progress.

In Section 24.5, we discussed a number of qualitative approaches to project tracking.

Each provides the project manager with an indication of progress, but an assessment

of the information provided is somewhat subjective. It is reasonable to ask whether

there is a quantitative technique for assessing progress as the software team moves

through the work tasks allocated to the project schedule. In fact, a technique for per-

forming quantitative analysis of progress does exist. It is called earned value analysis

(EVA). Humphrey [HUM95j discusses earned value in the following manner:

The earned value system provides a common value scale for every [software project]

task, regardless of the type ofwork being performed. The total hours to do the whole proj-

ect are estimated, and every task is given an earned value based on its estimated per-

centage of the total.

Stated even more simply, earned value is a measure of progress. It enables us to as-

sess the "percent of completeness" of a project using quantitative analysis rather

than rely on a gut feeling. In fact, Fleming and Koppleman [FLE98] argue that earned

value analysis "provides accurate and reliable readings of pertormance trom as early

as 1 5 percent into the project."

To determine the earned value, the following steps are performed:

f) How do I

• compute

earned value and

use it to assess

progress?

1 . The budgeted cost ofwork scheduled (BCWS) is determined for each work task

represented in the schedule. During estimation, the work (in person-hours or

person-days) of each software engineering task is planned. Hence, BCWS, is

the effort planned for work task i. To determine progress at a given point

along the project schedule, the value of BCWS is the sum of the BCWS, values

for all work tasks that should have been completed by that point in time on

the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at com-

pletion, BAC. Hence,

BAC = 1 (BCWS*) for all tasks k

3. Next, the value for budgeted cost ofwork performed (BCWP) is computed. The

value for BCWP is the sum of the BCWS values for all work tasks that have

actually been completed by a point in time on the project schedule.

Wilkens [WIL99J notes that "the distinction between the BCWS and the BCWP is that the

former represents the budget of the activities that were planned to be completed and

the latter represents the budget of the activities that actually were completed." Given

values for BCWS, BAC, and BCWP, important progress indicators can be computed:

Schedule performance index, SPI = BCWP/BCWS

Schedule variance, SV = BCWP - BCWS

CHAPTER 24 PROJECT SCHEDULING 723

WebRef
Awideoirayofeomed

vote tmoiysis

resouices con be found

of

www.ocq.osd.

roil/pm/.

SPI is an indication of the efficiency with which the project is utilizing scheduled re

sources. An SPI value close to 1 .0 indicates efficient execution of the project sched-

ule. SV is simply an absolute indication of variance from the planned schedule.

Percent scheduled for completion = BCWS/BAC

provides an indication of the percentage of work that should have been completed

by time t.

Percent complete = BCWP/BAC

provides a quantitative indication of the percent of completeness of the project at a

given point in time, f.

It is also possible to compute the actual cost ofwork performed, ACWP. The value

for ACWP is the sum of the effort actually expended on work tasks that have been

completed by a point in time on the project schedule. It is then possible to compute

Cost performance index, CPI = BCWP/ACWP
Cost variance, CV = BCWP - ACWP

A CPI value close to 1 .0 provides a strong indication that the project is within its de-

fined budget. CV is an absolute indication of cost savings (against planned costs) or

shortfall at a particular stage of a project.

Like over-the-horizon radar, earned value analysis illuminates scheduling diffi-

culties before they might otherwise be apparent. This enables the software project

manager to take corrective action bef< re a project crisis develops.

23.7 SVMMARY

Scheduling is the culmination of a planning activity that is a primary component of

software project management. When combined with estimation methods and risk

analysis, scheduling establishes a road map for the project manager.

Scheduling begins with process decomposition. The characteristics of the project

are used to adapt an appropriate task set for the work to be done. A task network de-

picts each engineering task, its dependency on other tasks, and its projected dura-

tion. The task network is used to compute the critical path, a timeline chart and a

variety of project information. Using the schedule as a guide, the project manager
can track and control each step in the software process.

References

IBR095] Brooks. M., The Mythical Man-Montll, anniversary edition, Addison-Wesley, 1995.
[FLE98] Fleming, Q. w., and J M. Koppelman, "Earned Value Project Management," Crosstalk,

vol. 1 1, no. 7, July 1998, p. 19.

IHUM95] Humphrey, w., A Disciplinefor Software Engineering, Addison-Wesley, 1995.
[NOR70] Norden, P., "Useful Tools for Project Management," in Management of Production,

M. K Starr, ed., Penguin Books, 1970.

724 PART FOUR MANAGING SOFTWARE PROJECTS

[PAG85] Page-Jones, M., Practical Project Management, Dorset House, 1985, pp. 90-91

.

[PRE99] Pressman, R. S„ Adaptable Process Model, R. S. Pressman & Associates, 1999.

[PUT78] Putnam, L., "A General Empirical Solution to the Macro Software Sizing and Estimation

Problem," IEEE Trans. Software Engineering, vol SE-4, no. 4, July 1978, pp. 345-36!

.

[PUT92j Putnam, L., and W. Myers, Measuresfor Excellence, Yourdon Press, 1992.

[W1L99] Wilkens, T. T„ "Earned Value, Clear and Simple," Primavera Systems, April 1, 1999, p. 2.

(ZAH95] Zahniser, R., "Time-boxing for Top Team Performance," Software Development, March

1995, pp. 34-38.

Problems and Points. to Pqne£E—
24.

1

. Assume that you have been contracted by a university to develop an on-line course reg-

istration system (OLCRS). First, act as the customer (if you're a student, that should be easy!)

and specify the characteristics of a good system. (Alternatively, your instructor will provide you

with a set of preliminary requirements for the system.) Using the estimation methods discussed

in Chapter 23, develop an effort and duration estimate for OLCRS. Suggest how you would:

a Define parallel work activities during the OLCRS project.

b. Distribute effort throughout the project.

c. Establish milestones for the project.

24 .2 . Is there ever a case where a software project milestone is not tied to a review? if so, pro-

vide one or more examples

24 .3 . Using a scheduling tool (if available) or paper and pencil (if necessary), develop a time-

line chart for the OLCRS project.

24 .4 . The relationship between people and time is highly nonlinear. Using Putnam's software

equation (described in Section 24.2.2), develop a table that relates number of people to project

duration for a software project requiring 50,000 LOC and 1 5 person-years of effort (the produc-

tivity parameter is 5000). Assume that the software must be delivered in 24 months plus or mi-

nus 12 months.

24 .5 . Although adding people to a late software project can make it later, there are circum-

stances in which this is not true. Describe them.

24 .6 . Select an appropriate task set for the OLCRS project.

24 . 7 . "Unreasonable" deadlines are a fact of life in the software business. How should you pro-

ceed ifyou’re faced with one?

24 .8 . "Communication overhead" can occur when multiple people work on a software project.

The time spent communicating with others reduces individual productivity (LOC/person-month),

and the result is less productivity for the team. Illustrate (quantitatively) how engineers who are

well-versed in good software engineering practices and use formal technical reviews can increase

the production rate of a team (when compared to the sum of individual production rates) . Hint. You

can assume that reviews reduce rework and that rework can account for 20-40 percent of a per-

son’s time.

24 .9 . Define a task network for OLCRS, or alternatively, for another software project that in-

terests you. Be sure to show tasks and milestones and to attach effort and duration estimates to

each task. If possible, use an automated scheduling tool to perform this work.

24 . 1 0. If an automated scheduling tool is available, determine the critical path for the network

defined in Problem 24.9.

24 . 1

1

. What is the difference between a macroscopic schedule and a detailed schedule, is it j>os-

sible to manage a project if only a macroscopic schedule is developed? Why?

CHAPTER 24 PROJECT SCHEDULING 725

24 . 12 . Assume you are a software project manager and that you've been asked to compute
earned value statistics for a small software project. The project has 56 planned work tasks that

are estimated to require 582 person-days to complete. At the time that you've been asked to do
the earned value analysis, 12 tasks have been completed. However the project schedule indi-

cates that 1 5 tasks should have been completed. The following scheduling data (in person-days)

are available:

Task Planned Effort Actual Effort

1 12.0 12.5

2 15.0 11.0

3 13.0 17.0

4 8.0 9.5

5 9.5 9.0

6 18.0 19.0

7 10.0 10.0

8 4.0 4.5

9 12.0 10.0

10 6.0 6.5

11 5.0 4.0

12 14.0 14.5

13 16.0 —
14 6.0 —
15 8.0 —

Compute the SPI, schedule variance, percent scheduled for completion, percent complete,

CPI, and cost variance for the project.

Virtually every book written on software project management contains a discussion of sched-
uling. The Project Management Institute (PMBOK Guide, PM1, 2001), Wysoki and his colleagues

(Effective Project Management, Wiley, 2000), Lewis (Project Planning Schedulingand Control, third

edition, McGraw-Hill, 2000), Bennatan (On Time, Within Budget: Software Project Management
Practices and Techniques, third edition, Wiley, 2000), McConnell (Software Project Survival Guide,

Microsoft Press, 1 998) ,
and Roetzheim and Beasley (Software Project Cost and Schedule Estimat-

ing: Best Practices, Prentice-Hall, 1997) contain worthwhile discussions of the subject. Boddie
(Crunch Mode, Prentice-Hall, 1987) has written a book for all managers who "have 90 days to

do a six-month project."

McConnell (Rapid Development, Microsoft Press, 1996) presents an excellent discussion of

the issues that lead to overly optimistic software project scheduling and what you can do about
it. O'Connell (How to Run Successfttl Projects IT. The Silver Bullet, Prentice-Hall, 1997) presents a
step-by-step approach to project management that will help you develop a realistic schedule for

your projects. ,

Webb and Wake (Using Earned Value: A Project Manager's Guide, Ashgate Publishing, 2003)
and Fleming and Koppelman (Earned Value Project Management, Project Management Institute

Publications, 1996) discuss the use of earned value techniques for project planning, tracking,

and control in considerable detail.

A wide variety of information sources on software project scheduling is available on the In-

ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Risk

Management

Key
Concepts
assessment

identification

projection

refinement

principles

proactive strategy

reactive strategy

risk categories

risk exposure

risk table

RMMM

safety and haxards

I
n his book on risk analysis and management, Robert Charette (CHA89)

presents a conceptual definition of risk:

First, risk concerns future happenings. Today and yesterday are beyond active con-

cent, as we are already reaping what was previously sowed by our past actions. The

question is, can we, therefore, by changing our actions today, create an opportunity

for a different and hopefully better situation for ourselves tomorrow. This means, sec-

ond, that risk involves change, such as in changes of mind, opinion, actions, or places

. .
.
[Third.

1
risk involves choice, and the uncertainty that choice itself entails. Thus par-

adoxically, risk, like death and taxes, is one of the few certainties of life.

When risk is considered in the context of software engineering, Charette's three

conceptual underpinnings are always in evidence. The future is our concern—

what risks might cause the software project to go awry? Change is our concern-

how will changes in customer requirements, development technologies, target

environments, and all other entities connected to the project affect timeliness and

overall success? Last, we must grapple with choices—what methods and tools

should we use, how many people should be involved, how much emphasis on

quality is "enough”?

Peter Drucker [DRU75] once said, "While it is futile to try to eliminate risk, and

questionable to tty to minimize it, it is essential that the risks taken be the right risks."

Before we can identify the "right risks" to be taken during a software project, it is im-

portant to identify all risks that are obvious to both managers and practitioners.

• What is it? Risk analysis and

management are a series of steps

that help a software team to under-

stand and manage uncertainty.

Many problems can plague a software project.

A risk is a potential problem—it might happen,

it might not. But, regardless of the outcome, it's a

really good idea to identify it, assess its proba-

bility of occurrence, estimate its impact, and es-

tablish a contingency plan should the problem

actually occur.

Who does it? Everyone involved in the software

process—managers, software engineers, and

stakeholders—participate in risk analysis and

management.

Why is it important? Think about the Boy Scout

motto: Be prepared. Software is a difficult under-

taking. Lots of things can go wrong, and frankly,

many often do. It's for this reason that being pre-

pared—understanding the risks and taking proac-

tive measures to avoid or manage them—is a key

element of good software project management.

726

CHAPTER 25 SISK MANAGEMENT 727

What are the steps? Recognizing what can go
wrong is the first step, called "risk identification."

Next, each risk is analyzed to determine the like-

lihood that it will occur and the damage that it will

do if it does occur. Once this information is es-

tablished, risks are ranked, by probability and

impact. Finally, a plan is developed to manage
those risks with high probability and high impact.

What is the work product? A risk mitigation,

monitoring, and management (RMMM) plan or

a set of risk information sheets is produced.

How do I ensure that I've done it right?

The risks that are analyzed and managed should

be derived from thorough study of the people,

the product, the process, and the project. The

RMMM plan should be revisited as the project

proceeds to ensure that risks are kept up to date.

Contingency plans for risk management should

be realistic.

2 .5.1 REACJiYX vs. Proactive Risk Strategies

Reactive risk strategies have been laughingly called the "Indiana Jones school of risk

management" [TH092], In the 1980s-era movies that carried his name, Indiana

Jones, when faced with overwhelming difficulty, would invariably say, "Don't worry,

I’ll think of something!" Never worrying about problems until they happened, Indy

would react in some heroic way.

"If you don't actively attack the risks, they will actively attack you."

Tom Giib

Sadly, the average software project manager is not Indiana Jones, and the mem-
bers of the software project team are not his trusty sidekicks. Yet, the majority of

software teams rely solely on reactive risk strategies. At best, a reactive strategy

monitors the project for likely risks. Resources are set aside to deal with them,

should they become actual problems. More commonly, the software team does

nothing about risks until something goes wrong. Then, the team flies into action in

an attempt to correct the problem rapidly. This is often called a Jire-fighling mode.

When this fails, "crisis management" [CHA92] takes over and the project is in real

jeopardy.

A considerably more intelligent strategy for risk management is to be proactive.

A proactive strategy begins long before technical work is initiated. Potential risks are

identified, their probability and impact are assessed, and they are ranked by impor-

tance. Then, the software team establishes a plan for managing risk. The primary' ob-

jective is to avoid risk, but because not all risks can be avoided, the team works to

develop a contingency plan that will enable it to respond in a controlled and effec-

tive manner. Throughout the remainder of this chapter, we discuss a proactive strat-

egy' for risk management.

728 PART FOUR MANAGING SOFTWARE PROJECTS

2Zul

Q What types

• of risks ore

we likely to

encounter os

software is built?

S,QfIWARE- BlSKS

Although there has been considerable debate about the proper definition for software

risk, there is general agreement that risk always involves two characteristics [HIG95]:

• Uncertainty—the risk may or may not happen; that is, there are no 1 00%

probable risks.
1

• Loss—if the risk becomes a reality, unwanted consequences or losses will

occur.

When risks are analyzed, it is important to quantify the level of uncertainty and the

degree of loss associated with each risk. To accomplish this, different categories of

risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is

likely that project schedule will slip and that costs will increase. Project risks identify

potential budgetary, schedule, personnel (staffing and organization), resource,

stakeholder, and requirements problems and their impact on a software project. In

Chapter 23, project complexity, size, and the degree of structural uncertainty were

also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced.

If a technical risk becomes a reality, implementation may become difficult or impos-

sible. Technical risks identify potential design, implementation, interface, verifica-

tion, and maintenance problems. In addition, specification ambiguity, technical

uncertainty, technical obsolescence, and "leading-edge" technology are also risk fac-

tors. Technical risks occur because the problem is harder to solve than we thought

it would be.

Business risks threaten the viability of the software to be built. Business risks of-

ten jeopardize the project or the product. Candidates for the top five business risks

are (1) building an excellent product or system that no one really wants (market risk)

,

(2) building a product that no longer fits into the overall business strategy for the

company (strategic risk), (3) building a product that the sales force doesn't under-

stand how to sell (sales risk), (4) losing the support of senior management due to a

change in focus or a change in people (management risk), and (5) losing budgetary

or personnel commitment (budget risk).

It is extremely important to note that simple risk categorization won’t always

work. Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette [CHA89].

Known risks are those that can be uncovered after careful evaluation of the project

plan, the business and technical environment in which the project is being devel-

oped, and other reliable information sources (e.g., unrealistic delivery date, lack of

documented requirements or software scope, poor development environment). Pre-

1 A risk that is 1 00 percent probable is a constraint on the software project.

CHAPTER 25 RISK MANAGEMENT 729

dictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance

requests are serviced) . Unpredictable risks are the joker in the deck. They can and do

occur, but they are extremely difficult to identity in advance.

Seven Principles of Risk Management

The Software Engineering Institute (SEI)

(www.sei.cmu.edu) identifies seven principles

that "provide a framework to accomplish effective risk

management." They are:

Maintain a global perspective—view software

risks within the context of system in which it is a

component and the business problem that it is

intended to solve.

Take a forward-looking view—think about the risks

that may arise in the future (e.g,, due to changes in the

software); establish contingency plans so that future

events are manageable.

Encourage open communication—if someone

states a potential risk, don't discount it. If a risk is

proposed in an informal manner, consider it.

Encourage all stakeholders and users to suggest risks

at any time.

Integrate—a consideration of risk must be integrated

into the software process.

Emphasize a continuous process—the team must

be vigilant throughout the software process, modifying

identified risks as more information is known ond

adding new ones as better insight is achieved.

Develop a shared product vision—if all

stakeholders share the same vision of the software, it is

likely that better risk identification and assessment will

occur.

Encourage teamwork—the talents, skills and

knowledge of all stakeholders should be pooled when

risk management activities are conducted.

25.3 Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan (esti-

mates, schedule, resource loading, etc.). By identifying known and predictable risks,

the project manager takes a first step toward avoiding them when possible and con-

trolling them when necessary,

There are two distinct types of risks for each of the categories that have been pre-

sented in Section 25.2: generic risks and product-specific risks. Generic risks are a

potential threat to every software project. Product-specific risks can be identified only

by those with a clear understanding of the technology, the people, and the environ-

ment that is specific to the software that is to be built. To identify product-specific

risks, the project plan and the software statement ofscope are examined, and an an-

swer to the following question is developed: 'What special characteristics of this

product may threaten our project plan?"

"Projects with no real risks are losers. They are almost always devoid of benefit; that's why they weren't done

years ago."

Tom DeMarco ami Tim lister

730 PART FOUR MANAGING SOFTWARE PROJECTS

Although generic risks

are important to

consider, it's the

product-specific risks

that cause the most

headaches. Be certain

to spend the lime to

identify os many

product-specific risks

as possible.

One method for identifying risks is to create a risk item checklist. The checklist

can be used for risk identification and focuses on some subset of known and pre-

dictable risks in the following generic subcategories:

• Product size—risks associated with the overall size of the software to be built

or modified.

• Business impact—risks associated with constraints imposed by management

or the marketplace.

• Customer characteristics—risks associated with the sophistication of the

customer and the developer's ability to communicate with the customer in a

timely manner.

• Process definition—risks associated with the degree to which the software

process has been defined and is followed by the development organization.

• Development environment—risks associated with the availability and quality

of the tools to be used to build the product.

• Technology to be built—risks associated with the complexity of the system to

be built and the "newness" of the technology that is packaged by the system.

• Staffsize and experience—risks associated with the overall technical and

project experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to

each of the topics can be answered for each software project. The answers to these

questions allow the planner to estimate the impact of risk. A different risk item

checklist format simply lists characteristics that are relevant to each generic subcat-

egory. Finally, a set of "risk components and drivers" [AFC88j are listed along with

their probability of occurrence. Drivers for performance, support, cost, and schedule

are discussed in answer to later questions.

A number of comprehensive checklists for software project risk have been pro-

posed in the literature (eg., [SE193]
,
[KAR96]). These provide useful insight into

generic risks for software projects and should be used whenever risk analysis and

management are .instituted. However, a relatively short list of questions [KEI98] can

be used to provide a preliminary indication of whether a project is "at risk/'

7 Is Hie

• software

project we're

working on at

serious risk?

25.3. 1 Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying ex-

perienced software project managers in different parts of the world [KEI98]. The

questions are ordered by their relative importance to the success of a project.

1 . Have top software and customer managers formally committed to support

the project?

2. Are end-users enthusiastically committed to the project and the

system/product to be built?

CHAPTER 25 RISK MANAGEMENT 731

Are requirements fully understood by the software engineering team and its

customers?

Have customers been involved fully in the definition of requirements?

Do end-users have realistic expectations?

is project scope stable?

Does the software engineering team have the right mix of skills?

Are project requirements stable?

Does the project team have experience with the technology to be imple-

mented?

Is the number of people on the project team adequate to do the job?

Do all customer/user constituencies agree on the importance of the project

and on the requirements for the system/product to be built?

"Risk monogement is project monogemenl for adults."

Tim Lister

Ifany one of these questions is answered negatively, mitigation, monitoring, and man-

agement steps should be instituted without fail. The degree to which the project is at

risk is directly proportional to the number of negative responses to these questions.

25.3.2 Risk Components and Drivers

The U.S. Air Force [AFC88] has written a pamphlet that contains excellent guidelines

for software risk identification and abatement. The Air Force approach requires that

the project manager identify the risk drivers that affect software risk components—

performance, cost, support, and schedule. In the context of this discussion, the risk

components are defined in the following manner:

• Performance risk—the degree of uncertainty that the product will meet its

requirements and be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be main-

tained.

• Support risk—the degree of uncertainty that the resultant software will be

easy to correct, adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule will be

maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

categories—negligible, marginal, critical, or catastrophic. Referring to Figure 25.1

[BOE89J, a characterization of the potential consequences of errors (rows labeled 1) or

a failure to achieve a desired outcome (rows labeled 2) are described. The impact cat-

egory is chosen based on the characterization that best fits the description in the table.

3.

4.

5.

6.

[
WebRef ISf 7.

Risk rodoris c 8.
datnbese and tools that

help monagets identify, 9.

rank, and communicate

project risks. It con be

found ot 10 .

www.spmn.com.
11.

732 PART FOUR MANAGING SOFTWARE PROJECTS

Impact assess-

ment [BOE89]

^•-.Components

Category

Performance Support Cost Schedule

Catastrophic

I

Failure to meet the requirement

would result in mission failure

Fcilure results in increased ccs»s

and schedule delays with expected

values in excess of $500K

2

Significant

degradation to

nonachievement

of technical

performance

Nonresponsive or

unsupportoble

software

Significant financial

shortages, budget

overrun likely

Unachievable

IOC '<

Critical

1

Failure to meet the requirement would

degrade system performance to a point

where mission success is questionable

Failure results in operational delays

and/or increased costs with expected

value of $ i 00K to S500K

2

Some reduction

in technical

performance

Minor delays in

software

modifications

Some shortage of

financial resources,

possible overruns

Possible

slippage

in IOC

Marginal

1

Failure to meet the requirement would

result in degradation of secondary

mission

Costs, impacts, and/or recoverable

schedule slips with expected value

of $lKto $100K

2

Minimal to small

reduction in

technical

performance

Responsive

software

support

Sufficient financial

resources

Realistic,

och ievoble

schedule

Negligible

1

Failure to meet the requirement would
create inconvenience or nonoperaHonal

impact

Error results in minor cost and/or
schedule impact with expected value

of less than $ 1

K

2

No reduction in

technical

performance

Easily supportable

software

Possible budget

underrun

Early

achievable

IOC

Note: (1) The potential consequence of undetected software errors or faults.

(2) The potential consequence if the desired outcome is not achieved.

25.4 Risk Projection

Risk projection, also called risk estimation, attempts to rate each risk in two ways—

(1) the likelihood or probability that the risk is real and (2) the consequences of the

problems associated with the risk, should it occur. The project planner, along with

other managers and technical staff, performs four risk projection steps:

1 . Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Note the overall accuracy of the risk projection so that there will be no mis-

understandings.

The intent of these steps is to consider risks in a manner that leads to prioritization.

No software team has the resources to address every possible risk with the same de-

Sample risk

table prior to -

sorting

Ibink hard about the

software you're about

to build and ask,

yourself, what axt go

wrong? Create your

own list and ask other

members of the team

to do the same.

CHAPTER 25 RISK MANAGEMENT 733

Risks Category Probability Impact RMMM

Size estimate may be significantly low PS 60% 2

Larger number of users than plonned PS 30% 3

Less reuse than planned PS 70% 2

End-users resist system BU 40% 3

Delivery deadline will be tightened BU 50% 2

Funding will be lost CU 40% 1

Customer will change requirements PS 80% 2

Technology will not meet expectations TE 30% 1

Lack of training on tools DE 80% 3

Staff inexperienced ST 30% 2

Staff turnover will be high

•

•

•

ST 60% 2

Impact values:

1

—

catastrophic

2

—

critical

3—marginal

4—negligible

gree of rigor. By prioritizing risks, the team can allocate resources where they will

have the most impact.

25.4. 1 Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection.
2

A sample risk table is illustrated in Figure 25.2.

A project team begins by listing all risks (no matter how remote) in the first col-

umn of the table. This can be accomplished with the help of the risk item checklists

referenced in Section 25.3. Each risk is categorized in the second column (e.g., PS im-

plies a project size risk, BU implies a business risk). The probability of occurrence of

each risk is entered in the next column of the table. The probability value for each risk

can be estimated by team members individually. Individual team members are polled

in round-robin fashion until their assessment of risk probability begins to converge.

Next, the impact of each risk is assessed. Each risk component is assessed using

the characterization presented in Figure 25. l
,
and an impact category is determined.

The categories for each of the four risk components—performance, support, cost,

and schedule—are averaged3
to determine an overall impact value.

2 The risk table can be implemented as a spreadsheet model. This enables easy manipulation and

sorting of the entries.

3 A weighted average can be used if one risk component has more significance for a project.

734 PART FOUR MANAGING SOFTWARE PROJECTS

POINT
A risk table is sorted by

probability and impact

to rank risks.

Once the first four columns of the risk table have been completed, the table is

sorted by probability and by impact. High-probability, high-impact risks percolate to

the top of the table, and low-probability risks drop to the bottom. This accomplishes

first-order risk prioritization.

The project manager studies the resultant sorted table and defines a cutoff line.

The cutoffline (drawn horizontally at some point in the table) implies that only risks

that lie above the line will be given further attention. Risks that fall below the line are

reevaluated to accomplish second-order prioritization. Referring to Figure 25.3, risk

impact and probability have a distinct influence on management concern. A risk fac-

tor that has a high impact but a very low probability of occurrence should not absorb

a significant amount of management time. However, high-impact risks with moder-

ate to high probability and low-impact risks with high probability should be carried

forward into the risk analysis steps that follow.

All risks that lie above the cutoff line must be managed. The column labeled

RMMM contains a pointer into a Risk Mitigation, Monitoring, and Management Plan or

alternatively, a collection of risk information sheets developed for all risks that He

above the cutoff. The RMMM plan and risk information sheets are discussed in Sec-

tions 25.5 and 25.6.

TTodoy,] no one has the luxury of getting to know o task so well that it holds no surprises, and surprises mean risk.”

Stephen Grey

Risk probability can be determined by making individual estimates and then de-

veloping a single consensus value. Although that approach is workable, more so-

Risk and
management
concern

Very high

Impact

Very low

Probability

of occurrence

Management
concern

1.0

CHAPTEK 25 RISK MANAGEMENT 735

phisticated techniques for determining risk probability have been developed

[AFC88). Risk drivers can be assessed on a qualitative probability scale that has the

following values: impossible, improbable, probable, and frequent. Mathematical

probability can then be associated with each qualitative value (e.g., a probability of

0.7 to 0.95 implies a highly probable risk).

25.4.2 Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature,

scope, and timing. The nature of the risk indicates the problems that are likely if it oc-

curs. For example, a poorly defined external interface to customer hardware (a techni-

cal risk) will preclude early design and testing and will likely lead to system integration

problems late in a project. The scope of a risk combines the severity (just how serious

is it?) with its overall distribution (how much of the project will be affected, or how
many customers are harmed?). Finally, the timing of a risk considers when and for how
long the impact will be felt. In most cases, a project manager might want the "bad

news" to occur as soon as possible, but in some cases, the longer the delay, the better.

Returning once more to the risk analysis approach proposed by the U.S. Air Force

[AFC88], the following steps are recommended to determine the overall conse-

quences of a risk:

^ How do we
• assess the

I.

consequences of a

risk?
2.

3.

Determine the average probability of occurrence value for each risk

component.

Using Figure 25.1, determine the impact for each component based on the

criteria shown.

Complete the risk table and analyze the results as described in the preceding

sections.

The overall risk exposure, RE, is determined using the following relationship

[HAL98]:

RE = P x C

where P is the probability of occurrence for a risk, and C is the cost to the project

should the risk occur.

For example, assume that the software team defines a project risk in the follow-

ing manner:

Risk identification. Only 70 percent of the software components scheduled for

reuse will, in fact, be integrated into the application. The remaining functionality

will have to be custom developed.

Risk probability. 80 percent (likely).

Risk impact. 60 reusable software components were planned. If only 70 per-

cent can be used, 18 components would have to be developed from scratch (in

addition to other custom software that has been scheduled for development). Since

736 PART FOUR MANAGING SOFTWARE PROJECTS

the average component is 100 LOC and local data indicate that the software engi-

neering cost for each LOC is SI 4.00, the overall cost (impact) to develop the com-

ponents would be 18 x 100 x 14 = $25,200.

Risk exposure. RE = 0.80 x 25,200 — $20,200.

Compare RE for all

risks to the cost

estimate for the

project. If RE is greater

than 50 percent of the

project cost, the

viability of the project

most be reevaluated.

Risk exposure can be computed for each risk in the risk table, once an estimate of

the cost of the risk is made. The total risk exposure for all risks (above the cutoff line

in the risk table) can provide a means for adjusting the final cost estimate for a proj-

ect. It can also be used to predict the probable increase in staff resources required at

various points during the project schedule.

The risk projection and analysis techniques described in Sections 25.4. ! and

25.4.2 are applied iteratively as the software project proceeds. The project team

should revisit the risk table at regular intervals, reevaluating each risk to determine

when new circumstances cause its probability and impact to change. As a conse-

quence of this activity, it may be necessary to add new risks to the table, remove

some risks that are no longer relevant, and change the relative positions of others.

SafeHome

^ Risk Analysis

li The scene: Doug Miller's office, prior

to the initiation of the SafeHome software project.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman, Jamie

Lazar, and other members of the product software

engineering team.

The conversation:

Doug: I'd like to spend some time brainstorming risks

for the SafeHome project.

Jamie: As in what can go wrong?

Doug: Yep. Here are a few categories where things con

go wrong. [He shows everyone the categories noted in

the introduction to Section 25.3.]

Vinod: Umm . . do you want us to just call them out,

or . . .

Doug: No here's what I thought we'd do. Everyone

make a list of risks . . . right now . .

(Ten minutes pass; everyone is writing.)

Doug: Okay, stop.

Jamie: But I'm not done!

Doug: That's okay. We'll revisit the list again. Now, for

each item on your list, assign o percent likelihood that the

risk will occur. Then, assign an impact to the project on a

scale of 1 (minor) to 5 (catastrophic).

Vinod: So if I think that the risk is a coin flip, I specify a

50 percent likelihood, and if I think if II have a moderate

project impact, I specify a 3, right?

Doug: Exactly.

(Five minutes pass; everyone is writing.)

Doug: Okay, stop. Now we'll make a group list on the

white board. I'll do the writing, we'll call out one entry

from your list in round robin format.

(Fifteen minutes pass; the list is created.)

Jamie (pointing at the board and laughing):

Vinod, that risk (pointing toward an entry on the board)

is ridiculous- There's a higher likelihood that we'll all get

hit by lightning. We should remove it.

Doug: No, lefs leave it for now. We consider all risks,

no matter how weird. Later we'll winnow the list.

Jamie: But we already have over 40 risks . . . how on

earth can we manage them all?

Doug: We can't. Thafs why we'll define a cut-off after

we sort these guys. I'll do that off-line, and we'll meet

again tomorrow. For now, get bock to work .
. , and in

your spare time, think about any risks that we've missed.

CHAPTER 25 RISK MANAGEMENT 737

25.5

What's a

• goad way to

describe a risk?

25.6

Risk Refinement

During early stages of project planning, a risk may be stated quite generally. As time

passes and more is learned about the project and the risk, it may be possible to re-

fine the risk into a set of more detailed risks, each somewhat easier to mitigate, mon-
itor, and manage.

One way to do this is to represent the risk in condition-transition-consequence

(CTC) format [GLU94], That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>

Using the CTC format for the reuse risk noted in Section 25.4.2, we can write:

Given that all reusable software components must conform to specific design

standards and that some do not conform, then there is concern that (possibly) only 70

percent of the planned reusable modules may actually be integrated into the as-built

system, resulting in the need to custom engineer the remaining 30 percent of

components

This general condition can be refined in the following manner:

Subcondition l. Certain reusable components were developed by a third party with no
knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified

and may not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language

that is not supported on the target environment.

The consequences associated with these refined subconditions remain the same
(i.e., 30 percent of software components must be custom engineered), but the re-

finement helps to isolate the underlying risks and might lead to easier analysis and

response.

Risk Mitigation. Monitoring, and Management
All of the risk analysis activities presented to this point have a single goal—to assist

the project team in developing a strategy for dealing with risk. An effective strategy

must consider three issues:

• Risk avoidance.

• Risk monitoring.

• Risk management and contingency planning.

If a software team adopts a proactive approach to risk, avoidance is always the best

strategy. This is achieved by developing a plan for risk mitigation. For example, as-

sume that high staff turnover is noted as a project risk, r, . Based on past history and
management intuition, the likelihood, /,, of high turnover is estimated to be 0.70 (70

738 PART POUR MANAGING SOFTWARE PROJECTS

^ What can

• we da to

mitigate a risk?

percent, rather high) and the impact, x,
,
is projected as critical. That is, high turnover

will have a critical impact on project cost and schedule.

"If I take so many precautions, H is because I leave nothing to chance."

Napoleon

To mitigate this risk, project management must develop a strategy for reducing

turnover. Among the possible steps to be taken are:

• Meet with current staff to determine causes for turnover (e.g., poor working

conditions, low pay, competitive job market).

• Mitigate those causes that are under our control before the project starts.

• Once the project commences, assume turnover will occur and develop tech-

niques to ensure continuity when people leave.

• Organize project teams so that information about each development activity

is widely dispersed.

• Define documentation standards and establish mechanisms to ensure that

documents are developed in a timely manner.

• Conduct peer reviews of all work (so that more than one person is "up to

speed”)

.

• Assign a backup staff member for every' critical technologist.

As the project proceeds, risk monitoring activities commence. The project manager

monitors factors that may provide an indication of whether the risk is becoming

more or less likely. In the case of high staff turnover, the following factors can be

monitored:

• General attitude of team members based on project pressures.

• The degree to which the team has jelled.

• Interpersonal relationships among team members.

• Potential problems with compensation and benefits.

• The availability of jobs within the company and outside it.

In addition to monitoring these factors, a project manager should monitor the effec-

tiveness of risk mitigation steps. For example, a risk mitigation step noted earlier

called for the definition of documentation standards and mechanisms to be sure that

documents are developed in a timely manner. This is one mechanism for ensuring

continuity, should a critical individual leave the project. The project manager should

monitor documents carefully to ensure that each can stand on its own and that each

imparts information that would be necessary if a newcomer were forced to join the

software team somewhere in the middle of the project.

CHAPTER 25 RISK MANAGEMENT 739

If HE for a specific risk

is less than the cost of

risk mitigation, don't

try to mitigate the risk

but continue to

monitor it.

WebRef
A voluminous otdwe

containing oil entries

from the ACM Foium

on Risks to the Public

«m be found at

cotless.ncl.oc.uk/

Risks.

Risk management and contingency planning assumes that mitigation efforts

have failed and that the risk has become a reality. Continuing the example, the proj-

ect is well underway, and a number of people announce that they will be leaving.

If the mitigation strategy has been followed, backup is available, information is

documented, and knowledge has been dispersed across the team. In addition, the
project manager may temporarily refocus resources (and readjust the project

schedule) to those functions that are fully staffed, enabling newcomers who must
be added to the team to "get up to speed." Those individuals who are leaving are
asked to stop all work and spend their last weeks in "knowledge transfer mode."
This might include video-based knowledge capture, the development of "com-
mentary documents," and/or meeting with other team members who will remain
on the project.

It is important to note that risk mitigation, monitoring, and management
(RMMM) steps incur additional project cost. For example, spending the time to

backup every critical technologist costs money. Part of risk management, there-
fore, is to evaluate when the benefits accrued by the RMMM steps are outweighed
by the costs associated with implementing them. In essence, the project planner
performs a classic cost/benefit analysis. If risk aversion steps for high turnover
will increase both project cost and duration by an estimated 15 percent, but the
predominant cost factor is "backup," management may decide not to implement
this step. On the other hand, if the risk aversion steps are projected to increase
costs by 5 percent and duration by only 3 percent, management will likely put all

into place.

For a large project, 30 or 40 risks may be identified. If between three and seven
risk management steps are identified for each, risk management may become a proj-

ect in itself! For this reason, we adapt the Pareto 80-20 rule to software risk Experi-
ence indicates that 80 percent of the overall project risk (i.e., 80 percent of the
potential for project failure) can be accounted for by only 20 percent of the identified

risks. The work performed during earlier risk analysis steps will help the planner to

determine which of the risks reside in that 20 percent (eg., risks that lead to the high-
est risk exposure). For this reason, some of the risks identified, assessed, and pro-
jected may riot make it into the RMMM plan—they don't fall into the critical 20
percent (the risks with highest project priority).

Risk is not limited to the software project itself. Risks can occur after the software
has been successfully developed and delivered to the customer. These risks are typ-
ically associated with the consequences of software failure in the field.

Software safety and hazard analysis [LEV95] are software quality assurance activi-

ties (Chapter 26) that focus on the identification and assessment of potential hazards
that may affect software negatively and cause an entire system to fail. If hazards can
be identified early in the software engineering process, software design features can
be specified that will either eliminate or control potential hazards.

740 PART FOUR MANAGING SOFTWARE PROJECTS

25.7 The RMMM Plam —
A risk management strategy can be included in the software project plan or the risk

management steps can be organized into a separate Risk Mitigation, Monitoring and

Management Plan. The RMMM plan documents all work performed as part of risk

analysis and is used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each

risk is documented individually using a risk information sheet (RIS) [W1L97]. In most

cases, the RIS is maintained using a database system, so that creation and informa-

tion entry, priority ordering, searches, and other analysis may be accomplished eas-

ily. The format of the RIS is illustrated in Figure 25.4.

Once RMMM has been documented and the project has begun, risk mitigation and

monitoring steps commence. As we have already discussed, risk mitigation is a

problem avoidance activity. Risk monitoring is a project tracking activity with three

Risk informa-

tion sheet

[WIL97]

Risk information sheet

Risk ID; P02-4-32 Date; 5/9/04 Prob 80% Impact; high

Description:

Only 70 percent of the software components scheduled for reuse will, in fact, be

integrated into the application. The remaining functionality will have to be custom

developed.

Refinement/context:
Subcondition 1 : Certain reusable components were developed by a third party

with no knowledge of internal design standards.

Subcondition 2; The design standard for component interfaces has not been

solidified and moy not conform to certain existing reusable components.

Subcondition 3: Certain reusable components have been implemented in a

language that is not supported on the target environment.

Mitigation/monitoring:
1 . Contact third party to determine conformance with design standards.

2. Press for interface standards completion; consider component structure when

deciding on interface protocol.

3. Check to determine number of components in subcondition 3 category; check

to determine if language support can be ocquired.

Management/contingency plan/trigger:

RE computed to be $20,200. Allocate this amount within project contingency cost.

Develop revised schedule assuming that 1 8 additional components will have to be

custom built; allocate staff accordingly.

Trigger: Mitigation steps unproductive os of 7/ 1 /04

Current status:

5/12/04; Mitigction steps initiated.

Originator: D. Gagne Assigned: B. Loster

CHAPTER 25 RISK MANAGEMENT 741

primary objectives: (1) to assess whether predicted risks do, in fact, occur; (2) to en-

sure that risk aversion steps defined for the risk are being properly applied; and (3) to

collect information that can be used for future risk analysis. In many cases, the prob-

lems that occur during a project can be traced to more than one risk. Another job of

risk monitoring is to attempt to allocate origin (what risk(s) caused which problems

throughout the project).

Risk Management

Objective: The objective of risk management

tools is to assist a project team in defining risks,

assessing their impact and probability, and tracking risks

throughout a software project.

Mechanics: In general, risk management tools assist in

generic risk identification by providing a list of typical

project and business risks, providing checklists or other

"interview" techniques that assist in identifying project

specific risks, assigning probability and impact to each

risk, supporting risk mitigation strategies, and generating

many different risk-related reports.

Representative Tools4

Riskman, developed at Arizona State University (www.eas.

asu.edu/~sdm/merrill/riskman.html), is a risk

evaluation expert system that identifies project-related

Software Tools

Risk Radar, developed by SPMN (www.spmn.com), assists

project managers in identifying and managing project

risks.

RiskTrak, developed by RST (www.risktrac.com), supports

the identification, analysis, reporting, and

management of risks throughout a software project.

Risk+, developed by C/S Solutions (www.CS-

solutions.com), integrates with Microsoft Project to

quantify cost and schedule uncertainty.

X:PRIMER, developed by GrafP Technologies

(www.grafp.com), is a generic Web-based tool that

predicts what can go wrong on a project and identifies

root causes for potential failures and effective

countermeasures.

25.8 Summary

Whenever a lot is riding on a software project, common sense dictates risk analysis.

And yet, most software project managers do it informally and superficially, if they do
it at all. The time spent identifying, analyzing, and managing risk pays itself back in

many ways: less upheaval during the project, a greater ability to track and control a

project, and the confidence that comes with planning for problems before they occur.

Risk analysis can absorb a significant amount of project planning effort, identifi-

cation, projection, assessment, management, and monitoring all take time. But the

effort is worth it. To quote Sun Tzu, a Chinese general who lived 2500 years ago, "If

you know the enemy and know yourself, you need not fear the result of a hundred
battles." For the software project manager, the enemy is risk.

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

742 PART FOUR MANAGING SOFTWARE PROJECTS

References—
IAFC88] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Force, September 30,

1988

[BOE89] Boehm, B, W„ Software Risk Management, IEEE Computer Society Press, 1 989.

[CHA89] Charette, R. N., Software Engineering Risk Analysis and Management, McGraw-Hill/

Intertext, 1989

(CHA92| Charette, R. N., "Building Bridges over Intelligent Rivers," American. Programmer, vol. 5,

no. 7, September, 1992, pp. 2-9.

[DRU75] Drucker, P„ Management, W. H Heinemann, 1975.

[GIL-88] Gilb, T.
,
Principles ofSoftware Engineering Management, Addison-Wesley, 1 988.

[GLU94] Gluch, D. P, "A Construct for Describing Software Development Risks," CMU/SEl-94-

TR-14, Software Engineering Institute, 1994.

[HAL98| Hall, E. M., Managing Risk- MethodsforSoftware Systems Development, Addison-Wesley,

1998

[H1G95] Higuera, R. P, "Team Risk Management,” CrossTalk, U.S. Dept, of Defense, January 1 99o,

pp. 2-4.

[KAR96J Karolak, D. w„ Software Engineering Risk Management, IEEE Computer Society Press,

1996.

[KE198) Keil, M., et al., "A Framework for Identifying Software Project Risks," CACM, vol. 41,

no. 1, November 1998, pp. 76-83.

[LEV95| Leveson, N. G„ Safeware.- System Safety and Computers. Addison-Wesley, 1 995.

ISEI93] 'Taxonomy-Based Risk Identification," Software Engineering Institute, CMU/SEI-93-TR-6,

1993.
. ,

[TH092) Thomsett, R,, "The Indiana Jones School of Risk Management,' American Programmer,

vol. 5, no. 7, September 1992, pp. 10-18.

(WIL97] Williams, R. C., J. A. Walker, and A. J. Dorotee, "Putting Risk Management into Practice,

IEEE Software, May 1997, pp. 75-81

.

Problems and PoiNIS.TQ P0NB.EB

25.1. Develop a risk monitoring strategy and specific risk monitoring activities for three of the

risks noted in Figure 25.2. Be sure to identify the factors that you'll be monitoring to determine

whether the risk is becoming more or less likely.

25.2. You've been asked to build software to support a low-cost video editing system. The sys-

tem accepts digital video as input, stores the video on disk, and then allows the user to do a wide

range of edits to the digitized video. The result can then be output to DVD or other media. Do a

small amount of research on systems of this type, and then make a list of technology risks that

you would face as you begin a project of this type.

25.3. Add three additional questions or topics to each of the risk item checklists presented at

the SEPA Web site.

25.4. Develop a risk mitigation strategy and specific risk mitigation activities for three ot the

risks noted in Figure 25.2.

25.5. Provide five examples from other fields that illustrate the problems associated with a re-

active risk strategy.

25.6. Describe the difference between "known risks" and "predictable risks

25.7. Describe the difference between risk components and risk drivers.

25.8. You're the project manager for a major software company You ve been asked to lead a

team that's developing "next generation" word-processing software. Create a risk table for the

project.

CHAPTER 25 RISK MANAGEMENT 743

25 .9 . Attempt to refine three of the risks noted in Figure 25.2 and then create risk information
sheets for each.

25 . 1

0

. Can you think of a situation in which a high-probability, high-impact risk wouid not be
considered as part of your RMMM plan?

25 . 1

1

. Represent three of the risks noted in Figure 25.2 using a CTC format.

25 . 1

2

. Recompute the risk exposure discussed in Section 25.4.2 when cost/LOC is $ 1 6 and the
probability is 60 percent.

25 . 13 . Develop a risk management strategy and specific risk management activities for three
of the risks noted in Figure 25.2.

25 . 14 . Describe five software application areas in which software safety and hazard analysis
would be a major concern.

-F.U,ETHER Readings and Information Sources
The software risk management literature has expanded significantly over the past decade. De-
Marco and Lister (Dancing with Bears, Dorset House, 2003) have written an entertaining and in-
sightful book that guides software managers and practitioners through risk management.
Moynihan (Coping with 1T/IS Risk Management, Springer-Verlag, 2002) presents pragmatic advice
from project managers who deal with risk on a continuing basis. Royer (Project Risk Management,
Management Concepts, 2002) and Smith and Merritt (Proactive Risk Management, Productivity
Press, 2002) suggest a proactive process for risk management. Karolak(So/ftwre Engineering Risk
Management, Wiley, 2002) has written a guidebook that introduces an easy-to-use risk analysis
model with worthwhile checklists and questionnaires supported by a software package.

Schuyler {Risk and Decision Analysis in Projects, PMI, 200 1) considers risk analysis from a sta-
tistical perspective. Hall (Managing Risk: Methods for Software Systems Development, Addison-
Wesiey, 1998) presents one of the more thorough treatments of the subject. Myerson (Risk
Management Processingfor Software Engineering Models, Artech House, 1997) considers metrics,
security, process models and other topics. A useful snapshot of risk assessment has been writ-
ten by Grey

(Practical Risk Assessmentfor Project Management, Wiley, 1 995). His abbreviated treat-
ment provides a good introduction to the subject.

Capers Jones (Assessment and Control ofSoftware Risks, Prentice-Hall, 1 994) presents a de-
tailed discussion of software risks that includes data collected from hundreds of software proj-
ects. Jones defines 60 risk factors that can affect the outcome of software projects. Boehm
[BOE89] suggests excellent questionnaire and checklist formats that can prove invaluable in
identifying risk. Charette [CHA89] presents a detailed treatment of the mechanics of risk analy-
sis, calling on probability theory and statistical techniques to analyze risks. In a companion vol-
ume, Charette (Application Strategiesfor Risk Analysis, McGraw-Hill, 1990) discusses risk in the
context of both system and software engineering and suggests pragmatic strategies for risk
management. Gilb (Principles of Software Engineering Management, Addison-Wesley, 1 988)
presents a set of principles" (which are often amusing and sometimes profound) that can serve
as a worthwhile guide for risk management.

Ewusi-Mensah (Software Development Failures: Anatomy ofAbandoned Projects, MIT Press
2003) and Yourdon

(Death March, Prentice-Hall, 1997) discuss what happens when risks over-
whelm a software project team. Bernstein Against the Gods, Wiley, 1 998) presents an enter-
taining history of risk that goes back to ancient times.

The Software Engineering Institute has published many detailed reports and guidebooks on
risk analysis and management. The Air Force Systems Command pamphlet AFSCP 800-45
[AFC88] describes risk identification and reduction techniques, Every issue of the ACM Software
Engineering Notes has a section entitled "Risks to the Public" (editor, P. G. Neumann). Ifyou want
the latest and best software horror stories, this is the place to go.

A wide variety of information sources on software risk management is available on the In-
ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Quality
Management

Key
Concepts
cost of quality

defect amplification

defect casts

ISO 9001:2000

reliability

reviews (FTRs)

quality

quality control

sampling

six sigma

software safety

SOA Plan

statistical SQA

T
he software engineering approach described in this book works toward a

single goal: to produce high-quality software. Yet many readers will be

challenged by the question: What is software quality?

Philip Crosby [CR079], in his landmark book on quality, provides a wiy answer

to this question:

The problem of quality management is not what people don't know about it. The prob-

lem is what they think they do know .

In this regard, quality has much in common with sex. Everybody is for it. (Under

certain conditions, of course.) Everyone feels they understand it. (Even though they

wouldn't want to explain it.) Everyone thinks execution is only a matter of following

natural inclinations. (After all, we do get along somehow.) And, of course, most peo-

ple feel that problems in these areas are caused by other people. (If only they would

take the time to do things right.)

Some software developers continue to believe that software quality is some-

thing you begin to worry about after code has been generated. Nothing could be

further from the truth! Quality management (often called software quality assurance)

is an umbrella activity (Chapter 2) that is applied throughout the software process.

Quality management encompasses (1) a software quality assurance (SQA)

process; (2) specific quality assurance and quality control tasks (including formal

technical reviews and a multitiered testing strategy); (3) effective software engi-

neering practice (methods and tools); (4) control of all software work products

What is it? It's not enough to talk

the talk by saying that software quality

is important. You have to (1) explicitly

define what is meant when you say

"software quality," (2) create a set of activities that

will help ensure that every software engineering

work product exhibits high quality, (3) perform

quality control and assurance activities on every

software project, (4) use metrics to develop strate-

gies for improving your software process and, as

a consequence, the quality of the end product.

Who does it? Everyone involved in the software

engineering process is responsible for quality.

Why is it important? You can do it right, or

you can do it over again. If a software team

stresses quality in all software engineering activ-

ities, it reduces the amount of rework that it must

do. That results in lower costs, and more impor-

tantly, improved time-to-market.

What are the steps? Before software quality

assurance activities can be initiated, it is impor-

tant to define "software quality" at a number of

different levels of abstraction. Once you under-

stand what quality is, a software team must iden-

tify a set of SQA activities that will filter errors

out of work products before they are passed on.

744

CHAPTER 26 QUALITY MANAGEMENT 745

What is the work product? A Software

Quality Assurance Plan is created to define a

software team's SQA strategy. During analysis,

design, and code generation, the primary SQA
work product is the formal technical review sum-

mary report. During testing, test plans and pro-

cedures are produced. Other work products

associated with process improvement may also

be generated.

How do I ensure that I've done it right?

Find errors before they become defects! That is,

work to improve your defect removal efficiency

(Chapter 22), thereby reducing the amount of

rework that your software team has to perform.

and the changes made to them (Chapter 27); (5) a procedure to ensure compliance

with software development standards (when applicable), and (6) measurement and

reporting mechanisms.

In this chapter, we focus on the management issues and the process-specific ac-

tivities that enable a software organization to ensure that it does the right things at

the right time in the right way.

2JLL

POINT
Controlling voriotion

is the key to o high-

quality product. In the

software context, we

strive to control the

voriotion in the generic

process we opply ond

the quality emphosis

that permeates

software engineering

work.

Qttality Concepts.—
Variation control is the heart of quality control. A manufacturer wants to minimize the

variation among the products that are produced, even when doing something rela-

tively simple like duplicating DVDs. Surely, this cannot be a problem—duplicating

DVDs is a trivial manufacturing operation, and we can guarantee that exact dupli-

cates of the software are always created.

Or can we? We need to ensure the tracks are placed on the DVDs within a speci-

fied tolerance so that the overwhelming majority of DVD drives can read the media.

The disk duplication machines can, and do, wear and go out of tolerance. So even a

"simple" process such as DVD duplication may encounter problems due to variation

between samples.

But how does this apply to software work? How might a software development

organization need to control variation? From one project to another, we want to

minimize the difference between the predicted resources needed to complete a proj-

ect and the actual resources used, including staff, equipment, and calendar time. In

general, we would like to make sure our testing program covers a known percent-

age of the software, from one release to another. Not only do we want to minimize

the number of defects that are released to the field, we'd like to ensure that the vari-

ance in the number of bugs is also minimized from one release to another. (Our cus-

tomers will likely be upset if the third release of a product has 10 times as many

1 This section, written by Michael Stovsky, has been adapted from "Fundamentals of ISO 9000," a

workbook developed for Essential Software Engineering, a video curriculum developed by R. S.

FTessman & Associates, Inc. Reprinted with permission.

746 PART FOUR MANAGING SOFTWARE PROJECTS

^ What is

• software

quality control?

defects as the previous release.) We would like to minimize the differences in speed

and accuracy of our hotline support responses to customer problems. The list goes
on and on.

26.1.1 Quality

The American Heritage Dictionary defines quality as "a characteristic or attribute of

something.” As an attribute of an item, quality refers to measurable characteristics—

things we can compare to known standards such as length, color, electrical proper-

ties, and malleability. However, software, largely an intellectual entity, is more
challenging to characterize than physical objects.

Nevertheless, measures of a program's characteristics do exist. These properties

include cyclomatic complexity, cohesion, number of function points, lines of code,

and many others discussed in Chapter 1 5. When we examine an item based on its

measurable characteristics, two kinds of quality may be encountered: quality of de-

sign and quality of conformance.

Quality of design refers to the characteristics that designers specify for an item.

Quality ofconformance is the degree to which the design specifications are followed

during manufacturing.

"People forget how fast you did a job—but they always remember how well you did it'

Howard Newton

In software development, quality of design encompasses requirements, specifica-

tions, and the design ofthe system. Quality ofconformance is an issue focused primarily

on implementation. If the implementation follows the design and the resulting system

meets its requirements and performance goals, conformance quality is high.

But are quality of design and quality of conformance the only issues that software

engineers must consider? Robert Glass [GLA98] argues that a more "intuitive” rela-

tionship is in order:

user satisfaction = compliant product + good quality

+ delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn't sat-

isfied, nothing else really matters. DeMarco [DEM99] reinforces this view when he

states: “A product's quality is a function of how much it changes the world for the

better." This view of quality contends that if a software product provides substantial

benefit to its end-users, they may be willing to tolerate occasional reliability or per-

formance problems.

26.1.2 Quality Control

Variation control may be equated to quality control. But how do we achieve quality

control? Quality control involves the series of inspections, reviews, and tests used

CHAPTER 26 QUALITY MANAGEMENT 747

WebRef
Useful links to SQA

resources con be found

of

www.qualitytree.

(om/links /index,

htm.

^ What are the

• components

of the cost of

quality?

Don't be afraid to incur

significant prevention

costs. Rest assured

that your investment

will provide on

excellent return.

throughout the software process to ensure each work product meets the require-

ments placed upon it. Quality control includes a feedback loop to the process that

created the work product. The combination of measurement and feedback allows us

to tune the process when the work products created fail to meet their specifications.

A key concept of quality control is that all work products have defined, measura-

ble specifications to which we may compare the output of each process. The feed-

back loop is essential to minimize the defects produced.

26.1.3 Quality Assurance

Quality assurance consists of a set of auditing and reporting functions that assess the

effectiveness and completeness of quality control activities. The goal of quality as-

surance is to provide management with the data necessary to be informed about

product quality, thereby gaining insight and confidence that product quality is meet-

ing its goals. Of course, if the data provided through quality assurance identify pro-

blems, it is management's responsibility to address the problems and apply the

necessary resources to resolve quality issues.

26.1.4 Cost of Quality

The cost of quality includes all costs incurred in the pursuit of quality or in perform-

ing quality-related activities. Cost of quality studies are conducted to provide a base-

line for the current cost of quality, identify opportunities for reducing the cost of

quality, and provide a normalized basis of comparison. The basis of normalization is

almost always dollars. Once we have normalized quality costs on a dollar basis, we

have the necessary data to evaluate where the opportunities lie to improve our

processes. Furthermore, we can evaluate the effect of changes in dollar-based terms.

Quality costs may be divided into costs associated with prevention, appraisal, and

failure. Prevention costs include quality planning, formal technical reviews, test equip-

ment, and training. Appraisal costs include activities to gain insight into product con-

dition the "first time through" each process. Examples of appraisal costs include

in-process and interprocess inspection, equipment calibration and maintenance, and

testing.

Failure costs are those that would disappear if no defects appeared before ship-

ping a product to customers. Failure costs may be subdivided into internal failure

costs and external failure costs. Internal failure costs are incurred when we detect a

defect in our product prior to shipment. Internal failure costs include rework, repair,

and failure mode analysis. Externalfailure costs are associated with defects found af-

ter the product has been shipped to the customer. Examples of external failure costs

are complaint resolution, product return and replacement, help line support, and

warranty work.

As expected, the relative costs to find and repair a defect increase dramatically

as we go from prevention to detection to internal failure to external failure costs.

748 PART FOUR MANAGING SOFTWARE PROJECTS

Relative cost of

correcting an
error

Figure 26.1, based on data collected by Boehm [BOE81] and others, illustrates this

phenomenon.

"It takes less time to do a thing right than to explain why you did it wrong."

H. W. Longfellow

2.6.2 Software Quality Assurance

Even the most jaded software developers will agree that high-quality software is an

important goal. But how do we define quality? A wag once said, "Every program does

something right, it just may not be the thing that we want it to do."

Many definitions of software quality have been proposed in the literature. For our

purposes, software quality is defined as:

How do we
• define

software quality?

Conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of all

professionally developed software.

There is little question that this definition could be modified or extended. In fact, the

definition of software quality could be debated endlessly. For the purposes of this

book, this definition serves to emphasize three important points:

1 . Software requirements are the foundation from which quality is measured.

Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the man-

ner in which software is engineered. If the criteria are not followed, lack of

quality will almost surely result.

CHAPTER 26 QUALITY MANAGEMENT 749

3. A set of implicit requirements often goes unmentioned (e.g., the desire for ease

of use and good maintainability). If software conforms to its explicit require-

ments but fails to meet implicit requirements, software quality is suspect.

26.2.1 Background Issues

Quality control and assurance are essential activities for any business that produces

products to be used by others. Prior to the twentieth century, quality control was the

sole responsibility of the craftsperson who built a product. The first formal quality as-

surance and control function was introduced at Bell Labs in 1916 and spread rapidly

throughout the manufacturing world. During the 1940s, more formal approaches to

quality control were suggested. These relied on measurement and continuous

process improvement [DEM86] as key elements of quality management.

"You made too many wrong mistakes."

Yogi Berra

Today, every company has mechanisms to ensure quality in its products In fact,

explicit statements of a company's concern for quality have become a marketing

ploy during the past few decades.

The history of quality assurance in software development parallels the history of

quality in hardware manufacturing. During the early days of computing (1950s and

1960s), quality was the sole responsibility of the programmer. Standards for quality

assurance for software were introduced in military contract software development

during the 1 970s and have spread rapidly into software development in the com-

mercial world [IEE94J. Extending the definition presented earlier, software quality

assurance is a "planned and systematic pattern of actions” [SCH98] that are required

to ensure high quality in software. Many different constituencies have software qual-

ity assurance responsibility—software engineers, project managers, customers,

salespeople, and the individuals who serve within an SQA group.

The SQA group serves as the customer's in-house representative. That is, the peo-

ple who perform SQA must look at the software from the customer's point of view.

Does the software adequately meet the quality factors noted in Chapter 15? Has soft-

ware development been conducted according to preestablished standards? Have

tedanicaidisciplines properly performed their roles as part of the SQA activity? The

SQA group- attempts to answer these and other questions to ensure that software

quality is maintained.

26.2.2 SQA Activities

Software quality assurance is composed of a variety of tasks associated with two dif-

ferent constituencies—the software engineers who do technical work and an SQA

group that has responsibility for quality assurance planning, oversight, record keep-

ing, analysis, and reporting.

750 PART FOUR MANAGING SOFTWARE PROJECTS

Software engineers address quality (and perform quality assurance and quality

control activities) by applying solid technical methods and measures, conducting for-

mal technical reviews, and performing well-planned software testing. Only reviews

are discussed in this chapter. Technology topics are discussed in Parts 1,2,3, and 5

of this book.

The charter of the SQA group is to assist the software team in achieving a high-

quality end product. The Software Engineering Institute recommends a set of SQA
activities that address quality assurance planning, oversight, record keeping, analy-

sis, and reporting. These activities are performed (or facilitated) by an independent

SQA group that conducts the following activities:

<2 Who* is the
Prepares an SQA plan for a project. The plan is developed during project plan-

• role of on ning and is reviewed by all stakeholders. Quality assurance activities performed by
SQA group? the software engineering team and the SQA group are governed by the plan. The

plan identifies evaluations to be performed, audits and reviews to be performed,

standards that are applicable to the project, procedures for error reporting and track-

ing, documents to be produced by the SQA group, and amount of feedback provided

to the software project team.

Participates in the development of the project's software process descrip-

tion. The software team selects a process for the work to be performed. The SQA
group reviews the process description for compliance with organizational policy, in-

ternal software standards, externally imposed standards (e.g.. ISO-9001), and other

parts of the software project plan.

Reviews software engineering activities to verify compliance with the de-

fined software process. The SQA group identifies, documents, and tracks devi-

ations from the process and verifies that corrections have been made.

Audits designated software work products to verify compliance with those

defined as part of the software process. The SQA group reviews selected work

products; identifies, documents, and tracks deviations; verifies that corrections have

been made; and periodically reports the results of its work to the project manager.

Ensures that deviations in software work and work products are documented
and handled according to a documented procedure. Deviations may be en-

countered in the project plan, process description, applicable standards, or technical

work products.

Records any noncompliance and reports to senior management. Noncom-
pliance items are tracked until they are resolved.

In addition to these activities, the SQA group coordinates the control and

management of change (Chapter 27) and helps to collect and analyze software

metrics.

CHAPTER 26 QUALITY MANAGEMENT 751

26.3 Software Reviews

Reviews ore iike filters

in the software process

workflow. loo few,

and the flow is “dirty."

Too many, and the

flow slows to a trickle.

Use metrics to

determine which

reviews work and

emphasize them.

Software reviews are a "filter" for the software process. That is, reviews are applied

at various points during software engineering and serve to uncover errors and de-

fects that can then be removed. Software reviews "purify" the software engineering

activities that we have called analysis, design, and coding. Freedman and Weinberg

[FRE901 discuss the need for reviews this way:

Technical work needs reviewing for the same reason that pencils need erasers: To err is

human. The second reason we need technical reviews is that although people are good

at catching some of their own errors, large classes of errors escape the originator more

easily than they escape anyone else.

Many different types of reviews can be conducted as part of software engineer-

ing. Each has its place. An informal meeting around the coffee machine is a form of

review, if technical problems are discussed. A formal presentation ofsoftware design

to an audience of customers, management, and technical staff is also a form of re-

view. In this book, however, we focus on the formal technical review, sometimes

called a walkthrough or an inspection. A formal technical review (FTR) is the most ef-

fective filter from a quality assurance standpoint. Conducted by software engineers

(and others) for software engineers, the FTR is an effective means for uncovering er-

rors and improving software quality.

Bugs, Errors, and Defects

The goal of SQA is to remove quality problems

in the software. These problems are referred to

by various names
—

"bugs," "faults," "errors," or "defects"

to name a few. Are each of these terms synonymous, or

are there subtle differences between them?

In this book we have made a clear distinction between

an error (a quality problem found before the software is

released to end-users) and a defect (a quality problem found

only after the software has been released to end-users
2
). We

make this distinction because errors and defects have very

different economic, business, psychological, and human

impact. As software engineers, we want to find and correct

as many errors as possible before the customer and/or end-

user encounter them. We want to avoid defects—because

defects (justifiably) make software people look bad.

It is important to note, however, that the temporal

distinction made between errors and defects in this book is

not mainstream thinking. The general consensus within the

software engineering community is that defects and errors,

faults, and bugs are synonymous. That is, the point in time

that the problem was encountered has no bearing on the

term used to describe the problem. Part of the argument in

favor of this view is that it is sometimes difficult to make a

clear distinction between pre- and post-release (e.g.,

consider an incremental process used in agile development

[Chapter 4]).

Regardless of how you choose to interpret these terms,

recognize that the point in time at which a problem is

discovered does matter and that software engineers should

try hard—very hard—to find problems before their

customers and end-users encounter them. If you have

further interest in this issue, a reasonably thorough

discussion of the terminology surrounding "bugs" can be

found at www.softwaredevelopment.ca/bugs.shtml.

2 If software process improvement is considered, a quality problem that is propagated from one

process framework activity (e.g., modeling) to another (e.g., construction) can also be called a "de-

fect" (because the problem should have been found before a work product (e.g., a design model)

was "released" to the next activity.

752

Defect amplifi-

cation model

The primary objective

of an FTTt is to find

errors before they ore

passed on to another

software engineering

activity or released to

the enrkser.

PART FOUR MANAGING SOFTWARE PROJECTS

Errors from

previous step

Development step

Defects Detection

Errors passed through

Amplified errors 1 : x

Newly generated errors

Percent

efficiency

for error

detection

- Errors passed
to next step

26.3. 1 Cost Impact of Software Defects

The primary objective of formal technical reviews is to find errors during the process

so that they do not become defects after release of the software. The obvious bene-

fit offormal technical reviews is the early discovery of errors so that they do not prop-

agate to the next step in the software process.

A number of industry studies (by TRW, NEC, Mitre Corp., among others) indicate

that design activities introduce between 50 and 65 percent of all errors (and ulti-

mately, all defects) during the software process. However, formal review techniques

have been shown to be up to 75 percent effective (JON861 in uncovering design flaws.

By detecting and removing a large percentage of these errors, the review process

substantially reduces the cost of subsequent activities in the software process.

To illustrate the cost impact of early error detection, we consider a series of relative

costs that are based on actual cost data collected for large software projects [IBM81].3

Assume that an error uncovered during design will cost 1 .0 monetary unit to correct.

Relative to this cost, the same error uncovered just before testing commences will cost

6.5 units; during testing, 15 units; and after release, between 60 and 100 units.

26.3.2 Defect Amplification and Removal

A defect amplification model [1BM81) can be used to illustrate the generation and de-

tection of errors during the preliminary design, detail design, and coding steps of a

software engineering process. The model is illustrated schematically in Figure 26.2.

A box represents a software development step. During the step, errors may be inad-

vertently generated. Review may fail to uncover newly generated errors and errors

from previous steps, resulting in some number of errors that are passed through. In

some cases, errors passed through from previous steps are amplified (amplification

factor, x) by current work. The box subdivisions represent each of these characteris-

tics and the percent of efficiency for detecting errors, a function of the thoroughness

of the review.

3 Although these data are well over 20 years old, they remain applicable in a modern context.

CHAPTER 26 QUALITY MANAGEMENT 753

Defect amplifi-

cation—no
reviews

Preliminary design

mmm
Defect amplifi-

cation

—

reviews

conducted

Preliminary design

latent errors

"Some maladies, as doctors say, at their beginning are easy to cure but difficult to recognize ... but in the course of

lime when they have not at first been recognized and treated, become easy to recognize but difficult to cure.*

Niccolo Machiavelli

Figure 26.3 illustrates a hypothetical example of defect amplification for a soft-

ware process in which no reviews are conducted. Referring to the figure, each test

step is assumed to uncover and correct 50 percent of all incoming errors without in-

troducing any new errors (an optimistic assumption). Ten preliminary design defects
are amplified to 94 errors before testing commences. Twelve latent defects are re-

leased to the field. Figure 26.4 considers the same conditions except that design and
code reviews are conducted as part of each development step. In this case, 10 initial

preliminary design errors are amplified to 24 errors before testing commences. Only

754 PART FOUR MANAGING SOFTWARE PROJECTS

26.4

When we

• conduct

FTRs, whot ore

our objectives?

WebRef

Ihe NASA SAIC forma'

Inspection Guidebook

con be downloaded ot

satc.gstc.nasa.

gov/fi/fipoge.

html.

three latent defects exist. Recalling the relative costs associated with the discovery

and correction of errors, overall cost (with and without review for our hypothetical

example) can be established. The number of errors uncovered during each of the

steps noted in Figures 26.3 and 26.4 is multiplied by the cost to remove an erroi (1 .5

cost units for design, 6.5 cost units before test, 15 cost units during test, and 67 cost

units after release). Using these data, the total cost for development and mainte-

nance when reviews are conducted is 783 cost units. When no reviews are con-

ducted, total cost is 2 1 77 units—nearly three times more costly.

To conduct reviews, a software engineer must expend time and effort, and the de-

velopment organization must spend money. However, the results of the preceding

example leave little doubt that we can pay now or pay much more latei . Foi mal tech-

nical reviews (for design and other technical activities) provide a demonstiable cost

benefit. They should be conducted.

Formal Technical REVIEWS,

A formal technical review is a software quality control activity perfoimed by soft-

ware engineers (and others). The objectives of an FTR are (1) to uncover errors in

function, logic, or implementation for any representation of the software; (2) to

verify that the software under review meets its requirements; (3) to ensure that the

software has been represented according to predefined standards; (4) to achieve

software that is developed in a uniform manner; and (5) to make projects more

manageable. In addition, the FTR serves as a training ground, enabling junior en-

gineers to observe different approaches to software analysis, design, and con-

struction. The FTR also serves to promote backup and continuity because a

number of people become familiar with parts of the software that they may not

have otherwise seen.

“There is no urge so great as for one mon to edit onother man s work.

Mark Twain

The FTR is actually a class ofreviews that includes walkthroughs, inspections, round

robin reviews, and other small group technical assessments of software. Each FTR is

conducted as a meeting and will be successful only if it is properly planned, controlled,

and attended. In the sections that follow, guidelines similar to those for a walkthrough

(e g., [FRE90], [G1L93]) are presented as a representative formal technical review.

26.4. 1 The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by

the following constraints:

• Between three and five people (typically) should be involved in the review.

CHAPTER 26 QUALITY MANAGEMENT 755

r
POINT

An FTR focuses on o

relatively small portion

of a work product.

In some situations, it's

a good ideo to have

someone other than

the producer walk

through the product

undergoing review.

This leads to a literal

interpretation of the

work product and

better error recogni-

tion.

• Advance preparation should occur but should require no more than two
hours of work for each person.

• The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and
small) part of the overall software. For example, rather than attempting to review an
entire design, walkthroughs are conducted for each component or small group of

components. By narrowing focus, the FTR has a higher likelihood ofuncovering errors.

The focus of the FTR is on a work product (e.g., a portion of a requirements spec-
ification, a detailed component design, a source code listing for a component). The
individual who has developed the work product—the producer—informs the project

leader that the work product is complete and that a review is required. The project

leader contacts a review leader, who evaluates the product for readiness, generates

copies of product materials, and distributes them to two or three reviewers for ad-
vance preparation. Each reviewer is expected to spend between one and two hours
reviewing the product, making notes, and otherwise becoming familiar with the
work. Concurrently, the review leader also reviews the product and establishes an
agenda for the review meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers, and the pro-
ducer. One of the reviewers takes on the role of the recorder

;

that is, the individual

who records (in writing) all important issues raised during the review. The FTR be-
gins with an introduction of the agenda and a brief introduction by the producer. The
producer then proceeds to "walk through" the work product, explaining the material,

while reviewers raise issues based on their advance preparation. When valid prob-
lems or errors are discovered, the recorder notes each.

At the end of the review, all attendees of the FTR must decide whether to (I) ac-
cept the product without further modification. (2) reject the product due to severe er-

rors (once corrected, another review must be performed), or (3) accept the product
provisionally (minor errors have been encountered and must be corrected, but no
additional review will be required). The decision made, all FTR attendees complete
a sign-off, indicating their participation in the review and their concurrence with the

review team's findings.

26.4.2 Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been
raised. These are summarized at the end of the review meeting and a review issues

list is produced. In addition, aformal technical reviewsummary report is completed. A
review summary report answers three questions:

1 . What was reviewed?

2. Who reviewed it?

3. What were the findings and conclusions?

756 PART FOUR MANAGING SOFTWARE PROJECTS

The review summary report is a single page form (with possible attachments). It be-

comes part of the project historical record and may be distributed to the project

leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within

the product and (2) to serve as an action item checklist that guides the producer as

corrections are made. An issues list is normally attached to the summary report.

It is important to establish a follow-up procedure to ensure that items on the is-

sues list have been properly corrected. Unless this is done, it is possible that issues

raised can "fall between the cracks." One approach is to assign the responsibility for

follow-up to the review leader.

"A meeting is too often on event in which minutes ore token and hours ore wasted.
"

Author unknown

Don't point out errors

harshly. One way to be

gentle is tooska

question that enables

the producer to

discover the error.

26.4.3 Review Guidelines

Guidelines for conducting formal technical reviews must be established in advance,

distributed to all reviewers, agreed upon, and then followed. A review that is un-

controlled can often be worse that no review at all. The following represents a min-

imum set of guidelines for formal technical reviews:

1 . Review the product, not the producer. An FTR involves people and egos. Con-

ducted properly, the FTR should leave all participants with a warm feeling of

accomplishment. Conducted improperly, the FTR can take on the aura of an in-

quisition. Errors should be pointed out gently; the tone of the meeting should

be loose and constructive; the intent should not be to embarrass or belittle.

2. Set an agenda and maintain it. One of the key maladies of meetings of all

types is drift. An FTR must be kept on track and on schedule. The review

leader is chartered with the responsibility for maintaining the meeting sched-

ule and should not be afraid to nudge people when drift sets in.

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may

not be universal agreement on its impact. Rather than spending time debat-

ing the question, the issue should be recorded for further discussion off-line.

4. Enunciate problem areas, but don’t attempt to solve every problem noted. A re-

view is not a problem-solving session. Problem solving should be postponed

until after the review meeting.

5. Take written notes It is sometimes a good idea for the recorder to make notes

on a wall board, so that wording and priorities can be assessed by other re-

viewers as information is recorded.

6. Limit the number ofparticipants and insist upon advance preparation. Two

heads are better than one, but 14 are not necessarily better than 4. Keep the

number of people involved to the necessary minimum. However, all review

CHAPTEE 26 QUALITY MANAGEMENT 757

team members must prepare in advance. Written comments should be so-

licited by the review leader (providing an indication that the reviewer has re-

viewed the material).

7 . Develop a checklistfor each product that is likely to be reviewed. A checklist

helps the review leader to structure the FTR meeting and helps each reviewer

to focus on important issues.

8. Allocate resources and schedule timefor FTRs. For reviews to be effective, they

should be scheduled as a task during the software process, in addition, time

should be scheduled for the inevitable modifications that will occur as the re-

sult of an FTR.

9. Conduct meaningful trainingfor all reviewers. To be effective all review partici-

pants should receive some formal training. The training should stress both

process-related issues and the human psychological side of reviews.

1

0.

Reviewyour early reviews. Debriefing can be beneficial in uncovering prob-

lems with the review process itself. The veiy first product to be reviewed

should be the review guidelines themselves.

"It is one of the most beautiful compensations of life, that no man con sincerely try to help another without helping

himself."

Ralph Waldo Emerson

Because many variables (e.g., number of participants, type ofwork products, tim-

ing and length, specific review approach) have an impact on a successful review, a

software organization should experiment to determine what approach works best in

a local context. Porter and his colleagues [POR95] provide excellent guidance for this

type of experimentation.

26.4.4 Sample-Driven Reviews

In an ideal setting, every software engineering work product would undergo a for-

mal technical review. In the real world ofsoftware projects, resources are limited and
time is short: As a consequence, reviews are often skipped, even though their value
as a quality control mechanism is recognized. Thelin and his colleagues [THE01] ad-
dress this issue when they state:

Inspections [FTRs] are only viewed efficient if many faults are found during the fault

searching part. If many faults are found in the artifacts [work products), the inspections

are necessary. If, on the other hand, only few faults are found, the inspection has been a

waste of time for several people involved in the inspections’. Moreover, software projects

which are late often decrease the time for inspection activities, which leads to a lack of

4 Of couise, it can be argued that by conducting reviews we encourage producers to focus on qual-
ity, even if no errors are found.

758 PART FOUR MANAGING SOFTWARE PROJECTS

Reviews take time, but

it's lime well spent.

However, if time is

short and you hove no

other option, do not

dispense with reviews.

Rather, use sample-

driven reviews.

quality. A solution would be to prioritize the resources for the inspection activities and

thereby concentrate the available resources on the artifacts that are most tault-prone.

Thelin and his colleagues suggest a sample-driven review process in which samples

of all software engineering work products are inspected to determine which work

products are most error prone. Full FTR resources are then focused only on those work

products that are likely (based on data collected during sampling) to be error-prone.

To be effective, the sample driven review process must attempt to quantify those

work products that are primary targets for full FTRs. To accomplish this, the follow-

ing steps are suggested [THE01]:

1 . inspect a fraction a, of each software work product, /. Record the number ot

faults,/ found within a,

2. Develop a gross estimate of the number ot faults within work product i by

multiplying/ by l /a..

3. Sort the work products in descending order according to the gross estimate

of the number of faults in each.

4. Focus available review resources on those work products that have the high-

est estimated number of faults.

The fraction of the work product that is sampled must (1) be representative of the

work product as a whole and (2) large enough to be meaningful to the reviewer(s)

who does the sampling. As a, increases, the likelihood that the sample is a valid rep-

resentation of the work product also increases. However, the resources required to

do sampling also increase. A software engineering team must establish the best

value for a, for the types of work products produced.
’

SafeHome

SQA Issues

^ The scene: Doug Miller's office as

the SafeHome software project begins. .

The players: Doug Miller (manager of the SafeHome

software engineering team) and other members of the

software engineering team.

The conversation:

Doug: I know we didn't spend time developing an SQA

plan for this project, but we're already into it and we

have to consider quality . . . right?

Jamie: Sure. We've already decided that as we

develop the requirements model [Chapters 7 and 81,

Ed has committed to develop a V? / procedure for each

requirement.

Doug: That's really good, but we're not going to wait

until testing to evaluate quality, are we?

Vinod: No! Of course not. We've got reviews scheduled

into the project plan for this software increment. We'll

begin quality control with the reviews.

5 Thelin and his colleagues have conducted a detailed simulation that can assist in making this de-

termination. See |THE01) for details.

CHAPTER 26 QUALITY MANAGEMENT

Jamie: I'm a bit concerned that we won’t have

enough time to conduct all the reviews. In fact, I know

we won't.

Doug: Hmmm. So what do you propose?

Jamie: I say we select those elements of the analysis

and design model that are most critical to SafeHome and
review them.

Vinod: But what if we miss something in a part of the

model we don't review?

Shakira: I read something about a sampling technique

[Section 26.4.4] that might help us target candidates for

review. (Shakira explains the approach.)

Jamie: Maybe . . . but I'm not sure we even have time

to sample every element of the models.

759

Vinod: What do you want us to do, Doug?

Doug: Let's steal something from Extreme Programming

[Chapter 4], We'll develop the elements of each model in

pairs—two people—and conduct on informal review of

each as we go. We'll then target "critical" elements for a

more formal team review, but keep those reviews to a

minimum. That way, everything gets looked at by more

than one set of eyes, but we still maintain our delivery

dates.

Jamie: That means we're going to have to revise the

schedule.

Doug: So be it. Quality trumps schedule on this project.

26.5 Formal Appro aches to S&A
Over the past two decades, a small, but vocal, segment of the software engineering

community has argued that a more formal approach to software quality assurance

is required. It can be argued that a computer program is a mathematical object

[SOM01], A rigorous syntax and semantics can be defined for eveiy programming
language, and a rigorous approach to the specification of software requirements

(Chapter 28) is available. If the reeuirements model (specification) and the program-

ming language can be representec. in a rigorous manner, it should be possible to ap-

ply mathematic proofof correctness to demonstrate that a program conforms exactly

to its specifications.

Attempts to prove programs correct (Chapters 28 and 29) are not new. Dijkstra

[DIJ761 and Linger, Mills, and Witt [UN79], among others, advocated proofs of pro-

gram correctness and tied these to the use of structured programming concepts

(Chapter 1 1).-

2.6.A.6 Statistical Software Quality Assurance

What steps

• are required

to perform

statistical SQA?

Statistical quality assurance reflects a growing trend throughout industry to become
more quantitative about quality. For software, statistical quality assurance implies

the following steps:

1. Information about software defects is collected and categorized.

2. An attempt is made to trace each defect to its underlying cause (e.g., non-

conformance to specifications, design error, violation of standards, poor

communication with the customer).

PART FOUR MANAGING SOFTWARE PROJECTS

3. Using the Pareto principle (80 percent of the defects can be traced to 20 per-

cent of all possible causes), isolate the 20 percent (the "vital few").

4. Once the vital few causes have been identified, move to correct the problems

that have caused the defects.

This relatively simple concept represents an important step towards the creation of

an adaptive software process in which changes are made to improve those elements

of the process that introduce error.

26.6. 1 A Generic Example

To illustrate the use of statistical methods for software engineering work, assume

that a software engineering organization collects information on defects for a period

of one year. Some of the defects are uncovered as software is being developed. Oth-

ers are encountered after the software has been released to its end-users. Although

hundreds of different defects are uncovered, all can be tracked to one (or more) of

the following causes:

• Incomplete or erroneous specifications (IES).

• Misinterpretation of customer communication (MCC).

• Intentional deviation from specifications (IDS).

• Violation of programming standards (VPS).

• Error in data representation (EDR).

• inconsistent component interface (ICI).

• Error in design logic (EDL).

• Incomplete or erroneous testing (1ET).

• Inaccurate or incomplete documentation (HD).

• Error in programming language translation of design (PLT).

• Ambiguous or inconsistent human/computer interface (HCI).

• Miscellaneous (MIS).

To apply statistical SQA, the table in Figure 26.5 is built. The table indicates that

IES, MCC, and EDR are the vital few causes that account for 53 percent of all er-

rors. It should be noted, however, that IES, EDR, PLT, and EDL would be selected

as the vital few causes if only serious errors are considered. Once the vital few

causes are determined, the software engineering organization can begin correc-

tive action. For example, to correct MCC, the software developer might implement

facilitated requirements gathering techniques (Chapter 7) to improve the quality

of customer communication and specifications. To improve EDR, the developer

CHAPTER 26 QUALITY MANAGEMENT 761

Data collection

for statistical

SQA

Total Serious Moderate Minor

Error No. % No. % No. % No. %

IES 205 22% 34 27% 68 18% 103 24%

MCC 156 17% 12 9% 68 18% 76 17%

IDS 48 5% i i% 24 6% 23 5%

VPS 25 3% 0 0% 15 4% 10 • 2%

EDR ISO 14% 26 20% 68 18% 36 8%

ICI 58 6% 9 7% 18 5% 31 7%

EDI 45 5% 14 11% 12 3% 19 4%

JET 95 10% 12 9% 35 9% 48 n%

IID 36 4% 2 2% 20 5% 14 3%

PIT 60 6% IS 12% 19 5% 26 6%

HCI 28 3% 3 2% 17 4% 8 2%

MIS 6% _£ 0% _L5 _4% _41 _2i

Totals 942 100% 128 100% 379 100% 435 100%

might acquire tools for data modeling and perform more stringent data design

reviews.

It is important to note that corrective action focuses primarily on the vital few. As

the vital few causes are corrected, new candidates pop to the top of the stack.

Statistical quality assurance techniques for software have been shown to pro-

vide substantial quality improvement [ART97]. In some cases, software organiza-

tions have achieved a 50 percent reduction per year in defects after applying these

techniques.

The application of the statistical SQA and the Pareto principle can be summarized

in a single sentence: Spendyour timefocusing on things that really matter, butfirst be

sure thatyou understand what really matters!

A comprehensive discussion of statistical SQA is beyond the scope of this book.

Interested readers should see [GOH02], [SCH98], or [KAN95].

What are the

• tore steps of

the six sigma

methodology?

26.6.2 Si* Sigma lor Software Engineering

Six Sigma is the most widely used strategy for statistical quality assurance in indus-

try today. Originally popularized by Motorola in the 1 980s, the Six Sigma strategy "is

a rigorous and disciplined methodology that uses data and statistical analysis to

measure and improve a company's operational performance by identifying and elim-

inating 'defects' in manufacturing and service-related processes." [1SI03]. The term

"six sigma" is derived from six standard deviations—3.4 instances (defects) per mil-

lion occurrences—implying an extremely high quality standard. The Six Sigma

methodology defines three core steps-.

• Define customer requirements, deliverables, and project goals via well-

defined methods of customer communication.

762 PART FOUR MANAGING SOFTWARE PROJECTS

• Measure the existing process and its output to determine current quality

performance (collect defect metrics).

• Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma

suggests two additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the

causes of defects.

These core and additional steps are sometimes referred to as the DMAIC (define,

measure, analyze, improve, and control) method.

If an organization is developing a software process (rather than improving an ex-

isting process), the core steps are augmented as follows:

• Design the process to (l) avoid the root causes of defects and (2) to meet

customer requirements

• Verify that the process model will, in fact, avoid defects and meet customer

requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design,

and verify) method.

A comprehensive discussion of Six Sigma is best left to resources dedicated to the

subject. The interested reader should see [ISI03], [SNE03], and [PANOO],

2A.Z- Software Reliability

Software reliability, unlike many other quality factors, can be measured directed and

estimated using historical and developmental data. Software reliability is defined in

statistical terms as "the probability of failure-free operation of a computer program

in a specified environment for a specified time" [MUS87J. To illustrate, program X is

estimated to have a reliability of 0.96 over eight elapsed processing hours. In other

words, if program X were to be executed 1 00 times and require a total of eight hours

of elapsed processing time (execution time), it is likely to operate correctly (without

failure) 96 times.

“The unavoidable price of reliability is simplicity.”

C.A.R. Hoare

Whenever software reliability is discussed, a pivotal question arises: What is meant

by the termfailure? In the context of any discussion of software quality and reliability,

failure is nonconformance to software requirements. Yet, even within this definition,

there are gradations. Failures can be only annoying or catastrophic. One failure can

CHAPTER 26 QUALITY MANAGEMENT 763

0*

POINT
Software reliability

problems con almost

always oe traced to

defects in design or

implementation.

POINT
It is important to note

tbct MTBF and related

measures are based on

CPU time, not wall

dock to.

Some aspects of ovof

ability (not discussed

here) have nothing to

do with failure. For

example, schedule

downtime (for support

functions) causes the

software to be unovoiF

able.

be corrected within seconds while another requires weeks or even months to correct.

Complicating the issue even further, the correction of one failure may in fact result in

the introduction of other errors that ultimately result in other failures.

26.7. 1 Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hardware

reliability theory (e.g., [ALV64]) to the prediction of software reliability. Most hardware-

related reliability models are predicated on failure due to wear rather than failure due to

design defects. In hardware, failures due to physical wear (e.g., the effects of tempera-

ture, corrosion, shock) are more likely than a design-related failure. Unfortunately, the

opposite is true for software. In fact, all software failures can be traced to design or im-

plementation problems; wear (Chapter 1) does not enter into the picture.

There has been debate over the relationship between key concepts in hardware

reliability and their applicability to software (e.g., [LIT89], [ROO90]). Although an ir-

refutable link has yet to be established, it is worthwhile to consider a few simple con-

cepts that apply to both system elements.

if we consider a computer-based system, a simple measure of reliability is mean

time-between-failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair, 6

respectively.

Many researchers argue that MTBF is a far more useful measure than defects/KLOC

or defects/FP. Stated simply, an end-user is concerned with failures, not with the total

error count. Because each defect contained within a program does not have the same

failure rate, the total defect count provides little indication of the reliability ofa system.

In addition to a reliability measure, we must develop a measure of availability.

Software availability is the probability that a program is operating according to re-

quirements at a given point in time and is defined as

Availability = [MTTF/(MTTF + MTTR)] x 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availabil-

ity measure is somewhat more sensitive to MTTR, an indirect measure of the main-

tainability of software.

26.7.2 Software Safety

Software safety [LEV86] is a software quality assurance activity that focuses on the

identification and assessment ofpotential hazards that may affect software negatively

and cause an entire system to fail. If hazards can be identified early in the software

6 Although debugging (and related corrections) may be required as a consequence of failure, in many

cases the software will work properly after a restart with no other change.

764

WebRef
A worthwhile collection

of paper? oosoftwore

safely con he found ot

www.safeware-

eng.com/.

PART POUR MANAGING SOFTWARE PROJECTS

process, software design features can be specified that will either eliminate or control

potential hazards.

"I connot imagine any condition which would couse this ship to founder. Modern shipbuilding hos gone beyond that.'

E. I. Smith, captain of the Titanic

A modeling and analysis process is conducted as part of software safety. Initially,

hazards are identified and categorized by criticality and risk. For example, some of

the hazards associated with a computer-based cruise control for an automobile

might be:

• Causes uncontrolled acceleration that cannot be stopped.

• Does not respond to depression of brake pedal (by turning off).

• Does not engage when switch is activated.

• Slowly loses or gains speed.

Once these system-level hazards are identified, analysis techniques are used to as-

sign severity and probability of occurrence. 7 To be effective, software must be

analyzed in the context of the entire system. For example, a subtle user input error

(people are system components) may be magnified by a software fault to produce

control data that improperly positions a mechanical device. If a set of external envi-

ronmental conditions are met (and only ifthey are met)
,
the improper position of the

mechanical device will cause a disastrous failure. Analysis techniques such as fault

tree analysis [VES81], real-time logic [JAN86], or Petri net models [LEV87] can be
used to predict the chain of events that can cause hazards and the probability that

each of the events will occur to create the chain.

Once hazards are identified and analyzed, safety-related requirements can be

specified for the software. That is, the specification can contain a list of undesirable

events and the desired system responses to these events. The role of software in

managing undesirable events is then indicated.

Although software reliability and software safety are closely related to one an-

other, it is important to understand the subtle difference between them. Software re-

liability uses statistical analysis to determine the likelihood that a software failure

will occur. However, the occurrence of a failure does not necessarily result in a haz-

ard or mishap. Software safety examines the ways in which failures result in condi-

tions that'can lead to a mishap. That is, failures are not considered in a vacuum, but

are evaluated in the context of an entire computer-based system and its environ-

ment. Those readers with further interest should refer to Leveson's [LEV95] book on
the subject.

7 This approach is similar to the risk analysis methods described in Chapter 25. The primary differ-

ence is the emphasis on technology issues rather than project related topics.

CHAPTER 26 QUALITY MANAGEMENT 765

26.8 The ISO 9QQQ Quality Standards 8

POINT
ISO 9000 describes

what must be done to

be compliant, but it

does not describe how

it must be done.

WebRef
Extensive iinb to ISO

9000/9001 resources

can be found at

www.tantara.ob.

ca/info.htm.

A quality assurance system may be defined as the organizational structure, responsi-

bilities, procedures, processes, and resources for implementing quality management

[ANS87]. Quality assurance systems are created to help organizations ensure their

products and services satisfy customer expectations by meeting their specifications.

ISO 9000 describes a quality assurance system in generic terms that can be applied

to any business regardless of the products or services offered.

To become registered to one of the quality assurance system models contained in

ISO 9000, a company's quality system and operations are scrutinized by third-party au-

ditors for compliance to the standard and for effective operation. Upon successful reg-

istration, a company is issued a certificate from a registration body represented by the

auditors. Semiannual surveillance audits ensure continued compliance to the standard.

ISO 9001:2000 is the quality assurance standard that applies to software engi-

neering. The standard contains 20 requirements that must be present for an effec-

tive quality assurance system. Because the ISO 9001:2000 standard is applicable to

all engineering disciplines, a special set of ISO guidelines (ISO 9000-3) have been de-

veloped to help interpret the standard for use in the software process.

The requirements delineated by ISO 9001:2000 address topics such as manage-

ment responsibility, quality system, contract review, design control, document and

data control, product identification and traceability, process control, inspection and

testing, corrective and preventive action, control of quality records, internal quality

audits, training, servicing, and statistical techniques. For a software organization to

become registered to ISO 9001:2000, it must establish policies and procedures to ad-

dress each of the requirements just noted (and others) and then be able to demon-

strate that these policies and procedures are being followed. For further information

on ISO 9001, the interested reader should see [HOY02], [GAA01], or [CIA01],

The ISO 9001 :2000 Standard

Ttie following outline defines the basic elements

of the ISO 9001 :2000 standard. Comprehensive

information on the standard can be obtained from the

International Organization for Standardization (www.iso.ch)

and other Internet sources (e.g., www.praxiom.com).

Establish the elements of a quality management system.

Develop, implement, and improve the system.

Define a policy that emphasizes the importance of the

system.

Document the quality system.

Describe the process.

Produce an operational manual.

Develop methods for controlling (updating) documents.

Establish methods for recordkeeping.

Support quality control and assurance.

8 This section, written by Michael Stovsky, has been adapted from "Fundamentals of ISO 9000," a

workbook developed for Essential Software Engineering, a video curriculum developed by R. S.

Pressman & Associates, Inc. Reprinted with permission.

766 PART FOUR MANAGING SOFTWARE PROJECTS

r
Promote the importance of quality among all stakeholders.

Focus on customer satisfaction.

Define a quality plan that addresses objectives,

responsibilities, and authority.

Define communication mechanisms among stakeholders.

Establish review mechanisms for the quality management

system.

Identify review methods and feedback mechanisms.

Define follow-up procedures.

Identify quality resources including personnel, training,

infrastructure elements.

A
Establish control mechanisms.

For planning.

For customer requirements.

For technical activities (e.g., analysis, design, testing).

For project monitoring and management.

Define methods for remediation.

Assess quality data and metrics.

Define approach for continuous process and quality

improvement.

J

26.9 The SQA Plan

The SQA Plan provides a road map for instituting software quality assurance. De-

veloped by the SQA group (or the software team if a SQA group does not exist), the

plan serves as a template for SQA activities that are instituted for each software

project.

A standard for SQA plans has been published by the IEEE [IEE94]. The standard

recommends a structure that identifies (1) the purpose and scope of the plan; (2) a

description of all software engineering work products (e.g., models, documents,

source code) that fall within the purview of SQA; (3) all applicable standards and

practices that are applied during the software process; (4) SQA actions and tasks (in-

cluding reviews and audits) and their placement throughout the software process;

(5) the tools and methods that support SQA actions and tasks; (6) software configu-

ration management procedures (Chapter 27) for managing change; (7) methods for

assembling, safeguarding, and maintaining all SQA-related records; and (8) organi-

zational roles and responsibilities relative to product quality.

Software Quality Management

Objective: The objective of SQA tools is to

assist a project team in assessing and

improving the quality of software work product.

Mechanics: Tools mechanics vary. In general, the intent

is to assess the quality of a specific work product. Note: a

V

Software Tools

wide array of software testing tools (see Chapters 1 3 and

14) are often included within the SQA tools category.

Representative Tools9

ARM, developed by NASA
(satc.gsfc.nasa.gov/tools/index.html), provides

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category,

in most cases, tool names are trademarked by their respective developers.

CHAPTER 26 QUALITY MANAGEMENT

measures that can be used to assess tbe quality of a

software requirements document.

QPR ProcessGuide and Scorecard, developed by QPR

Software (www.qpronline.com), provides support for

Six Sigma and other quality management approaches.

Quality Tools Cookbook, developed by Systma and

Manley (www.sytsma.com/tqmtools/tqmtoolmenu.

html), provides useful descriptions of classic quality

management tools such os control charts, scatter

diagrams, affinity diagrams, and matrix diagrams.

767

A
Quality Tools and Templates

,

developed by iSixSigma

(http://www.isixsigma.com/tt/), describe a wide

array of useful tools and methods for quality

management.

TQM Tools, developed by Bain & Company

(www.bain.com), provide useful descriptions of a

variety of management tools used for TQM and related

quality management methods.

J

26.10 Summary

Software quality management is an umbrella activity—incorporating both quality

control and quality assurance—that is applied at each step in the software process.

SQA encompasses procedures for the effective application of methods and tools,

formal technical reviews, testing strategies and techniques, procedures for change

control, procedures for assuring compliance to standards, and measurement and re-

porting mechanisms.

SQA is complicated by the complex nature of software quality—an attribute of

computer programs that is defined as "conformance to explicitly and implicitly spec-

ified requirements." But when considered more generally, software quality encom-

passes many different product and process factors and related metrics.

Software reviews are one of the most important quality control activities. Re-

views serve as filters throughout ail software engineering activities, removing er-

rors whjle they are relatively inexpensive to find and correct. The formal technical

review is a stylized meeting that has been shown to be extremely effective in un-

covering errors.

To properly conduct software quality assurance, data about the software engi-

neering process should be collected, evaluated, and disseminated. Statistical SQA

helps to improve the quality of the product and the software process itself. Software

reliability models extend measurements, enabling collected defect data to be ex-

trapolated into projected failure rates and reliability predictions.

In summary, we recall the words of Dunn and Ullman [DUN82]: "Software quality

assurance is the mapping of the managerial precepts and design disciplines of qual-

ity assurance onto the applicable managerial and technological space of software

engineering." The ability to ensure quality is the measure of a mature engineering

discipline. When the mapping is successfully accomplished, mature software engi-

neering is the result.

768 PART FOUR MANAGING SOFTWARE PROJECTS

References

[ALV64] Alvin, W. H., von (ed.), Reliability Engineering, Prentice-Hall, 1964.
[ANS87] ANSI/ASQC A3- 1987, Quality Systems Terminology, 1987.
(ART921 Arthur, L. J., Improving Software Quality: An Insider's Guide to TQM, Wiley, 1992.
[ART97] Arthur, L. J., "Quantum Improvements in Software System Quality, CACM, vol. 40, no. 6

June 1997, pp. 47-52.

(BOE81J Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.
[CIA01] cianfrani, C. A.,et al.JSO 9001:2000 Explained, 2nded., American Society for Quality, 2001.
[CR079] Crosby, P., Quality is Free, McGraw-Hill, 1979.

[DEM86] Deming, W. E„ Out ofthe Crisis, MIT Press, 1 986.
[DEM99] DeMarco, T„ "Management Can Make Quality (!m)possible," Cutter IT Summit Boston

April 1999.

[DIJ76] Dijkstra, E ., A Discipline ofProgramming, Prentice-Hall, 1976.
[DUN82] Dunn. R., and R. Ullman, QualityAssurancefor Computer Software, McGraw-Hill, 1982.
[FRE90] Freedman, D. p., and G. M. Weinberg, Handbook of Walkthroughs, Inspections and Tech-

nical Reviews, 3rd ed., Dorset House, 1990.

[GAA01] Gaal, A., ISO 9001 :2000for Small Business, Saint Lucie Press, 2001.
[GIL93) Gilb, T., and D. Graham, Software Inspections, Addison-Wesiey, 1993.
(GLA98) Glass, R„ "Defining Quality Intuitively," IEEE Software, May 1998, pp. 103- 104, 107.
[GOH02] Goh, T„ V. Kuralmani, and M. Xie, Statistical Models and Control Chartsfor High Quality

Processes, Kluwer Academic Publishers, 2002.

[HOY02] Hoyle, D„ ISO 9000 Quality Systems Development Handbook: A Systems Engineering Ap-
proach, 4th ed., Butterworth-Heinemann, 2002,

[1BM81] "Implementing Software Inspections," course notes, IBM Systems Sciences institute,
IBM Corporation, 1981.

(IEE94] Software Engineering Standards, 1994, IEEE Computer Society, 1994.
[ISI03J iSixSigma, LLC, "New to Six Sigma- A Guide for Both Novice and Experienced Quality

Practitioners," 2003, available at http://www.isixsigma.com/library/content/six-sigma-
newbie.asp.

(JAN86] Jahanian, F., and A. K. Mok, “Safety Analysis of Timing Properties of Real-Time Sys-
tems." IEEE Vans. Software Engineering, vol. SE-12, no. 9, September 1 986, pp. 890-904.

[JON861 Jones, T. C., Programming Productivity, McGraw-Hill, 1986.
[KAN95] Kan, S. H., Metrics and Models in Software Quality Engineering, Addison-Wesiey, 1995.
1LEV86) Leveson, N. G„ "Software Safety: Why, What, and How," ACM Computing Surveys,

vol. 18, no. 2, June 1986, pp. 125-163.

(LEV87] Leveson, N. G„ and J. L. Stolzy, "Safety Analysis Using Petri Nets," IEEE Trans. Software
Engineering, vol. SE-13, no. 3, March 1987, pp, 386-397.

[LEV95J Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesiey, 1995.
[UN79] Linger, R., H. Mills, and B. Witt, Structured Programming, Addison-Wesiey, 1979.
[LIT89] Littlewood, B., "Forecasting Software Reliability," in Software Reliability. Modeling and

Identification, (S. Bittanti, ed,), Springer-Verlag, 1989, pp. 141-209.
[MUS87] Musa, J. D., A. Iannino, and K. Okumoto, Engineering and Managing Software with Re-

liability Measures, McGraw-Hill, 1987.

[PAN00| Pande, P„ et al.. The Six Sigma Way, McGraw-Hill, 2000.
[POR95] Porter, A., H. Siy, C. A. Toman, and L. G. Votta, "An Experiment to Assess the Cost-

Benefits of Code inspections in Large Scale Software Development," Proc. ThirdACM SIG-
SOFT Symposium on the Foundations ofSoftware Engineering, Washington, DC., October
1995, ACM Press, pp. 92-103.

[ROO90] Rook, J., Software Reliability Handbook, Elsevier, 1990.

[SCH98J Schulmeyer, G. C., andj. 1. McManus (eds), Handbook ofSoftware QualityAssurance, 3rd
ed., Prentice-Hall, 1998.

[SOM01] Somerville, I., Software Engineering, 6th ed., Addison-Wesiey, 2001
[SNE031 Snee, R., and R. Hoerl, Leading Sbt Sigma, Prentice-Hall, 2003.
[THE01] Thelin, T„ H. Petersson, and C. Wohlin, "Sample Driven Inspections," Proceedings Work-

shop on Inspection in Software Engineering (WISE'01), Paris, France, July 200 1
,
pp. 8 1 -9 1 ,

can

CHAPTER 26 QUALITY MANAGEMENT 769

be downloaded from http://www.cas.mcmaster.ca/ wise/wiseOl/ThelinPetersson-

Wohlin.pdf.

[VES81] Veseley, W. E., et al„ Fault Tree Handbook, U.S. Nuclear Regulatory Commission,
NUREG-0492, January 1981.

Problems and Points to Ponder
26.

1

. Some people argue that an FTR should assess programming style as well as correctness.

Is this a good idea? Why?

26 .2 . is it possible to assess the quality of software if the customer keeps changing what it is

supposed to do?

26 .3 . Acquire a copy of ISO 9001 :2000 and ISO 9000-3. Prepare a presentation that discusses

three ISO 9001 requirements and how they apply in a software context.

26 .4 . Early in this chapter we noted that "variation control is the heart of quality control." Since

every program that is created is different from every other program, what are the variations that

we look for and how do we control them?

26 .5 . Can a program be correct and still not exhibit good quality? Explain.

26 .6 . Why is there often tension between a software engineering group and an independent
software quality assurance group? Is this healthy?

26 . 7 . You have been given the responsibility' for improving the quality of software across your
organization. What is the first thing that you should do? What's next?

26 .8 . The MTBF concept for software is open to criticism. Can you think of a few reasons why?

26 .9 . A formal technical review is effective only ifeveryone has prepared in advance. How do you
recognize a review participant who has not prepared7 What do you do ifyou're the review leader?

26 . 10 . Quality and reliability are related concepts but are fundamentally different in a number
of ways. Discuss them.

26. 1

1

. Consider two safety critical systems that are controlled by computers. List at least three

hazards for each that can be directly linked to software failures.

26 . 12 . Research the literature on software reliability, and write a paper that describes one
software reliability model. Be sure to provide an example.

26 . 13 . Review the table presented in Figure 26.5 and select four vital few causes of serious and
moderate errors. Suggest corrective actions using information presented in other chapters.

26 . 14 . Besides counting errors and defects, are there other countable characteristics of soft-

ware that imply quality? What are they, and can they be measured directly?

26 . 1

5

. Can a program be correct and still not be reliable? Explain

-..Further Readings and Information Sources

Books by Moriguchi {Software Excellence: A Total Quality Management Guide, Productivity Press,

1 997) and Horch (Practical Guide to Software Quality Management, Artech Publishing, 1 996) are
excellent management-level presentations on the benefits of formal quality assurance pro-
grams for computer software. Books by Deming [DEM86], Juran ljuran on Quality by Design, Free
Press, 1 992), and Crosby ([CR079] and Quality Is Still Free, McGraw-Hill, 1 995) do not focus on
software, but are must reading for senior managers with software development responsibility.

Gluckman and Roome [Everyday Heroes of the Quality Movement, Dorset House, 1993) human-
izes quality issues by telling the story of the players in the quality process Kan (Metrics and Mod
els in Software Quality Engineering, Addison-Wesley, 1995) presents a quantitative view of
software quality.

770 PART FOUR MANAGING SOFTWARE PROJECTS

The ISO 9001:2000 quality standard is discussed by Cianfani and his colleagues (/SO

9001:2000 Explained, second edition, American Society for Quality, 2001) and Gaal (/SO

9001:2000 for Small Business . Implementing Process-Approach Quality Management, Si. Lucie

Press. 2001). Tingley (Comparing ISO 9000, Malcolm Baldrige, and the SEI CMM for Software,

Prentice-Hall, 1 996) provides useful guidance for organizations that are striving to improve their

quality management processes.

Books by George (Lean Six Sigma, McGraw-Hill, 2002), Pande and his colleagues (The Six

Sigma Way Fieldbook, McGraw-Hill, 2001), and Pyzdek (The Six Sigma Handbook, McGraw-Hill,

2000) describe Six Sigma, a statistical quality management technique that leads to products that

have very low defect rates

Radice (High Quality, Low Cost Software Inspections. Paradoxicon Publishers, 2002), Wiegers

(peer Reviews in Software: A Practical Guide, Addison-Wesley, 2001), Gilb and Graham (Software In-

spection, Addison-Wesley. 1 993) and Freedman and Weinberg (Handbook ofWalkthroughs. Inspec-

tions and Technical Reviews, Dorset House, 1990) provide worthwhile guidelines for conducting

effective fonnal technical reviews.

Musa {Software Reliability Engineering: More Reliable Software, Faster Development and Test-

ing, McGraw-Hill, 1998) has written a practical guide to applied software reliability techniques.

Anthologies of important papers on software reliability have been edited by Kapur et a!. (Con

tributions to Hardware and Software Reliability Modelling, World Scientific Publishing Co., 1 999),

Gritzalis (Reliability;
Quality and Safety ofSoftware-intensive Systems, Kluwer Academic Publish-

ers, 1997), and Lyu (Handbook ofSoftware Reliability Engineering, McGraw-Hill, 1996).

Hermann (Software Safely and Reliability, Wiley-IEEE Press, 2000), Storey (Safety-Critical Com-

puter Systems. Addison-Wesley, 1996) and Leveson [LEV95] continue to be the most compre-

hensive discussions of software safety published to date, in addition, van der Meulen (Definitions

for Hardware and Software Safety Engineers, Springer-Verlag, 2000) offers a complete com-

pendium of important concepts and terms for reliability and saiety. Gartner (Testing Safety-

Related Software, Springer-Verlag, 1999) provides specialized guidance for testing safety critical

systems. Friedman and Voas (Software Assessment: Reliability Safety and Testability, Wiley, 1995)

provide useful models for assessing reliability and safety

A wide variety of information sources on software quality management is available on the

Internet An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

Key
Concepts
audits

baselines

change

change control

configuration objects

content management

CVS

identification

repository

SCIs

SCM process

standards

status reporting

version control

WebApp CM

CHAPTER

Change
Management

C hange is inevitable when computer software is built. And change in-

creases the level of confusion among software engineers who are work-

ing on a project. Confusion arises when changes are not analyzed before

they are made, recorded before they are implemented, reported to those with a

need to know, or controlled in a manner that will improve quality and reduce er-

ror. Babich [BAB86I discusses this when he states:

The art ofcoordinating software development to minimize . . . confusion is called con-

figuration management Configuration management is the art of identifying, organiz-

ing, and controlling modifications to the software being built by a programming team.

The goal is to maximize productivity by minimizing mistakes.

Change management, more commonly called software configuration manage
mcnt (SCM or CM), is an umbrella activity that is applied throughout the software

process. Because change can occur at any time, SCM activities are developed to

(1) identify change, (2) control change, (3) ensure that change is being properly

implemented, and (4) report changes to others who may have an interest.

It is important to make a clear distinction between software support and soft-

ware configuration management. Support is a set of software engineering activi-

ties that occur after software has been delivered to the customer and put into

operation. Software configuration management is a set of tracking and control

activities that are initiated when a software engineering project begins and ter-

minate only when the software is taken out of operation.

What is it? When you build com-
puter software, change happens.

And because ithappens, you need to

manage it effectively. Change man-
agement, also called software configuration

management (SCM), is a set of activities de-

signed to manage change by identifying the

work products that are likely to change, estab-

lishing relationships among them, defining

mechanisms for managing different versions of

these work products, controlling the changes im-

posed, and auditing and reporting on the

changes made.

Who does it? Everyone involved in the software

process is involved with change management to

some extent, but specialized support positions are

sometimes created to manage the SCM process.

Why is it important? If you don't control

change, it controls you. And that's never good. It's

very easy for a stream of uncontrolled changes to

turn a well-run software project into chaos. For

that reason, change management is an essential

part of good project management and solid soft-

ware engineering practice.

What are the steps? Because many work prod-

ucts are produced when software is built, each

771

772 PART FOUR MANAGING SOFTWARE PROJECTS

must be uniquely identified- Once this is accom-

plished, mechanisms for version and change con-

trol can be established. To ensure that quality is

maintained as changes are made, the process is

audited; and to ensure that those with a need to

know are informed about changes, reporting is

conducted.

What is the work product? A Software Con-

figuration Management Plan defines the project

strategy for change management. In addition,

when formal SCM is invoked, the change control

process produces software change requests, re-

ports, and engineering change orders.

How do I ensure that I've done it right?

When every work product can be accounted for,

traced, and controlled; when every change can be

tracked and analyzed; when everyone who needs

to know about a change has been informed

—

you've done it right.

A primary goal ofsoftware engineering is to improve the ease with which changes

can be accommodated and reduce the amount of effort expended when changes

must be made, in this chapter, we discuss the specific actions that enable us to man-

age change.

27.1 Software Configuration Management

The output of the software process is information that may be divided into three

broad categories: (I) computer programs (both source level and executable forms);

(2) work products that describe the computer programs (targeted at both technical

practitioners and users), and (3) data (contained within the program or external to

it). The items that comprise all information produced as part of the software process

are collectively called a software configuration.

If each configuration item simply led to other items, little confusion would result.

Unfortunately, another variable enters the process—change. Change may occur at any

time, for any reason. In fact, the First Law of System Engineering [BER80] states: "No

matter where you are in the system life cycle, the system will change, and the desire

to change it will persist throughout the life cycle.”

"There is nothing permanent except change.’

Heraditus, 500 B.c

What is the origin of these changes? The answer to this question is as varied as

the changes themselves. However, there are four fundamental sources of change:

• New business or market conditions dictate changes in product requirements

or business rules.

• New customer needs demand modification of data produced by information

systems, functionality delivered by products, or services delivered by a

computer-based system.

• Reorganization or business growth/downsizing causes changes in project

priorities or software engineering team structure.

^ What is the

<5? origin of

changes that are

requested for

software?

f Whot are

* the goals of

and the activities

performed by each

of the constituen-

cies involved in

change manage-

ment?

CHAPTER 27 CHANGE MANAGEMENT 773

• Budgetary or scheduling constraints cause a redefinition of the system or

product.

Software configuration management is a set of activities that have been devel-

oped to manage change throughout the life cycle of computer software. SCM can be

viewed as a software quality assurance activity that is applied throughout the soft-

ware process. In the sections that follow, we examine major SCM tasks and impor-

tant concepts that help us to manage change.

27.1.1 A SCM Scenario 1

A typical CM operational scenario involves a project manager who is in charge of a

software group, a configuration manager who is in charge of the CM procedures and

policies, the software engineers who are responsible for developing and maintain-

ing the software product, and the customer who uses the product. In the scenario,

assume that the product is a small one involving about 15,000 lines of code being de-

veloped by a team of six people. (Note that other scenarios of smaller or larger teams
are possible but, in essence, there are generic issues that each of these projects face

concerning CM.)

At the operational level, the scenario involves various roles and tasks. For the

project manager, the goal is to ensure that the product is developed within a certain

time frame. Hence, the manager monitors the progress of development and recog-

nizes and reacts to problems. This is done by generating and analyzing reports about

the status of the software system and by performing reviews on the system.

The goals of the configuration manager are to ensure that procedures and poli-

cies for creating, changing, and testing of code are followed, as well as to make in-

formation about the project accessible. To implement techniques for maintaining

control over code changes, this manager introduces mechanisms for making official

requests for changes, for evaluating them (via a Change Control Board that is re-

sponsible for approving changes to the software system), and for authorizing

changes. The manager creates and disseminates task lists for the engineers and ba-

sically creates the project context. Also, the manager collects statistics about com-
ponents in the software system, such as information determining which components
in the system are problematic.

For the software engineers, the goal is to work effectively. This means engineers

do not unnecessarily interfere with each other in the creation and testing of code
and in the production of supporting documents. But, at the same time, they try to

communicate and coordinate efficiently. Specifically, engineers use tools that help

build a consistent software product. They communicate and coordinate by notifying

1 This section is extracted from [DAR011. Special permission to reproduce "Spectrum of Functional-

ity m CM Systems by Susan Dan JDAROiJ, © 2001 by Camegie Mellon University is granted by the

Software Engineering Institute.

774 PART FOUR MANAGING SOFTWARE PROJECTS

POINT
There must be a

mechanism to ensure

that simultaneous

changes to the same

component ore

property tracked,

monaged, and

executed.

one another about tasks required and tasks completed. Changes are propagated

across each other's work by merging files. Mechanisms exist to ensure that, for

components which undergo simultaneous changes, there is some way of resolving

conflicts and merging changes. A history is kept of the evolution of all components

of the system along with a log with reasons for changes and a record of what actu-

ally changed. The engineers have their own workspace for creating, changing, test-

ing, and integrating code. At a certain point, the code is made into a baseline from

which further development continues and from which variants for other target ma-

chines are made.

The customer uses the product. Since the product is under CM control, the cus-

tomer follows formal procedures for requesting changes and for indicating bugs in

the product.

Ideally, a CM system used in this scenario should support all these roles and tasks;

that is, the roles determine the functionality required of a CM system. The project

manager sees CM as an auditing mechanism; the configuration manager sees it as a

controlling, tracking, and policy making mechanism; the software engineer sees it

as a changing, building, and access control mechanism; and the customer sees it as

a quality assurance mechanism.

27.1.2 Elements of a Configuration Management System

In her comprehensive white-paper on software configuration management, Susan

Dart [DAR01
j
identifies four important elements that should exist when a configura-

tion management system is developed:

• Component elements—

a

set of tools coupled within a file management system

(e.g., a database) that enable access to and management of each software

configuration item.

• Process elements—

a

collection of procedures and tasks that define an

effective approach to change management (and related activities) for all

constituencies involved in the management, engineering, and use of

computer software.

• Construction elements—

a

set of tools that automate the construction of

software by ensuring that the proper set of validated components (i.e., the

correct version) has been assembled.

Human elements—to implement effective SCM, the software team uses a set

of tools and nrocess features (encompassing other CM elements).

These elements (to be discussed in more detail in later sections) are not mutually ex-

clusive. For example, component elements work in conjunction with construction el-

ements as the software process evolves. Process elements guide many human

activities that are related to SCM and might therefore be considered human elements

as well.

CHAPTER 27 CHANGE MANAGEMENT 775

Most software changes

are justified, so

there's no point in

complaining about

them. Bother, be

certain that you hove

mechanisms in place

to handle them.

POINT
A software engineering

work product becomes

o bcseline only oftei it

has been reviewed and

approved.

Be sure that the

project database is

maintained in a

centralized, controlled

location.

27.1.3 Baselines

Change is a fact of life in software development. Customers want to modify require-

ments. Developers want to modify the technical approach. Managers want to mod-
ify the project strategy. Why all this modification? The answer is really quite simple.

As time passes, all constituencies know more (about what they need, which ap-

proach would be best, how to get it done and still make money). This additional

knowledge is the driving force behind most changes and leads to a statement of fact

that is difficult for many software engineering practitioners to accept: Most changes

are justified!

A baseline is a software configuration management concept that helps us to con-

trol change without seriously impeding justifiable change. The IEEE (IEEE Std. No.

610.12-1990) defines a baseline as:

A specification or product that has been formally reviewed and agreed upon, that there-

after serves as the basis for further development, and that can be changed only through

forma' change control procedures.

Before a software configuration item becomes a baseline, change may be made
quickly and informally. However, once a baseline is established, we figuratively pass

through a swinging one-way door. Changes can be made, but a specific, formal pro-

cedure must be applied to evaluate and verify each change.

In the context of software engineering, a baseline is a milestone in the develop-

ment of software. A baseline is marked by the delivery of one or more software con-

figuration items that have been approved as a consequence of a formal technical

review (Chapter 26). For example, the elements of a design model have been docu-

mented and reviewed. Errors are found and corrected. Once all parts of the model
have been reviewed, corrected, and then approved, the design model becomes a

baseline. Further changes to the program architecture (documented in the design

model) can be made only after each has been evaluated and approved. Although

baselines can be defined at any level of detail, the most common software baselines

are shown in Figure 27.1

.

The progression of events that lead to a baseline is also illustrated in Figure 27.1.

Software engineering tasks produce one or more SCIs. After SCls are reviewed and
approved, they are placed in a project database (also called a project library or soft-

ware repository and discussed in Section 27.2). When a member of a software team
wan- to make a modification to a baselined SCI, it is copied from the project data-

base into the engineer's private workspace. However, this extracted SCI can be mod-
ified only if SCM controls (discussed later in this chapter) are followed. The arrows

in Figure 27.1 illustrate the modification path for a baselined SCI.

27.1.4 Software Configuration Items

A software configuration item is information that is created as part of the software en-

gineering process. In the extreme, a SCI could be considered to be a single section of

776 PART FOUR MANAGING SOFTWARE PROJECTS

Baselined SCIs

and the

project

database

Modified

a large specification or one test case in a large suite of tests. More realistically, a SCI is

a document, a entire suite of test cases, or a named program component (e.g., a C+ +

function or a Java applet).

In addition to the SCIs that are derived from software work products, many soft-

ware engineering organizations also place software tools under configuration control.

That is, specific versions of editors, compilers, browsers, and other automated tools

are "frozen" as part of the software configuration. Because these tools were used to

produce documentation, source code, and data, they must be available when changes

to the software configuration are to be made. Although problems are rare, it is possi-

ble that a new version of a tool (e.g., a compiler) might produce different results than

the original version. For this reason, tools, like the software that they help to produce,

can be baselined as part of a comprehensive configuration management process.

In reality, SCIs are organized to form configuration objects that may be cataloged in

the project database with a single name. A configuration object has a name, attributes,

and is "connected" to other objects by relationships. Referring to Figure 27.2, the con-

figuration objects, DesignSpecification, DataModel, ComponentN, SourceCode

and TestSpecification are each defined separately. However, each of the objects is re-

lated to the others as shown by the arrows. A curved arrow indicates a compositional

relation. That is, DataModel and ComponentN are part of the object DesignSpeci-

fication. A double-headed straight arrow indicates an interrelationship. If a change

were made to the SourceCode object, the interrelationships enable a software engi-

neer to determine what other objects (and SCIs) might be affected.
2

2 These relationships are defined within the database. The structure of the database (repository) is

discussed in greater detail in Section 27.2.

CHAPTER 27 CHANGE MANAGEMENT 777

Configuration

objects

27.2 The SCM Repository

In the early days of software engineering, software configuration items were main-

tained as paper documents (or punched computer cards!), placed in file folders or

three-ring binders, and stored in metal cabinets. This approach was problematic for

many reasons: (1) finding a configuration item when it was needed was often diffi-

cult; (2) determining which items were changed, when and by whom was often chal-

lenging; (3) constructing a new version of an existing program was time consuming

and error-prone; (4) describing detailed or complex relationships between configu-

ration items was virtually impossible.

Today, SCIs are maintained in a project database or repository. Webster's Dic-

tionary defines the word repository as "any thing or person thought of as a center of

accumulation or storage." During the early history of software engineering, the

repository w.as indeed a person—the programmer who had to remember the loca-

tion of all information relevant to a software project, who had to recall information

that was never written down, and reconstruct information that had been lost. Sadly,

using a person as "the center for accumulation and storage" (although it conforms

to Webster's definition) does not work very well. Today, the repository is a "thing"—

a database that acts as the center for both accumulation and storage of software en-

gineering information. The role of the person (the software engineer) is to interact

with the repository using tools that are integrated with it.

27.2.1 The Role of the Repository

The SCM repository is the set ofmechanisms and data structures that allow a software

team to manage change in an effective manner. It provides the obvious functions of a

778 PART FOUR MANAGING SOFTWARE PROJECTS

9 What

* functions are

implemented by a

SCM repository?

WebRef
Examples of

commefcioily ovoilcbte

repositories am be

obtained at

www.software.hp

•com/products/

SCMGR or

otn.orode.com/

documentation/

repository.html.

database management system, but in addition, the repository performs or precipitates

the following functions [FOR89]:

• Data integrity includes functions to validate entries to the repository, ensure

consistency among related objects, and automatically perform "cascading”

modifications when a change to one object demands some change to objects

related to it.

• Information sharing provides a mechanism for sharing information among
multiple developers and between multiple tools, manages and controls

multiuser access to data, and locks or unlocks objects so that changes are

not inadvertently overlaid on one another.

• Tool integration establishes a data model that can be accessed by many
software engineering tools, controls access to the data, and performs appro-

priate configuration management functions.

• Data integration provides database functions that allow various SCM tasks to

be performed on one or more SCis.

o Methodology enforcement defines an entity-relationship model stored in the

repository that implies a specific process model for software engineering; at a

minimum, the relationships and objects define a set of steps that must be
conducted to build the contents of the repository.

• Document standardization is the definition of objects in the database that

leads directly to a standard approach for the creation of software engineering

documents.

To achieve these functions, the repository is defined in terms of a meta-model.
The meta-model determines how information is stored in the repository, how data

can be accessed by tools and viewed by software engineers, how well data security

and integrity can be maintained, and how easily the existing model can be extended

to accommodate new needs. For further information, the interested reader should

see [SHA95] and [GRI95],

27.2.2 General Features and Content

The features and content of the repository are best understood by looking at it from

two perspectives: what is to be stored in the repository and what specific sendees are

provided by the repository. A detailed breakdown of types of representations, docu-

ments, and work products that are stored in the repository is presented in Figure 27.3.

A robust repository provides two different classes of services: (1) the same types

of services that might be expected from any sophisticated database management
system and (2) services that are specific to the software engineering environment.

A repositoiy that serves a software engineering team should (i) integrate with or

directly support process management functions; (2) support specific rules that gov-

ern the SCM function and the data maintained within the repository; (3) provide an

CHAPTER 27 CHANGE MANAGEMENT 779

Content of the

repository Business rules

Business functions

Organization structure

Information architecture

Use<ases
Analysis model

Scenario-based diagrams

Flow-oriented diagrams

Class-based diagrams

Behavioral diagrams

Design model

Source code
Object code
System build instructions

Test cases

Test scripts

Test results

Quality metrics

Project estimates

Project schedule

SCM requirements

Change requests

Change reports

SQA requirements

Project reports/oudit reports

Project metrics

Project plan

SCM/SQA plan

System spec

Requirements spec

Design document
Test plan and procedure

Support documents

User monual

interface to other software engineering tools; and (4) accommodate storage of so-

phisticated data objects (e.g., text, graphics, video, audio).

27.2.3 SCM Features

POINT
The repository must be

capable of maintaining

SCIs related to mony

different versions of

the software. More

important, it must

provide the

mechanisms for

assembling these SCIs

into o version-specific

configuration.

To support SCM, the repository must have a tool set that provides support for the fol-

lowing features;

Versioning. As a project progresses, many versions (section 27.3.2) of individual

work products will be created. The repository must be able to save all of these ver-

sions to enable effective management of product releases and to permit developers

to go back to previous versions during testing and debugging.

The repository must be able to control a wide variety of object types, including

text, graphics, bit maps, complex documents, and unique objects like screen and re-

port definitions, object files, test data, and results. A mature repository tracks ver-

sions of objects with arbitrary levels of granularity; for example, a single data

definition or a cluster of modules can be tracked.

Dependency tracking and change management. The repository manages a

wide variety of relationships among the configuration objects stored in it. These in-

clude relationships between enterprise entities and processes, among the parts of an

application design, between design components and the enterprise information ar-

chitecture, between design elements and other work products, and so on. Some of

780 PART FOUR MANAGING SOFTWARE PROJECTS

9 What

* questions

should the SCM

process be

designed to

answer?

these relationships are merely associations, and some are dependencies or manda-
tory relationships.

The ability to keep track of all of these relationships is crucial to the integrity of

the information stored in the repository and to the generation of work products

based on it, and it is one of the most important contributions of the repository con-
cept to the improvement of the software development process. For example, ifa UML
class diagram is modified, the repository can detect whether related classes, inter-

face definitions, and code components also require modification and can bring af-

fected SCIs to the developer's attention.

Requirements tracing. This special function provides the ability to track all the

design and construction components and deliverables that result from a specific re-

quirements specification (forward tracing). In addition, it provides the ability to iden-

tity which requirement generated any given work product (backward tracing).

Configuration management. A configuration management facility keeps track ofa

series ofconfigurations representing specific project milestones or production releases.

Audit trails. An audit trail establishes additional information about when, why,

and by whom changes are made. Information about the source of changes can be

entered as attributes of specific objects in the repository.

The SCM Ppornss

The software configuration management process defines a series of tasks that have
four primary objectives: (l) to identify all items that collectively define the software

configuration; (2) to manage changes to one or more of these items; (3) to facilitate

the construction of different versions of an application; and (4) to ensure that soft-

ware quality is maintained as the configuration evolves over time.

A process that achieves these objectives need not be bureaucratic and ponderous,

but it must be characterized in a manner that enables a software team to develop an-

swers to a set of complex questions:

• How does a- software team identify the discrete elements of a software

configuration?

• How does an organization manage the many existing versions of a program
(and its documentation) in a manner that will enable change to be accommo-
dated efficiently?

• How does an organization control changes before and after software is

released to a customer?

• Who has responsibility for approving and ranking changes?

• How can we ensure that changes have been made properly?

• What mechanism is used to appraise others of changes that are made?

CHAPTER 27 CHANGE MANAGEMENT 781

Layers of the

SCM process

Software

Vm.n

These questions lead us to the definition of five SCM tasks—identification, version

control, change control, configuration auditing, and reporting—illustrated in

Figure 27.4.

Referring to the figure, SCM tasks can be viewed as concentric layers. SCls flow

outward through these layers throughout their useful life, ultimately becoming part

of the software configuration of one or more versions of an application or system.

As an SCI moves through a layer, the actions implied by each SCM process layer may

or may not be applicable. For example, when a new SCI is created, it must be iden-

tified. However, if no changes are requested for the SCI, the change control layer

does not apply. The SCI is assigned to a specific version of the software (version con-

trol mechanisms come into play). A record of the SCI (its name, creation date, ver-

sion designation, etc.) is maintained for configuration auditing purposes and

reported to those with a need to know. In the sections that follow, we examine each

of these SCM process layers in more detail.

27.3. 1 Identification of Objects in the Software Configuration

To control and manage software configuration items, each should be separately

named and then organized using an object-oriented approach. Two types of ob-

jects can be identified [CH089]: basic objects and aggregate objects. 3 A basic ob-

ject is a unit of information that has been created by a software engineer during

analysis, design, code, or test. For example, a basic object might be a section of a

requirements specification, part of a design model, source code for a component,

3 The concept of an aggregate object [GUS89] has been proposed as a mechanism for representing

a complete version of a software configuration.

782 PART FOUR MANAGING SOFTV/ARE PROJECTS

K
POINT

The interrelationships

established for

configuration objects

ollow a software

engineer to assess the

impact of change.

fven if the project

database provides the

ability to establish these

relationships, they ore

tim&consumng to

establish and difficult to

keep up-todats.

Although very useful for

impact analysis, they

are not essential for

overall change

mongogement.

r
POINT

A 'moke' facility

enobles a software

engineer to extract all

relevant configuration

objects and construct a

specific version of the

software.

or a suite of test cases that are used to exercise the code. An aggregate object is a

collection of basic objects and other aggregate objects. Referring to Figure 27.2,

DesignSpecification is an aggregate object. Conceptually, it can be viewed as a

named (identified) list of pointers that specify basic objects such as DataModel
and ComponentN.

Each object has a set of distinct features that identify it uniquely: a name, a de-

scription, a list of resources, and a "realization.'
1 The object name is a character string

that identifies the object unambiguously. The object description is a list of data items

that identify the SCI type (e.g., model element, program, data) represented by the ob-

ject, a project identifier, and change and/or version information.

Configuration object identification can also consider the relationships that exist

between named objects. For example, using the simple notation

Class diagram <parf-of> analysis model:

Analysis model <part-of> requirements specification;

we create a hierarchy of SCIs.

In many cases, objects are interrelated across branches of the object hierarchy.

These cross structural relationships can be represented in the following manner:

data model < interrelated> data flow model:

data model < interrelated >teet case class m:

in the first case, the interrelationship is between a composite object, while the sec-

ond relationship is between an aggregate object (DataModel) and a basic object

(TestCaseClassM)

.

The identification scheme for configuration objects must recognize that objects

evolve throughout the software process. Before an object is baselined, it may change

many times, and even after a baseline has been established, changes may be quite

frequent.

27.3.2 Version Control

Version control combines procedures and tools to manage different versions of con-

figuration objects that are created during the software process. A version control sys-

tem implements or is directly integrated with four major capabilities: (1) a project

database (repository) that stores all relevant configuration objects; (2) a version man-

agement capability that stores all versions of a configuration object (or enables any

version to be constructed using differences from past versions); (3) a make facility

that enables the software engineer to collect all relevant configuration objects and

construct a specific version of the software. In addition, version control and change

control systems often implement an issues tracking (also called bug tracking
) capa-

CHAPTER 27 CHANGE MANAGEMENT 783

bility that enables the team to record and track the status of all outstanding issues

associated with each configuration object.

"Any change, even a change for the better, is accompanied by drawbacks and discomforts."

Arnold Bennett

A number of version control systems establish a change set—a collection of all

changes (to some baseline configuration) that are required to create a specific ver-

sion of the software. Dart [DAR91I notes that a change set "captures all changes to

all files in the configuration along with the reason for changes and details of who

made the changes and when."

A number of named change sets can be identified for an application or system.

This enables a software engineer to construct a version of the software by specify-

ing the change sets (by name) that must be applied to the baseline configuration. To

accomplish this, a system modeling approach is applied. The system model contains:

(1) a template that includes a component hierarchy and a "build order" for the com-

ponents that describes how the system must be constructed, (2) construction rules,

and (3) verification rules.'
1

A number of different automated approaches to version control have been pro-

posed over the last two decades. The primary difference in approaches is the so-

phistication of the attributes that are used to construct specific versions and variants

of a system and the mechanics of the process for construction.

Software Tools

The Concurrent Versions System

The use of tools to achieve version control is

essential for effective change management. The

Concurrent Versions System (CVS) is a widely used tool for

version control. Originally designed for source code, but

useful for any text-based file, the CVS system

(1)
establishes a simple repository, (2) maintains all

versions of a file in a single named.file by storing only the

differences between progressive versions of the original

file, and (3) protects against simultaneous changes to a file

by establishing different directories for each developer,

thus insulating one from another. CVS merges changes

when each developer completes her work.

It is important to note that CVS is not a "build" system;

that is, it does not construct a specific version of the

(CVS)

software. Other tools (e.g., Makefile
)
must be integrated

with CVS to accomplish this. CVS does not implement a

change control process (e.g., change requests, change

reports, bug tracking).

Even with these limitations, CVS "is a dominant open-

source network-transparent version control system [that] is

useful for everyone from individual developers to large,

distributed teams" [CVS02], Its client/server architecture

allows users to access files via Internet connections, and its

open source philosophy makes it available on most

popular platforms.

CVS is available at no cost for Windows, Macintosh,

and UNIX environments. See www.cvshome.org for further

details.

\

4 It is also possible to query the system model to assess how a change in one component will impact

other components.

784

POINT
It should be noted that

a number of change

requests may be

combined to result in a

single ECO and that

ECOs typically result in

changes to multiple

configuration objects.

Confusion leads to

errors—some of them

very serious. Access

and synchronization

control avoid confusion.

Use version and change

control tools that

implement both.

PART FOUR MANAGING SOFTWARE PROJECTS

27.3.3 Change Control

The reality of change control in a modem software engineering context has been

summed up beautifully by James Bach [BAC98]:

Change control is vital. But the forces that make it necessary also make it annoying. We

worry about change because a tiny perturbation in the code can create a big failure in the

product. But it can also fix a big failure or enable wonderful new capabilities. We worry

about change because a single rogue developer could sink the project; yet brilliant ideas

originate in the minds of those rogues, and a burdensome change control process could

effectively discourage them from doing creative work.

Bach recognizes that we face a balancing act. Too much change control, and we cre-

ate problems. Too little, and we create other problems.

Hie art of progress is to preserve order amid chonge and to preserve change amid order.'

Alfred North Whitehead

For a large software engineering project, uncontrolled change rapidly leads to

chaos. For such projects, change control combines human procedures and auto-

mated tools. The change control process is illustrated schematically in Figure 27.5.

A change request is submitted and evaluated to assess technical merit, potential side

effects, overall impact on other configuration objects and system functions, and the

projected cost of the change. The results of the evaluation are presented as a change

report, which is used by a change control authority (CCA)—a person or group who

makes a final decision on the status and priority of the change. An engineering

change order (ECO) is generated for each approved change. The ECO describes the

change to be made, the constraints that must be respected, and the criteria for re-

view and audit.

The object(s) to be changed can be placed in a directory that is controlled solely

by the software engineer making the change. A version control system (see the CVS

sidebar) updates the original file once the change has been made. As an alternative,

the object(s) to be changed can be "checked out” of the project database (repository),

the change is made, and appropriate SQA activities are applied. The object(s) is (are)

then "checked in" to the database and appropriate version control mechanisms (Sec-

tion 27.3.2) are used to create the next version of the software.

These version control mechanisms, integrated within the change control process,

implement two important elements of change management—access control and

synchronization control. Access control governs which software engineers have the

authority to access and modify a particular configuration object. Synchronization

control helps to ensure that parallel changes, performed by two different people,

don’t overwrite one another [HAR89).

Some readers may begin to feel uncomfortable with the level of bureaucracy im-

plied by the change control process description shown in Figure 27.5. This feeling is

CHAPTER 27 CHANGE MANAGEMENT 785

The change
control process

Need for change is recognized

j
Change request from user

Developer evaluates

I
Change report is generated

I
Change control authority decides

Request is queued for action, ECO generated

i
Assign individuals to configuration objects

\
"Check out" configuration objects (items)

i
Make the change

I
Review (audit) the change

f
"Check in" the configuration items that have been changed

!
Establish a baseline for testing

i
Perform quality assurance and testing activities

!
"Promote" changes for inclusion in next release (revision)

i
Rebuild appropriate version of software

f
Review (audit) the change to all configuration items

f
Include changes in new version

\
Distribute the new version

Change request is denied

f
User is informed

Opt for a bit more

change control than

you think you'll need.

It's likely that too

much will be the right

amount.

not uncommon. Without proper safeguards, change control can retard progress and

create unnecessary red tape. Most software developers who have change control

mechanisms (unfortunately, many have none) have created a number of layers of

control to help avoid the problems alluded to here.

Prior to an SCI becoming a baseline, only informal change control need be applied.

The developer of the configuration object (SCI) in question may make whatever

changes are justified by project and technical requirements (as long as changes do

not affect broader system requirements that lie outside the developer's scope of

work). Once the object has undergone formal technical review and has been

786 PART FOUR MANAGING SOFTWARE PROJECTS

approved, a baseline can be created. 5 Once a SCI becomes a baseline, project level

change control is implemented. Now, to make a change, the developer must gain

approval from the project manager (if the change is "local") or from the CCA if the

change affects other SCIs. In some cases, formal generation of change requests,

change reports, and ECOs is dispensed with. However, assessment of each change

is conducted, and all changes are tracked and reviewed.

When the software product is released to customers,formal change control is in-

stituted. The formal change control procedure has been outlined in Figure 27.5.

''Change is inevitable, except for vending machines."

Bumper sticker

The change control authority plays an active role in the second and third layers of

control. Depending on the.size and character of a software project, the CCA may be

composed of one person—the project manager—or a number of people (e.g., repre-

sentatives from software, hardware, database engineering, support, marketing). The

role of the CCA is to take a global view, that is, to assess the impact of change be-

yond the SCI in question. How will the change affect hardware? How will the change

affect performance? How will the change modify the customer's perception of the

product? How will the change affect product quality and reliability? These and many

other questions are addressed by the CCA.

SafeHome

SCM issues

The scene: Doug Miller's office as

the SafeHome software project begins.

The players: Doug Miller (manager of the SafeHome

software engineering team) and Vinod Raman, Jamie

Lazar, and other members of the product software

engineering team.

The conversation:

Doug: I know it's eady, but we've got to talk about

change management.

Vinod (laughing): Hardly. Marketing called this

morning with a few "second thoughts." Nothing major,

but it's just the beginning.

Jamie: We've been pretty informal about change

management on past projects.

Doug: I know, but this is bigger and more visible, and

as I recall . . .

Vinod (nodding): We got killed by uncontrolled

changes on the home lighting control project . . .

remember the delays that . . .

Doug (frowning): A nightmare that I'd prefer not to

relive.

Jamie: So what do we do.

Doug: As I see it, three things. First we have to

develop—or borrow—a change control process.

Jamie: You mean how people request changes?

Vinod: Yeah, but also how we evaluate the change,

decide when to do it (if that's what we decide), and how

we keep records of whot's affected by the change.

5 A baseline can be created for other reasons as well. For example, when "daily builds" are created,

all components checked in by a given time become the baseline for the next day's work.

CHAPTER 27 CHANGE MANAGEMENT 787

Doug: Second, we've got to get a really good SCM tool

for change and version control.

Jamie: We can build a database for all of our work

products.

Vinod: They're called SCIs in this context, and most

good tools provide some support for that.

Doug: That's a good start, now we have to . . .

Jamie: Uh, Doug, you said there were three things .

Doug (smiling): Third—we've all got to commit to

follow the change management process and use the

tools—no matter what, okay?

27.3.4 Configuration Audit

Identification, version control, and change control help the software developer to

maintain order in what would otherwise be a chaotic and fluid situation. However,

even the most successful control mechanisms track a change only until an ECO is

generated. How can we ensure that the change has been properly implemented?

The answer is twofold: (1) formal technical reviews and (2) the software configura-

tion audit.

The formal technical review (presented in detail in Chapter 26) focuses on the

technical correctness of the configuration object that has been modified. The re-

viewers assess the SCI to determine consistency' with other SCIs, omissions, or po-

tential side effects. A formal technical review should be conducted for all but the

most trivial changes.

A software configuration audit complements the formal technical review by ad-

dressing the following questions:

Has the change specified in the ECO been made? Have any additional modifi-

cations been incorporated?

Has a formal technical review been conducted to assess technical correctness?

Has the software process been followed, and have software engineering

standards been properly applied?

Has the change been "highlighted" in the SCI? Have the change date and

change author been specified? Do the attributes of the configuration object

reflect the change?

Have SCM procedures for noting the change, recording it, and reporting it

been followed?

Have all related SCIs been properly updated?

In some cases, the audit questions are asked as part of a formal technical review.

However, when SCM is a formal activity, the SCM audit is conducted separately by

the quality assurance group. Such formal configuration audits also ensure that the

correct SCIs (by version) have been incorporated into a specific build and that all

documentation is up-to-date and consistent with the version that has been built.

What are

• the primar

questions that

we ask during

a configuration

audit?

788 PARI FOUR MANAGING SOFTWARE PROJECTS

Develop a "need to

know" list for every

configuration object

ond keep it up-to-date.

When a change is

mode, be sure that

everyone on the list is

notified.

27.3.5 Status Reporting

Configuration status reporting (sometimes called status accounting) is a SCM task that

answers the following questions: (1) What happened? (2) Who did it? (3) When did it

happen? (4) What else will be affected?

The flow of information for configuration status reporting (CSR) is illustrated in

Figure 27.5. Each time a SCI is assigned new or updated identification, a CSR entry

is made. Each time a change is approved by the CCA (i.e., an ECO is issued), a CSR

entry is made. Each time a configuration audit is conducted, the results are reported

as part of the CSR task. Output from CSR may be placed in an on-line database or

Web site, so that software developers or maintainers can access change information

by keyword category. In addition, a CSR report is generated on a regular basis and is

intended to keep management and practitioners appraised of important changes.

Software Tools

SCM Support

Objective: SCM tools provide support to one

or more of the process activities discussed in

Section 27.3

Mechanics: Most modern SCM tools work in conjunction

with a repository (a database system] and provide

mechanisms for identification, version and change control,

auditing, and reporting.

Representative Tools6

CCC/Harvest, distributed by Computer Associates

(www.cai.com), is a multiplatform SCM system.

CtearCase, developed by Rational (www.rational.com),

provides a family of SCM functions.

Concurrent Versions System (CVS), an open source tool

(www.cvshome.org), is one of the industry's most widely

used version control systems (see earlier sidebar).

PVCS, distributed by Merant (www.merant.com), provides

a full set of SCM tools that are applicable for both

conventional software and WebApps.

SourceForge, distributed by VA Software (sourceforge.net),

provides version management, build capabilities,

issue/bug tracking, and many other management

features.

SurroundSCM, developed by Seapine Software

(www.seapine.com), provides complete change

management capabilities.

Vesta, distributed by Compac (www.vestasys.org), is a

public domain SCM system that can support both small

(< 1 0 KIOC) and large (10,000 KIOC) projects.

A comprehensive list of commercial SCM tools and

environments can be found at www.cmtoday.com/yp/

commercial.html.

27.4 Configuration Management for Web. ENGINEERINGS

In Part 3 of this book, we discussed the special nature ofWeb applications and the Web

engineering process that is required to build them. Among the many characteristics that

differentiate WebApps from conventional software is the ubiquitous nature of change.

Web engineering uses an iterative, incremental process model (Chapter 16) that ap-

plies many principles derived trom agile software development (Chapter 4). Using this

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

CHAPTER 27 CHANGE MANAGEMENT 789

approach, an engineering team often develops a WebApp increment in a very short

time period via a customer-driven approach. Subsequent increments add additional

content and functionality, and each is likely to implement changes that lead to en-

hanced content, better usability, improved aesthetics, better navigation, enhanced

performance, and stronger security. Therefore, in the agile world ofWeb engineering,

change is viewed somewhat differently.

Web engineers must embrace change, and yet a typical agile team eschews all

things that appear to be process-heavy, bureaucratic, and formal. Software configu-

ration management is often viewed (albeit incorrectly) to have these characteristics.

This seeming contradiction is remedied not by rejecting SCM principles, practices,

and tools, but rather by molding them to meet the special needs of Web engineering

projects.

27.4.1 Configuration Management Issues for WebApps

As WebApps become increasingly important to business survival and growth, the

need for configuration management grows. Why? Because without effective con-

trols, improper changes to a WebApp (recall that immediacy and continuous evolu-

tion are the dominant attributes of many WebApps) can lead to unauthorized posting

of new product information; erroneous or poorly tested functionality that frustrates

visitors to a Web site; security holes that jeopardize internal company systems; and

other economically unpleasant or even disastrous consequences.

The general strategies for software configuration management (SCM) described

in this chapter are applicable, but tactics and tools must be adapted to conform to

the unique nature of WebApps. Four issues [DAR99] should be considered when de-

veloping tactics for WebApp configuration management—content, people, scalabil-

ity, and politics.

Content. A typical WebApp contains a vast array of content—text, graphics, ap-

plets, scripts, audio/video files, forms, active page elements, tables, streaming data,

and many others. The challenge is to organize this sea of content into a rational set

of configuration objects (Section 27.1.4) and then establish appropriate configura-

tion control mechanisms for these objects.

t

People. Because a significant percentage of WebApp development continues to

be conducted in an ad hoc manner, any person involved in the WebApp can (and of-

ten does) create content. Many content creators have no software engineering back-

ground and are completely unaware of the need for configuration management. As

a consequence, the application grows and changes in an uncontrolled fashion.

Scalability. The techniques and controls applied to a small WebApps do not scale

upward well. It is not uncommon for a simple WebApp to grow significantly as inter-

connections with existing information systems, databases, data warehouses, and por-

tal gateways are implemented. As size and complexity grows, small changes can have

^ What impact

* does uncon-

trolled change

have on a

WebApp?

790 PART FOUR MANAGING SOFTWARE PROJECTS

^ How do I

• determine

who has

responsibility (or

WebApp CM?

far-reaching and unintended affects that can be problematic. Therefore, the rigor of

configuration control mechanisms should be directly proportional to application scale.

Politics. Who "owns'' a WebApp? This question is argued in companies large and

small, and its answer has a significant impact on the management and control ac-

tivities associated with WebE. In some instances Web developers are housed outside

the IT organization, creating potential communication difficulties. Dart [DAR99] sug-

gests the following questions to help understand the politics associated with WebE:

• Who assumes responsibility for the accuracy of the information on the Web

site?

• Who assures that quality control processes have been followed before infor-

mation is published to the site?

•. Who is responsible' for making changes?

• Who assumes the cost of change?

The answers .to these questions help determine -the people within an organization

who rndsf adopt a configuration management process for WebApps.

27.4.2 WebApp Configuration Objects

WebApps encompass a broad range of configuration objects—content objects (e.g.,

text, graphics, images, video, audio), functional components (e.g., scripts, applets),

and interface, objects (e.g., COM or CORBA). WebApp objects can be identified

(assigned file names) in any manner that is appropriate for the organization. How-

ever, the following conventions are recommended to ensure that cross-platform

compatibility is maintained: filenames should be limited to 32 characters in length,

mixed-case or all-caps names should be avoided, and the use of underscores in file

names should be avoided. In addition, URL references (links) within a configuration

object should always use relative paths (e.g., ../products/alarmsensors.html).

All WebApp cbntent has format and structure. Internal file formats are dictated by

the computing environment in which the content is stored. However, renderingfor-

mat (often called displayformat) is defined by the aesthetic style and design rules es-

tablished for the WebApp. Content structure defines a content architecture; that is, it

defines the way in which content objects are assembled to present meaningful

information to an end-user. Boiko [BOI02] defines structure as "maps that you lay

over a set of content chunks [objects] to organize them and make them accessible

to the people who need them "

27.4.3 Content Management

Contentmanagement is related to configuration management in the sense that a con-

tent management system (CMS) establishes a process (supported by appropriate

CHAPTER 27 CHANGE MANAGEMENT 791

tools) that acquires existing content (from a broad array of WebApp configuration

objects), structures it in a way that enables it to be presented to an end-user, and

then provides it to the client-side environment for display.

"Content management is on antidote to today's information frenzy."

Bob Boiko

POINT
The collection

subsystem

encomposses oil octions

required to create,

acquire, and/or convert

content into o form that

con be presented on

the client side.

The most common use of content management system occurs when a dynamic

WebApp is built. Dynamic WebApps create Web pages "on-the-fly.” That is, the user

typically queries the WebApp requesting specific information. The WebApp queries a

database, formats the information accordingly, and presents it to the user. For exam-

ple, a music company provides a library of CDs for sale. When a user requests a CD or

its e-music equivalent, a database is queried, and a variety of information about the

artist, the CD (e g,, its cover image or graphics), the musical content, and sample au-

dio are all downloaded and configured into a standard content template. The result-

ant Web page is built on the server-side and passed to the client-side browser for

examination by the end-user. -A generic representation of this is shown in Figure 27.6.

In the most general sense, a CMS "configures" content for the end-user by invok-

ing three integrated subsystems: a collection subsystem, a management subsystem,

and a publishing subsystem [BOI02],

Content

management
system (CMS)

PART FOUR MANAGING SOFTWARE PROJECTS792

POINT
The monagement

subsystem implements

o repository for oil

content. Configuration

management is

performed within this

subsystem.

The collection subsystem. Content is derived from data and information that

must be created or acquired by a content developer. The collection subsystem en-

compasses all actions required to create and/or acquire content, and the technical

functions that are necessary to (1) convert content into a form that can be repre-

sented by a mark-up language (e.g., HTML, XML), and (2) organize content into

packets that can be displayed effectively on the client side.

The management subsystem. Once content exists, it must be stored in a

repository, cataloged for subsequent acquisition and use, and labeled to define

(1) current status (e.g., is the content object complete or in development), (2) the

appropriate version of the content object, and (3) related content objects. There-

fore, the management subsystem implements a repository that encompasses the

following elements:

• Content database—the information structure that has been established to

store all content objects.

• Database capabilities—functions that enable the CMS to search for specific

content objects (or categories of objects), store and retrieve objects, and

manage the file structure that has been established for the content.

• Configuration managementJunctions—the functional elements and associated

workflow that support content object identification, version control, change

management, change auditing, and reporting.

In addition to these elements, the management subsystem implements an adminis-

tration function that encompasses the metadata and rules that control the overall

structure of the content and the manner in which it is supported.

POINT
The publishing

subsystem extracts

content from the

repository and delivers

it to client-side

browsers.

The publishing subsystem. Content must be extracted from the repository, con-

verted to a form that is amenable to publication, and formatted so that it can be

transmitted to client-side browsers. The publishing subsystem accomplishes these

tasks using a series of templates. Each template is a function that builds a publica-

tion using one of three different components [BOI02]:

• Static elements—text, graphics, media, and scripts that require no further

processing are transmitted directly to the client-side.

• Publication services—function calls to specific retrieval and formatting

services that personalize content (using predefined rules), perform data

conversion, and build appropriate navigation links.

• External services—provide access to external corporate information infra-

structure such as enterprise data or "back-room" applications.

A content management system that encompasses each of these subsystems is appli-

cable for major Web engineering projects. However, the basic philosophy and func-

tionality associated with a CMS are applicable to all dynamic WebApps.

CHAPTER 27 CHANGE MANAGEMENT 793

Content Management

Objective: To assist software engineers and

content developers in managing content that is

incorporated into WebApps.

Mechanics: Tools in this category enable Web engineers

and content providers to update WebApp content in a

controlled manner. Most establish o simple file management

system that assigns page-by-page update and editing

permissions for various types of WebApp content Some

maintain a versioning system so that previous versions of

content can be achieved for historical purposes.

Representative Tools7

Content Management Tools Suite, developed by

interactivetools.com (www.interoctivetools. com/), is a

suite of content management tools that focus on content

management for specific application domains (e.g.,

news articles, classified ads, real estate).

ektron-CMS300, developed by ektron (www.ektron.com),

is a suite of tools that provides content management

capabilities as well as Web development tools.

Software Tools

OmniUpdate, developed by WebsiteASP, Inc.

(www.omniupdate.com), is a tool that allows

authorized content providers to develop controlled

updates to specified WebApp content.

Tower IDM, developed by Tower Technologies

(www.towertech.com), is a document processing

system and content repository for managing all

forms of unstructured business information

—

images; forms; computer-generated reports;

statements and invoices; office documents; e-mail and

Web content.

Additional information on SCM and content management

tools for Web engineering con be found at one or more of

the following Web sites:

Web Developer's Virtual Encyclopedia (www.wdlv.com),

WebDeveloper (www.webdeveloper.com!,

Developer Shed (www.devshed.com), webknowhow.net

(www.webknowhow.net), or

WebReference (www.webreference.com).

21AA Change Management

The workflow associated with change control for conventional software (Section

27.3.3) is generally too ponderous for Web engineering. It is unlikely that the change

request, change report, and engineering change order sequence can be achieved in

an agile manner that is acceptable for most WebApp development projects. How

then do we manage a continuous stream of changes requested for WebApp content

and functidnality?

To implement effective change management within the "code and go" philoso-

phy that continues to dominate WebApp development, the conventional change

control process must be modified. Each change should be categorized into one of

four classes:

Class 1—a content or function change that corrects an error or enhances local

content or functionality.

Class 2—a content or function change that has impact on other content objects

or functional components.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

794 PART POOR MANAGING SOFTWARE PROJECTS

Managing
changes tor

WebApps

Class 3—a content or function change that has broad impact across a WebApp
(e.g., major extension of functionality, significant enhancement or reduction in

content, major required changes in navigation).

Ciass 4—a major design change (e g., a change in interface design or navigation

approach) that will be immediately noticeable to one or more categories of user.

Once the requested change has been categorized, it can be processed according to

the algorithm shown in Figure 27.7.

Referring to the figure, class 1 and 2 changes are treated informally and are han-

dled in an agile manner. For a class 1 change, the Web engineer evaluates the im-

pact of the change, but no external review or documentation is required. As the

change is made, standard check-in and check-out procedures are enforced by con-

CHAPTER 27 CHANGE MANAGEMENT 795

figuration repository tools. For class 2 changes, it is incumbent on the Web engineer

to review the impact of the change on related objects (or to ask other developers re-

sponsible for those objects to do so). If the change can be made without requiring

significant changes to other objects, modification occurs without additional review

or documentation. If substantive changes are required, further evaluation and plan-

ning are necessary.

Class 3 and 4 changes are also treated in an agile manner, but some descriptive doc-

umentation and more formal review procedures are required. A change description—

describing the change and providing a brief assessment of the impact of the change—is

developed for class 3 changes. The description is distributed to all members of the Web

engineering team who review it to better assess its impact. A change description is also

developed for class 4 changes, but in this case, the review is conducted by all stake-

holders.

Change Management

Objective: To assist Web engineers and

content developers in managing changes as

they are made to WebApp configuration objects^

Mechanics: Tools in this categorywere originally

developed for conventional software, but can be adapted

by Web engineers to make controlled changes to

WebApps.

Representative Tools8

ChangeMan WCM, developed by Serena (www.

serena.com), is a one of a suite of change

management fools (hot provide SCM capabilities.

Software Tools

C/earCose, developed by Rational (www.rational.com), js

a suite of tools that provides full configuration

management capabilities for WebApps.

PVCS, developed by Merant (www.merant.com), is a suite

of tools that provides full configuration management

capabilities for WebApps.

Source Integrity, developed by mks (www.mks.com), is a

SCM tool that can be integrated with selected

development environments.

j

27.4.5 Version Control

As a WebApp evolves through a series of increments, a number of different versions

may exist at the same time. One version (the current operational WebApp) is avail-

able via the Internet for end-users; another version (the next WebApp increment)

may be in the final stages of testing prior to deployment; a third version is in devel-

opment and represents a major update in content, interface aesthetics, and func-

tionality. Configuration objects must be clearly defined so that each can be

associated with the appropriate version. In addition, control mechanisms must be

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

796 PART POOR MANAGING SOFTWARE PROJECTS

established. Dreilinger [DRE99] discusses the importance of version (and change)

control when he writes:

In an uncontrolled site where multiple authors have access to edit and contribute, the po-

tential for conflict and problems arises—more so when these authors work from different

offices at different times of day and night You may spend the day improving the file in-

dex.html for a customer. After you've made your changes, another developer who works

at home after hours, or in another office, may spend the night uploading their own newly

revised version of the file index.html, completely overwriting your work with no way to

get it back!

This situation should sound familiar to every software engineer as well as every Web
engineer. To avoid it, a version control process should be established.

1 . A central repositoryfor the WebApp project should be established. The reposi-

tory will hold current versions of all WebApp configuration objects (content,

functional components, and others).

2 . Each Web engineer creates his or her own workingfolder. The folder contains

those objects that are being created or changed at any given time.

3. The clocks on all developer workstations should be synchronized. This is done

to avoid overwriting conflicts when two developers make updates that are

very close to one another in time.

4. As new configuration objects are developed or existing objects are changed, they

are imported into the central repository. The version control tool (see discus-

sion of CVS earlier in this chapter) will manage all check-in and check-out

functions from the working folders of each Web engineer.

5. As objects are imported or exportedfrom the repository, an automatic, time-

stamped log message is made. This provides useful information for auditing

and can become part of an effective reporting scheme.

The version control tool maintains different versions of the WebApp and can revert

to an older version if required.

27.4.6 Auditing and Reporting

In the interest of agility, the auditing and reporting functions are deemphasized in

Web engineering work. However, they are not eliminated altogether. All objects that

are checked into or out of the repository are recorded in a log that can be reviewed

at any point in time. A complete log report can be created so that all members of the

Web engineering team have a chronology of changes over a defined period of time.

In addition, an automated e-mail notification (addressed to those developers and

stakeholders who have interest) can be sent every time an object is checked in or out

of the repository.

CHAPTER 27 CHANGE MANAGEMENT 797

SCM Standards

The following list of SCM standards (extracted

in part from www. 1 2207.com) is reasonably

comprehensive:

IEEE Standards

IEEE 828

IEEE 1042

ISO Standards

ISO 10007-1995

ISO/IEC 12207

ISO/IECTR 15271

ISO/IEC TR 15846

EIA Standards

EIA 649

EIA CMB4-1A

EIA CMB4-2

EIA CMB4-3

EIA CMB4-4

EIACMB6-1C

V

standards.ieee.org/catalog/

olis/

Software Configuration Management

Plans

Software Configuration Management

www.iso.ch/iso/en/

ISOOnline.frontpage

Quality Management, Guidance

for CM
Information Technology—Software

Life Cycle Processes

Guide for ISO/IEC 12207

Software Engineering—Software Life

Cycle Process—Configuration

Management for Software

www.eia.org/

National Consensus Standard for

Configuration Management

Configuration Management

Definitions for Digital Computer

Programs

Configuration Identification for

Digital Computer Programs

Computer Software Libraries

Configuration Change Control for

Digital Computer Programs

Configuration and Data

Management References

EIA CMB6-3 Configuration Identification

EIA CMB6-4 Configuration Control

EIA CMB6-5 Textbook for Configuration Status

Accounting

EIA CMB7-1 Electronic Interchange of

Configuration Management Data

U.S. Military www-library.itsi.disa.mil

Standards

DoD MIL STD-973 Configuration Management

MIL-HDBK-61 Configuration Management

Guidance

Other standards

DO-178B Guidelines for the Development of

Aviation Software

ESA PSS-05-09 Guide to Software Configuration

Management

AECL CE- 1001 -STD Standard for Software Engineering

rev. 1 of Safety Critical Software

DOE SCM checklist cio.doe.gov/ITReform/sqse/

download/cmcklst.doc

BS-6488 British Std., Configuration

Management of Computer-Based

Systems

Best Practice—UK Office of Government Commerce:

www.ogc.gov.uk

CMII Institute of CM Best Practices:

www.icmhq.com

A Configuration Management Resource Guide provides

complementary information for those interested in CM
processes and practice. It is available at

www.quality.org/config/cm-guide.html.

27.5 Summary

Software configuration management is an umbrella activity that is applied through-

out the software process. SCM identifies, controls, audits, and reports modifications

that invariably occur while software is being developed and after it has been released

to a customer. All information produced as part of software engineering becomes

part of a software configuration. The configuration is organized in a manner that en-

ables orderly management of change.

798 PART FOUR MANAGING SOFTWARE PROJECTS

The software configuration is composed of a set ofinterrelated objects, also called

software configuration items, that are produced as a result of some software engi-

neering activity. In addition to documents, programs, and data, the development en-

vironment that is used to create software can also be placed under configuration

control. All SCIs are stored within a repository that implements mechanisms and

data structures to ensure data integrity, provides integration support for other soft-

ware tools, supports information sharing among all members of the software team,

and implements functions in support of version and change control.

Once a configuration object has been developed and reviewed, it becomes a base-

line. Changes to a baselined object result in the creation of a new version of that ob-

ject. The evolution of a program can be tracked by examining the revision history of

all configuration objects. Basic and composite objects form an object pool from

which versions are created. Version control is the set of procedures and tools for

managing the use of these objects.

Change control is a procedural activity that ensures quality and consistency as

changes are made to a configuration object. The change control process begins with

a change request, leads to a decision to make or reject the request for change, and

culminates with a controlled update of the SCI that is to be changed.

The configuration audit is an SQA activity that helps to ensure that quality is

maintained as changes are made. Status reporting provides information about each

change to those with a need to know.

Configuration management for Web engineering is similar in most respects to

SCM for conventional software. However, each of the core SCM tasks should be

streamlined to make it as lean as possible, and special provisions for content man-

agement must be implemented.

.References

[BAB86] Babich, W.A., Sojhvare Configuration Management, Addison-Wesley, 1986.

[BAC98] Bach, J., "The Highs and Lows of Change Control,” Computer, vol. 31, no. 8, August

1998, pp. 113-115.

[BER80] Bersoff, E.H., V.D. Henderson, and S.G. Siegel, Software Configuration Management,
Prentice-Hall, 1980.

[BO102] Boiko, B., Content Management Bible, Hungry Minds Publishing, 2002.

[CH089] Choi, S.C., and W. Scacchi, "Assuring the Correctness of a Configured Software De-
scription," Proc. 2nd inti. Workshop on Softvjare Configuration Management, ACM, Princeton,

NJ, October 1989, pp. 66-75

[CVS02] Concurrent Versions System Web site, www.cvshome.org, 2002.

[DAR91] Dart, S., "Concepts in Configuration Management Systems," Proc. Third International

Workshop on Sojhvare Configuration Management, ACM S1GSOFT, 1991, download from:

http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html.

[DAR99] Dart, S., "Change Management: Containing the Web Crisis," Proc. Software Configura-

tion Management Symposium, Toulouse, France, 1999. available at http://www.perforce.

com/perforce/conf99/dart.html.

[DAR01] Dart, S., Spectrum ofFunctionality in Configuration Management Systems, Software En-
gineering Institute, 2001, available at http://www.sei.cmu.edu/legacy/scm/tech_rep/

TRl 1_90/TOC_TR1 l_90.html.

CHAPTER 27 CHANGE MANAGEMENT 799

[DRE99) Dreilinger, S ,
"CVS Version Control for Web Site Projects," 1999, available at

http://www.durak.org/cvswebsites/howto-cvs/howto-cvs.html.

[FOR89] Forte. G., "Rally Round the Repository," CASE Outlook. December 1989. pp. 5-27.

[GRI95] Griffen
,)., "Repositories: Data Dictionary Descendant Can Extend Legacy Code Invest-

ment," Application Development Trends, April 1995, pp. 65-71.

[GUS89] Gustavsson, A., "Maintaining the Evolution of Software Objects in an Integrated Envi-

ronment," Proc. 2nd Inti. Workshop on Software Configuration Management, ACM, Princeton,

NJ, October 1989, pp. 1 14-117.

1HAR89J Harter, R., "Configuration Management," HP Professional, vol. 3, no. 6, June 1989.

[1EE94J Software Engineering Standards, 1994 edition, IEEE Computer Society, 1994.

[JAC02] Jacobson, I., "A Resounding 'Yes' to Agile Processes—But Also More," Cutter IT Journal,

vol. 15, no. 1 ., January 2002, pp. 18-24.

[REI89] Reichenberger, C„ "Orthogonal Version Management," Proc. 2nd Inti. Workshop on Soft-

ware Configuration Management, ACM, Princeton, NJ, October 1 989, pp. 137-140.

[SHA95) Sharon, D., and R. Bell, "Tools That Bind: Creating Integrated Environments," IEEE Soft-

ware, March 1995, pp. 76-85.

[TAY85] Taylor, B., "A Database Approach to Configuration Management for Large Projects,"

Proc. Conf. Software Maintenance—1985, IEEE, November 1985, pp. 15-23.

Problems and Points To Ponder
27.1. Use UML aggregations or composites (Chapter 8) to describe the interrelationships

among the SCIs (configuration objects) listed in Section 27.1.4.

27.2. What are the four elements that exist when an effective SCM system is implemented? Dis-

cuss each briefly.

27.3. Discuss the reasons for baselines in your own words.

27.4. Assume that you're the manager of a small project. What baselines would you define for

the project, and how would you control them?

27.5. What is the difference between a SCM audit and a formal technical review? Can their

functions be folded into one review? What are the pros and cons?

26.6. Research an existing SCM tool, and describe how it implements control for versions and

configuration objects in general.

27.7. Design a project database (repository) system that would enable a software engineer to

store, cross-reference, trace, update, and change, all important software configuration items.

How would the database handle different versions of the same program? Would source code be

handled differently than documentation? How will two developers be precluded from making
different changes to the same SCI at the same time?

27.8. Why is the First Law of System Engineering true? Provide specific examples for each of

the four fundamental reasons for change.

27.9. Develop a checklist for use during configuration audits.

27.10. Using Figure 27.5 as a guide, develop an even more detailed work breakdown for

change control. Describe the role of the CCA and suggest formats for the change request, the

change report, and the ECO.

27.1 1. Research an existing SCM tool and describe how it implements the mechanics of ver-

sion control. Alternatively, read two or three of the papers on SCM and describe the different

data structures and referencing mechanisms that are used for version control.

27.12. The relations <part-of> and <interreiated>represent simple relationships between
configuration objects. Describe five additional relationships that might be useful in the context

of a SCM repository.

800 PART FOUR MANAGING SOFTWARE PROJECTS

27 . 13 . What is content management? Use the Web to research the features of a content man-
agement tool and provide a brief summary.

27 . 14 . Briefly describe the differences between SCM for conventional software and SCM for

WebApps.

f..URIHSR,.RSAPINSS ANA. iNfQRMAIIQN SOURCES
Lyon (Practical CM, Raven Publishing, 2003, available at www.configuration.org) has written a

comprehensive guide for CM professionals that includes pragmatic guidelines for implementing

every aspect of a configuration management system (updated yearly) . Hass (Configuration Man-

agement- Principles and Practice, Addison-Wesley, 2002) and Leon (A Guide to Software Configu-

ration Management, Artech House, 2000) provide useful surveys of the subject. White and Clemm
(Software Configuration Management Strategies and Rational ClearCase, Addison-Wesley, 2000)

present SCM within the context of one of the more popular SCM tools,

Mikkelsen and Pherigo (Practical Software Configuration Management: The Latenight Devel-

oper's Handbook, Allyn & Bacon, 1997) and Compton and Callahan (Configuration Management

for Software, VanNostrand-Reinhold, 1 994) provide pragmatic tutorials on important SCM prac-

tices. Ben-Menachem (Software Configuration Management Guidebook, McGraw-Hill, 1994), and

Ayer and Patrinnostro (Software Configuration Management, McGraw-Hill, 1 992) present good

overviews for those who need further introduction to the subject. Berlack (Software Configura-

tion Management, Wiley, 1 992) presents a useful survey of SCM concepts, emphasizing the im-

portance of the repository and tools in the management of change. Babich [BAB86J provides an

abbreviated, yet effective treatment of pragmatic issues in software configuration management.

Arnold and Bohner (Software Change Impact Analysis, IEEE Computer Society Press, 1 996) have

edited an anthology that discusses how to analyze the impact of change within complex

software-based systems.

Berczuk and Appleton (Software Configuration Management Patterns, Addison-Wesley, 2002)

present a variety of useful patterns that assist in understanding SCM and implementing effec-

tive SCM systems. Brown, et al. (Anti-Patterns and Patterns in Software Configuration Manage-

ment, Wiley, 1999) discuss the things not to do (anti-patterns) when implementing an SCM
process and then consider their remedies.

Buckley (Implementing Configuration Management, IEEE Computer Society Press, 1 993) con-

siders configuration management approaches for all system elements—hardware, software,

and firmware—with detailed discussions of major CM activities. Rawlings (SCMfor Network De-

velopment Environments, McGraw-Hill, 1994) considers the impact of SCM for software devel-

opment in a networked environment. Bays (Software Release Methodology, Prentice-Hall, 1999)

presents a collection of best practices for all activities that occur after changes are made to an

application.

As WebApps have become more dynamic, content management has become an essential

topic for Web engineers. Books by Addey and his colleagues (Content Management Systems,

Glasshaus, 2003), Boiko [BOI02], Hackos (ContentManagementfor Dynamic Web Delivery, Wiley,

2002), Nakano (Web Content Management, Addison-Wesley, 2001) present worthwhile treat-

ments of the subject.

A wide variety of information sources on software configuration management is available on

the Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressnian.

PART

Five

Advanced Topics in

Software Engineering

I
n this part ofSoftware Engineering:A Practitioner'sApproach, we

consider a number ofadvanced topics that will extend your un-

derstanding of software engineering. In the chapters that fol-

low, we address the following questions:

• What notation and mathematical preliminaries ("formal

methods") are required to formally specify software?

• What key technical activities are conducted during the clean-

room software engineering process?

• How is component-based software engineering used to create

systems from reusable components?

• What technical activities are required for software reengi-

neering?

* What are the future directions of software engineering?

Once these questions are answered, you’ll understand topics

that may have a profound impact on software engineering over the

next decade.

801

CHAPTER

28 Formal Methods

Key
Concepts
constructive

specification

data invariant

formal specification

logic operators

oa

operations

pre- and

postconditions

schemas

set operators

states

Z language

S
oftware engineering methods can be categorized on a ''formality spectrum

that is loosely tied to the degree of mathematical rigor applied during analy-

sis and design. For this reason, the analysis and design methods discussed

earlier in this book fall at the informal end of the spectrum. A combination of di-

agrams, text, tables, and simple notation is used to create analysis and design

models, but little mathematical rigor has been applied.

We now consider the other end of the formality spectrum. Here, a specification

and design are described using a formal syntax and semantics that specify system

function and behavior. The specification is mathematical in form (e.g., predicate

calculus can be used as the basis for a formal specification language).

In his introductory discussion of formal methods, Anthony Hall [HAL90] states:

Formal methods are controversial. Their advocates claim that they can revolutionize

[softwarel development. Their detractors think they are impossibly difficult. Mean-

while, for most people, formal methods are so unfamiliar that it is difficult to judge the

competing claims.

In this chapter, we explore formal methods and examine their potential impact

on software engineering in the years to come.

What is it? Formal methods allow

a software engineer to create a spec-

ification that is more complete, con-

sistent, and unambiguous than those

produced using conventional methods. Set the-

ory and logic notation are used to create a clear

statement of facts (requirements). This mathe-

matical specification can then be analyzed to

improve (or even prove) correctness and consis-

tency. Because the specification is created using

mathematical notation, it is inherently less am-

biguous than informal modes of representation.

Who does it? A specially trained software engi-

neer creates a formal specification.

Why is it important? In safety-critical or

mission-critical systems, failure can have a high

price. Lives may be lost or severe economic con-

sequences can arise when computer software

fails. In such situations, it is essential that errors

are uncovered before software is put into oper-

ation. Formal methods reduce specification er-

rors dramatically and, as a consequence, serve

as the basis for software that has very few errors

once the customer begins using it.

What are the steps? The notation and heuris-

tics of sets and constructive specification—set op-

erators, logic operators, and sequences—form

the basis of formal methods. Formal methods de-

fine the data invariant, states, and operations for

a system function by translating informal re-

quirements for the problem info a more formal

representation.

What is the work product? A specification

represented in a formal language such as OCL
or Z is produced when formal methods are

applied.

802

CHAPTER 28 FORMAL METHODS 803

How do I ensure that I've done it right?

Because formal methods use discrete mathemat-

ics as the specification mechanism, logic proofs

can be applied to each system function to

demonstrate that the specification is correct.

However, even if logic proofs are not used, the

structure and discipline of a formal specification

will lead to improved software quality.

28.1 Basic Concepts

The Encyclopedia ofSoftware Engineering [MAR94] defines formal methods in the fol-

lowing manner:

A method is formal if it has a sound mathematical basis, typically given by a formal spec-

ification language. This basis provides a means of precisely defining notions like consis-

tency and completeness, and more relevantly, specification, implementation and

correctness.

The desired properties of a formal specification—consistency, completeness, and

lack of ambiguity—are the objectives of all specification methods. However, the use

of formal methods results in a much higher likelihood of achieving these ideals. The

formal syntax of a specification language (Section 28.4) enables requirements and
design to be interpreted in only one way, eliminating ambiguity that often occurs

when a natural language (e.g., English) or a graphical notation must be inteipreted

by a reader. The descriptive facilities of set theory and logic notation (Section 28.2)

enable clear statement of facts (requirements). To be consistent, facts stated in one
place in a specification should not be contradicted in another place. Consistency is

ensured by mathematically proving that initial facts can be formally mapped (using

inference rules) into later statements within the specification.

'Formal methods have tremendous potential for improving the clarity ond precision of requirements specifications,

and in finding important and subtle errors."

Steve Easterbrook et al.

Completeness is difficult to achieve, even when formal methods are used. Some
aspects of a system may be left undefined as the specification is being created; other

characteristics may be purposely omitted to allow designers some freedom in

choosing an implementation approach; and finally, it is impossible to consider every

operational scenario in a large, complex system. Things may simply be omitted by

mistake.

Although the formalism provided by mathematics has an appeal to some software

engineers, others (some would say, the majority) look askance at a mathematical

view of software development. To understand why a formal approach has merit, we
must first consider the deficiencies associated with less formal approaches.

804

Although a good

document index cannot

elimiriote contrork-

tions, it con help to

uncover them.

Consider creating on

index for specifications

and other documents.

effective formal

technical reviews con

eliminate many of

these problems.

However, some will

not be uncovered. Be

on the lookout for defi-

ciencies during design,

code, and test.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

28.1.1 Deficiencies of Less Formal Approaches 1

The methods discussed for analysis and design in Parts 2 and 3 of this book make

heavy use of natural language and a variety of graphical notations. Although careful

application of analysis and design methods coupled with thorough review can and

does lead to high-quality software, sloppiness in the application of these methods

can create a variety of problems. A system specification can contain contradictions,

ambiguities, vagueness, incomplete statements, and mixed levels of abstraction.

Contradictions are sets of statements that are at variance with each other. For ex-

ample, one part of a system specification may state that the system must monitor all

the temperatures in a chemical reactor while another part, perhaps written by an-

other person may state that only temperatures occurring within a certain range are

to be monitored.

Ambiguities are statements that can be interpreted in a number of ways. For ex-

ample, the following statement is ambiguous:

The operator identity consists of the operator name and password; the password consists

of six digits. It should be displayed on the security VDU and deposited in the login file

when an operator logs into the system.

In this extract, does the word it refer to the password or the operator identity?

Vagueness often occurs because a system specification is a very bulky document.

Achieving a high level of precision consistently is an almost impossible task.

‘Making mistakes is human. Repeating 'em is too."

Malcolm (ottos

Incompleteness is one of the most frequently occurring problems with system

specifications. For example, consider the functional requirement:

The system should maintain the hourly level of the reservoir from depth sensors situated

in the reservoir These values should be stored for the past six months.

This describes the main data storage part of a system If one of the commands for

the system was

The function of the AVERAGE command is to display on a PC the average water level for

a particular sensor between two times.

and assuming that no more detail was presented for this command, the details of the

command would be seriously incomplete. For example, the description of the com-

mand does not include what should happen if a user ofa system specifies a time that

was more than six months before the current hour.

I This section and others in the first part of this chapter have been adapted from work contributed

by Darrel Ince for the European edition of the fifth edition of Software engineering: A Practitioner's

Approach

CHAPTER 28 FORMAL METHODS 805

Mixed levels ofabstraction occur when very abstract statements are intermixed ran-

domly with statements that are at a much lower level of detail. While both types of

statements are important in a system specification, specifiers often manage to inter-

mix them to such an extent that it becomes very difficult to see the overall functional

architecture of a system.

28.1.2 Mathematics in Software Development

Mathematics has many useful properties for the developers of large systems. One is

that it can succinctly and exactly describe a physical situation, an object, or the out-

come of an action. A specification of a computer-based system can be developed us-

ing specialized mathematics in much the same way that an electrical engineer can

use mathematics to describe a circuit.
2

Mathematics supports abstraction and thus is an excellent medium for modeling.

Because it is an exact medium there is little possibility of ambiguity. Specifications can

be mathematically validated for contradictions and incompleteness, and vagueness

can be eliminated. In addition, mathematics can be used to represent levels of ab-

straction in a system specification in an organized way.

Finally, mathematics provides a high level of validation when it is used as a soft-

ware development medium. It is possible to use a mathematical proof to demonstrate

that a design matches a specification and that program code is a correct reflection of

a design.

28.1.3 Formal Methods Concepts

The aim of this section is to present the main concepts involved in the mathematical

specification of software systems, without encumbering the reader with too much

mathematical detail. To accomplish this, we use a few simple examples.

POINT
A data invariant is a

set of conditions that

are true throughout

the execution of the

system that contains

a collection of data.

Example 1 : a symbol table. A program is used to maintain a symbol table. Such

a table is used frequently in many different types of applications. It consists of a col-

lection of items without any duplication. An example of a typical symbol table is

shown in Figure 28. 1 . It represents the table used by an operating system to hold the

names of the users of the system. Other examples of tables include the collection of

names of staff in a payroll system or the collection of names of computers in a net-

work communications system.

Assume that the table presented in this example consists of no more than Maxlds

members of staff. This statement, which places a constraint on the table, is a com-

ponent of a condition known as a data invariant—an important idea that we shall re-

turn to throughout this chapter.

2 A word ofcaution is appropriate at this point. The mathematical system specifications that are pre-

sented in this chapter are not as succinct as a mathematical specification for a simple circuit. Soft-

ware systems are notoriously complex, and it would be unrealistic to expect that they could be

specified in one line of mathematics.

806 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

A symbol table

Another way oflooking

at the notion of state

is to say that data

determines state. Ihot

is, you can examine

data to see whot state

the system is in.

A data invariant is a condition that is true throughout the execution of the system

that contains a collection of data. The data invariant that holds for the symbol table

just discussed has two components: (1) that the table will contain no more than

Maxlds names and (2) that there will be no duplicate names in the table. In the case

of the symbol table program, this means that no matter when the symbol table is ex-

amined during execution of the system, it will always contain no more than Maxlds

staff identifiers and will contain no duplicates.

Another important concept is that of a slate. Many formal languages, such as OCL

(Section 28.5) ,
use the notion of a state as it was discussed in Chapters 7 and 8; that

is, a system can be in one of several states, each representing an externally observ-

able mode of behavior. However, a different definition for the term state is used in

the Z language (Section 28.6). In Z (and related languages), the state of a system is

represented by the system's stored data (hence, Z suggests a much larger number of

states, representing each possible configuration of the data). Using the latter defini-

tion in the example of the symbol table program, the state is the symbol table.

The final concept is that of an operation. This is an action that takes place within a

system and reads or writes data. If the symbol table program is concerned with adding

and removing staff names from the symbol table, then it will be associated with two

operations: an operation to add a specified name to the symbol table and an opera-

tion to remove an existing name from the table.3 If the program provides the facility

to check whether a specific name is contained in the table, then there would be an

operation that would return some indication of whether the name is in the table.

Three types of conditions can be associated with operations: invariants, precon-

ditions, and postconditions. An invariant defines what is guaranteed not to change.

For example, the symbol table has an invariant that states that the number of ele-

ments is always less than or equal to Maxlds. A precondition defines the circum-

3 It should be noted that adding a name cannot occur in thefull state and deleting a name is impos-

sible in the empty state.

CHAPTER 28 FORMAL METHODS 807

A block

handler

Brainstorming tech-

niques am work well

when you must develop

a data inmant for o

reasonably complex

hmctioa. Hove each

member of the

software team wn'te

down bounds, restric-

tions, and limitations

for the function ond

then combine ond edit.

Unused blocks

Block queue containing blocks from deleted fifes

stances in which a particular operation is valid. For example, the precondition for an

operation that adds a name to the staff identifier symbol table is valid only if the

name that is to be added is not contained in the table-and also if there are fewer than

Maxlds staff identifiers in the table. The postcondition of an operation defines what is

guaranteed to be true upon completion of an operation. This is defined by its effect

on the data. In the example of an operation that adds an identifier to the staff iden-

tifier symbol table, the postcondition would specify mathematically that th° table has

been augmented with the new identifier.

Example 2: a block handler. One of the more important parts of a computer's

operating system is the subsystem that maintains files created by users. Part of the

filing subsystem is the block handler. Files in the file store are composed of blocks

of storage that are held on a file storage device During the operation of the com-
puter files will be created and deleted, requiring the acquisition and release of

blocks of storage. To cope with this, the filing subsystem will maintain a reservoir

of unused (free) blocks and keep track of blocks that are currently in use. When
blocks are released from a deleted file they are normally added to a queue of blocks

waiting to be added to the reservoir of unused blocks. This is shown in Figure 28.2.

In this figure, a number of components are shown: the reservoir of unused blocks,

the blocks that currently make up the files administered by the operating system

and those blocks that are waiting to be added to the reservoir. The waiting blocks

are held in a queue, with each element of the queue containing a set of blocks from

a deleted file.

For this subsystem the state is the collection of free blocks, the collection of used

blocks, and the queue of returned blocks. The data invariant, expressed in natural

language, is:

• No block will be marked as both unused and used.

808 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

• All the sets of blocks held in the queue will be subsets of the collection of

currently used blocks.

• No elements of the queue will contain the same block numbers.

• The collection of used and unused blocks will be the total collection of blocks

that make up files.

• The collection of unused blocks will have no duplicate block numbers.

• The collection of used blocks will have no duplicate block numbers.

Some of the operations associated with the data invariant are: add() a collection of

blocks to the end of the queue, removed a collection of used blocks from the front of

the queue and place them in the collection of unused blocks, and check!) whether the

queue of blocks is empty.

The precondition of the first operation is that the blocks to be added must be in

the collection of used blocks. The postcondition is that the collection of blocks is now

found at the end of the queue. The precondition of the second operation is that the

queue must have at least one item in it. The postcondition is that the blocks must be

added to the collection of unused blocks. The final operation—checking whether the

queue of returned blocks is empty—has no precondition. This means that the oper-

ation is always defined, regardless of what value the state is. The postcondition de-

livers the value true if the queue is empty andfalse otherwise.

In the examples noted in this section, we introduce the key concepts of formal spec-

ification. But we do so without emphasizing the mathematics that are required to make

the specification formal. In Section 28.2, we consider these mathematics.

28.2 Mathematical Preliminaries

To apply formal methods effectively, a software engineer must have a working

knowledge of the mathematical notation associated with sets and sequences and the

logical notation used in predicate calculus. The intent of the section is to provide a

brief introduction.. For a more detailed discussion the reader is urged to examine

books dedicated to these subjects (e.g., [W1L87], [GRI93], and [ROS95]).

28.2.1 Sets and Constructive Specification

A set is a collection of objects or elements and is used as a cornerstone of formal

methods. The elements contained within a set are unique (i.e., no duplicates are al-

lowed). Sets with a small number of elements are written within curly brackets

(braces) with the elements separated by commas. For example, the set

{C+ + ,
Smalltalk, Ada, COBOL, Java)

contains the names of five programming languages.

CHAPTER 28 FORMAL METHODS 809

^ What is

• constructive

set specification?

Knowledge of set oper-

ations is indispensable

when formal specifica-

tions ore developed.

Spend the time to

familiarize yourself

with each, if you

intend to apply formal

methods.

The order in which the elements appear within a set is immaterial. The number of

items in a set is known as its cardinality. The # operator returns a set's cardinality. For

example, the expression

#(A, B, C, D) = 4

implies that the cardinality operator has been applied to the set shown with a result

indicating the number of items in the set.

There are two ways of defining a set. A set may be defined by enumerating its el-

ements (this is the way in which the sets just noted have been defined). The second

approach is to create a constructive set specification. The general form of the mem-

bers of a set is specified using a Boolean expression. Constructive set specification

is preferable to enumeration because it enables a succinct definition of large sets. It

also explicitly defines the rule that was used in constructing the set. Consider the fol-

lowing constructive specification example:

(n : N l n < 3 • n)

This specification has three components, a signature, n -. N, a predicate n < 3, and a

term, n. The signature specifies the range of values that will be considered when

forming the set; the predicate (a Boolean expression) defines how the set is to be con-

stricted; and, finally, the term gives the general form of the item of the set. In the ex-

ample above, N stands for the natural numbers; therefore, natural numbers are to be

considered. The predicate indicates that only natural numbers less than 3 are to be

included; and the term specifies that each element of the set will be of the form n.

Therefore, this specification defines the set

(0 , 1 , 2)

When the form of the elements of a set is obvious, the term can be omitted. For ex-

ample, the preceding set could be specified as

(n : foJ i n < 3)

All the sets that have been described here have elements that are single items. Sets

can also be made from elements that are pairs, triples, and so on. For example, the

set specification

(x,y : N I x +y = 10 • (x,y
2
))

describes the set of pairs of natural numbers that have the form (x,y
2

) and where the

sum ofx andy is 10. This is the set

{(1,81), (2,64), (3, 49),...)

Obviously, a constructive set specification required to represent some component

of computer software can be considerably more complex than those noted here.

However, the basic form and structure remain the same.

810 PARI FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

28.2.2 Set Operators

A specialized symbology is used to represent set and logic operations. These sym-

bols must be understood by the software engineer who intends to apply formal

methods.

The e operator is used to indicate membership of a set. For example, the expression

xe X

has the value true ifx is a member of the setX and the valuefalse otherwise. For ex-

ample, the predicate

12 g(6, 1, 12, 22)

has the value true since 12 is a member of the set.

The opposite of the e operator is the e operator. The expression

xe X

has the value true ifx is not a member of the setX andfalse otherwise. For example,

the predicate

13 e (13, 1, 124, 22)

has the valuefalse.

The operators c, and c, take sets as their operands. The predicate

Acs'

has the value tive if the members of the set A are contained in the set B and has the

valuefalse otherwise. Thus, the predicate

(1, 2) C (4, 3, 1,2)

has the value true. However, the predicate

(HD1, LP4, RC5) C (HD1
,
RC2, HD3, LP1 , LP4, LP6)

has a value offalse because the element RC5 is not contained in the set to the right

of the operator.

The operator c is similar to c. However, if its operands are equal, it has the value

true. Thus, the value of the predicate

(HDl, LP4, RC5) C (HD1, RC2, HD3, LP1, LP4, 1.P6)

isfalse, and the predicate

(HDl, LP4, RC5) c (HDl, LP4, RC5)

is true.

CHAPTER 28 FORMAL METHODS 811

"Mathematical structures are among the most beautiful discoveries made by the human mind."

Douglas Hofstadter

A special set is the empty set 0. This corresponds to zero in normal mathematics.

The empty set has the property that it is a subset of every other set. Two useful iden-

tities involving the empty set are

0 U A = A and 0 Cl A = 0

for any set A, where u is known as the union operator, sometimes known as cup

;

n

is the intersection operator, sometimes known as cap.

The union operator takes two sets and forms a set that contains all the elements

in the set with duplicates eliminated. Thus, the result of the expression

(Filel
,
File2, Tax, Compiler} u {NewTax, D2, D3, File2)

is the set

(Filel, File2, Tax, Compiler, NewTax, D2, D3)

The intersection operator takes two sets and forms a set consisting of the common

elements in each set. Thus, the expression

(12, 4, 99, 1} n (I, 13, 12, 77}

results in the set (12, 1}.

The set difference operator, \, as the name suggests, forms a set by removing the

elements of its second operand from the elements of its first operand. Thus, the value

of the expression ..

(New, Old, TaxFile, SysParam) \ (Old, SysParam}

results in the set (New, TaxFile).

The value of the expression

(a, b, c, d) n (x, y}

will be the empty set 0. The operator always delivers a set; however, in this case

there are no common elements between its operands, so the resulting set will have

no elements.

The final operator is the cross product, x, sometimes known as the Cartesian prod-

uct. This has two operands which are sets of pairs. The result is a set of pairs where

each pair consists of an element taken from the first operand combined with an el-

ement from the second operand. An example of an expression involving the cross

product is

(1, 2} x (4, 5, 6}

The result of this expression is

((1,4), (1,5), (1.6), (2,4), (2, 5), (2, 6)}

812 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Notice that every element of the first operand is combined with every element of the

second operand.

A concept that is important for formal methods is that of a powerset. A powerset

of a set is the collection of subsets of that set. The symbol used for the powerset op-

erator in this chapter is P. It is a unary operator that, when applied to a set, returns

the set of subsets of its operand. For example,

P {1, 2, 3} = (0, (1), (2), 13), (1,2), (1,3), {2, 3), (1,2, 3))

since all the sets are subsets of (1 , 2, 3).

28.2.3 Logic Operators

Another important component of a formal method is logic: the algebra of true and

false expressions. The meaning of common logical operators is well understood by

every software engineer. However, the logic operators that are associated with com-

mon programming languages are written using readily available keyboard symbols.

The equivalent mathematical operators to these are

A and

V or

-i not

=> implies

Universal quantification is a way ofmaking a statement about the elements of a set

that is true for every member of the set. Universal quantification uses the symbol, V.

An example of its use is

V i, j: N • />/=» i
2 > j

2

which states that for every pair of values in the set of natural numbers, if / is greater

than
j, then i

2
is greater than j

2
.

28.2.4 Sequences

A sequence is a mathematical structure that models the fact that its elements are or-

dered. A sequence s is a set of pairs whose elements range from 1 to the highest-

number element. For example,

((1, Jones), (2, Wilson), (3, Shapiro), (4, Estavez))

is a sequence. The items that form the first elements of the pairs are collectively

known as the domain of the sequence, and the collection of second elements is

known as the range of the sequence. In this book, sequences are designated using

angle brackets. For example, the preceding sequence would normally be written as

(Jones, Wilson, Shapiro, Estavez).

Unlike sets, duplication in a sequence is allowed, and the ordering of a sequence

is important. Therefore,

CHAPTER 28 FORMAL METHODS 813

(Jones, Wilson, Shapiro) * (Jones, Shapiro, Wilson)

The empty sequence is represented as < >.

A number of sequence operators are used in formal specifications. Catenation, —

,

is a binary operator that forms a sequence constructed by adding its second operand

to the end of its first operand. For example,

<2,3,34, 1>— (12,33,34, 200).

results in the sequence (2, 3, 34, 1,12, 33, 34, 200).

Other operators that can be applied to sequences are head, tail, front, and last.

The operator head extracts the first element of a sequence; tail returns with the last

n - 1 elements in a sequence of length n; last extracts the final element in a se-

quence; and front returns with the first n - l elements in a sequence of length n.

For example,

head (2, 3, 34, 1, 99, 101) = 2

tail <2, 3, 34, 1,99, 101) = <3,34, 1,99, 101)

last <2, 3, 34, 1,99, 101)= 101

front (2, 3, 34, 1, 99, 101) = <2, 3, 34, 1,99)

Since a sequence is a set of pairs, all set operators described in Section 28.2.2 are

applicable. When a sequence is used in a state, it should be designated as such by

using the keyword seq. For example,

FileList : seq FILES

NoUsers

:

N

describes a state with two components: a sequence of files and a natural number.

28.3 Applying Mathematical Notationfor Formal
Specification

To illustrate the use of mathematical notation in the formal specification of a software

component, we revisit the block handler example presented in Section 28.1 .3. To re-

view, an important component of a computer's operating system maintains files that

have been created by users. The block handler maintains a reservoir of unused blocks

and will also keep track of blocks that are currently in use. When blocks are released

from a deleted file they are normally added to a queue of blocks waiting to be added

to the reservoir ofunused blocks. This has been depicted schematically in Figure 28.2.

^

A set named BLOCKS will consist of every block number. AllBlocks is a set of

blocks that lie between 1 and MaxBlocks. The state will be modeled by two sets and

a sequence. The two sets are used and free. Both contain blocks—the used set

4 If your recollection of the block handler example is hazy, please return to Section 28. 1 .3 to review

the data invariant, operations, preconditions and postconditions associated with the block handler.

814

How tan I

• represent

states and data

invariants using

the set and logic

operators that

have already been

introduced?

WebRef
Extensive information

on foiral methods con

be found ot

www.ofm.sbu.

ac.uk.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

contains the blocks that are currently used in files, and the free set contains blocks

that are available for new files. The sequence will contain sets of blocks that are

ready to be released from files that have been deleted. The state can be described as

used, free: P BLOCKS

BlockQueue: seq P BLOCKS

This is very much like the declaration of program variables. It states that used and

free will be sets of blocks and that BlockQueue will be a sequence, each element of

which will be a set of blocks. The data invariant can be written as

used n free
- 0 A

used ufree = AllBlocks A
V i: dom BlockQueue • BlockQueue i c used A
V /, /: dom BlockQueue •/§;'=> BlockQueue i n BlockQueue j = 0

The mathematical components of the data invariant match four of the bulleted,

natural-language components described earlier. The first line of the data invari-

ant states that there will be no common blocks in the used collection and free col-

lections of blocks. The second line states that the collection of used blocks and
free blocks will always be equal to the whole collection of blocks in the system.

The third line indicates the /th element in the block queue will always be a subset

of the used blocks. The final line states that, for any two elements of the block

queue that are not the same, there will be no common blocks in these two ele-

ments. The final two natural language components of the data invariant are im-

plemented by virtue of the fact that used and free are sets and therefore will not

contain duplicates.

The first operation we shall define is one that removes an element from the head of

the block queue. The precondition is that there must be at least one item in the queue:

#BlockQueue > 0,

The postcondition is that the head of the queue must be removed and placed in the

collection of free blocks and the queue adjusted to show the removal:

used' = used \ head BlockQueue A
free' = free u head BlockQueue A
BlockQueue" = tail BlockQueue

A convention used in many formal methods is that the value of a variable after an

operation is primed. Hence, the first component of the preceding expression states

that the new used blocks (used') will be equal to the old used blocks minus the blocks

that have been removed. The second component states that the new free blocks

free’) will be the old free blocks with the head of the block queue added to it. The

third component states that the new block queue will be equal to the tail of the old

value of the block queue; that is, all elements in the queue apart from the first one.

CHAPTER 28 FORMAL METHODS 815

A second operation adds a collection of blocks, Ablocks, to the block queue. The pre-

condition is that Ablocks is currently a set of used blocks:

Ablocks c used

The postcondition is that the set ofblocks is added to the end of the block queue, and

the set of used and free blocks remains unchanged:

BlockQueue' = BlockQueue — (Ablocks) A
used’ = used A
free

1 = free

There is no question that the mathematical specification of the block queue is con-

siderably more rigorous than a natural language narrative or a graphical model. The

additional rigor requires effort, but the benefits gained from improved consistency

and completeness can be justified for many types of applications.

28.4 Formal Specification Languages

A formal specification language is usually composed of three primary components:

(1) a syntax that defines the specific notation with which the specification is repre-

sented, (2) semantics to help define a "universe of objects" [WIN90] that will be used

to describe the system, and (3) a set ofrelations that define rules that indicate which

objects properly satisfy the specification.

The syntactic domain of a formal specification language is often based on a syn-

tax that is derived from standard set theory notation and predicate calculus. For ex-

ample, variables such as x,y, and z describe a set of objects that relate to a problem

(sometimes called the domain ofdiscourse) and are used in conjunction with the op-

erators described in Section 28.2. Although the syntax is usually symbolic, icons

(e.g., graphical symbols such as boxes, arrows, and circles) can also be used, if they

are unambiguous.

The semantic domain of a specification language indicates how the language rep-

resents system requirements. For example, a programming language has a set of

formal semantics that enables the software developer to specify algorithms that

transform input to output. A formal grammar (such as BNF) can be used to describe

the syntax of the programming language. However, a programming language does

not make a good specification language because it can represent only computable

functions. A specification language must have a semantic domain that is broader;

that is, the semantic domain of a specification language must be capable of ex-

pressing ideas such as, "For all x in an infinite set A, there exists ay in an infinite set

B such that the property P holds for x andy [W1N90], Other specification languages

apply semantics that enable the specification ofsystem behavior. For example, a syn-

tax and semantics can be developed to specify states and state transition, and

events, along with their effect on state transition, synchronization and timing.

^ How do I

• represent

pre- and post-

conditions?

816 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

It is possible to use different semantic abstractions to describe the same system in

different ways. We did this in a less formal fashion in Chapter 8. Classes, data, func-

tions, and behavior were each represented. Different modeling notation can be used

to represent the same system. The semantics of each representation provides com-

plementary views of the system. To illustrate this approach when formal methods are

used, assume that a formal specification language is used to describe the set of events

that cause a particular state to occur in a system. Another formal relation depicts all

functions that occur within a given state. The intersection of these two relations pro-

vides an indication of the events that will cause specific functions to occur.

A variety of formal specification languages are in use today. OCL [OMG03],

Z ([ISO02], [SPI88], [SPI92]), LARCH [GUT93], and VDM [JON91] are representative

formal specification languages that exhibit the characteristics noted previously. In

this chapter, we present a brief overview of OCL and Z.

28.5 Object Constraint Language (QCL) 5

Object Constraint Language (OCL) is a formal notation developed so that users ofUML

can add more precision to their specifications. All of the power of logic and discrete

mathematics is available in the language. However the designers ofOCL decided that

only ASCII characters (rather than conventional mathematical notation) should be

used in OCL statements. This makes the language more friendly to people who are

less mathematically inclined, and more easily processed by computer. But it also

makes OCL a little wordy in places.

28.5. 1 A Brief Overview of OCL Syntax and Semantics

WebRef
Detailed information

bout OCL can be

found at

www-3.ibm.csm/

software/

awdlools /library/

standards/

od.html.

To use OCL, a software engineer starts with one or more UML diagrams—most com-

monly class, state, or activity diagrams. To these, we add OCL expressions that state

facts about elements of the diagrams. These expressions are called constraints; any

implementation derived from the model must ensure each of the constraints always

remains true.

Like an object-oriented programming language, an OCL expression involves op-

erators operating on objects. However, the result of a complete expression must al-

ways be a Boolean, i.e. true or false. The objects can be instances of the OCL

Collection class, of which Set and Sequence are two subclasses.

The object self is the element of the UML diagram in the context ofwhich the OCL

expression is being evaluated. Other objects can be obtained by navigating using the

(dot) symbol from the self object. For example:

• If self is class C, with attribute a, then self.a evaluates to the object stored in a.

5 This section has been contributed by Professor Timothy Lethbridge ofThe University of Ottawa and

is presented here with permission.

CHAPTER 28 FORMAL METHODS 817

• If C has a one-to-many association called assoc to another class D, then

self.assoc evaluates to a Set whose elements are of type D.

• Finally (and a little more subtly), if D has attribute b, then the expression

self.assoc.b evaluates to the set of all the b's belonging to all D s,

OCL provides built-in operations implementing the mathematics described in Sec-

tion 28.2, and more. A small sample of these is presented in Table 28. 1

.

Tabu 28.1 SUMMARY OF KEY OCL NOTATION

OCL notation

x.y

c->ff)

ond, or, =, <>

p implies q

Meaning

Obtain the properly y of object x. A properly can be an

att ibute. the set of objects at the end of an assoc ration. the

result of evaluating an operation, or other things depending on

the type of UMl diagram if x is a Set. then y is applied to

every element of x, the results are collected into a new Set,

Aoply the built-in OCi operation f to Collection c itself |os

opposed to each of the objects in c). Examples of built-in

operations are listed below.

Logical and, logical or, equals, not-equcis.

True if either q is true or p is false

Sample of Operations on Collections (including Sets and Sequences

)

c->size|| The number of elements in Collection c,

True if c has no elements, false otherwise

True if every element of c2 is found in c I

.

True if no element of c2 is found n cl

True if boolexpr is true when applied to eveiy element of c. As

an element is being evaluated, it is bound to the variable eiem

which con be used in booiexor. This implements universa 1

quantification, discussed eorlier.

c- >forAll(etem I
,
elem2 I boolexpr) Same as above, except that boolexpr is evaluated for every

possible pair of elements taken from c. including coses where

the pair consists of the same element.

c->isUnique|elem I expr| True il expr evaluates to a different value when applied to

every element of c.

c— >isEmpty()

cl ->includesAll(c2|

cl — >exciucesA I(c2|

c->forAII(eiem I boolexpr)

Sample of Operations Specific to Sets

sl — >intersection(s2) The sel of those elements found in si ond also in s2.

si ->union|s2l The set of those elements found in either sl or s2

sl ->excludi.ng|x) The set sl with object x omitted

Sample Operation Specific to Sequences

seq— >fir$t() The object that is the first element in the sequence seq

818 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

28.5.2 An Example Using OCL

In this section, OCL is used to help formalize the specification of the block handler

example, introduced in Section 28. 1 .3. The first step is to develop a UML model. For

this example we start with the class diagram found in Figure 28.3. This diagram spec-

ifies many relationships among the objects involved; however we must add OCL ex-

pressions to ensure that implementers of the system know more precisely what they

must ensure remains true as the system runs.

The OCL expressions we will add correspond to the six parts of the invariant dis-

cussed in Section 28.1.3. For each, we will repeat the invariant in English and then

give the corresponding OCL expression. It is considered good practice to provide

English text along with the formal logic; doing so helps the reader to understand the

logic, and also helps reviewers to uncover mistakes, e g., situations where the Eng-

lish and the logic do not correspond.

1 . No block will be marked as both unused and used.

context BlookHandler inv:

(self.used >intersection(self.free}) — >isEmpty()

Note that each expression starts with the keyword context. This indicates the

element of the UML diagram that the expression constrains. Alternatively, the

software engineer could place the constraint directly on the UML diagram,

surrounded by braces (). The keyword self here refers to the instance of Block-

Handler; in the following, as is permissible in OCL, we will omit the self.

2. All the sets of blocks held in the queue will be subsets of the collection of

currently used blocks.

context BlookHandler inv:

blockQueue— >forAII(aBlock8et
|
used - >includesAII(aBlock8et))

Class diagram
lor a block

handler

CHAPTER 28 FORMAL METHODS 819

3. No elements of the queue will contain the same block numbers.

context BlookHandler inv:

blockQueue ->forAII(b!ock8etl, blockSet2
|

blockSetl <> blockSe<2 implies

blockgetl.elements.number >excludesAII(block8et2.elements.number))

The expression before implies is needed to ensure we ignore pairs where both

elements are the same block.

4. The collection of used blocks and blocks that are unused will be the total col-

lection of blocks that make up files.

context BlookHandler inv:

allBlocks = used - >union(free)

5. The collection of unused blocks will have no duplicate block numbers.

context BlockHandler inv:

free->i8Unique(aBlock
|
aBlock.number)

6. The collection of used blocks will have no duplicate block numbers.

context BlockHandler inv:

used - >isUnique(aBloek
|
aBlock.number)

OCL can also be used to specify preconditions and postconditions of operations. For

example, consider operations that remove and add sets of blocks to the queue. Note

that the notation x@pre indicates the object x as it existed prior to the operation; this

is opposite to mathematical notation discussed earlier, where it is the x after the op
eration that is specially designated (as x').

oontext BlockHandler::removeBlocks()

pre: blockQueue >$ize() >0

post: used = used@pre — blockQueue@pre- >firsf() and

free = free@pre - >union(blockQueue@pre->first()) and

blockQueue - blockQueue@pre- >exeluding(blockQueue@pre->first)

context BlockHandler: :addBlocks(aBlockSet :BlockSet)

pre: used- >inciude$AII(aBlock9et. elements)

post: (blockQueue.elements — blockQueue.elements@pre

- >append(aBlockGet))and

used = used@pre and

free = free@pre

OCL is a modeling language, but it has all of the attributes of a formal language. OCL
allows the expression of various constraints, pre- and postconditions, guards, and
other characteristics that relate to the objects represented in various UML models.

820 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

28.6 The Z Specification Langua.SE —
Z (properly pronounced as "zed") is a specification language that has evolved over the

past two decades to become widely used within the formal methods community. The

Z language applies typed sets, relations, and functions within the context of first-

order predicate logic to build schemas—a means for structuring a formal specification.

WebRef
Derailed infamotlon

obout the Z longuage

con be found at

www-users.cs.

york.ac.uk/

~suson/obs/

z.htm.

28.6. 1 A Brief Overview of Z Syntax and Semantics

Z specifications are organized as a set of schemas—a boxlike structure that intro-

duces variables and specifies the relationship between these variables. A schema is

essentially the formal specification analog of the programming language compo-

nent. In the same way that components are used to structure a system, schemas are

used to structure a formal specification.

A schema describes the stored data that a system accesses and alters. In the con-

text of Z, this is called the "state." This usage of the term state in Z is slightly differ-

ent from the use of the word in the rest of this book." In addition, the schema

identifies the operations that are applied to change state and the relationships that

occur within the system. The generic structure of a schema takes the form:

schemaName

declarations

invariant

where declarations identify the variables that comprise the system state and the in

variant imposes constraints on the manner in which the state can evolve. A sum-

mary of Z language notation is presented in Table 28.2.

28.6.2 An Example Using Z

In this section, we use the Z specification language to model the block handler ex-

ample, introduced earlier in this chapter. The following example of a schema de-

scribes the state of the block handler and the data invariant:

BlockHandler — —
used, free

:

P BLOCKS

BlockQueue : seq P BLOCKS

used n free - 0 A

6 Recall that in other chapters state has been used to identify an externally observable mode of be-

havior for a system.

CHAPTER 28 FORMAL METHODS 821

Table 28.2 SUMMARY OF Z NOTATION

Z notation is based on typed set theory and first-order logic. Z provides o construct, called a scheme, to

describe a specification's state space and operations. A schema groups variable declarations with a list

of predicates that constrain the possible value of a variable. In Z, the schema X is defined by the form

X

declarations

predicates

Global functions and constants ore defined by the form

declarations

predicates

The declaration gives the type of the function or constant, while the predicate gives it value. Only an
abbreviated set of Z symbols is presented in this table.

Sets:

S: PX
X 6 S

x s S

SCT
SuT
sn t

5 \ r

0
M
n
S F X

max |S)

S is declared as o set of Xs.

x is a member of 5.

x is not o member of S.

S is a subset of T: Every member of S is oiso in T.

The union of S and T: It contains every member of S or Tor both.

The intersection of S and T: It contains every member of both S and T.

The difference of S and T: It contains every member of S except those also in T

Empty set: It contains no members.

Singleton set: It contains just x.

The set of natural numbers 0, 1,2

S is declared as a finite set of Xs.

The maximum of the nonempty set of numbers S.

Functions:

iX>+> Y

dom f

ran f

f© {x »—
> y}

M <L f

f is declared as a partial injection from X to Y
The domain of f: the set of values x for which fjxj is defined.

The range of ft the set of values taken by f(x| as x varies over the domain of !.

A function that agrees with f except that x is mapped to y
A function like f, except that x is removed from its domain,

Logic:

PAG P and Q: It is true if both P and Q ore true.

P =» Q P implies Q: It is true if either Q is true or P is false.

9 S' = 8 S No components of schema S change in an operation

used u free = AllBlocks A
Vi dom BlockQueue • BlockQueue i c used A
Vi, j: dom BlockQueue •/!/=> BlockQueue i n BlockQueue j = 0

As we have noted, the schema consists of two parts. The part above the central line

represents the variables of the state, while the part below the central line describes

822 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

the data invariant. Whenever the schema specifies operations that change the state,

it is preceded bv the A symbol. The following example of a schema describes the op-

eration that removes an element from the block queue:

RemoveBlocks —
A BlockHandler

#BlockQueue > 0,

used' - used \ head BlockQueue A

free = free u head BlockQueue A
BlockQueue' = tail BlockQueue

The inclusion of A BlockHandler results in all variables that make up the state being

available for the RemoveBlocks schema and ensures that the data invariant will hold

before and after the operation has been executed.

The second operation, which adds a collection of blocks to the end of the queue,

is represented as

AddBlocks —
A BlockHandler

Ablocks? : BLOCKS

Ablocks? c used

BlockQueue' = BlockQueue (Ablocks?) A

used' = used A
free' = free

By convention in Z, an input variable that is read but does not form part of the state

is terminated by a question mark. Thus, Ablocks?, which acts as an input parametei,

is terminated by a question mark.

Formal Methods

Objective: The objective of formal methods

tools is to assist a software team in specification

and correctness verification.

V

Software Tools

Mechanics: Tools mechanics vary. In general, tools assist

in specification and automated correctness proving,

usually by defining a specialized language for theorem

proving. Many tools are not commercialized and have

been developed for research purposes.

CHAPTER 28 FORMAL METHODS 823

r
Representative Tools7

ACL2, developed at the University of Texas

(www.cs.utexas.edu/users/moore/ad2/), is "both a

programming language in which you can model

computer systems and a tool to help you prove

properties of those models
"

EVES, developed by ORA Canada

(www.ora.on.ca/eves.html), implements the Verdi

longuage for formal specification and an automated

proof generator.

An extensive list of over 90 formal methods tools can be

found at http://www.afm.sbu.ac.uk/.

A

2&.Z The Ten Commandments of Formal Methods

The decision to use formal methods in the real world is not one that is taken lightly.

Bowan and Hinchley [BOW95] have coined "the ten commandments of formal meth-

ods" as a guide for those who are about to apply this important software engineer-

ing approach.8

I Thou shalt choose the appropriate notation

.

To choose effectively from the

wide array of formal specification languages, a software engineer should

consider language vocabulary', application type to be specified, and breadth

of usage of the language.

2. Thou shaltformalize but not overformalize. It is generally not necessary to ap-

ply formal methods to every aspect of a major system. Those components
that are safety critical are first choices, followed by components whose t’ail-

.ure cannot be tolerated (for business reasons).

3. Thou shalt estimate costs. Formal methods have high startup costs. Training of

staff, acquisition of support tools, and use of contract consultants result in

high first-time costs. These costs must be considered when examining the re-

turn on investment associated with formal methods.

4. Thou shalt have aformal methods guru on call. Expert training and on-going

consulting are essential for success when formal methods are used for the

first time.

5. Thou shalt not abandon thy traditional development methods. It is possible,

and in many cases desirable, to integrate formal methods with conven-

tional or object-oriented methods (Part 2 of this book). Each has strengths

and weaknesses. A combination, if properly applied, can produce excellent

results.9

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category

In most cases, tool names are trademarked by their respective developers.

8 This treatment is a much-abbreviated version of [BOW9SJ

,

9 Cleanroom software engineering (Chapter 29) is an example of an integrated approach that uses

formal methods and more conventional development methods

824 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

6. Thou shalt document sufficiently. Formal methods provide a concise, unam-

biguous, and consistent method for documenting system requirements.

However, it is recommended that a natural language commentary accom-

pany the formal specification to serve as a mechanism for reinforcing the

reader's understanding of the system.

7 . Thou shalt not compromise thy quality standards. "There is nothing magical

about formal methods," IBOW95] and for this reason, other SQA activities

(Chapter 26) must continue to be applied as systems are developed.

8. Thou shalt not be dogmatic. A software engineer must recognize that formal

methods are not a guarantee of correctness. It is possible (some would say,

likely) that the final system, even when developed using formal methods,

may have small omissions, minor bugs, and other attributes that do not meet

expectations.

9. Thou shalt test, test, and test again. The importance of software testing has

been discussed in Chapters 13 and 14. Formal methods do not absolve the

software engineer from the need to conduct well-planned, thorough tests.

1

0.

Thou shalt reuse. Over the long term, the only rational way to reduce soft-

ware costs and increase software quality is through reuse (Chapter 30). For-

mal methods do not change this reality. In fact, it may be that formal

methods are an appropriate approach when components for reuse libraries

are to be created.

28.8 Formal Methods—The Road Ahead

Although formal, mathematically based specification techniques are not used widely

in the industry, they do offer substantial advantages over less formal techniques.

Liskov and Bersins [LIS86] summarize these in the following way:

Formal specifications can be studied mathematically while iniormal specifications can-

not For example, a correct program can be proved to meet its specifications, or two al-

ternative sets of. specifications can be proved equivalent . . . Certain forms of

incompleteness or inconsistency can be detected automatically.

In addition, formal specification removes ambiguity and encourages greater rigor in

the early stages of the software engineering process.

But problems remain. Formal specification focuses primarily on function and

data. Timing, control, and behavioral aspects of a problem are more difficult to

represent. In addition, some elements of a problem (e g., human/machine inter-

faces) are better specified using graphical techniques or prototypes. Finally, spec-

ification using formal methods is more difficult to learn than methods that

incorporate UML notation and represents a significant "culture shock" for some

software practitioners.

CHAPTER 28 FORMAL METHODS 825

28.9 Summary

Formal methods provide a foundation for specification environments leading to

analysis models that are more complete, consistent, and unambiguous than those

produced using conventional or object-oriented methods. The descriptive facilities

of set theory and logic notation enable a software engineer to create a clear state-

ment of facts (requirements).

The underlying concepts that govern formal methods are (1) the data invariant, a

condition true throughout the execution of the system that contains a collection of

data; (2) the state, a representation of a system's externally observable mode of be-

havior, or (in Z and related languages) the stored data that a system accesses and al-

ters; and (3) the operation, an action that takes place in a system and reads or writes

data to a state. An operation is associated with two conditions: a precondition and

a postcondition.

Discrete mathematics—the notation and heuristics associated with sets and con-

structive specification, set operators, logic operators, and sequences—forms the basis

of formal methods. Discrete mathematics is implemented in the context of formal

specification languages, such as OCL and Z. These formal specification languages

have both syntactic and semantic domains. The syntactic domain uses a symbology

that is closely aligned with the notation of sets and predicate calculus. The semantic

domain enables the language to express requirements in a concise manner.

A decision to use formal methods should consider startup costs as well as the cul-

tural changes associated with a radically different technology. In most instances, for-

mal methods have highest payoff for safety-critical and business-critical systems.

RErERE

[BOW95] Bowan, J. P„ and M. G. Hinchley, "Ten Commandments of Formal Methods," Computer,

vol. 28, no. 4, April 1995.

[GRI93] Gries, D.
,
and F. B. Schneider, A LogicalApproach to Discrete Math, Springer-Verlag, 1 993.

[GUT93] Gutlag, J. V., and J. J. Homing, Larch: Languages and Tools for Formal Specification,

Springer-Verlag, 1993.

[HAL90) Hall. A., “Seven Myths of Formal Methods," IEEE Software, September 1 990, pp. 1 1-20.

[HOR85] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International, 1985.

[1SO02] Z Formal Specification Notation—Syntax, Type System and Semantics, ISO/1EC

1 3568:2002, lntl. Standards Organization, 2002.

[JON9 i) Jones, C. B .
Systematic Software Development Using VDM, 2nd ed., Prentice-Hall, 1991.

[LIS86] Liskov, B. H„ and V. Berzins, "An Appraisal of Program Specifications," in Software Spec

ification Techniques, N. Gehani and A. T. McKittrick (eds.), Addison-Wesley, 1986, p. 3.

[MAR94| Marciniak, J. J. (ed). Encyclopedia ofSoftware Engineering, Wiley, 1994.

[OMG03] "Object Constraint Language Specification," in Unified Modeling Language, v2.0, Ob-

ject Management Group, September 2003, download from www.omg.org.

IROS95] Rosen, K. H., Discrete Mathematics and Its Applications, 3rd ed., McGraw-Hill, 1995.

[SP188] Spivey, J. M„ Understanding Z: A Specification Language and Its Formal Semantics, Cam-

bridge University Press, 1988.

[SP192] Spivey, J. M„ The Z Notation: A Reference Manual, Prentice-Hall, 1992.

826 PART FIVE ADVANCED TOPICS !N SOFTWARE ENGINEERING

[WIL87] Wiltala, S. A., Discrete Mathematics: A Unified Approach, McGraw-Hill, 1987.
[WIN90] Wing, j. M., "A Specifier's' Introduction to Formal Methods," Computer, vol. 23, no. 9,

September 1990, pp. 8-24.

[YOU94] Yourdon, E., "Formal Methods," Guerrilla Programmer, Cutter Information Corp., Octo-
ber 1994.

Problems and Points to Ponder
28.

1

. Using the OCL or Z notation presented in Tables 28. 1 or 28.2, select some part of the Safe-
Home security system described earlier in this book and attempt to specify it with OCL or z.

28 .2 . Develop a mathematical description for the state and data invariant for Problem 28.4. Re-
fine this description in the OCL or Z specification language.

28 .3 . You have been assigned to a team that is developing software for a fax modem. Your job is

to develop the "phone book" portion of the application. The phone book function enables up to

MaxNamcs people to be stored along with associated company names, fax numbers, and other re-
lated information. Using natural language, define

a. The data invariant.

b. The state.

c. The operations that are likely,

28 .4 . Develop a mathematical description for the state and data invariant for Problem 28.3. Re-
fine this description in the OCL or Z specification language.

28 .5 . You have been assigned to a software team that is developing software, called Memory-
Doubler, that provides greater apparent memory for a PC than physical memory. This is accom-
plished by identifying, collecting, and reassigning blocks of memory that have been assigned to
an existing application but are not being used. The unused blocks are reassigned to applications
that require additional memory. Making appropriate assumptions and using natural language,
define

a. The data invariant.

b. The state.

c. The operations that are likely.

28 .6 . Develop a constructive specification for a set that contains tuples of natural numbers of
the form (x,y, z2

) such that the sum ofx andy equals z.

28 . 7 . Attempt to develop an expression using logic and set operators for the following state-
ment: "For all x andj> ifx is the parent of_y andy is the parent ofz, then x is the grandparent of
z. Everyone has a parent." Hint: Use the function P(x, y) and G(x, z) to represent parent and
grandparent functions, respectively.

28 .8 . Develop a constructive set specification of the set of pairs where the first element of each
pair is the sum of two nonzero natural numbers and the second element is the difference be-
tween the same numbers. Both numbers should be between 100 and 200 inclusively.

28 .9 . The installer for a PC-based application first determines whether an acceptable set of
hardware and system resources is present, it checks the hardware configuration to determine
whether various devices (of many possible devices) are present, and determines whether spe-
cific versions of system software and drivers are already installed What set operator could be
used to accomplish this? Provide an example in this context.

28 . 10 . Review the types of deficiencies associated with less formal approaches to software en-
gineering in Section 28. 1 . 1 . Provide three examples of each from your own experience.

28. 1

1

. The benefits of mathematics as a specification mechanism have been discussed at
length in this chapter. Is there a downside?

CHAPTER 28 FORMAL METHODS 827

28.12. Using one or more ofthe information sources noted in the references to this chapter or

in Further Readings and Information Sources, develop a half-hour presentation on the basic syn-

tax and semantics of a formal specification language other than OCL or Z.

Further Readings and Information Sources

In addition to the books used as references in this chapter, a fairly large number ofbooks on for-

mal methods topics have been published over the past decade. A listing of some of the more

useful offerings follows:

Bowan, Formal Specification and Documentation using Z. A Case Study Approach. Interna

tional Thomson Computer Press, 1996.

Casey, C A Programming Approach to Formal Methods McGraw-Hill, 2000.

Clark. T„ et al, (eds.), Object Modeling with OCL, Springer-Verlag, 2002.

Cooper, D., and R. Barden, Z in Practice, Prentice-Hall, 1995.

Craigen, D S Gerhart and T. Ralston, industrial Application ofFormal Methods to Model, De-

sign and Analyze Computer Systems, Noyes Data Corp., 1995.

Harry, A., Formal Methods Fact File: \/DM and Z, Wiley, 1997.

Hinchley, M., and J. Bowan, Applications ofFormal Methods, Prentice-Hall, 1 995.

Hinchiey, M., and J. Bowan. industrial Strength Formal Methods, Academic Press, 1997.

Hussmann, H„ Formal Foundationsfor Software Engineering Methods, Springer-Verlag, 1997.

jacky, J., The Way ofZ: Practical Programming with Formal Methods, Cambridge University

Press, 1997.

Monin, F„ and M. Hinchley, Understanding Formal Methods, Springer-Verlag, 2005.

Rann, D., J. Turner, and J. Whitworth, Z: A Beginners Guide, Chapman and Hall, 1994.

Ratcliff, B„ Introducing Specification Using Z. A Practical Case Study Approach, McGraw-Hill,

1994.

Sheppard, D., An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995.

Warmer, J„ and A. Kleppe, Object Constraint Language, Addison-Wesley, 1998.

Dean {Essence ofDiscrete Mathematics, Prentice-Hail, 1996), Gries and Schneider [GR193], and

Upschuitz and Upson {2000 Solved Problems in Discrete Mathematics, McGraw-Hill, 1991) pre-

sent useful information for those who must learn more about the mathematical underpinnings

of forma! methods

A wide variety ofinformation sources on formal methods is available on the internet. An up-

to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

29 Cleanroom Software
Engineering

Key
Concepts
bl«k-box spec

box structure

deonroom strategy

certificotion

dear-box spec

design refinement

functional

specification

proof of correctness

state-box spec

statistical use

testing

subproofs

verification

T
he integrated use of conventional software engineering modeling (and

possibly formal methods), program verification (correctness proofs), and
statistical SQA have been combined into a technique that can lead to ex-

tremely high-quality software. Cleanroom software engineering is an approach that

emphasizes the need to build correctness into software as it is being developed.

Instead of the classic analysis, design, code, test, and debug cycle, the cleanroom
approach suggests a different point of view |LIN94J:

The philosophy behind cleanroom software engineering is to avoid dependence on
costly defect removal processes by writing code increments right the first time and

verifying their correctness before testing, its process model incorporates the statisti-

cal quality certification of code increments as they accumulate into a system.

In many ways, the cleanroom approach elevates software engineering to an-
other level. Like the formal methods presented in Chapter 28, the cleanroom
process emphasizes rigor in specification and design, and formal verification of
each design element using correctness proofs that are mathematically based. Ex-

tending the approach taken in formal methods, the cleanroom approach also em-
phasizes techniques for statistical quality control, including testing that is based
on the anticipated use of the software by customers.

When software fails in the real world, immediate and long-term hazards abound.
The hazards can be related to human safety, economic loss, or effective operation

of business and societal infrastructure. Cleanroom software engineering is a process

model that removes defects before they can precipitate serious hazards.

What is it? How many times have

you heard someone say, "Do it right

the first time"? That's the overriding

philosophy of cleanroom software

engineering—a process that emphasizes mathe-
matical verification of correctness before pro-

gram construction commences and certification

of software reliability as part of the testing activ-

ity. The bottom line is extremely low failure rates

that would be difficult or impossible to achieve

using less formal methods.

Who does it? A specially trained software

engineer.

Why is it important? Mistakes create rework.

Rework takes time and increases costs. Wouldn't
it be nice if we could dramatically reduce the

number of mistakes (bugs) introduced as the

software is designed and built? That's the prem-
ise of cleanroom software engineering.

What are the steps? Analysis and design mod-
els are created using box structure representation.

A "box" encapsulates the system (or some aspect

of the system) at a specific level of abstraction.

Correctness verification is applied once the box
structure design is complete. Once correctness has

been verified for each box structure, statistical

828

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 829

usage testing commences. The software is tested

by defining a set of usage scenarios, determining

the probability of use for each scenario, and then

defining random tests that conform to the proba-

bilities. The error records that result are analyzed

to enable mathematical computation of projected

reliability for the software component.

What is the work product? Black-box, state-

box, and dear-box specifications are devel-

oped. The results of formal correctness proofs

and statistical use tests are recorded.

How do I ensure that I've done it right?

Formal proof of correctness is applied to the box

structure specification. Statistical use testing ex-

ercises usage scenarios to ensure that errors in

user functionality are uncovered and corrected.

Test data are used to provide an indication of

software reliability.

29.1 The Cleawrqom Approach

The philosophy of the "cleanroom" in hardware fabrication technologies is really

quite simple: It is cost- and time -effective to establish a fabrication approach that pre-

cludes the introduction ofproduct defects. Rather than fabricating a product and then

working to remove defects, the cleanroom approach demands the discipline required

to eliminate errors in specification and design and then fabricate in a "clean" manner.

The cleanroom philosophy was first proposed for software engineering by Mills,

Dyer, and Unger [MILS 71 during the 1980s. Although early experiences with this dis-

ciplined approach to software work showed significant promise [HAU94], it has not

gained widespread usage. Henderson [HEN95] suggests three possible reasons:

1 . A belief that the cleanroom methodology is too theoretical, too mathematical, and too

radical for use in real software development.

2. It advocates no unit testing by developers but instead replaces it with correctness ver-

ification and statistical quality control—concepts that represent a major departure

from the way most software is developed today.

3. The maturity of the software development industry. The use of cleanroom processes

requires rigorous application of defined processes in all life cycle phases. Since much

of the industry continues operating at relatively low levels of process maturity, soft-

ware engineers have not been ready to apply cleanroom techniques

Despite elements of truth in each of these concerns, the potential benefits of clean-

room software engineering far outweigh the investment required to overcome the

cultural resistance that is at the core of these concerns.

"The only way for errors to occur in o program is by being put there by the author. No other mechanisms are known

. , . Right practice oims at preventing insertion of errors and, failing that, removing them before testing or any other

running of the program."

Harlan Mills

830

^ What are the

• major tasks

conducted as part

of deanroom

software

engineering?

The cleanroom
process model

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

29. 1 . 1 The Cleanroom Strategy

The cleanroom approach makes use of a specialized version of the incremental

process model (Chapter 3). A "pipeline of software increments" [L1N94] is developed

by small independent software teams. As each increment is certified, it is integrated

into the whole. Hence, functionality of the system grows with time.

The sequence of cleanroom tasks for each increment is illustrated in Figure 29. 1

.

Overall system or product requirements are developed using the system engineering

methods discussed in Chapter 6. Once functionality has been assigned to the soft-

ware element of the system, the pipeline of cleanroom increments is initiated. The
following tasks occur:

Increment planning. A project plan that adopts the incremental strategy is de-

veloped. The functionality of each increment, its projected size, and a cleanroom

development schedule are created. Special care must be taken to ensure that certi-

fied increments will be integrated in a timely manner.

Requirements gathering. Using techniques similar to those introduced in

Chapter 7, a more-detailed description of customer-level requirements (for each in-

crement) is developed.

Box structure specification. A specification method that makes use of box

structures [HEV93] is used to describe the functional specification. Conforming to

Increment 1

SE — system engineering

RG — requirements gathering

BSS — box structure specification

FD — formal design

CV— correctness verification

CG — code generation

Cl — code inspection

SUT — statistical use testing

C — certification

TP— test planning

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 831

WebRef
An excellent source

of informction end

resources for

cieonroom software

engineering con be

found at

www.deansoft.

com.

Cleanroom emphasizes

tests that exercise the

way software is really

used. Usetoses

provide input to the

test planning process.

the operational analysis principles discussed in Chapters 5 and 7, box structures

"isolate and separate the creative definition of behavior, data, and procedures at

each level of refinement."

Formal design. Using the box structure approach, cleanroom design is a natu-

ral and seamless extension of specification. Although it is possible to make a clear

distinction between the two activities, specifications (called black boxes) are itera-

tively refined (within an increment) to become analogous to architectural and

component-level designs (called state boxes and dear boxes, respectively).

Correctness verification. The cleanroom team conducts a series of rigorous cor-

rectness verification activities on the design and then the code. Verification (Sections

29.3 and 294) begins with the highest-level box structure (specification) and moves

toward design detail and code. The first level of correctness verification occurs by ap-

plying a set of "correctness questions" [L1N88]. If these do not demonstrate that the

specification is correct, more formal (mathematical) methods for verification are used.

Code generation, inspection, and verification. The box structure specifica-

tions, represented in a specialized language, are translated into the appropriate pro-

gramming language. Standard walkthrough or inspection techniques (Chapter 26)

are then used to ensure semantic conformance of the code and box structures and

syntactic correctness of the code. Then correctness verification is conducted for the

source code.

'Cleanroom software engineering achieves statistical quality control over software development by strictly separating

the design process from the testing process in a pipeline of incremental software development.”

Harlan Mills

Statistical test planning. The projected usage of the software is analyzed and

a suite of test cases that exercise a "probability distribution" of usage is planned

and designed (Section 29.4). Referring to Figure 29.1
,
this cleanroom activity is

conducted in parallel with specification, verification, and code generation.

Statistical use testing. Recalling that exhaustive testing of computer software

is impossible (Chapter 14), it is always necessary to design a finite number of test

cases. Statistical use techniques [POO88] execute a series of tests derived from a

statistical sample (the probability distribution noted earlier) of all possible program

executions by all users from a targeted population (Section 29.4).

Certification. Once verification, inspection, and use testing have been completed

(and all errors are corrected), the increment is certified as ready for integration.

Like other software process models discussed elsewhere in this book, the clean-

room process relies heavily on the need to produce high-quality analysis and de-

sign models. As we will see later in this chapter, box structure notation is simply

another way for a software engineer to represent requirements and design. The

832 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

real distinction of the cleanroom approach is that formal verification is applied to

engineering models.

29.1.2 What Makes Cleanroom Different?

Dyer [DYE92] alludes to the differences of the cleanroom approach when he defines

the process:

Cleanroom represents the first practical attempt at putting the software development

process under statistical quality control with a well-defined strategy for continuous

process improvement. To reach this goal, a cleanroom unique life cycle was defined

which focused on mathematics based software engineering for correct software designs

and on statistics-based software testing for certification of software reliability.

POINT
The most important

distinguishing

chorocteristics of

cleanroom ore proof of

correctness and

statistical use testing.

Cleanroom software engineering differs from the conventional and object-oriented

software engineering methods because:

1 . It makes explicit use of statistical quality control.

2 . It verifies design specifications using a mathematically based proof of cor-

rectness.

3. It implements testing techniques that have a high likelihood of uncovering

high-impact errors.

Obviously, the cleanroom approach applies most, if not all, of the basic software en-

gineering principles and concepts presented throughout this book. Good analysis and

design procedures are essential if high quality is to result. But cleanroom engineering

diverges from conventional software practices by deemphasizing (some would say,

eliminating) the role of unit testing and debugging and dramatically reducing (or elim-

inating) the amount of testing performed by the developer of the software. 1

In conventional software development, errors are accepted as a fact of life. Be-

cause errors are deemed to be inevitable, each program component should be unit

tested (to uncover errors) and then debugged (to remove errors). When the software

is finally released, field use uncovers still more defects and another test and debug

cycle begins. The rework associated with these activities is costly and time consum-

ing. Worse, it can be degenerative—error correction can (inadvertently) lead to the

introduction of still more errors.

"It's a funny thing about life: If you refuse to accept anything but the best, you may very often get it."

W. Somerset Maugham

In cleanroom software engineering, unit testing and debugging are replaced by

correctness verification and statistically based testing. These activities, coupled with

the record keeping necessary for continuous improvement, make the cleanroom ap-

proach unique.

1 Testing is conducted by an independent testing team.

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 833

29.2 Functional Specificaton

Regardless of the analysis method that is chosen, the operational analysis princi-

ples presented in Chapter 7 apply. Data, function, and behavior are modeled. The

resultant models must be partitioned (refined) to provide increasingly greater de-

tail. The overall objective is to move from a specification (or model) that captures

the essence of a problem to a specification that provides substantial implementa-

tion detail..

Cleanroom software engineering complies with the operational analysis princi-

ples by using a method called box structure specification. A "box" encapsulates the

system (or some aspect of the system) at some level of detail. Through a process of

elaboration or stepwise refinement, boxes are refined into a hierarchy where each

box has referential transparency. That is, "the information content of each box spec-

ification is sufficient to define its refinement, without depending on the implemen-

tation of any other box" [LIN94], This enables the analyst to partition a system

hierarchically, moving from essential representation at the top to implementation-

specific detail at the bottom. Three types of boxes are used:

How is

• refinement

accomplished os

part of a box

structure

specification?

Black box. The black box specifies the behavior of a system or a part of a .sys-

tem. The system (or part) responds to specific stimuli (events) by applying a set of

transition rules that map the stimulus into a response.

State box. The state box encapsulates state data and services (operations) in a

manner that is analogous to objects. In this specification view, inputs to the state

box (stimuli) and outputs (responses) are represented. The state box also repre-

sents the "stimulus history" of the black box, that is, the data encapsulated in the

state box that must be retained between the transitions implied.

Clear box. The transition functions that are implied by the state box are de-

fined in the clear box. Stated simply, a clear box contains the procedural design for

the state box.

%
POINT

Box structure

refinement and

correctness verification

occur simultaneously.

Figure 29.2 illustrates the refinement approach using box structure specification.

A black box (BB,) defines responses for a complete set of stimuli. BB, can be refined

into a set ofblack boxes, BB,
,
to BB, „, each of which addresses a class of behavior.

Refinement continues until a cohesive class of behavior is identified (e.g., BB, u). A
state box (SB,

, ,) is then defined for the black box (BB,
,

,). In this case, SB,.,., con-

tains all data and services required to implement the behavior defined by BB,
, ,

Fi-

nally, SB,
1

1

is refined into clear boxes (CB, .,.,.„) and procedural design details are

specified.

As each of these refinement steps occurs, verification of correctness also occurs.

State-box specifications are verified to ensure that each conforms to the behavior

defined by the parent black-box specification. Similarly, clear-box specifications are

verified against the parent state box.

834 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Box structure

refinement

A black-box

specification

It should be noted that specification methods based on languages such as OCL or Z

(Chapter 28) can be used in conjunction with the box structure specification approach.

The only requirement is that each level of specification can be formally verified.

29.2.1 Black-Box Specification

A black-box specification describes an abstraction, stimuli, and response using the

notation shown in Figure 29.3 [MIL88]. The function/is applied to a sequence, S', of

inputs (stimuli), S, and transforms them into an output (response), R. For simple soft-

ware components,/may be a mathematical function, but in general,/is described

using natural language (ora formal specification language).

Many of the concepts introduced for object-oriented systems are also applicable

for the black box. Data abstractions and the operations that manipulate those ab-

stractions are encapsulated by the black box. Like a class hierarchy, the black box

specification can exhibit usage hierarchies in which low-level boxes inherit the prop-

erties of those boxes higher in the tree structure.

CHAPTER 29 CLEANR00M SOFTWARE ENGINEERING 835

A state-box

specification

29.2.2 State-Box Specification

The state box is "a simple generalization of a state machine" [MIL88]. Recalling the

discussion of behavioral modeling and state diagrams in Chapter 8, a state is some
observable mode of system behavior. As processing occurs, a system responds to

events (stimuli) by making a transition from the current state to some new state. As
the transition is made, an action may occur. The state box uses a data abstraction to

determine the transition to the next state and the action (response) that will occur as

a consequence of the transition.

Referring to Figure 29.4, the state box incorporates a black box. The stimulus, S,

that is input to the black box arrives from some external source and a set of internal

system states, I Mills [M1L88] provides a mathematical description of the function,

f of the black box contained within the state box:

g : s* X r* -9 R X T

where g is a subfunction that is tied to a specific state, t. when considered collec-

tively, the state-subfunction pairs (f, °) define the black box function/

29.2.3 Clear-Box Specification

The clear-box specification is closely aligned with procedural design and structured

programming (Chapter 1 1). In essence, the subfunction g within the state box is re-

placed by the structured programming constructs that implement g.

As an example, consider the clear box shown in Figure 29.5. The black box, g,

shown in Figure 29.4, is replaced by a sequence construct that incorporates a condi-

tional. These constructs, in turn, can be refined into lower-level clear boxes as step-

wise refinement proceeds.

It is important to note that the procedural specification described in the clear-box

hierarchy can be proved correct. This topic is considered in the next section.

836 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

A clear-box

specification

29.3 Cleanroom Design

The design approach used in cleanroom software engineering makes heavy use of

the structured programming philosophy. But in this case, structured programming is

applied far more rigorously.

Basic processing functions (described during earlier refinements of the specifica-

tion) are refined using a "stepwise expansion of mathematical functions into struc-

tures of logical connectives [e.g., if-chen-else] and subfunctions, where the expansion

[isj carried out until all identified subfunctions could be directly stated in the pro-

gramming language used for implementation'
1

[DYE92],

The structured programming approach can be used effectively to refine function,

but what about data design? Here a number of fundamental design concepts (Chap-

ters 5 and 9) come into play. Program data are encapsulated as a set of abstractions

that are serviced by subfunctions. The concepts of data encapsulation, information

hiding, and data typing are used to create the data design.

7 What

* conditions

are applied to

prove structured

constructs

correct?

29.3. 1 Design Refinement and Verification

Each clear-box specification represents the design of a procedure (subfunction) re-

quired to accomplish a state box transition. With the clear box, the structured pro-

gramming constructs and stepwise refinement are used as illustrated in Figure 29.6.

A program function,^ is refined into a sequence of subfunctions g and h. These in

turn are refined into conditional constructs (if-lhen-else and do-while). Further re-

finement illustrates continuing logical refinement.

At each level of refinement, the cleanroom team2 performs a formal correctness

verification. To accomplish this, a set of generic correctness conditions are attached

2 Because the entire team is involved in the verification process, it is less likely that an error will be

made in conducting the verification itself.

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 837

to the structured programming constructs. If a function/is expanded into a sequence

§ and h, the correctness condition for all input to/is

• Does g followed by h do/?

When a function p is refined into a conditional of the form, if <c> then q, else r, the

correctness condition for all input to p is

Ifyou limit yourself to

just Ifie structured

constructs os you

develop a procedural

design, proof of

correctness is straight-

forward. If you violate

the constructs, correct-

ness proofs are difficult

or impossible.

• Whenever condition <c> is true, does q do p; and whenever <c> is false,

does r do p?

When function m is refined as a loop, the correctness conditions for all input to m are

• Is termination guaranteed?

• Whenever <c> is true, does n followed by m do m; and whenever <c> is

false, does skipping the loop still do m?

Each time a clear box is refined to the next level of detail, these correctness condi-

tions are applied.

It is important to note that the use of the structured programming constructs con-

strains the number of correctness tests that must be conducted. A single condition

838 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Computing the

integer part of

a square root

[UN79]

is checked for sequences; two conditions are tested for if-then-else, and three condi-

tions are verified for loops.

To illustrate correctness verification for a procedural design, we use a simple ex-

ample first introduced by Linger, Mills, and Witt [UN79]. The intent is to design and

verify a small program that finds the integer part.y, of a square root of a given inte-

ger, x. The procedural design is represented using the flowchart in Figure 29.7.

To verify the correctness of this design, we must define entry and exit conditions

as noted in Figure 29.8. The entry condition notes that x must be greater than or

equal to 0. The exit condition requires that x remain unchanged and thaty satisfy the

expression noted in the figure. To prove the design correct, it is necessary to prove

the conditions init, loop, cone, yes, and exit shown in Figure 29.8 are true in all cases.

These are sometimes called subproojs.

&
POINT

To prove o design

correct, you must first

identify oil conditions

ond then prove thot

eoch tokes on the

appropriate Boolean

volue. These ore colled

subprnk.

1 . The condition init demands that [x a 0 andy = 0] . Based on the requirements

of the problem, the entry condition is assumed correct.
3 Therefore, the first

part of the init condition, x a 0, is satisfied. Referring to the flowchart, the

statement immediately preceding the init condition, setsy = 0. Therefore, the

second part of the init condition is also satisfied. Hence, init is true.

2. The loop condition may be encountered in one of two ways: (1) directly from

init (in this case, the loop condition is satisfied directly) or via control flow

that passes through the condition cont. Since the coni condition is identical to

the loop condition, loop is true regardless of the flow path that leads to it.

3 A negative value for the square root has no meaning in this context.

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 839

Proving the

design correct

[LIN79]

3. The cont condition is encountered only after the value ofy is incremented by

1. In addition, the control flow path that leads to cont can be invoked only if

theyes condition is also true. Hence, if (y + l)
2 s x, it follows thaty2 s x. The

cont condition is satisfied.

4. Theyes condition is tested in the conditional logic shown. Hence, theyes

condition must be true when control flow moves along the path shown.

5. The exit condition first demands that x remain unchanged. An examination

of the design indicates that x appears nowhere to the left of an assignment

operator. There are no function calls that usex. Hence, it is unchanged.

Since the conditional test (y + l)
2 <x must fail to reach the exit condition, it

follows that (y + l)
2 s x. In addition, the loop condition must still be true

(i.e.,y? s x). Therefore, (y + l)
2 > x and

y

2 s x can be combined to satisfy

the exit condition.

We must further ensure that the loop terminates. An examination of the loop con-

dition indicates that becausey is incremented and x & 0, the loop must eventually

terminate.

The five steps just noted are a proof of the correctness of the design of the algo-

rithm noted in Figure 29.7. We are now certain that the design will, in fact, compute
the integer part of a square root.

A more rigorous mathematical approach to design verification is possible. How-
ever, a discussion of this topic is beyond the scope of this book. Interested readers

should refer to [LIN79].

840 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

29.3.2 Advantages of Design Verification
4

Rigorous correctness verification of each refinement of the clear-box design has a

number of distinct advantages. Linger [LIN94] describes these in the following

manner:

What do

• we gain by

doing correctness

proofs?

• It reduces verification to afinite process. The nested, sequential way that

control structures are organized in a clear box naturally defines a hierarchy

that reveals the correctness conditions that must be verified. An "axiom of

replacement" [LIN79] lets us substitute intended functions with their control

structure refinements in the hierarchy of subproofs. For example, the

subproof for the intended function fl in Figure 29.9 requires proving that the

composition of the operations gl and g2 with the intended function f2 has

the same effect on data as fl . Note that f2 substitutes for all the details of its

refinement in the proof. This substitution localizes the proof argument to the

control structure at hand. In fact, it lets the software engineer cany out the

proofs in any order.

• It is impossible to overemphasize the positive effect that reducing verification to a

finite process has on quality. Even though all but the most trivial programs

Subproofs:

A design with

subproofs
[fl] fl = [DO gl: g2; [f2] END] ?

DO
gl

g2
[f2] f2 = [WHILE pi DO [f3] END] 7

WHILE

Pi

DO [f3] f3 = [DO g3; [«]: g8 END] ?

[f4] f4 = [IF p2: THEN [fB] ELSE [f6] END] 7

IF

p2
THEN [fB] f5 = [DO g4; g5 END] 7

8*
86

ELSE [fB] fG = [DO g6: g7 END] ?

g6

8?
END

g8
END

END

4 This section and Figures 29.7 through 29.9 have been adapted from rLIN94] and are used with

permission.

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 841

&
POINT

Despite the extremely

lorge number of

execution paths in a

program, the number

of steps to prove the

program correct is

quite small.

exhibit an essentially infinite number of execution paths, they can be verified

in a finite number of steps.

• It lets cleanroom teams verify every line ofdesign and code. Teams can carry

out the verification through group analysis and discussion on the basis of the

correctness theorem, and they can produce written proofs when extra confi-

dence in a life- or mission-critical system is required.

• It results in a near zero defect level. During a team review, every correctness

condition of every control structure is verified in turn. Every team member

must agree that each condition is correct, so an error is possible only if every

team member incorrectly verifies a condition. The requirement for

unanimous agreement based on individual verification results in software

that has few or no defects before first execution.

• It scales up. Every software system, no matter how large, has top-level, dear-

box procedures composed of sequence, alternation, and iteration structures.

Each of these typically invokes a large subsystem with thousands of lines of

code—and each of those subsystems has its own top-level intended functions

and procedures. So the correctness conditions for these high-level control

structures are verified in the same way as are those of low-level structures.

Verification at high levels may take, and well be worth, more time, but it does

not take more theory.

• It produces better code than unit testing. Unit testing checks the effects of

executing only selected test paths out of many possible paths. By basing veri-

fication on function theory, the cleanroom approach can verify every possible

effect on all data, because while a program may have many execution paths,

it has only one function. Verification is also more efficient than unit testing.

Most verification conditions can be checked in a few minutes, but unit tests

take substantial time to prepare, execute, and check.

it is important to note that design verification must ultimately be applied to the

source code itself. In this context, it is often called correctness verification.

29.4 Cleanroom Testing

The strategy and tactics of cleanroom testing are fundamentally different from con-

ventional testing approaches. Conventional methods derive a set of test cases to un-

cover design and coding errors. The goal ofcleanroom testing is to validate software

requirements by demonstrating that a statistical sample of use-cases (Chapter 7)

have been executed successfully.

“Quality is not an act, it is a habit."

Aristotle

842

fven if you decide

against the deanroom

approach, it's worth

considering statistical

use testing os an

integral part of your

test strategy.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

29.4.1 Statistical Use Testing

The user of a computer program rarely needs to understand the technical details of

the design. The user-visible behavior of the program is driven by inputs and events

that are often produced by the user. But in complex systems, the possible spectrum

of input and events (i.e., the use-cases) can be extremely wide. What subset of use-

cases will adequately verify the behavior of the program? This is the first question

addressed by statistical use testing.

Statistical use testing "amounts to testing software the way users intend to use it"

[UN94]. To accomplish this, deanroom testing teams (also called certification teams)

must determine a usage probability distribution for the software. The specification

(black box) for each increment of the software is analyzed to define a set of stimuli

(inputs or events) that cause the software to change its behavior Based on inter-

views with potential users, the creation of usage scenarios, and a general under-

standing of the application domain, a probability of use is assigned to each stimuli.

Test cases are generated for each set of stimuli5 according to the usage probability

distribution. To illustrate, consider the SafeHome system discussed earlier in this book.

Cleanroom software engineering is being used to develop a software increment that

manages user interaction with the security system keypad. Five stimuli have been iden-

tified for this increment. Analysis indicates the percent probability distribution of each

stimulus. To make selection of test cases easier, these probabilities are mapped into in-

tervals numbered between 1 and 99 [UN94J and illustrated in the following table:

Program stimulus Probability Interval

Arm/disamn (AD) 50% 1-49

Zone set (ZS) 15% 50-63

Query (Q) 15% 64-78

Test (T) 15% 79-94

Panic alarm 5% 95-99

To generate a sequence of usage test cases that conform to the usage probability

distribution, random numbers between 1 and 99 are generated. Each random num-

ber corresponds to an interval on the preceding probability distribution. Hence, the

sequence of usage test cases is defined randomly but corresponds to the appropri-

ate probability of stimuli occurrence. For example, assume the following random

number sequences are generated:

13-94-22-24-45-56

81-19-31-69-45-9

38-21-52-84-86-4

5 Automated tools may be used to accomplish this. For farther information, see [DYE92],

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 843

Selecting the appropriate stimuli based on the distribution interval shown in the

table, the following use-cases are derived-

AD-T-AD-AD-AD-ZS

T-AD-AD-AD-Q-AD-AD

AD-AD-ZS-T-T-AD

The testing team executes these use-cases and verifies software behavior against the

specification for the system. Timing for tests is recorded so that interval times may

be determined. Using interval times, the certification team can compute mean-time-

to-failure. If a long sequence of tests is conducted without failure, the MTTF is low

and software reliability is likely to be high.

How do we
• certify o

software

component?

29.4.2 Certification

The verification and testing techniques discussed earlier in this chapter lead to soft-

ware components (and entire increments) that can be certified, within the context of

the cleanroom software engineering approach, certification implies that the reliabil-

ity (measured by mean-time-to-failure, MTTF) can be specified for each component.

The potential impact of certifiable software components goes far beyond a single

cleanroom project. Reusable software components can be stored along with their

usage scenarios, program stimuli, and probability distributions. Each component

would have a certified reliability under the usage scenario and testing regime de-

scribed. This information is invaluable to others who intend to use the components.

The certification approach involves five steps [WOH94]:

1 . Usage scenarios must be created.

2. A usage profile is specified.

3 . Test cases are generated from the profile.

4. Tests are executed and failure data are recorded and analyzed.

5. Reliability is computed and certified.

Steps 1 through 4 have been discussed in an earlier section. In this section, we con-

centrate on reliability certification.

Certification for cleanroom software engineering requires the creation of three

models [P0093):

Sampling model. Software testing executes m random test cases and is certi-

fied if no failures or a specified numbers of failures occur. The value ofm is derived

mathematically to ensure that required reliability is achieved.

Component model. A system composed of n components is to be certified.

The component model enables the analyst to determine the probability that com-

ponent i will fail prior to completion.

Certification model. The overall reliability of the system is projected and

certified.

844 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

At the completion of statistical use testing, the certification team has the infor-

mation required to deliver software that has a certified MTTF computed using each

of these models.

A detailed discussion of the computation of the sampling, component, and certi-

fication models is beyond the scope of this book. The interested reader should see

[MUS87], [CUR86|, and [P0093] for additional detail.

22, 5 Summary

Cleanroom software engineering is a formal approach to software development that

can lead to software that has remarkably high quality. It uses box structure specifi-

cation (or formal methods) for analysis and design modeling and emphasizes cor-

rectness verification, rather than testing, as the primary mechanism for finding and

removing errors. Statistical use testing is applied to develop the failure rate infor-

mation necessary to certify the reliability of delivered software.

The cleanroom approach begins with analysis and design models that use a box

structure representation. A "box" encapsulates the system (or some aspect of the

system) at a specific level of abstraction. Black boxes are used to represent the ex-

ternally observable behavior of a system. State boxes encapsulate state data and op-

erations. A clear box is used to model the procedural design that is implied by the

data and operations of a state box.

Correctness verification is applied once the box structure design is complete. The

procedural design for a software component is partitioned into a series of subfunc-

tions. To prove the correctness of the subfunctions, exit conditions are defined for

each subfunction and a set of subproofs is applied. If each exit condition is satisfied,

the design must be correct.

Once correctness verification is complete, statistical use testing commences. Un-

like conventional testing, cleanroom software engineering does not emphasize unit

or integration testing. Rather, the software is tested by defining a set of usage sce-

narios, determining the probability of use for each scenario, and then defining ran-

dom tests that conform to the probabilities. The error records that result are

combined with sampling, component, and certification models to enable mathe-

matical computation of projected reliability for the software component.

The cleanroom philosophy is a rigorous approach to software engineering. It is a

software process model that emphasizes mathematical verification of correctness

and certification of software reliability. The bottom line is extremely low failure rates

that would be difficult or impossible to achieve using less formal methods.

References

[CUR86] Curritt, P. A., M. Dyer, and H. D. Mills, "Certifying the Reliability of Software," IEEE Trans,

Software Engineering, vol. SE-12, no. I, January 1994.

[DYE92] Dyer, M., The Cleanroom Approach to Quality Software Development, Wiley, 1992.

CHAPTER 29 CLEANROOM SOFTWARE ENGINEERING 845

[HAU94] Hausler, P. A., R. Linger, and C Trammel, "Adopting Cleanroom Software Engineering

with a Phased Approach," IBM Systems Journal, vol. 33, no. 1
,
January 1994, pp. 89-1 09.

[HEN95] Henderson, J., "Why Isn't Cleanroom the Universal Software Development Methodol-

ogy?" Crosstalk, vol. 8, No. 5, May 1995, pp. 1 1-14.

|HEV93] Hevner, A. R„ and H. D. Mills, "Box Structure Methods for System Development with

Objects," IBM Systems Journal, vol. 31 ,
no.2, February 1993, pp. 232-251

1LIN79] Unger, R. M., H. D. Mills, and B. I. Witt, Structured Programming: Theory and Practice,

Addison-Wesley, 1979.

[L1N88J Unger, R. M„ and H. D. Mills, "A Case Study in Cleanroom Software Engineering- The

IBM COBOL Structuring Facility," Proc. COMPSAC '88, Chicago, October 1 988.

[LIN94] Linger; R., "Cleanroom Process Model," IEEE Software, vol. 11, no. 2, March 1994,

pp. 50-58.

[M1L87] Mills, H. D„ M. Dyer, and R. Linger, "Cleanroom Software Engineering," IEEE Software,

vol. 4, no. 5, September 1987, pp. 19-24.

[MIL88] Mills, H. D., "Stepwise Refinement and Verification in Box Structured Systems," Com-

puter, vol. 21, no. 6, June 1988, pp. 23-35.

[MUS87] Musa, J. D., A. Iannino, and K. Okumoto, Engineering and Managing Sofhvare with Re-

liability Measures, McGraw-Hill, 1987.

[POO88] Poore, J. H.,and H. D. Mills, "Bringing Software Under Statistical Quality Control," Qual-

ity Progress, November 1988, pp. 52-55.

[P0093J Poore, J. H„ H. D. Mills, and D. Mutchler, "Planning and Certifying Software System Re-

liability," IEEE Software, vol. 10, no. 1, January 1993, pp. 88-99.

[WOH94] \Vohlin, C„ and P. Runeson, "Certification of Software Components," IEEE Trans. Soft-

ware Engineering, vol. SE-20, no. 6, June 1994, pp. 494-499.

Problems,, and Points ip Ponder
29. 1 . A bubble sort algorithm is defined in the following manner:

procedure bubblesori;

var i, , integer:

begin

repeat until t=a[l]

t:=ap]:

for j:= 2 to n do

if a(j-l] > a[j] then begin

t:-a(j-l]:

aO-l]:=®Dlt

a[jl:=t:

end

endrep

end

Partition the design into subfunctions, and define a set of conditions that would enable you to

prove that this algorithm is correct.

29.2. Develop a box structure specification for a portion of the PHTRS system introduced in

Problem 8. 1 0.

29.3. If you had to pick one aspectof cleanroom software engineering that makes it radically

different from conventional software engineering approaches, what would it be?

29.4. How do an incremental process model and certification work together to produce high-

quality software?

29.5. Using box structure specification, develop "first-pass" analysis and design models for the

SafeHome system.

846 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

29 .6 . In your own words, describe the intent of certification in the cleanroom software engi-

neering context,

29 . 7 . Select a program component that you have designed in another context (or one assigned

by your instructor), and develop a complete proof of correctness for it.

29.8. Select a program that you use regularly (e.g., an e-mail handler, a word processor, a

spreadsheet program), and create a set of usage scenarios for the program. Define the proba-

bility of use for each scenario, and then develop a program stimuli and probability distribution

table similar to the one shown in Section 29.4.1

.

29 .9 . For the program stimuli and probability distribution table developed in Problem 29.8, use

a random number generator to develop a set of test cases for use in statistical use testing.

29 . 1

0

. Document a correctness verification proof for the bubble sort discussed in Problem 29.5.

Further Readings and Information Sources

Prowell et al.
(Cleanroom Software Engineering: Technology and Process, Addison-Wesley, 1 999)

provide an in-depth treatment of all important aspects of the cleanroom approach. Useful dis-

cussions of cleanroom topics have been edited by Poore and Trammell (Cleanroom Software En -

gineering: A Reader, Blackwell Publishing, 1996). Becker and Whittaker (Cleanroom Software

Engineering Practices, Idea Group Publishing, 1 996) present an excellent overview for those who
are unfamiliar with cleanroom practices.

The Cleanroom Pamphlet (Software Technology Support Center, Hill AF Base, April 1 995) con-

tains reprints of a number of important articles. Unger [L1N94] produced one of the better in-

troductions to the subject. The Data and Analysis Center for Software (DACS)

(www.dacs.dtic.mil) provides many useful papers, guidebooks, and other information sources

on cleanroom software engineering.

Unger and Trammell ("Cleanroom Software Engineering Reference Model," SEI Technical

Report CMU/SEI-96-TR-022, 1996) have defined a set of 14 cleanroom processes and 20 work
products that form the basis for the SEI CMM for cleanroom software engineering (CMU/SEI-

96-TR-023).

Michael Deck of Cleanroom Software Engineering (www.cleansoft.com) has prepared a

bibliography on cleanroom topics. Many are available in downloadable format.

Design verification via proof of correctness lies at the heart of the cleanroom approach.

Books by Stavely (Toward Zero-Defect Software, Addison-Wesley, 1998), Baber (Error-Free Soft

ware, Wiley, 1991), and Schulmeyer (Zero Defect Software, McGraw-Hill, 1990) discuss proof of

correctness in considerable detail.

A wide variety of information sources on cleanroom software engineering is available on the

Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

Component-Based
Development

Key
Concepts
adaptation

CBD

CBSE

process

economics

classification

component types

domain engineering

middleware

qualification

reuse environment

structure points

I
n the software engineering context, reuse is an idea both old and new. Pro-

grammers have reused ideas, abstractions, and processes since the earliest

days of computing, but the early approach to reuse was ad hoc. Today, com-

plex, high-quality computer-based systems must be built in a very short time and

demand a more organized approach to reuse.

Component-based software engineering (CBSE) is a process that emphasizes the

design and construction of computer-based systems using reusable software

"components." Clements [CLE95] describes CBSE in the following way:

[CBSEJ is changing the way large software systems are developed. [CBSE] embodies

the "buy, don't build" philosophy espoused by Fred Brooks and others. In the same way

that early subroutines liberated the programmer from thinking about details, (CBSE]

shifts the emphasis from programming software to composing software systems. Im-

plementation has given way to integration as the focus. At its foundation is the as-

sumption that there is sufficient commonality in many large software systems to

justify developing reusable components to exploit and satisfy that commonality

But a number of questions arise, is it possible to construct complex systems by

assembling them from a catalog of reusable software components? Can this be

accomplished in a cost- and time-effective manner? Can appropriate incentives

be established to encourage software engineers to reuse rather than reinvent? is

What is it? You purchase an en-

tertainment system and bring it

home. Each component has been de-

signed to fit a specific audio-video

architecture—connections are standardized,

and communication protocol has been preestab-

lished. Assembly is easy because you don't have

to build the system from hundreds of discrete

parts. Component-based software engineering

(CBSE) strives to achieve the same thing. A set of

prebuilt, standardized software components are

made available to fit a specific architectural style

for some application domain. The application is

then assembled using these components, rather

than the discrete parts of a conventional pro-

gramming language.

Who does it? Software engineers apply the

CBSE process.

Why is it important? It takes only a few minutes

to assemble the home entertainment system

because the components are designed to be

integrated with ease. Although software is consid-

erably more complex, it follows that component-

based systems are easier to assemble and

therefore less costly to build than systems con-

structed from discrete parts. In addition, CBSE en-

courages the use of predictable architectural

patterns and standard software infrastructure,

thereby leading to a higher-quality result.

What are the steps? CBSE encompasses two

parallel engineering activities: domain engi-

neering and component-based development.

848 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Domain engineering explores an application

domain with the specific intent of finding func-

tional, behavioral, and data components that

are candidates for reuse. These components are

placed in reuse libraries. Component-based de-

velopment elicits requirements from the cus-

tomer; selects an appropriate architectural style

to meet the objectives of the system to be built;

and then (1) selects potential components for

reuse, (2) qualifies the components to be sure

that they properly fit the architecture for the sys-

tem, (3) adapts components if modifications

must be made to properly integrate them, and

(4) integrates the components to form subsys-

tems and the application as a whole. In addition.

custom components are engineered to address

those aspects of the system that cannot be im-

plemented using existing components.

What is the work product? Operational soft-

ware, assembled using existing and newly devel-

oped software components, is the result of CBSE.

How do I ensure that I've done it right?

Use the same SQA practices that are applied in

every software engineering process—formal

technical reviews assess the analysis and design

models, specialized reviews consider issues as-

sociated with acquired components, testing is

applied to uncover errors in newly developed

software and in reusable components that have

been integrated into the architecture.

management willing to incur the added expense associated with creating reusable

software components? Can the library of components necessary' to accomplish reuse

be created in away that makes it accessible to those who need it? Can components

that do exist be found by those who need them?

Even today, software engineers grapple with these and other questions about

software component reuse. We look at some of the answers in this chapter.

XL±
WebRef

Useful information on

CBSf for WeWpps ton

be found at

www.cbd-hq.com.

Engineering of Component-Based Systems

On the surface, CBSE seems quite similar to conventional or object-oriented soft-

ware engineering. The process begins when a software team establishes require-

ments for the system to be built using conventional requirements elicitation

techniques (Chapter 7). An architectural design (Chapter 10) is established, but

rather than moving immediately into more detailed design tasks, the team exam-

ines requirements to determine what subset is directly amenable to composition,

rather than construction. That is, the team asks the following questions for each

system requirement:

• Are commercial off-the-shelf (COTS) components available to implement the

requirement?

• Are internally developed reusable components available to implement the

requirement?

• Are the interfaces for available components compatible within the architec-

ture of the system to be built?

CHAPTER 30 COMPONENT-EASED DEVELOPMENT 849

The team may attempt to modify or remove those system requirements that can-

not be implemented with COTS or in-house components.' If the requirement(s)

cannot be changed or deleted, software engineering methods are applied to build

those new components that must be developed to meet the requirement(s). But for

those requirements that are addressed with available components, a different set of

software engineering activities commences: qualification, adaptation, composition,

and update. Each of these CBSE activities is discussed in more detail in Section 30.4.

In the first part of this section, the term component has been used repeatedly, yet

a definitive description of the term is elusive. Brown and Wallnau [BR096] suggest

the following possibilities:

• Component—a nontrivial, nearly independent, and replaceable part of a system

that fulfills a clear function in the context of a well-defined architecture.

• Run-time software component—

a

dynamic bindable package of one or more
programs managed as a unit and accessed through documented interfaces

that can be discovered in run time.

• Software component—

a

unit of composition with contractually specified and

explicit context dependencies only.

• Business component—the software implementation of an "autonomous"

business concept or business process.

In addition to these descriptions, software components can also be characterized

based on their use in the CBSE process. In addition to COTS components, the CBSE
process yields:

• Qualified components—assessed by software engineers to ensure that not

only functionality, but performance, reliability, usability, and other quality

factors (Chapter 26) conform to the requirements of the system or product to

be built.

Adapted components—adapted to modify (also called mask or wrap
) [BR096]

unwanted or undesirable characteristics.

• Assembled components—integrated into an architectural style and intercon-

nected with an appropriate infrastructure that allows the components to be

coordinated and managed effectively.

• Updated components—replacing existing software as new versions of compo-
nents become available.

1 The implication is that the organization adjusts its business or product requirements so that

component-based implementation can be achieved without the need for custom engineering. This

approach reduces costs and improves time to market, but it is not always possible.

850 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

30.2 The CBSE Process

The CBSE process is characterized in a manner that not only identifies candidate com-

ponents but also qualifies each component's interface, adapts components to remove

architectural mismatches, assembles components into a selected architectural style,

and updates components as requirements for the system change [BR096] The process

model for component-based software engineering emphasizes parallel tracks in

which domain engineering (Section 30.3) occurs concurrently with component-based

development.

Figure 30. 1 illustrates a typical process model that explicitly accommodates CBSE

[CHR95], Domain engineering creates a model of the application domain that is used

as a basis for analyzing user requirements in the software engineering flow. A

generic software architecture provides input for the design of the application. Finally,

after reusable components have been purchased, selected from existing libraries, or

constructed (as part ofdomain engineering), they are made available to software en-

gineers during component-based development.

The analysis and architectural design steps defined as part ofcomponent based de-

velopment (Figure 30.
1)
can be implemented within the context of an abstract design

paradigm (ADP) [DOG03], An ADP implies that the overall model of the software-

represented as data, function, and behavior (control)—can be decomposed hierar-

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 851

chically. As decomposition begins, the system is represented as a collection of ar-

chitectural frameworks, each composed of one or more design patterns (Chapter 1 0)

.

Further refinement identifies the components that are required to create each design

pattern. In an ideal context, all of these components would be acquired from a repos-

itory (component qualification, adaptation, and composition activities apply). When
specialized components are required, component engineering is applied.

2SL1

The analysis process

we discuss in this

section focuses on

reusable components.

However, the anolysis

of complete COTS

systems (e.g., e-

commerce cpps, soles

force automation

opps) can also be a

part of domain

anolysis.

•) What
* components

identified during

domain analysis

will be candidates

for reuse?

JIqmain Engineering

The intent of domain engineering is to identify, construct, catalog, and disseminate a

set ofsoftware components that have applicability to existing and future software in

a particular application domain. The overall goal is to establish mechanisms that en-

able software engineers to share these components—to reuse them—during work on
new and existing systems. Domain engineering includes three major activities—

analysis, construction, and dissemination.

"Domain engineering is about finding commonalities among systems to identify components that can be applied to

many systems, and to identify program families that ore positioned to take fullest advantage of those components."

Paul Clements

It can be argued that "reuse will disappear, not by elimination, but by integration"

into the fabric of software engineering practice [TRA95] . As greater emphasis is

placed on reuse, some believe that domain engineering will become as important as

software engineering over the next decade.

30.3. 1 The Domain Analysis Process

The overall approach to domain analysis is often characterized within the context of

object-oriented software engineering. The steps in the process are defined as:

1 . Define the domain to be investigated.

2. Categorize the items extracted from the domain.

3. Collect a representative sample of applications in the domain.

4. Analyze each application in the sample and define analysis classes.

5. Develop an analysis model for the classes.

It is important to note that domain analysis is applicable to any software engineering

paradigm and may be applied for conventional as well as object-oriented development.

Although the steps just noted provide a useful model for domain analysis, they

provide no guidance for deciding which software components are candidates for

reuse. Hutchinson and Hindley [HUT88] suggest the following set of pragmatic ques-

tions as a guide for identifying reusable software components:

• Is component functionality required on future implementations?

852 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

• How common is the component's function within the domain?

• is there duplication of the component's function within the domain?

• Is the component hardware dependent? If so, does the hardware remain

unchanged between implementations or can the hardware specifics be

removed to another component?

• Is the design optimized enough for the next implementation?

• Can we parameterize a nonreusable component so that it becomes reusable?

• Is the component reusable in many implementations with only minor changes?

• Is reuse through modification feasible?

• Can a nonreusable component be decomposed to yield reusable components?

• How valid is component decomposition for reuse?

For additional information on domain analysis, see |ATK01], [HEI01], and [PRI93],

30.3.2 Characterization Functions

It is sometimes difficult to determine whether a potentially reusable component is in

fact applicable in a particular situation. To make this determination, it is necessary

to define a set of domain characteristics that are shared by all software within a do-

main. A domain characteristic defines some generic attribute of all products that ex-

ist within the domain. For example, generic characteristics might include the

importance of safety/reliability, programming language, concurrency in processing,

and many others.

A set of domain characteristics for a reusable component can be represented as

(D,,), where each item, Dpl ,
in the set represents a specific domain characteristic. The

value assigned to Dp, represents an ordinal scale that is an indication of the relevance

of the characteristic for component p. A typical scale [BAS94] might be

WebRel
Useful infoimition on

domain analysis can be

found at

www.sei.cmu.

edu/str/

descriptions/

deda.html.

1 : Not relevant to whether reuse is appropriate.

2: Relevant only under unusual circumstances.

3: Relevant—the component can be modified so that it can be used, despite

differences.

4: Clearly relevant, and if the new software does not have this characteristic,

reuse will be inefficient but may still be possible.

5: Clearly relevant, and if the new software does not have this characteristic,

reuse will be ineffective and reuse without the characteristic is not recom-

mended.

When new software, w, is to be built within the application domain, a set ol domain

characteristics is derived for it. A comparison is then made between DP,
and to de-

termine whether the existing component p can be effectively reused in application w.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 853

What is a

structure

point, and

what are its

characteristics?

POINT
A structure point is

analogous to a design

pottem (trot can be

found repeatedly in

applications with a

specific domain.

Even when software to be engineered clearly exists within an application domain,

the reusable components within that domain must be analyzed to determine their

applicability. In some cases (hopefully, a limited number), "reinventing the wheel"

may still be the most cost-effective choice.

30.3.3 Structural Modeling and Structure Points

When domain analysis is applied, the analyst looks for repeating patterns in the ap-

plications that reside within a domain. Structural modeling is a pattern-based do-

main engineering approach that works under the assumption that eveiy application

domain has repeating patterns (of function, data, and behavior) that have reuse

potential.

Each application domain can be characterized by a structural model (e g., air-

craft avionics systems differ greatly in specifics, but all modern software in this do-

main has the same structural model). Therefore, the structural model is an
architectural style (Chapter 1 0) that can and should be reused across applications

within the domain.

McMahon [MCM95] describes a structure point as "a distinct construct within a

structural model." Structure points have three distinct characteristics:

1 . A structure point is an abstraction that should have a limited number of in-

stances. In addition, the abstraction should recur throughout applications in

the domain. Otherwise, the cost to verify, document, and disseminate the

structure point cannot be justified.

2. The rules that govern the use of the structure point should be easily under-

stood. In addition, the interface to the structure point should be relatively

simple.

3. The structure point should implement information hiding by isolating ail

complexity contained within the structure point itself. This reduces the per-

ceived complexity of the overall system.

As an example of structure points as architectural patterns for a system, consider

the domain of software for alarm systems. Thfe domain might encompass systems
as simple as Sa/eHome (discussed in earlier chapters) or as complex as the alarm sys-

tem for an industrial process. In eveiy case, however, a set of predictable structural

patterns are encountered: an inteiface that enables the user to interact with the sys-

tem, a bounds-setting mechanism that allows the user to establish bounds on the pa-

rameters to be measured, a sensormanagement mechanism that communicates with

all monitoring sensors, a response mechanism that reacts to the input provided by the

sensor management system, and a control mechanism that enables the user to con-
trol the manner in which monitoring is carried out. Each of these structure points is

integrated into a domain architecture.

854 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

It is possible to define generic structure points that transcend a number of differ-

ent application domains [STA94]:

• Applicationfront end—the GUI including all menus, panels, and input and

command editing facilities.

• Database—the repository for all objects relevant to the application domain.

• Computational engine—the numerical and nonnumerical models that manipu-

late data.

• Reportingfacility—the function that produces output of all kinds.

• Application editor—the mechanism for customizing the application to the

needs of specific users.

Structure points have been suggested as an alternative to lines of code and function

points for software cost estimation [MCM95]. A brief discussion of costing using

structure points is presented in Section 30.6.2.

30.4 Component-Based Development

Component-based development (CBD) is a CBSE activity that occurs in parallel with

domain engineering. Using analysis and architectural design methods discussed ear-

lier in this book, the software team refines an architectural style that is appropriate

for the analysis model created for the application to be built.
2

Once the architecture has been established, it must be populated by components

that (1) are available from reuse libraries and/or (2) are engineered to meet custom

needs. Hence, the task flow for component-based development has two parallel

paths (Figure 30 1). When reusable components are available for potential integra-

tion into the architecture, they must be qualified and adapted. When new compo-

nents are required, they must be engineered. The resultant components are then

"composed" (integrated) into the architecture template and tested thoroughly.

30.4.1 Component Qualification, Adaptation, and Composition

As we have already seen, domain engineering provides the library of reusable com-

ponents that are required for component-based software engineering. Some of these

reusable components are developed in-house, others can be extracted from existing

applications, and still others may be acquired from third parties.

Unfortunately, the existence of reusable components does not guarantee that

these components can be integrated easily or effectively into the architecture cho-

sen for a new application. It is for this reason that a sequence of component-based

development activities is applied when a component is proposed for use.

2 It should be noted that the architectural style is often influenced by the generic structural model

created during domain engineering (see Figure 30.1).

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 855

Whot factors

• are

considered during

component

qualification?

In addition to

assessing whether the

costofodoptotionfor

reuse is justified, the

software team also

assesses whether

achieving required

functionality and

performance can be

done cost-effectively.

Component qualification. Component qualification ensures that a candidate

component will perform the function required, will properly "fit" into the architec-

tural style specified for the system, and will exhibit the quality characteristics (e.g.

,

performance, reliability, usability) that are required for the application.

The interface description provides useful information about the operation and
use of a software component, but it does not provide all of the information re-

quired to determine if a proposed component can, in fact, be reused effectively in

a new application. Among the many factors considered during component quali-

fication are [BR096]: application programming interface (API); development and in-

tegration tools required by the component; run-time requirements, including

resource usage (e.g., memory or storage), timing or speed, and network protocol;

service requirements, including operating system interfaces and support from other

components; security features, including access controls and authentication proto-

col; embedded design assumptions, including the use of specific numerical or non-

numerical algorithms; and exception handling.

Each of these factors is relatively easy to assess when reusable components that

have been developed in-house are proposed. However, it is much more difficult to

determine the internal workings of COTS or third-party components because the

only available information may be the interface specification itself.

Component adaptation. In an ideal setting, domain engineering creates a library

of components that can be easily integrated into an application architecture. The im-

plication of "easy integration" is that (1) consistent methods of resource manage-
ment have been implemented for all components in the library, (2) common activities

such as data management exist for all components, and (3) interfaces within the ar-

chitecture and with the external environment have been implemented in a consis-

tent manner.

In reality, even after a component has been qualified for use within an applica-

tion architecture, conflicts may occur in one or more of the areas just noted. To
avoid these conflicts, an adaptation technique called component wrapping
[BR096] is often used. When a software team has full access to the internal design

and code tor a component (often not the case when COTS components are used)

white-box wrapping is applied. Like its counterpart in software testing (Chapter

14), white-box wrapping examines the internal processing details of the compo-
nent and makes code-level modifications to remove any conflict. Gray-box wrap-

ping is applied when the component library provides a component extension

language or API that enables conflicts to be removed or masked. Black-box wrap-

ping requires the introduction of pre- and post-processing at the component in-

terface to remove or mask conflicts. The software team must determine whether
the effort required to adequately wrap a component is justified or whether a cus-

tom component (designed to eliminate the conflicts encountered) should be engi-

neered instead.

856

*) Whot

• ingredients

ore necessary

to achieve

component

composition?

WebRef

The latest informatton

on CORBA coo be

obtained at

www.omg.org.

WebRef
Ibe lotest information

on COM con be

obtained at

www.microsoft.

com/COM.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Component composition. The component composition task assembles quali-

fied, adapted, and engineered components to populate the architecture established

for an application. To accomplish this, an infrastructure must be established to bind

the components into an operational system. The infrastructure (usually a library of

specialized components) provides a model for the coordination of components and

specific services that enable components to coordinate with one another and per-

form common tasks.

Among the many mechanisms for creating an effective infrastructure is a set of

four "architectural ingredients" [ADL95] that should be present to achieve compo-

nent composition:

Data exchange model. Mechanisms that enable users and applications to in-

teract and transfer data (e.g., drag and drop, cut and paste) should be defined for

all reusable components. The data exchange mechanisms not only allow human-

to-software and component-to-component data transfer but also transfer among

system resources (e.g., dragging a file to a printer icon for output).

Automation. A variety of tools, macros, and scripts should be implemented to

facilitate interaction between reusable components.

Structured storage. Heterogeneous data (e.g., graphical data, voice/video,

text, and numerical data) contained in a "compound document" should be orga-

nized and accessed as a single data structure, rather than a collection of separate

files. "Structured data maintains a descriptive index of nesting structures that ap-

plications can freely navigate to locate, create, or edit individual data contents as

directed by the end user" [ADL95],

Underlying object model. The object model ensures that components devel-

oped in different programming languages that reside on different platforms can be

interoperable. That is, objects must be capable of communicating across a network.

To achieve this, the object model defines a standard for component interoperability.

Because the potential impact of reuse and CBSE on the software industry is enor-

mous, a number of major companies and industry consortia have proposed stan-

dards for component software:

OMG/CORBA. The Object Management Group has published a common object

request broker architecture (OMG/CORBA). An object request broker (ORB) provides a

variety of services that enable reusable components (objects) to communicate with

other components, regardless of their location within a system.

Microsoft COM. Microsoft has developed a component object model (COM) that

provides a specification for using components produced by various vendors within

a single application running under the Windows operating system. COM encom-

passes two elements: COM interfaces (implemented as COM objects) and a set of

mechanisms for registering and passing messages between COM interfaces.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 857

WebRef

The latest rtxmotion

on Jovobeons con be

obtained oi

javo.sun.coin/

products/

javobeons/docs/.

Sun javaBeans Components. The JavaBeans component system is a portable,

platform independent CBSE infrastructure developed using the Java programming

language. The JavaBeans component system encompasses a set of tools, called the

Bean Development Kit (BDK), that allows developers to (1) analyze how existing

Beans (components) work, (2) customize their behavior and appearance, (3) estab-

lish mechanisms for coordination and communication, (4) develop custom Beans

for use in a specific application, and (5) test and evaluate Bean behavior.

Which of these standards will dominate the industry? There is no easy answer at

this time. Although many developers have adopted one of the standards, it is likely

that large software organizations may choose to use all three standards, depending

on the application categories and platforms that are chosen.

30.4.2 Component Engineering

As we noted earlier in this chapter, the CBSE process encourages the use of existing

software components. However, there are times when components must be engi-

neered. That is, new software components must be developed and integrated with

858 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

The basic

CORBA archi-

tecture

existing COTS and in-house components. Because these new components become
members of the in-house library of reusable components, they should be engineered

for reuse.

Nothing is magical about creating software components that can be reused.

Design concepts such as abstraction, hiding, functional independence, refine-

ment, and structured programming, along with object-oriented methods, testing,

SQA, and correctness verification methods, all contribute to the creation of soft-

ware components that are reusable. 3
In this section we will not revisit these

topics. Rather, we consider the reuse -specific issues that are complementary to

solid software engineering practices.

30.4.3 Analysis and Design for Reuse

The analysis model is analyzed to determine those elements of the model that point

to existing reusable components. The problem is extracting information from the re-

quirements model in a form that can lead to "specification matching."

If specification matching yields components that fit the needs of the current ap-

plication, the designer can extract these components from a reuse library (reposi-

tory) and use them in the design of new systems. If design components cannot be

found, the software engineer must apply conventional or OO design methods to cre-

ate them. It is at this point—when the designer begins to create a new component—
that designfor reuse (DFR) should be considered.

As we have already noted, DFR requires the software engineer to apply solid soft-

ware design concepts and principles (Chapter 9). But the characteristics of the ap-

3 To learn more about these concepts, see Parts 2 and 5 of this book.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 859

Dffl can be quite

difficult when compo-

nents must be inter-

faced or integrated

with legacy systems or

with multiple systems

whose architecture and

interfacing protocols

ore inconsistent

plication domain must also be considered. Binder [B1N93] suggests a number of key

issues4 that form a basis for design for reuse:

Standard data. The application domain should be investigated and standard

global data structures (e.g., file structures or a complete database) should be iden-

tified. All design components can then be characterized to make use of these stan-

dard data structures.

Standard interface protocols. Three levels of interface protocol should be es-

tablished: the nature of intramodular interfaces, the design of external technical

(nonhuman) interfaces, and the human/machine interface.

Program templates. The structure model (Section 30.3.3) can serve as a tem-

plate for the architectural design of a new program.

Once standard data, interfaces, and program templates have been established, the

designer has a framework in which to create the design. New components that con-

form to this framework have a higher probability for subsequent reuse.

Classifying and Retrieving Components

Consider a university library. Tens of thousands of books, periodicals, and other in-

formation resources are available for use. But to access these resources, a catego-

rization scheme must be developed. To navigate this large volume of information,

librarians have defined a classification scheme that includes a Library of Congress

classification code, keywords, author names, and other index entries. All enable the

user to find the needed resource quickly and easily.

Now, consider a large component repository. Tens of thousands of reusable

software components reside in it. But how does a software engineer find the one

she needs? To answer this question, another question arises: How do we describe

software components in unambiguous, classifiable terms? These are difficult ques-

tions, and no definitive answer has yet been developed. In this section we explore

current directions that will enable future software engineers to navigate reuse

libraries.

30.5.1 Describing Reusable Components

A reusable software component can be described in many way's, but an ideal de-

scription encompasses what Tracz [TRA90] has called the 3C model—concept, con-

tent, and context.

The concept of a software component is "a description of what the component

does" [WHI95] . The interface to the component is fully described and the semantics-

represented within the context of pre- and postconditions—are identified. The con-

cept should communicate the intent of the component.

4 In general, DFR preparations should be undertaken as part of domain engineering (Section 30.3).

860 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

The content of a component describes how the concept is realized. In essence, the

content is information that is hidden from casual users and need be known only to

those who intend to modify or test the component.

The context places a reusable software component within its domain of applica-

bility. That is, by specifying conceptual, operational, and implementation features,

the context enables a software engineer to find the appropriate component to meet

application requirements.

To be of use in a pragmatic setting, concept, content, and context must be trans-

lated into a concrete specification scheme. Dozens of papers and articles have been

written about classification schemes for reusable software components (e.g.,

[LUC01] and [WHI95] contain extensive bibliographies). The methods proposed can

be categorized into three major areas: library' and information science methods, ar-

tificial intelligence methods, and hypertext systems. The vast majority of work done

to date suggests the use of library science methods for component classification.

Figure 30.3 presents a taxonomy of library science indexing methods. Controlled

indexin§ vocabularies limit the terms or syntax that can be used to classify an object

(component). Uncontrolled indexing vocabularies place no restrictions on the nature

of the description. The majority of classification schemes for software components

fall into three categories:

Enumerated classification. Components are described by a hierarchical

structure in which classes and varying levels of subclasses of software components

are defined. The hierarchical structure of an enumerated classification scheme

makes it easy to understand and to use. However, before a hierarchy can be built,

domain engineering must be conducted so that sufficient knowledge of the proper

entries in the hierarchy is available.

Indexing

vocabulariesA taxonomy ol

indexing

methods
[FRA94]

Controlled Uncontrolled

Classed Keyword Terms extracted Terms not extracted

from text from text

— Enumerated — Descriptors

*— Faceted •— Subject

headings

Thesaurus

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 861

Faceted classification. A domain area is analyzed and a set of basic descrip-

tive features are identified. These features, calledfacets, are then ranked by impor-

tance and connected to a component. A facet can describe the function that the

component performs, the data that are manipulated, the context in which they are

applied, or any other feature. The set of facets that describe a component is called

thefacet descriptor. Generally, the facet description is limited to no more than seven

or eight facets.

Attribute-value classification. A set of attributes is defined for all compo-

nents in a domain area. Values are then assigned to these attributes in much the

same way as faceted classification. In fact, attribute value classification is similar

to faceted classification with the following exceptions-. (1) no limit is placed on the

number of attributes that can be used, (2) attributes are not assigned priorities, and

(3) a thesaurus function is not used.

Based on an empirical study of each of these classification techniques, Frakes and

Pole [FRA94] indicate that there is no clear "best" technique and that "no method did

more than moderately well in search effectiveness. . .
." It would appear that further

work remains to be done in the development of eflective classification schemes for

reuse libraries.

30.5.2 The Reuse Environment

Software component reuse must be supported by an environment that encompasses

the following elements:

• A component database capable of storing software components and the clas-

sification information necessary' to retrieve them.

• A library management system that provides access to the database.

• A software component retrieval system (e.g., an object request broker) that

enables a client application to retrieve components and services from the

library server.

• CBSE tools that support the integration of reused components into a new

design or implementation.

Each of these functions interact with or is embodied within the confines of a reuse

library.

The reuse library is one element of a larger software repository (Chapter 27) and

provides facilities for the storage of software components and a wide variety of

reusable work products (e.g., specifications, designs, patterns, frameworks, code

fragments, test cases, user guides). The library encompasses a database and the tools

that are necessary to query the database and retrieve components from it. A compo-

nent classification scheme (Section 30.5.1) serves as the basis for library queries.

Queries are often characterized using the context element of the 3C model

described earlier in this section. If an initial query results in a voluminous list of

862 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

WebRef
A comprehensive

collection of resources

on CBSE con be found

ot

http:// www.

cbd-hq.com/.

candidate components, the query is refined to narrow the list. Concept and content

information are then extracted (after candidate components are found) to assist the

developer in selecting the proper component.

A detailed discussion of the structure of reuse libraries and the tools that manage

them is best left to sources dedicated to the subject. The interested reader should see

[F1S00] and [L1N95] for additional information.

Component-Based Development

Objective: To aid in modeling, design,

review, and integration of software components

as part of a larger system.

Mechanics: Tools mechanics vary. In general, CBD tools

assist in one or more of the following capabilities:

specification and modeling of the software architecture;

browsing and selection of available software components;

integration of components.

Representative Tools5

ComponentSource (www.componentsource.com) provides a

wide array of COTS software components (and tools)

supported within many different component standards.

Software Tools

Component Manager, developed by Flashline

(vAvw.flashline.com), "is an application that enables,

promotes, ond measures software component reuse."

Select Component Factory, developed by Select Business

Solutions (www.selectbs.com/products), "is an

integrated set of products for software design, design

review, service/component management, requirements

management, ond code generation."

Software Through Pictures-ACD, distributed by Aonix

(www.aonix.com), enables comprehensive modeling

using UML for the OMG model driven architecture—an

open, vendor-neutral approach for CBSE.

J

^6 Economics of CBSE

WebRef
A variety of articles

providing guidelines for

CBO ond COTS-based

systems con be found

ot

www.sci.cmu.edu.

Component-based software engineering has an intuitive appeal. In theory, it should

provide a software organization with advantages in quality and timeliness. And these

should translate into cost savings. But are there hard data that support our intuition?

To answer this question we must first understand what actually can be reused in

a software engineering context and then what the costs associated with reuse really

are. As a consequence, it is possible to develop a cost/benefit analysis for compo-

nent reuse.

30.6. 1 Impact on Quality, Productivity, and Cost

Considerable evidence from industry' case studies (e.g., [ALL02], [HEN95], [MCM95])

indicates substantial business benefits can be derived from aggressive software

reuse. Product quality, development productivity, and overall cost are all improved.

Quality, in an ideal setting, a software component that is developed for reuse

would be verified to be correct (see Chapter 29) and would contain no defects. In

5 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

Ih most cases, tool names are trademarked by their respective developers.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 863

The cost to develop o

reusable component is

often greatei that the

cost to develop o

component that is

specific to one applica-

tion. Be sure that there

will be a need for the

reusable component in

the future. That's

where the payoff is

realized.

reality, formal verification is not carried out routinely, and defects can and do occur.

However, with each reuse, defects are found and eliminated, and a component's

quality improves as a result. Over time, the component becomes virtually defect free.

In a study conducted at Hewlett Packard, Urn [UM94] reports that the defect rate for

reused code is 0.9 defects per KLOC, while the rate for newly developed software is 4.

1

defects per KLOC. For an application that was composed of68 percent reused code, the

defect rate was 2.0 defects per KLOC—a 51 percent improvement from the expected

rate, had the application been developed without reuse. Henry and Faller [HEN95] re-

port a 35 percent improvement in quality. Although anecdotal reports span a reason-

ably wide spectrum of quality improvement percentages, it is fair to state that reuse

provides a nontrivial benefit in terms of the quality and reliability for delivered software.

Productivity. When reusable components are applied throughout the software

process, less time is spent creating the plans, models, documents, code, and data

that are required to create a deliverable system. It follows that the same level of func-

tionality is delivered to the customer with less input effort. Hence, productivity is im-

proved. Although percentage productivity improvement reports are notoriously

difficult to interpret,6 it appears that 30 to 50 percent reuse can result in productivity

improvements in the 25-40 percent range.

Cost. The net cost savings for reuse are estimated by projecting the cost of the

project if it were developed from scratch, Cs , and then subtracting the sum of the

costs associated with reuse, Cr,
and the actual cost of the software as delivered, Q.

Cs can be determined by applying one or more of the estimation techniques dis-

cussed in Chapter 23. The costs associated with reuse, Cr,
include [CHR95]: domain

analysis and modeling, domain architecture development, increased documentation

to facilitate reuse, support and enhancement of reuse components, royalties and li-

censes for externally acquired components, creation or acquisition and operation of a

reuse repository, and training of personnel in design and construction for reuse. Al-

though costs associated with domain analysis (Section 30.3) and the operation of a

reuse repository can be substantial, many of the other costs noted here address issues

that are part of good software engineering practice, whether or not reuse is a priority.

30.6.2 Cost Analysis Using Structure Points

In Section 30.3.3, we defined a structure point as an architectural pattern that recurs

throughout a particular application domain. A software designer (or system engineer)

can develop an architecture for a new application, system, or product by defining a do-

main architecture and then populating it with structure points. These structure points

are either individual reusable components or packages of reusable components.

6 Many extenuating circumstances (e.g., application domain, problem complexity, team structure

and size, project duration, technology applied) can have a profound impact on the productivity of

the project team

864 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Even though structure points are reusable, their qualification, adaptation, integra-

tion, and maintenance costs Eire nontrivial. Before proceeding with reuse, the project

manager should understand the costs associated with the use of structure points.

Since ail structure points (and reusable components in general) have a past his-

tory, cost data can be collected for each. In an ideal setting, the qualification, adap-

tation, integration, and maintenance costs associated with each component in a

reuse library is maintained for each instance of usage. These data can then be ana-

lyzed to develop projected costs for the next instance of reuse.

As an example, consider a new application, X, that requires 60 percent new code

and the reuse of three structure points, SP,
,
SP2 ,

and SP3 . Each of these reusable com-

ponents has been used in a number of other applications, and average costs for qual-

ification, adaptation, integration, and maintenance are available.

To estimate the effort required to deliver X, the following must be determined:

overall effort — Enew "T Equal Eadapt Ejn i

where

Enew = effort required to engineer and construct new software components

(determined using techniques described in Chapter 23)

Equal = effort required to qualify SP,, SP2 ,
and SP3

Eadapt = effort required to adapt SP,, SP2 ,
and SP3

Elm = effort required to integrate SP,, SP2 ,
and SP3

The effort required to qualify, adapt, and integrate SP,
,
SP2 ,

and SP3 is determined by

taking the average of historical data collected for qualification, adaptation, and inte-

gration of the reusable components in other applications.

30.7 Summary

Component-based software engineering offers inherent benefits in software qual-

ity, developer productivity, and overall system cost. And yet, many roadblocks re-

main to be overcome before the CBSE process model is widely used throughout

the industry.

In addition to software components, a variety ofreusable artifacts can be acquired

by a software engineer. These include technical representations ofthe software (e.g.,

specifications, architectural models, designs), documents, patterns, frameworks,

test data, and even process-related tasks (e.g., inspection techniques).

The CBSE process encompasses two concurrent subprocesses --domain engi-

neering and component-based development. The intent of domain engineering is to

identify, construct, catalog, and disseminate a set of software components in a par-

ticular application domain. Component-based development then qualifies, adapts,

and integrates these components for use in a new system. In addition, component-

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 865

based development engineers new components that are based on the custom re-

quirements of a new system.

Analysis and design techniques for reusable components draw on the same

principles and concepts that are part of good software engineering practice.

Reusable components should be designed within an environment that establishes

standard data structures, interface protocols, and program architectures for each

application domain.

Component-based software engineering uses a data exchange model, tools,

structured storage, and an underlying object model to construct applications. The

object model generally conforms to one or more component standards (e.g.,

OMG/CORBA) that define the manner in which an application can access reusable

objects. Classification schemes enable a developer to find and retrieve reusable

components and conform to a model that identifies concept, content, and context.

Enumerated classification, faceted classification, and attribute-value classification

are representative of many component classification schemes.

The economics of software reuse are addressed by a single question: Is it cost ef-

fective to build less and reuse more? In general, the answer is yes, but a software

project planner must consider the nontrivial costs associated with the qualification,

adaptation, and integration of reusable components.

ifcfERENCSS

[ADL95] Adler, R.M., "Emerging Standards for Component Software, Computer, vol. 28, no. 3,

March 1995, pp. 68-77.

[ALL02] Allen, P., "CBD Survey: The State of the Practice," The Cutter Edge, March, 2002, avail-

able at http://www.cutter.com/research/2002/edge020305.html.

[ATK01] Atkinson, C., et ai; Component-Based Product Line Engineering with UML, Addison-
Wesley, 2001.

[BAS94] Basili, V. R., L. C. Briand, and W. M. Thomas "Domain Analysis for the Reuse of Soft-

ware Development Experiences," Proc. of the 19th Annual Software Engineering Workshop,

NASA/GSFC, Greenbelt, MD, December 1994.

[BIN93| Binder, R., "Design for Reuse Is for Real," American Programmer, vol. 6, no. 8, August

1993, pp. 30-37.

[BR096J Brown, A. W., and K. C. Waltnau, "Engineering of Component-Based Systems,"

Component-Based Software Engineering, IEEE Computer Society Press, 1996, pp. 7-15.

[CHR95] Christensen, S. R., "Software Reuse Initiatives at Lockheed," CrossTalk, vol. 8, no. 5,

May 1995, pp. 26-31.

[CLE95] Clements, P. C., "From Subroutines to Subsystems: Component-Based Software Devel-

opment," American Programmer, vol. 8, No. II, November 1995.

[DOG03] Dogru, A., and M. Tanik, "A Process Model for Component-Oriented Software Engi-

neering, IEEE Software, vol. 20, no. 2, March/April 2003, pp. 34-4 1

.

[FIS00] Fischer, B., "Specification-Based Browsing of Software Component Libraries,"/. Auto
mated Software Engineering, vol. 7, no. 2, 2000, pp. 179-200. available at http://ase.

arc.nasa.gov/people/fischer/papers/ase-00.html.

[FRA941 Frakes, w. B., and T. P. Pole, "An Empirical Study of Representation Methods for

Reusable Software Components." IEEE Trans. Software Engineering, vol. SE-20, no. 8, August

1994, pp. 617-630.

866 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

[HEI01| Heinernan, G., and W. Councill (eds.), Component-Based Software Engineering, Addison-

Wesley, 2001.

[HEN9S] Henry, E., and B. Faller, "Large Scale Industrial Reuse to Reduce Cost and Cycle Time,''

IEEE Software, September 1995, pp. 47-53.

1HUT88] Hutchinson,). W., and P. G. Hindley, "A Preliminary Study of Large Scale Software

Reuse,' Software Engineering Journal, vol. 3, no. 5, 1988, pp. 208-212.

[LIA93] Liao, H., and Wang, F., "Software Reuse Based on a Large Object-Oriented Library,"

ACM Software Engineering Notes, vol. 18, no. 1, January 1993, pp. 74-80.

(L1M94) Lim, W. C., "Effects of Reuse on Quality, Productivity, and Economics," IEEE Software,

September 1994. pp 23-30.

1LIN95J Linthicum, D. S
,
"Component Development (a Special Feature)," Application Develop

ment Trends, June 1995, pp. 57-78.

[LUCOlj deLucena, Jr., V.. "Facet-Based Classification Scheme for Industrial Software Compo-

nents," 2001, can be downloaded from http://research.microsoft.com/ users/cszypers/

events/WCOP2001 /Lucena.pdf.

[MCM95] McMahon, P.E., "Pattern- Based Architecture: Bridging Software Reuse and Cost Man-

agement," Crosstalk, vol. 8, no. 3, March 1995, pp. 10-16.

JORF96] Orfali, R., D. Harkey, and J. Edwards, The Essential Distributed Objects Survival Guide,

Wiley, 1996.

[PR193J Prieto-Diaz, R., "Issues and Experiences in Software Reuse," American Programmer, vol.

6, no. 8, August 1993. pp. 10-18.

[POL94] Poliak, W.
,
and M. Rissman, "Structural Models and Patterned Architectures," Computer,

vol. 27, no. 8, August 1994, pp. 67-68.

[STA94J Staringer, W., "Constructing Applications from Reusable Components," IEEE Software,

September 1994, pp. 61-68.

[TRA90] Tracz, W., "Where Does Reuse Start?" Proc. Realities ofReuse Workshop, Syracuse Uni-

versity CASE Center, January 1990.

[TRA95] Tracz, W„ "Third International Conference on Software Reuse—Summary," ACM Soft-

ware Engineering Notes, vol. 20, no. 2, April 1995, pp. 21-22.

[WHI95] Whittle, B., "Models and Languages for Component Description and Reuse," ACM Soft-

ware Engineering Notes, vol. 20, no. 2, April 1995, pp. 76-89.

IYOU98J Yourdon, E. ied.), "Distributed Objects," Cutter IT Journal, vol. 1 1, no. 12, December 1998.

PRQSLEMS..ANE POINTS-IQ PPME-SS

30.

1

. Develop a set of domain characteristics that are relevant for word-processing/desktop-

publishing software.

30 .2 . How are characterization functions for application domains and component classifica-

tion schemes the same7 How are they different?

30 .3 . Do a bit of research on domain engineering and flesh out the process model outlined in

Figure 30.1 . Identify the tasks that are required for domain analysis and software architecture

development.

30 .4 . Although software components are the most obvious reusable "artifact," many other

work products produced as part of software engineering can be reused. Consider project plans

and cost estimates. How can these be reused, and what is the benefit of doing so?

30 . 5 . Develop a set ofdomain characteristics for information systems that are relevant to a uni-

versity's student data processing.

30 .6 . One ofthe key roadblocks to reuse is getting software developers to consider reusing ex-

isting components, rather than reinventing new ones (after ail, building things is fun!). Suggest

three or four different ways that a software organization can provide incentives for software en-

gineers to reuse. What technologies should be in place to support the reuse effort?

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 867

30 . 7 . Develop a faceted classification scheme for an application domain assigned by your in-

structor or one with which you are familiar.

30 .8 . Acquire information on the most recent CORBA or COM or javaBeans standard and pre-
pare a three- to five-page paper that discusses its major highlights. Get information on an ob-
ject request broker tool and illustrate how the tool achieves the standard.

30 .9 . What is a structure point?

30 . 10 . Develop an enumerated classification for an application domain assigned by your in

structor or one with which you are familiar.

30. 1

1

. Research the literature to acquire recent quality and productivity data that support the

use of CBSE. Present the data to your class.

30 . 1

2

. Develop a simple structural model for an application domain assigned by your instruc-
tor or one with which you are familiar.

X.U.RTHER Readings and Information Sources
Many books on component-based development and component reuse have been published in re-

cent years. Heineman and Councill [HEI01], Brown (Latge Scale Component Based Development,
Prentice-Hall, 2000), Allen (Realizing c-Business with Components, Addison Wesley, 2000).. Herzum
and Sims {Business Component Factoiy, Wiley, 1999), and Allen, Frost, and Yourdon {Component
Based Developmentfor Enterprise Systems: Applying the Select Perspective, Cambridge University
Press, 1 998) cover ail important aspects of the CBSE process. Apperty and his colleagues {Service

and Component-Based Development, Addison-Wesley, 2003), Atkinson fATK0l|, and Cheesman
and Daniels {UML Components, Addison-Wesley, 2000) discuss CBSE with a UML emphasis.

Leach (Software Reuse: Methods, Models, and Costs, McGraw-Hill, 1997) provides a detailed

analysis of cost issues associated with CBSE and reuse. Poulin {Measuring Software Reuse: Prin-

ciples, Practices, and Economic Models, Addison-Wesley, 1996) suggests a number of quantita-
tive methods for assessing the benefits of software reuse.

Dozens of books describing Ihe industry's component-based standards have been published
in recent years. These address the inner workings of the standards themselves but also consider
many important CBSE topics. A sampling for the three standards discussed in this chapter follows:

CORBA

Bolton, F,, Pure CORBA, Sams Publishing, 2001

.

Doss, G. M., CORBA Networking With Java, Wordware Publishing, 1999.

Hoque, R., CORBAfor Real Programmers, Academic Press/Morgan Kaufmann, 1999

Siegel, CORBA Fundamentals and Programming, Wiley, 1999.

Slama, D..J. Garbis, and P. Russell, Enterprise CORBA, Prentice-Hall, 1999.

COM
Box, D„ K. Brown, T. Ewald, and C. Sells, Effective COM : SO Ways to Improve Your COM and

MTS-Based Applications, Addison-Wesley, 1999.

Gordon, A., The COM and COM+ Programming Primer, Prentice-Hall, 2000.

Kirtland, M., Designing Component Based Applications. Microsoft Press, 1999.

Tapadiya, R, COMr Programming, Prentice-Hall, 2000.

Many organizations apply a combination of component standards. Books by Geraghty and his

colleagues (COM-CORBA Interoperability, Prentice-Hall, 1999), Pritchard (COM and CORBA Side
by Side: Architectures, Strategies, and Implementations, Addison-Wesley, 1 999), and Rosen and his

868 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

colleagues {Integrating CORBA and COM Applications, Wiley. 1999) consider the issues associ-

ated with the use of both CORBA and COM as the basis for component-based development.

JavaBeans

Asbuty, S„ and S. R. Weiner, Developing Java Enterprise Applications, Wiley, 1999.

Anderson, G., and P. Anderson, Enterprise Javabeans Component Architecture, Prentice-Hall,

2002 .

Monson-Haefel, R., Enterprise Javabeans, third edition, O'Reilly & Associates, 2001

.

Roman, E„ et al., Mastering Enterprise Javabeans, 2nd ed„ Wiley, 2001

.

A wide variety of information sources on component-based software engineering is avail-

able on the Internet. An up-to-date list of World Wide Web references can be found at the SEPA

Web site:

http://www.mhhe.com/pressman.

Reengineering

Key
Concepts
BPR process model

C/S architectures

data structures

economics

forward engineering

inventory analysis

maintenance

00 architectures

reengineering

process

restructuring

reverse engineering

CHAPTER

31

I
n a seminal article written for the Harvard Business Review, Michael Hammer
[HAM90] laid the foundation for a revolution in management thinking about

business processes and computing:

It is time to stop paving the cow paths. Instead of embedding outdated processes in

silicon and software, we should obliterate them and start over. We should "reengi-

neer" our businesses: use the power ofmodern information technology to radically re-

design our business processes in order to achieve dramatic improvements in their

performance.

Every company operates according to a great many unarticulated rules . . . Reengi-

neering strives to break away from the old rules about how we organize and conduct

our business.

Like all revolutions. Hammer's call to arms resulted in both positive and nega-

tive changes. During the 1990s, some companies made a legitimate effort to

reengineer, and the results led to improved competitiveness. Others relied solely

on downsizing and outsourcing (instead of reengineering) to improve their bottom

line. Organizations with little potential for future growth often resulted [DEM95]

.

During this first decade of the twenty-first century, the hype associated with

reengineering has waned, but the process itself continues in companies large and

small. The nexus between business reengineering and software engineering lies

in a system view.

What is it? Consider any technol-

ogy product that has served you well

.

You use it regularly, but it's getting

old. It breaks too often, takes longer

to repair than you'd like, and no longer repre-

sents the newest technology. What to do? If the

product is hardware, you'll likely throw it away
and buy a newer model. But if it's custom-built

software, that option may not be available.

You'll need to rebuild it. You'll create a product

with added functionality, better performance

and reliability, and improved maintainability.

That's what we call reengineering.

Who does it? At an organizational level,

reengineering is performed by business special-

ists (often consulting companies). At the software

level, reengineering is performed by software

engineers.

Why is it important? We live in a rapidly

changing world. The demands on business func-

tions and the information technology that sup-

ports them are changing at a pace that puts

enormous competitive pressure on every com-

mercial organization. Both the business and the

software that supports (or is) the business must

be reengineered to keep pace.

869

870 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

What are the steps? Business process reengi-

neering (BPR) defines business goals, identifies

and evaluates existing business processes, and

creates revised business processes that better

meet current goals. The software reengineering

process encompasses inventory analysis, docu-

ment restructuring, reverse engineering, pro-

gram and data restructuring, and forward

engineering. The intent of these activities is to

create versions of existing programs that exhibit

higher quality and better maintainability.

What is the work product? A variety of

reengineering work products (e.g., analysis mod-

els, design models, test procedures) are produced.

The final output is the reengineered business

process and/or the reengineered software that

supports if.

How do I ensure that I've done it right?

Use the same SQA practices that are applied in

every software engineering process—formal

technical reviews assess the analysis and design

models, specialized reviews consider business

applicability and compatibility, and testing is

applied to uncover errors in content, functional-

ity, and interoperability.

Software is often the realization of the business rules that Hammer discusses. As

these rules change, software must also change. Today, major companies have tens

of thousands of computer programs that support old business rules. As managers

work to modify the rules to achieve greater effectiveness and competitiveness, soft-

ware must keep pace. In some cases, this means the creation of major new

computer-based systems/ But in many others, it means the modification or rebuild-

ing of existing applications.

In this chapter, we examine reengineering in a top-down manner, beginning

with a brief overview of business process reengineering and proceeding to a more

detailed discussion of the technical activities that occur when software is reen-

gineered.

31.1 Business Process REENGlNEEBIttS

Business process reengineering (BPR) extends far beyond the scope of information

technologies and software engineering. Among the many definitions (most some-

what abstract) that have been suggested for BPR is one published in Fortune maga-

zine (STE931 : "the search for, and the implementation of, radical change in business

process to achieve breakthrough results." But how is the search conducted, and how

is the implementation achieved? More important, how can we ensure that the rad-

ical change" suggested will in fact lead to "breakthrough results instead of organi-

zational chaos?

POINT
BPR often results in

new soflwme

functionality, whereas

software reengineenng

works to replace

existing software

functionality with

better, more

maintainable softwore.

“To face tomorrow with the thought of using the methods of yesterday is to envision life at a standstill."

James Bel

l The explosion of Web-based applications and systems discussed in Part 3 of this book is indicative

of this trend.

CHAPTER 31 REENGINEERING
871

As o software

engineer, your work

occurs at the bottom of

this hierarchy. Be sute,

however, that

someone has given

sehous thought to the

levels obove. If this

hasn'tbeen done, your

work is at risk.

WebRef
Exteowe informaticm

on BPR con be found ol

www.brint.com/

BPR.htm.

31.1.1 Business Processes

A business process is "a set of logical!}' related tasks performed to achieve a defined
business outcome" |DAV90). Within the business process, people, equipment, mate-
rial resources, and business procedures are combined to produce a specified result.

Examples of business processes include designing a new product, purchasing ser-

vices and supplies, hiring a new employee, and paying suppliers. Each demands a
set of tasks, and each draws on diverse resources within the business.

Every business process has a defined customer—a person or group that receives
the outcome (e.g., an idea, a report, a design, a product). In addition, business
processes cross organizational boundaries. They require that different organiza-
tional groups participate in the "logically related tasks" that define the process.

In Chapter 6, we noted that every system is actually a hierarchy of subsystems. A
business is no exception. Each business system (also called a business function) is

composed of one or more business processes, and each business process is defined
by a set of subprocesses.

BPR can be applied at any level of the hierarch}-, but as the scope of BPR broad-
ens (i.e., as we move upward in the hierarchy), the risks associated with it grow dra-

matically. For this reason, most BPR efforts focus on individual processes or

subprocesses.

As soon os we ore shown something old in o new thing, we ore pacified."

F. W. Nietzsche

31.1.2 A BPR Model

Like most engineering activities, business process reengineering is iterative. Business
goals and the processes that achieve them must be adapted to a changing business

environment. For this reason, there is no start and end to BPR—it is an evolutionary

process. A model for business process reengineering is depicted in Figure 31.1 The
model defines six activities:

Business definition. Business goals are identified within the context of four

key drivers: cost reduction, time reduction, quality improvement, and personnel

development and empowerment. Goals may be defined at the business level or for

a specific component of the business.

Process identification. Processes that are critical to achieving the goals de-
fined in the business definition are identified. They may then be ranked by impor-
tance, by need for change, or in any other way that is appropriate for the

reengineering activity.

Process evaluation. The existing process is thoroughly analyzed and mea-
sured. Process tasks are identified; the costs and time consumed by process tasks

are noted; and quality/performance problems are isolated.

872 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

A BPR model

Process specification and design. Based on information obtained during the

first three BPR activities, use-cases (Chapter 7) are prepared for each process that

is to be redesigned. Within the context of BPR, use-cases identify a scenario that

delivers some outcome to a customer. With the use-case as the specification of the

process, a new set of tasks are designed for the process.

Prototyping. A redesigned business process must be prototyped before it is

fully integrated into the business. This activity "tests" the process so that refine-

ments can be made.

Refinement and instantiation. Based on feedback from the prototype, the

business process is refined and then instantiated within a business system.

These BPR activities are sometimes used in conjunction with workflow analysis

tools. The intent of these tools is to build a model of existing workflow in an effort to

better analyze existing processes. In addition, the modeling techniques commonly

associated with business process engineering activities (Chapter 6) can be used to

implement the first four activities described in the process model.

Software Tools

V

Business Process Reengineering (BPR)

Mechanics: Tools mechanics vary. In general, BPR tools

allow a business analyst to model existing business

processes in an effort to assess workflow inefficiencies or

functional problems. Once existing problems are

Objective: The objective of BPR tools is to

support the analysis and assessment of existing

business processes and the specification and design of

/

CHAPTER 31 REENGINEERING 873

identified, tools allow the analyst to prototype and/or

simulate revised business processes.

Representative Tools2

Extend, developed by ImagineThat, Inc.

(www.imaginethatinc.com), is a simulation tool for

modeling existing processes and exploring new ones.

Extend provides comprehensive "what if" capability

that enables a business analyst to explore different

process scenarios.

e-Work, developed by Metastorm (www.metastorm.com),

provides business process management support for

both manual and automated processes.

IceTools, developed by Blue Ice (www.blueice.com), is a

collection of BPR templates for Microsoft Office and

Microsoft Project.

SpeeDev, developed by NimbleStar Group

(www.numblestar.com), is one of many tools that

enable an organization to model process work flow (in

this case, IT work flow).

Workflow tools, developed by MetaSoftware

(www.metasoftware.com), incorporates a suite of tools

for workflow modeling, simulation, and scheduling.

A useful list of BPR tool links can be found at

http://www.donald-firesmith.com/Components/

Producers/Tools/BusinessProcessReengineeri ngTools.html.

31.2 Software Reengineering

The scenario is all too common: An application has served the business needs of a

company for 10 or 15 years. During that time it has been corrected, adapted, and en-

hanced many times. People approached this work with the best intentions, but good

software engineering practices were always shunted to the side (due to the press of

other matters). Now the application is unstable. It still works, but every time a change

is attempted, unexpected and serious side effects occur. Yet the application must

continue to evolve. What to do?

Unmaintainable software is not a new problem. In fact, the broadening emphasis

on software reengineering has been spawned by a software maintenance problems

that have been growing in size for more than 40 years.

31.2.1 Software Maintenance

Over three decades ago, software maintenance was characterized [CAN72] as an

"iceberg." We hope that what is immediately visible is all there is to it, but we know

that an enormous mass of potential problems and cost lies under the surface. In the

early 1970s, the maintenance iceberg was big enough to sink an aircraft carrier. To-

day, it could easily sink the entire navy!

The maintenance of existing software can account for over 60 percent of all effort

expended by a development organization, and the percentage continues to rise as

more software is produced [HAN93]. Uninitiated readers may ask why so much

2 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

874 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

maintenance is required and why so much effort is expended. Osborne and Chikof-

sky [OSB90] provide a partial answer:

Much of the software we depend on today is on average 10 to 15 years old. Even when

these programs were created using the best design and coding techniques known at the

time [and most were not], they were created when program size and storage space were

principle concerns. They were then migrated to new platforms, adjusted for changes in

machine and operating system technology and enhanced to meet new user needs—all

without enough regard to overall architecture. The result is the poorly designed struc-

tures, poor coding, poor logic, and poor documentation of the software systems we are

now called on to keep running. . .

.

Another reason for the software maintenance problem is the mobility of software

people. It is likely that the software team (or person) that did the original work is no

longer around. Worse, subsequent generations of software people have modified the

system and moved on. Today, there may be no one left who has any direct knowl-

edge of the legacy system.

As we noted in Chapter 27, the ubiquitous nature of change underlies all soft-

ware work. Change is inevitable when computer-based systems are built; there-

fore, we must develop mechanisms for evaluating, controlling, and making

modifications.

"Program maintainability and program understandobility are parallel concepts: the more difficult a program is to

understand, the more difficult it is to maintain."

Gerald Berns

POINT
Software maintenance

encomposses four

activities: error

correction, adaptation,

enhancement, and

reengineering.

Upon reading the preceding paragraphs, a reader may protest: "But I don't spend

60 percent of my time fixing mistakes in the programs I develop." Software mainte-

nance is, of course, far more than "fixing mistakes." We may define maintenance by

describing four activities [SWA76] that are undertaken after a program is released for

use. Software maintenance can be defined by identifying four different activities: cor-

rective maintenance, adaptive maintenance, perfective maintenance or enhance-

ment, and preventive maintenance or reengineering. Only about 20 percent of all

maintenance work' is spent "fixing mistakes." The remaining 80 percent is spent

adapting existing systems to changes in their external environment, making en-

hancements requested by users, and reengineering an application for future use.

When maintenance is considered to encompass all of these activities, it is relatively

easy to see why it absorbs so much effort.

WebRef
An excellent source

of informolkm on

softwoie leengineeimg

can be found ol

WWW.

reengineering.net.

31.2.2 A Software Reengineering Process Model

Reengineering takes time, costs significant amounts of money, and absorbs re-

sources that might be otherwise occupied on immediate concerns. For all of these

reasons, reengineering is not accomplished in a few months or even a few years.

Reengineering of information systems is an activity that will absorb information

CHAPTER 31 REENGINEERING 875

technology resources for many years. That's why every organization needs a prag-

matic strategy for software reengineering.

A workable strategy is encompassed in a reengineering process model. We'll dis-

cuss the model later in this section, but first, some basic principles.

Reengineering is a rebuilding activity, and we can better understand the reengi-

neering of information systems if we consider an analogous activity: the rebuilding

of a house. Consider the following situation.

You have purchased a house in another state. You've never actually seen the

property, but you acquired it at an amazingly low price, with the warning that it might

have to be completely rebuilt. How would you proceed?

• Before you can start rebuilding, it would seem reasonable to inspect the

house. To determine whether it is in need of rebuilding, you (or a professional

inspector) would create a list of criteria so that your inspection would be

systematic.

• Before you tear down and rebuild the entire house, you would be sure that

the structure is weak. If the house is structurally sound, it may be possible to

"remodel" without rebuilding (at much lower cost and in much less time).

• Before you start rebuilding, you would be sure to understand how the

original was built. Take a peek behind the walls. Understand the wiring, the

plumbing, and the structural internals. Even if you trash them all, the insight

you'd gain would serve you well when you start construction.

• If you begin to rebuild, you would use only the most modern, long-lasting

materials. This may cost a bit more now, but it would help you to avoid

expensive and time-consuming maintenance later.

• If you decide to rebuild, you would be disciplined about it. Use practices that

would result in high quality—today and in the future.

Although these principles focus on the rebuilding of a house, they apply equally

well to the reengineering of computer-based systems and applications.

To implement these principles, we apply a software reengineering process model

that defines six activities, shown in Figure 31 .2. In some cases, these activities occur

in a linear sequence, but this is not always the case. For example, it may be that re-

verse engineering (understanding the internal workings of a program) may have to

occur before document restructuring can commence.

The reengineering paradigm shown in the figure is a cyclical model. This means

that each of the activities presented as a part of the paradigm may be revisited. For

any particular cycle, the process can terminate after any one of these activities.

Inventory analysis. Every software organization should have an inventory of all

applications. The inventory can be nothing more than a spreadsheet model con-

taining information that provides a detailed description (e.g., size, age, business

876 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

A software

reengineering

process model

Data

restructuring

Document

restructuring

Forward

engineering

Inventory

analysis

Code
restructuring

Reverse

engineering

If lime and resources

ore in short supply, you

might consider applying

the Pareto phnciple to

the software that is to

be engineered. Apply

the reengineering

process to the 20

percent of the software

that account for BO

percent of the

problems.

Create only os much

documentation as you

need to understood the

software, not one page

more.

criticality) of every active application. By sorting this information according to

business criticality, longevity, current maintainability, and other locally important

criteria, candidates for reengineering appear. Resources can then be allocated to

candidate applications for reengineering work.

It is important to note that the inventory should be revisited on a regular cycle.

The status of applications (e.g., business criticality) can change as a function of time,

and as a result, priorities for reengineering will shift.

Document restructuring. Weak documentation is the trademark ofmany legacy

systems. But what do we do about it? What are our options?

1 . Creating documentation isfar too time consuming. If the system works, we'll

live with whafwe have. In some cases, this is the correct approach. It is not

possible to recreate documentation for hundreds of computer programs. If a

program is relatively static, is coming to the end of its useful life, and is un-

likely to undergo significant change, let it be!

2. Documentation must be updated, but we have limited resources. We'll use a

"document when touched" approach. It may not be necessary to fully redocu-

ment an application. Rather, those portions of the system that are currently

undergoing change are fully documented. Over time, a collection of useful

and relevant documentation will evolve.

3 . The system is business critical and must befully redocumented. Even in this case,

an intelligent approach is to pare documentation to an essential minimum.

CHAPTER 31 REENGINEERING 877

WebRef

An oncv of resources

for ttie reengineering

communily con be

obtoinedot

www.compJoncs.

ot.uk/projetfs/

RenaissanceWeb/.

Each of these options is viable. A software organization must choose the one that is

most appropriate for each case.

Reverse engineering. The term reverse engineering has its origins in the hardware

world. A company disassembles a competitive hardware product in an effort to un-

derstand its competitor's design and manufacturing "secrets." These secrets could be

easily understood if the competitor's design and manufacturing specifications were

obtained. But these documents are proprietary and unavailable to the company do-

ing the reverse engineering. In essence, successful reverse engineering derives one

or more design and manufacturing specifications for a product by examining actual

specimens of the product.

Reverse engineering for software is quite similar. In most cases, however, the pro-

gram to be reverse engineered is not a competitor's. Rather, it is the company's own

work (often done many years earlier) . The "secrets" to be understood are obscure be-

cause no specification was ever developed. Therefore, reverse engineering for soft-

ware is the process of analyzing a program in an effort to create a representation of

the program at a higher level of abstraction than source code. Reverse engineering

is a process of design recovery. Reverse engineering tools extract data, architectural,

and procedural design information from an existing program.

Code restructuring. The most common type of reengineering (actually, the use of

the term reengineering is questionable in this case) is code restructuring.
3 Some

legacy systems have a relatively solid program architecture, but individual modules

were coded in a way that makes them difficult to understand, test, and maintain. In

such cases, the code within the suspect modules can be restructured.

To accomplish this activity, the source code is analyzed using a restructuring tool.

Violations of structured programming constructs are noted, and code is then re-

structured (this can be done automatically). The resultant restructured code is re-

viewed and tested to ensure that no anomalies have been introduced. Internal code

documentation is updated.

Data restructuring. A program with weak data architecture will be difficult to

adapt and enhance. In fact, for many applications, data architecture has more to do

with the long-term viability of a program that the source code itself.

Unlike code restructuring, which occurs at a relatively low level of abstraction,

data structuring is a full-scale reengineering activity. In most cases, data restructur-

ing begins with a reverse engineering activity. Current data architecture is dissected,

and necessary data models are defined (Chapter 9). Data objects and attributes are

identified, and existing data structures are reviewed for quality.

3 Code restructuring has some of the elements of "refactoring," a redesign concept introduced in

Chapter 4 and discussed elsewhere in this book

878 PARI FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

When data structure is weak (e.g., flat files are currently implemented, when a re-

lational approach would greatly simplify processing), the data are reengineered.

Because data architecture has a strong influence on program architecture and the

algorithms that populate it, changes to the data will invariably result in either archi-

tectural or code-level changes.

Forward engineering. In an ideal world, applications would be rebuilt using an

automated "reengineering engine." The old program would be fed into the engine,

analyzed, restructured, and then regenerated in a form that exhibited the best as-

pects of software quality. In the short term, it is unlikely that such an "engine" will

appear, but vendors have introduced tools that provide a limited subset of these ca-

pabilities that addresses specific application domains (e.g., applications that are im-

plemented using a specific database system). More important, these reengineering

tools are becoming increasingly more sophisticated.

Forward engineering, also called renovation or reclamation [CHI90], not only re-

covers design information from existing software, but uses this information to alter

or reconstitute the existing system in an effort to improve its overall quality. In most

cases, reengineered software reimplements the function of the existing system and

also adds new functions and/or improves overall performance,

11,3 Reverse Engineering

Reverse engineering conjures an image of the "magic slot." We feed a haphazardly de-

signed, undocumented source listing into the slot and out the other end comes a

complete design description (and full documentation) for the computer program. Un-

fortunately, the magic slot doesn't exist. Reverse engineering can extract design in-

formation from source code, but the abstraction level, the completeness of the

documentation, the degree to which tools and a human analyst work together, and

the directionality of the process are highly variable.

The abstraction level of a reverse engineering process and the tools used to effect

it refers to the sophistication of the design information that can be extracted from

source code. Ideally, the abstraction level should be as high as possible. That is, the

reverse engineering process should be capable of deriving procedural design repre-

sentations (a low-level abstraction), program and data structure information (a

somewhat higher level of abstraction), object models, data and/or control flow

models (a relatively high level of abstraction), and UML class, state and deployment

diagrams (a high level of abstraction). As the abstraction level increases, the soft-

ware engineer is provided with information that will allow easier understanding of

the program.

The completeness of a reverse engineering process refers to the level of detail that

is provided at an abstraction level. In most cases, the completeness decreases as the

abstraction level increases. For example, given a source code listing, it is relatively

easy to develop a complete procedural design representation. Simple design repre-

CHAPTER 31 REENGINEERING 879

The reverse

engineering

process

Dirty source code

Find specification

I

POINT
Three reverse

engineering issues must

be addressed:

abstraction level,

completeness, and

directionality.

sentations may also be derived, but it is far more difficult to develop a complete set

of UML diagrams or models.

Completeness improves in direct proportion to the amount of analysis performed

by the person doing reverse engineering. Interactivity refers to the degree to which

the human is "integrated" with automated tools to create an effective reverse engi-

neering process. In most cases, as the abstraction level increases, interactivity must

increase or completeness will suffer.

If the directionality of the reverse engineering process is one-way, all information

extracted from the source code is provided to the software engineer who can then use

it during any maintenance activity. If directionality is two-way, the information is fed

to a reengineering tool that attempts to restructure or regenerate the old program.

The reverse engineering process is represented in Figure 31 .3. Before reverse en-

gineering activities can commence, unstructured ("dirty") source code is restructured

(Section 31 .4. 1) so that it contains only the structured programming constructs.4 This

makes the source code easier to read and provides the basis for all the subsequent

reverse engineering activities.

The core of reverse engineering is an activity called extract abstractions. The engineer must

evaluate the old program and from the (often undocumented) source code, develop a mean-

ingful specification ofthe processing that is performed, the user interface that is applied, and the

program data structures or database that is used.

4 Code can be restructured using a restructuring engine—

a

tool that restructures source code.

880

WebRef

Useful resources

for 'design recovery

ond program

uodefshmdmg" con

be found or

wwwselSt.nrc.

co/projects/dr/

dr.html.

Seemingly insignificant

compromises in date

structures con lead to

potentially catastrophic

problems in future

years. Consider the

Y2Kproblem os on

example.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

31.3.1 Reverse Engineering to Understand Data

Reverse engineering of data occurs at different levels of abstraction and is often the

first reengineering task. At the program level, internal program data structures must

often be reverse engineered as part of an overall reengineering effort. At the system

level, global data structures (e.g., files, databases) are often reengineered to ac-

commodate new database management paradigms (e.g., the move from fiat file to

relational or object-oriented database systems). Reverse engineering of the current

global data structures sets the stage for the introduction of a new system-wide

database.

Internal data structures. Reverse engineering techniques for internal program

data focus on the definition of classes of objects. This is accomplished by examining

the program code with the intent of grouping related program variables. In many

cases, the data organization within the code identifies abstract data types. For ex-

ample, record structures, files, lists, and other data structures often provide an initial

indicator of classes.

Database structure. Regardless of its logical organization and physical structure,

a database allows the definition of data objects and supports some method for es-

tablishing relationships among the objects. Therefore, reengineering one database

schema into another requires an understanding of existing objects and their rela-

tionships.

The following steps [PRE94] may be used to define the existing data model as a

precursor to reengineering a new database model: (1) build an initial object model,

(2) determine candidate keys, (3) refine the tentative classes, (4) define generaliza-

tions, and (5) discover associations (use techniques that are analogous to the CRC

approach). Once information defined in the preceding steps is known, a series of

transformations [PRE94] can be applied to map the old database structure into a new

database structure.

31.3.2 Reverse Engineering to Understand Processing

Reverse engineering to understand processing begins with an attempt to understand

and then extract procedural abstractions represented by the source code. To under-

stand procedural abstractions, the code is analyzed at varying levels of abstraction:

system, program, component, pattern, and statement.

The overall functionality of the entire application system must be understood be-

fore more detailed reverse engineering work occurs. This establishes a context for

further analysis and provides insight into interoperability issues among applications

within the system. Each of the programs that make up the application system repre-

sents a functional abstraction at a high level of detail. A block diagram, representing

the interaction between these functional abstractions, is created. Each component

performs some subfunction and represents a defined procedural abstraction. A

processing narrative for each component is developed. In some situations, system,

CHAPTER 31 REENGINEERING 881

^ How do I

• understand

the workings of

an existing user

interface?

program, and component specifications already exist. When this is the case, the

specifications are reviewed for conformance to existing code.5

"There exists a passion for comprehension, just as there exists o passion for music. That passion is rather common in

children, but gets lost in most people later on."

Albert Einstein

Things become more complex when the code inside a component is considered.

The engineer looks for sections of code that represent generic procedural patterns. In

almost every component, a section of code prepares data for processing (within the

module), a different section of code does the processing, and another section of code

prepares the results of processing for export from the component. Within each of these

sections, we can encounter smaller patterns; for example, data validation and bounds

checking often occur within the section of code that prepares data for processing.

For large systems, reverse engineering is generally accomplished using a semi-

automated approach. Automated tools are used to help the software engineer un-

derstand the semantics of existing code. The output of this process is then passed to

restructuring and forward engineering tools to complete the reengineering process.

31.3.3 Reverse Engineering User Interfaces

Sophisticated GUIs are now de rigueur for computer-based products and systems of

every type. Therefore, the redevelopment of user interfaces has become one of the

most common types of reengineering activity. But before a user interface can be re-

built, reverse engineering should occur.

To fully understand an existing user interface, the structure and behavior of the

interface must be specified. Merlo and his colleagues [MER93] suggest three basic

questions that must be answered as reverse engineering of the UI commences:

• What are the basic actions (e.g., keystrokes and mouse clicks) that the

interface must process?

• What is a compact description of the behavioral response of the system to

these actions?

• What is meant by a "replacement," or more precisely, what concept of equiv-

alence of interfaces is relevant here?

Behavioral modeling notation (Chapter 8) can provide a means for developing an-

swers to the first two questions. Much of the information necessary to create a be-

havioral model can be obtained by observing the external manifestation of the

existing interface. But additional information necessary to create the behavioral

model must be extracted from the code.

5 Often, specifications written early in the life history of a program are never updated. As changes

are made, the code no longer conforms to the specification.

882 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

It is important to note that a replacement GUI may not mirror the old interface ex-

actly (in fact, it may be radically different). It is often worthwhile to develop new in-

teraction metaphors. For example, an old GUI requests that a user provide a scale

factor (ranging from 1 to 10) to shrink or magnify a graphical image. A reengineered

GUI might use a slide bar and mouse to accomplish the same function.

Reverse Engineering

Objective: To help software engineers

understand the internal design structure of

complex programs.

Mechanics; In most cases, reverse engineering tools

accept source code as input and produce a variety of

structural, procedural, data, and behavioral design

representations.

Representative Tools6

Imagix 4D, developed by Imagix (www.imagix.com),

"helps software developers understand complex or

Software Tools

legacy C and C+ + software" by reverse engineering

and documenting source code.

Understand, developed by Scientific Toolworks, Inc.

(www.scitools.com), parses Ada, Fortran, C, C++,
and Java "to reverse engineer, automatically

document, calculate code metrics, and help you

understand, navigate and maintain source code."

A comprehensive listing of reverse engineering tools can

be found at hltp://scgwiki.iam.unibe.ch:8080/SCG/370.

)

.3 1.4 Restructuring

Software restructuring modifies source code and/or data in an effort to make it

amenable to future changes. In general, restructuring does not modify the overall

program architecture, it tends to focus on the design details of individual modules

and on local data structures defined within modules. If the restructuring effort ex-

tends beyond module boundaries and encompasses the software architecture, re-

structuring becomes forward engineering (Section 31.5).

Restructuring occurs when the basic architecture of an application is solid, even

though technical internals need work. It is initiated when major parts of the soft-

ware are serviceable and only a subset of all components and data need extensive

modification. 7

31.4.1 Code Restructuring

Code restructuring is performed to yield a design that produces the same function as

the original program but with higher quality. In general, code restructuring techniques

(e.g., Wamier's logical simplification techniques [WAR74]) model program logic using

Boolean algebra and then apply a series of transformation rules that yield restructured

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

7 It is sometimes difficult to make a distinction between extensive restructuring and redevelopment.

Both are reengineering.

CHAPTER 31 REENGINEERING 883

Although code restruc-

turing con alleviate

immediate problems

associated with

debugging or small

changes, it is not

reengineering. Heal

benefit is achieved only

when data and architec-

ture are restructured.

logic. The objective is to take "spaghetti-bowl" code and derive a procedural design

that conforms to the structured programming philosophy (Chapter 11).

Other restructuring techniques have also been proposed for use with reengineer-

ing tools. A resource exchange diagram maps each program module and the re-

sources (data types, procedures, and variables) that are exchanged between it and

other modules. By creating representations of resource flow, the program architec-

ture can be restructured to achieve minimum coupling among modules.

3 1 .4. 2 Data Restructuring

Before data restructuring can begin, a reverse engineering activity called analysis of

source code must be conducted. All programming language statements that contain

data definitions, file descriptions, I/O, and interface descriptions are evaluated. The

intent is to extract data items and objects, to get information on data flow, and to un-

derstand the existing data structures that have been implemented. This activity is

sometimes called data analysis [R1C89].

Once data analysis has been completed, data redesign commences. In its simplest

form, a data record standardization step clarifies data definitions to achieve consis-

tency among data item names or physical record formats within an existing data

structure or file format. Another form of redesign, called data name rationalization,

ensures that all data naming conventions conform to local standards and that aliases

are eliminated as data flow through the system.

When restructuring moves beyond standardization and rationalization, physical

modifications to existing data structures are made to make the data design more ef-

fective. This may mean a translation from one file format to another, or in some

cases, translation from one type of database to another.

Software Tools

Software Restructuring

Objective: The objective of restructuring tools

is to transform older unstructured computer

software into modern programming languages and design

structures.

Mechanics: In general, source code is input and

transformed into a better structured program. In some cases,

the transformation occurs within the same programming

language. In other cases, an older programming language

is transformed into a more modem language.

Representative Tools8

DMS Software Reengineering Toolkit, developed by

^
Semantic Design (www.semdesigns.com), provides a

variety of restructuring capabilities for COBOL,

C/C+ + ,
Java, FORTRAN 90, and VHDL.

FORESYS, developed by Simulog (www.simulog.fr),

analyzes and transforms programs written in FORTRAN.

Function Encapsulation Tool, developed at Wayne State

University

(www.cs.wayne.edu/~vip/RefactoringTools/),

refactors older C programs into C++.
plusFORT, developed by Polyhedron

(www.polyhedron.com), is a suite of FORTRAN tools

that contains capabilities for restructuring poorly

designed FORTRAN programs into the modem
FORTRAN or C standard.

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category

In most cases, tool names are trademarked by their respective developers.

884 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

2LL5.

What

• options exist

when we're fated

with a poorly

designed and

implemented

program?

Reengineering is o lot

like getting your teeth

cleaned, You can think

of o thousand reasons

to delay it, and you'll

getaway with procras-

tinating for quite o

while. But eventually,

your delaying tactics

will come back to

couse pain.

I,fi.EWAEfl. ll£MSINEERIHS

A program with control flow that is the graphic equivalent of a bowl of spaghetti,

with "modules" that are 2000 statements long, with few meaningful comment lines

in 290,000 source statements and no other documentation must be modified to ac-

commodate changing user requirements. We have the following options:

1 . We can struggle through modification after modification, fighting the implicit

design and source code to implement the necessary changes.

2 . We can attempt to understand the broader inner workings of the program in

an effort to make modifications more effectively.

3. We can redesign, recode, and test those portions of the software that re-

quire modification, applying a software engineering approach to all revised

segments.

4. We can completely redesign, recode, and test the program, using reengineer-

ing tools to assist us in understanding the current design.

There is no single ''correct" option. Circumstances may dictate the first option even

if the others are more desirable.

Rather than waiting until a maintenance request is received, the development or

support organization uses the results of inventory analysis to select a program that

(1) will remain in use for a preselected number of years, (2) is currently being used

successfully, and (3) is likely to undergo major modification or enhancement in the

near future. Then, option 2, 3, or 4 is applied.

This preventative maintenance approach was pioneered by Miller [MIL81] under

the title structured retrofit. This concept is defined as "the application of today's

methodologies to yesterday's systems to support tomorrow's requirements."

At first glance, the suggestion that we redevelop a large program when a work-

ing version already exists may seem quite extravagant. Before passing judgment,

consider the following points:

1 . The cost to maintain one line of source code may be 20 to 40 times the cost

of initial development of that line.

2 . Redesign of the software architecture (program and/or data structure), using

modern design concepts, can greatly facilitate future maintenance.

3. Because a prototype of the software already exists, development productivity

should be much higher than average.

4. The user now has experience with the software. Therefore, new require-

ments and the direction of change can be ascertained with greater ease.

5. Automated tools for reengineering will facilitate some parts of the job.

6. A complete software configuration (documents, programs, and data) will ex-

ist upon completion of preventive maintenance.

CHAPTER 31 REENGINEERING 885

In some cases,

migration to o

client/server architec-

ture should be

approached not os

reengineenng, but os o

new development

effort. Reengineering

enters the picture only

when specific function-

ality from the old

system is to be inte-

grated into the new

architecture.

When a software development organization sells software as a product, preven-

tive maintenance is seen in “new releases" of a program. A large in-house software

developer (e.g., a business systems software development group for a large con-

sumer products company) may have 500-2000 production programs within its do-

main of responsibility. These programs can be ranked by importance and then

reviewed as candidates for preventive maintenance.

The forward engineering process applies software engineering principles, con-

cepts, and methods to recreate an existing application. In most cases, forward engi-

neering does not simply create a modern equivalent of an older program. Rather,

new user and technology requirements are integrated into the reengineering effort.

The redeveloped program extends the capabilities of the older application.

3 1 .5. 1 Forward Engineering for Client/Server Architectures

Over the past few decades, many mainframe applications have been reengineered

to accommodate client/server architectures (including WebApps). In essence, cen-

tralized computing resources (including software) are distributed among many client

platforms. Although a variety of different distributed environments can be designed,

the typical mainframe application that is reengineered into a client/server architec-

ture has the following features:

• Application functionality migrates to each client computer.

• New GUI interfaces are implemented at the client sites.

• Database functions are allocated to the server.

• Specialized functionality (e.g., compute-intensive analysis) may remain at the

server site.

• New communications, security, archiving, and control requirements must be

established at both the client and server sites.

It is important to note that the migration from mainframe to client/server comput-

ing requires both business and software reengineering. In addition, an "enterprise

network infrastructure" [JAY94] should be established.

Reengineering for client/server applications begins with a thorough analysis of

the business environment that encompasses the existing mainframe. Three layers of

abstraction can be identified. The database layer sits at the foundation of a

client/server architecture and manages transactions and queries from client appli-

cations. Yet these transactions and queries must be controlled within the context of

a set of business rules (defined by an existing or reengineered business process).

Client applications provide targeted functionality to the user community.

The functions of the existing database management system and the data architec-

ture of the existing database must be reverse engineered as a precursor to the re-

design of the database layer. In some cases a new data model (Chapter 8) is created.

In every case, the client/server database is reengineered to ensure that transactions

886 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

are executed in a consistent manner, that all updates are performed only by author-

ized users, that core business rules are enforced (e.g., before a vendor record is

deleted, the server ensures that no related accounts payable, contracts, or communi-

cations exist for that vendor), that queries can be accommodated efficiently, and that

full archiving capability has been established.

The business rules layer represents software that is resident at both the client and

the server. This software performs control and coordination tasks to ensure that

transactions and queries between the client application and the database conform

to the established business process.

The client applications layer implements business functions that are required by

specific groups of end-users. In many instances, a mainframe application is seg-

mented into a number of smaller, reengineered desktop applications. Communica-

tion among the desktop applications (when necessary) is controlled by the business

rules layer.

A comprehensive discussion of client/server software design and reengineering is

best left to books dedicated to the subject. The interested reader should see [VAN02],

[COUOO], and [ORF99].

31.5.2 Forward Engineering lor Object-Oriented Architectures

Object-oriented software engineering has become the development paradigm of

choice for many software organizations. But what about existing applications that

were developed using conventional methods? In some cases, the answer is to leave

such applications "as is." In others, older applications must be reengineered so that

they can be easily integrated into large, object-oriented systems.

Reengineering conventional software into an object-oriented implementation

uses many of the same techniques discussed in Part 2 of this book. First, the existing

software is reverse engineered so that appropriate data, functional, and behavioral

models can be created. If the reengineered system extends the functionality or be-

havior of the original application, use-cases (Chapters 7 and 8) are created. The data

models created during reverse engineering are then used in conjunction with CRC

modeling (Chapter 8) to establish the basis for the definition of classes. Class hierar-

chies, object-relationship models, object-behavior models, and subsystems are de-

fined, and object-oriented design commences.

As object-oriented forward engineering progresses from analysis to design, a

CBSE process model (Chapter 30) can be invoked. If the old application exists

within a domain that is already populated by many object-oriented applications, it

is likely that a robust component library exists and can be used during forward

engineering.

For those classes that must be engineered from scratch, it may be possible to

reuse algorithms and data structures from the existing conventional application.

However, these must be redesigned to conform to the object-oriented architecture.

CHAPTER 31 REENGINEERfNG 887

What steps should we

follow to reengineer o

user interface?

WebRef

A 300 + poge

homfcookon

teenginesring poneins

(developed os port of

the rAWOCS ESPRIT

project con be

downlooded from

www.iam.unibe.

di/ - stg/

Ardiive/famoos/

pattcrns/index3.

html.

2LA

31.5.3 Forward Engineering User Interfaces

As applications migrate from the mainframe to the desktop users are no longer will-

ing to tolerate arcane, character-based user interfaces. In fact, a significant portion

of all effort expended in the transition from mainframe to client/server computing

can be spent in the reengineering of client application user interfaces.

Merlo and his colleagues [MER95] suggest the following model for reengineering

user interfaces:

1 . Understand the original interface and the data that move between it and the re

mainder ofthe application. The intent is to understand how other elements of

a program interact with existing code that implements the interface. If a new
GUI is to be developed, the data that flow between the GUI and the remaining

program must be consistent with the data that currently flow between the

character-based interface and the program.

2. Remodel the behavior implied by the existing interface into a series ofabstrac-

tions that have meaning in the context ofa GUI. Although the mode of interac-

tion may be radically different, the business behavior exhibited by users of

the old and new interfaces (when considered in terms of a usage scenario)

must remain the same. A redesigned interface must still allow a user to ex-

hibit the appropriate business behavior. For example, when a database query

is to be made, the old interface may require a long series of text-based com-

mands to specify the query. The reengineered GUI may streamline the query

to a small sequence of mouse picks, but the intent and content of the query

remain unchanged.

3. Introduce improvements that make the mode ofinteraction more efficient. The

ergonomic failings of the existing interface are studied and corrected in the

design of the new GUI.

4. Build and integrate the new GUI. The existence of class libraries and auto-

mated tools can reduce the effort required to build the GUI significantly.

However, integration with existing application software can be more time

consuming. Care must be taken to ensure that the GUI does not propagate

adverse side effects into the remainder of the application.

"You can pay a little now, or you can pay a lot more Inter.

r

Sign in an auto dealership suggesting a tune up

_The Economics of Reengineering

In a perfect world, every unmaintainable program would be retired immediately, to be

replaced by high-quality, reengineered applications developed using modern software

engineering practices. But we live in a world of limited resources. Reengineering

888 PART FIVE ADVANCED TOPICS !N SOFTWARE ENGINEERING

drains resources that can be used for other business purposes. Therefore, before an

organization attempts to reengineer an existing application, it should perform a

cost/benefit analysis.

A cost/benefit analysis model for reengineering has been proposed by Sneed

[SNE95). Nine parameters are defined:

P, = current annual maintenance cost for an application

P2 = current annual operation cost for an application

P} = current annual business value of an application

P„ = predicted annual maintenance cost after reengineering

P5 = predicted annual operations cost after reengineering

P6 = predicted annual business value after reengineering

P7 = estimated reengineering costs

P8 = estimated reengineering calendar time

Ps = reengineering risk factor (Ps = 1 .0 is nominal)

L = expected life of the system

The cost associated with continuing maintenance of a candidate application (i.e.,

reengineering is not performed) can be defined as

Gmh = [P3 - (Pi + Pa)] X L (31-1)

The costs associated with reengineering are defined using the following relationship:

Cr«ng
= IP« - (P« + Ps) x (f- - Pi) ~ (Pi x P»)l (31-2)

Using the costs presented in Equations (31-1) and (31-2), the overall benefit of

reengineering can be computed as

cost benefit = Creeng
- Cmain! (31-3)

The cost/benefit analysis presented in the equations can be performed for all high-

priority applications identified during inventory analysis (Section 31.2.2). Those ap-

plications that show the highest cost/benefit can be targeted for reengineering,

while work on others can be postponed until resources are available.

3LZ-SIIMMA&X

Reengineering occurs at two different levels of abstraction. At the business level,

reengineering focuses on the business process with the intent of making changes to

improve competitiveness in some area of the business. At the software level, reengi-

neering examines information systems and applications with the intent of restruc-

turing or reconstructing them so that they exhibit higher quality.

Business process reengineering defines business goals, identifies and evaluates

existing business processes (in the context of defined goals), specifies and designs

revised processes, and prototypes, refines, and instantiates them within a business.

CHAPTER 31 REENGINEERING 889

BPR has a focus that extends beyond software. The result of BPR is often the defini-

tion of ways in which information technologies can better support the business.

Software reengineering encompasses a series of activities that include inventory

analysis, document restructuring, reverse engineering, program and data restruc-

turing. and forward engineering. The intent of these activities is to create versions of

existing programs that exhibit higher quality and better maintainability—programs

that will be viable well into the twenty-first century.

Inventory' analysis enables an organization to assess each application systemati-

cally, with the intent of determining which are candidates for reengineering. Docu-

ment restructuring creates a framework of documentation that is necessary for the

long-term support of an application. Reverse engineering is the process of analyzing

a program in an effort to extract data, architectural, and procedural design informa-

tion. Finally, forward engineering reconstructs a program using modem software en-

gineering practices and information learned during reverse engineering.

The cost/benefit of reengineering can be determined quantitatively. The cost of

the status quo, that is, the cost associated with ongoing support and maintenance of

an existing application, is compared to the projected costs of reengineering and the

resultant reduction in maintenance costs. In almost every case in which a program

has a long life and currently exhibits poor maintainability, reengineering represents

a cost-effective business strategy.

References —
[CAN72] Canning, R., 'The Maintenance iceberg'," EDPAnalyzer, vol. 10, no. 10, October 1972.

[CAS88] "Case Tools for Reverse Engineering," G4S£ Outlook, CASE Consulting Group, vol. 2, no.

2, 1988, pp. 1-15.

[CH190] Chikofsky, E. J., and J. H. Cross, II, "Reverse Engineering and Design Recovery: A Tax-

onomy," IEEE Software, January 1990, pp. 13-17.

[COUOOl Coulouris, G., J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and Design,

3rd ed., Addison-Wesley, 2000.

[DAV90] Davenport, T. H., and J. E. Young, "The New Industrial Engineering: Information Tech-

nology and Business Process Redesign," Sloan Management Re\>iew, Summer 1990, pp. 1 1-27.

[DEM951 DeMarco, T., "Lean and Mean," IEEE Software, November 1995, pp. 101-102.

[HAM90] Hammer, M., "Reengineer Work: Don't Automate, Obliterate," Harvard Business Review,

July-August 1990, pp. 104-112,

JHAN93] Manna, M., "Maintenance Burden Begging for a Remedy," Datamation, April 1993,

pp. 53-63.

[JAY94] Jaychandra, Y„ Re-engineering the Networked Enterprise, McGraw-Hill. 1 994.

[MER93] Merlo, E., et al., "Reverse Engineering of User Interfaces," Proc. Working Conference on

Reverse Engineering, IEEE, Baltimore, May 1993, pp. 171-178.

[MER951 Merlo, E., et al., "Reengineering User Interfaces," IEEE Software, January 1995,

pp. 64-73.

[MIL81] Miller, J., in Techniques ofProgram and System Maintenance, (G Parikh, ed.) Winthrop

Publishers, 1981.

[ORF99] Orfali, R„ D. Harkey, and J. Edwards, Oient/Server Survival Guide, 3rd ed., Wiley, 1999.

[OSB90] Osborne, W. M„ and E. J. Chikofsky, "Fitting Pieces to the Maintenance Puzzle," IEEE

Software, January 1990, pp. 10— 1 1.

[PRE94] Premerlani, W. J., and M. R. Blaha, "An Approach for Reverse Engineering of Relational

Databases," CACM, vol. 37, no. 5, May 1994, pp. 42-49.

890 PART FIVE ADVANCED TOFiCS IN SOFTWARE ENGINEERING

[RIC89] Ricketts,). A., J. C. DelMonaco, and M. W. Weeks, "Data Reengineering for Application
Systems," Proc. Con/. Software Maintenance—1989, IEEE, 1989, pp. 174-179.

[SNE95) Sneed, H . "Planning the Reengineering of Legacy Systems," IEEE Software January
1995, pp. 24-25.

[STE93] Stewart, T. A., "Reengineering: The Hot New Managing Tool," Fortune. August 23 1 993
pp. 41-48.

[SWA76] Swanson, E. B., "The Dimensions of Maintenance," Proc. Second Inti. Con/ Software En-
gineering, IEEE, October 1976, pp. 492-497.

(VAN02J Van Steen, M„ and A. Tanenbaum, Distributed Systems: Principles and Paradigms,
Prentice-Hall, 2002.

[WAR74] Wamier, J. D., Logical Construction o/Programs, Van Nostrand-Reinhold, 1974.

..PROBLEMS and Points to Ponder
31.1. Research the literature and/or Internet sources to find one or more papers that discuss
case studies of mainframe to client/ server reengineering. Present a summary.

31.2. How would you determine PA through P7 in the cost-benefit model presented in Sec-
tion 31.6?

3 1 .3. Your instructor will select one of the programs that everyone in the class has developed
during this course. Exchange your program randomly with someone else in the class. Do not ex-
plain or walk through the program. Now, implement an enhancement (specified by your in-
structor) in the program you have received.

a. Perform all software engineering tasks including a briefwalkthrough (but not with the au-
thor of the program).

b. Keep careful track of all errors encountered during testing.

c. Discuss your experiences in class.

31.4. Using information obtained via the Internet, present characteristics of three reverse en-
gineering tools to your class.

31.5. Explore the inventory analysis checklist presented at the SEPA Web site and attempt to
develop a quantitative software rating system that could be applied to existing programs in an
effort to pick candidate programs for reengineering. Your system should extend beyond eco-
nomic analysis presented in Section 31 .6.

31.6. Some people believe that artificial intelligence technology will increase the abstraction
level of the reverse engineering process. Do some research on this subject (i.e., the use of Ai for
reverse engineering), and write a brief paper that takes a stand on this point

31.7. Suggest alternatives to paper and ink or conventional electronic documentation that
could serve as the basis for document restructuring. (Hint: Think of new descriptive technolo-
gies that could be used to communicate the intent of the software.)

31 .8. Consider any job that you've held in the last five years. Describe the business process in
which you played a part. Use the BPR model described in Section 31 .1 .3 to recommend changes
to the process in an effort to make it more efficient.

3 1 .9. Why is completeness difficult to achieve as abstraction level increases?

31.10. There is a subtle difference between restructuring and forward engineering. What is it?

31.11. Do some research on the efficacy of business process reengineering Present pro and
con arguments for this approach.

31.12. Why must interactivity increase if completeness is to increase’

CHAPTER 31 REENGINEERING 891

Further Readings and Information Squrcss

Like many hot topics in the business community, the hype surrounding business process reengi-

neering has given way to a more pragmatic view of the subject. Hammer and Champy (Reengi-

neering the Corporation, HarperBusiness, revised edition, 2001) precipitated early interest with

their best-selling book. Later, Hammer (
Beyond Reengineering: How the Processed-Centered Orga

nization Is Changing Our Work and Our Lives, HarperCollins 1997) refined his view by focusing on

"process-centered" issues.

Books by Smith and Fingar (Business Process Management (BPM): The Third Wave, Meghan-

Kiffer Press, 2003), Jacka and Keller
(
Business Process Mapping: Improving Customer Satisfaction,

Wiley, 2001), Sharp and McDermott {Workflow Modeling, Artech House, 2001), Andersen {Busi-

ness Process Improvement Toolbox, American Society for Quality, 1999), and Harrington et al.

{Business Process Improvement Workbook, McGraw-Hill, 1 997), present case studies and detailed

guidelines for BPR.

Feidmann {The Practical Guide to Business Process Reengineering Using 1DEF0, Dorset House,

1998) discusses a modeling notation that assists in BPR. Berztiss (Software Methodsfor Business

Reengineering, Springer, 1996) and Spurr et al. {Software Assistancefor Business Reengineering,

Wiley, 1 994) discuss tools and techniques that facilitate BPR.

Secord and his colleagues {Modernizing Legacy Systems, Addison-Wesley, 2003), Ulrich

(Legacy Systems: Transformation Strategies, Prentice-Hall, 2002), Valenti (Successful Software

Reengineering, IRM Press, 2002), and Rada (Reengineering Software: How to Reuse Programming

to Build New, State-of the-Art Software, Fitzroy Dearborn Publishers, 1999) focus on strategies and

practices for reengineering at a technical level. Miller (Reengineering Legacy Software Systems,

Digital Press, 1998) "provides a framework for keeping application systems synchronized with

business strategies and technology changes." Umar {Application (Re)Enginceiing: Building Web-

Based Applications and Dealing with Legacies, Prentice-Hall, 1 997) provides worthwhile guidance

for organizations that want to transform legacy systems into a Web-based environment. Cook

(Building Enterprise Information Architectures: Reengineering Information Systems, Prentice-Hall,

1996) discusses the bridge between BPR and information technology. Aiken (Data Reverse Engi-

neering, McGraw-Hill, 1 996) discusses how to reclaim, reorganize, and reuse organizational data.

Arnold (Software Reengineering, IEEE Computer Society Press, 1 993) has put together an excel-

lent anthology of early papers that focus on software reengineering technologies.

A wide variety of information sources on software reengineering is available on the Internet.

An up-to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

CHAPTER

32
J

The Road
Ahead

I
n the 31 chapters that have preceded this one, we explored a process for soft-

ware engineering. We presented both management procedures and technical

methods, basic principles and specialized techniques, people-oriented activ-

ities and tasks that are amenable to automation, paper and pencil notation, and
software tools. We argued that measurement, discipline, and an overriding focus
on quality will result in software that meets the customer's needs, software that

is reliable, software that is maintainable, software that is better. Yet, we have
never promised that software engineering is a panacea.

As we continue our journey into a new century, software and systems tech-

nologies remain a challenge for every software professional and every company
that builds computer-based systems. Although he wrote these words with a twen-
tieth century outlook. Max Hopper [HOP90] accurately describes the current state

of affairs:

Because changes in information technology are becoming so rapid and unforgiving,

and the consequences of falling behind are so irreversible, companies will either mas-
ter the technology or die . . . Think of it as a technology treadmill. Companies will have
to run harder and harder just to stay in place.

Key
Concepts
data

ethUs

information

knowledge

people

process

scope of change

software revisited

technology trends

What is it? The future is never eas

to predict—pundits, talking head:

and industry experts not-withstandinc

The road ahead is littered with the car

casses of exciting new technologies that never re

ally made it (despite the hype) and is often shaper

by more modest technologies that somehow mod
ify the direction and width of the thorpughfare

Therefore, we won't try to predict the future. Rathe

we'll discuss some of the issues that you'll need tr

consider to understand how software and softwan

engineering will change in the years ahead.

Who does it? Everyone!

Why is it important? Why did ancient king:

hire soothsayers? Why do major multinationa

corporations hire consulting firms and thinl

tanks to prepare forecasts? Why does a sub
stantial percentage of the public read horo

scopes? We want to know what's coming so we
can ready ourselves.

What are the steps? There is no formula for

predicting the road ahead. We attempt to do this

by collecting data, organizing it to provide use-

ful information, examining subtle associations to

extract knowledge, and from this knowledge,
suggest probable occurrences that predict how
things will be at some future time.

What is the work product? A view of the

near-term future that may or may not be correct.

How do I ensure that I've done it right?
Predicting the road ahead is an art, not a sci-

ence. In fact, it's quite rare when a serious pre-

diction about the future is absolutely right or

unequivocally wrong (with the exception, thank-

fully, of predictions of the end of the world). We
look for trends and try to extrapolate them
ahead in time. We can assess the correctness of

the extrapolation only as time passes.

892

CHAPTER 32 THE ROAD AHEAD 893

Changes in software engineering technology are indeed "rapid and unforgiving,"

while at the same time progress is often quite slow. By the time a decision is made

to adopt a new method (or a new tool), conduct the training necessary to understand

its application, and introduce the technology into the software development culture,

something newer (and even better) has come along, and the process begins anew.

In this chapter, we examine the road ahead. Our intent is not to explore every area

of research the holds promise. Nor is it to gaze into a "crystal ball" and prognosticate

about the future. Rather, we explore the scope of change and the way in which

change itself will affect the software engineering process in the years ahead.

32.1 The Importance qf Software—Revisited

The importance ofcomputer software can be stated in many ways. In Chapter 1 ,
soft-

ware was characterized as a differentiator. The function delivered by software dif-

ferentiates products, systems, and services and provides competitive advantage in

the marketplace. But software is more than a differentiator. The programs, docu-

ments. and data that are software help to generate the most important commodity

that any individual, business, or government can acquire—information. Pressman

and Herron [PRE9
1]

describe software in the following way:

Computer software is one of only a few key technologies that will have a significant im-

pact on nearly every aspect of modern society ... It is a mechanism for automating busi-

ness, industry, and government, a medium for transferring new technology, a method of

capturing valuable expertise for use by others, a means for differentiating one company's

products from its competitors, and a window into a corporation's collective knowledge.

Software is pivotal to nearly every aspect of business. But in many ways, software is also

a hidden technology. We encounter software (often without realizing it) when we travel

to work, make any retail purchase, stop at the bank, make a phone call, visit the doctor,

or perform any of the hundreds of day-to-day activities that reflect modern life.

The pervasiveness of software leads us to a simple conclusion: Whenever a tech-

nology has a broad impact—an impact that can save lives or endanger them, build

businesses or destroy them, inform government leaders or mislead them—it must be

handled with care.

"Predictions ore very difficult to make, especially when they deal with the future."

Mark Twain

32.2 The Scope of Change

The changes in computing over the past 50 years have been driven by advances in

the hard sciences—physics, chemistry, materials science, and engineering. This

trend will continue during the first quarter of the tw'enty-first century. The impact of

new technologies is pervasive—on communications, energy, healthcare, transporta-

tion, entertainment, economics, manufacturing, and warfare, to name only a few.

894 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Technologies to Watch
The editors of PC Magazine [PCM03] prepare

an annual "Future Tech" issue that "[sorts]

through all the chatter (there's a lot of it) to identify 20 of

the most promising technologies of tomorrow." The

technologies noted run the gamut from healthcare to

warfare. However, it's interesting to note that software and

software engineering have a significant role to play in

every one, either as an enabler for the technology or an

integral part of it. The following represents a sampling of

the technologies noted:

Carbon nanotubes—with a tiny graphite-like structure,

carbon nanotubes can serve as wires to transmit

signals from one point to another and as transistors,

using signal changes to store information. These

devices show promise for use in the development of

smaller, faster, lower energy, and less expensive

electronic devices (e.g., microprocessors, memory,

displays).

Biosensors—external or implantable microelectronic

sensors are already in use for detecting everything

from chemical agents in the air we breathe to blood

levels in a cardiac patient. As these sensors become

more sophisticated, they may be implanted in medical

patients to monitor a variety of health-related

conditions or attached to a soldier's uniform to monitor

the presence of biological and chemical weapons.

OLED displays—An OLED "uses a carbon-based

designer molecule that emits light when an electric

current passes through it. Piece lots of molecules

together and you've got a superthin display of stunning

quality—no power-draining backlight required."

[PCM03] The result—ultra-thin displays that can be

rolled up or folded, sprayed onto a curved surface, or

otherwise adapted to a specific environment.

Grid computing—this technology (available today)

creates a network that taps the billions of unused CPU
cycles from every machine on the network and allows

exceedingly complex computing jobs to be completed

without a dedicated supercomputer. For a real-life

example encompassing over 4.5 million computers,

visit http://setiathome.berkeley.edu/.

Cognitive machines—the 'holy grail' in the robotics

field is to develop machines that are aware of their

environment, that can "pick up on cues, respond to

ever-changing situations, and interact with people

naturally" [PCM03]. Cognitive machines are still in the

early stages of development, but the potential (if ever

achieved) is enormous.

WebRef
For predictions about

the future of

technology ond other

matters, see

www.futurefoang.

com.

Over the longer term, revolutionary advances in computing may well be driven by

sort sciences—human psychology, sociolog)', philosophy, anthropology, and others.

The gestation period for the computing technologies that may be derived from these

disciplines is very difficult to predict, but early influences have already begun (e.g.,

the communities—an anthropological construct—of users that are an off-shoot of

peer-to-peer networks).

The influence of the soft sciences may help mold the direction of computing re-

search in the hard sciences. For example, the design of future computers may be

guided more by an understanding of brain physiology than an understanding of con-

ventional microelectronics.

In the shorter term, the changes that will affect software engineering over the

next decade will be influenced by four simultaneous sources: (1) the people who
do the work, (2) the process that they apply, (3) the nature of information, and

(4) the underlying computing technology. In the sections that follow, each of these

components—people, the process, information, and the technology—is examined
in more detail.

CHAPTER 32 THE ROAD AHEAD 895

32.3 People and the Way They Build Systems

The software required for high-technology systems becomes more and more com-

plex with each passing year, and the size of resultant programs increases propor-

tionally. The rapid growth in the size of the "average" program would present us with

few problems if it wasn't for one simple fact: As program size increases, the number

of people who must work on the program must also increase.

Experience indicates that as the number of people on a software project team in-

creases, the overall productivity of the group may suffer. One way around this problem

is to create a number of software engineering teams, thereby compartmentalizing peo-

ple into individual working groups. However, as the number of software engineering

teams grows, communication between them becomes as difficult and time consuming

as communication between individuals. Worse, communication (between individuals

or teams) tends to be inefficient—that is, too much time is spent transferring too little

information content, and all too often, important information "falls into the cracks.

'Future shock [is] the shuttering stress and disorientation that we induce in individuals by subjecting them to too

much change in too short a period of time.'

Alvin Totfler

If the software engineering community is to deal effectively with the communica-

tion dilemma, the road ahead for software engineers must include radical changes

in the way individuals and teams communicate with one another. E-mail, Web sites,

and centralized video conferencing are now commonplace as mechanisms for con-

necting a large number of people to an information network. The importance of

these tools in the context of software engineering work cannot be overemphasized.

With an effective electronic mail or instant messaging system, the problem encoun-

tered by a software engineer in New York City may be solved with the help of a col-

league in Tokyo. In a very real sense, focused chat sessions and specialized

newsgroups become knowledge repositories that allow the collective wisdom of a

large group of technologists to be brought to bear on a technical problem or man-

agement issue.

Video personalizes the communication. At its best, it enables colleagues at dif-

ferent locations (or on different continents) to "meet" on a regular basis. But video

also provides another benefit. It can be used as a repository for knowledge about the

software and to train newcomers on a project.

'The proper artistic response to digital technology is to embrace it os a new window on everything that's eternally

human, and to use it with passion, wisdom, fearlessness and joy."

Ralph Lombreglia

896

More andme
’nonprogmmers " are

building their own

(small) applications.

This ongoing trend is

likely to accelerate into

the future. Should these

"civilians" apply the

technology discussed in

this book? Probably

not. But they should

adopt an agile software

engineering philosophy,

even if they don't adopt

Iheproctke.

12A.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

The evolution of intelligent agents will also change the work patterns of a soft-

ware engineer by dramatically extending the capabilities of software tools. Intelli-

gent agents will enhance the engineer's ability by cross-checking engineering work
products using domain-specific knowledge, performing clerical tasks, doing directed

research, and coordinating human-to-human communication.

Finally, the acquisition of knowledge is changing in profound ways. On the Inter-

net, a software engineer can subscribe to newsgroups that focus on technology ar-

eas of immediate concern. A question posted within a newsgroup precipitates

answers from other interested parties around the globe. The World Wide Web pro-

vides a software engineer with the world's largest library of research papers and re-

ports, tutorials, commentary, and references in software engineering.

If past history is any indication, it is fair to say that people themselves will not

change. However, the ways in which they communicate, the environment in which
they work, the way in which they acquire knowledge, the methods and tools that

they use, the discipline that they apply, and therefore, the overall culture for software

development will change in significant and even profound ways.

-IflE “New”.Software Engineering Process

It is reasonable to characterize the first two decades of software engineering prac-

tice as the era of "linear thinking." Fostered by the classic life cycle model, software

engineering was approached as a linear activity in which a series of sequential steps

could be applied in an effort to solve complex problems. Yet, linear approaches to

software development run counter to the way in which most systems are actually

built. In reality, complex systems evolve iteratively, even incrementally. It is for this

reason that a large segment of the software engineering community is moving to-

ward agile, incremental models for software development.

Agile, incremental process models recognize that uncertainty dominates most
projects, that timelines are often impossibly short, and that iteration provides the

ability to deliver a partial solution, even when a complete product is not possible

within the time allotted. Evolutionary models emphasize the need for incremental

work products, risk analysis, planning and then plan revision, and customer feed-

back. In many instances, the software team applies an "agile manifesto" (Chapter 4)

that emphasizes "individuals and interactions over processes and tools; working

software over comprehensive documentation; customer collaboration over contract

negotiation, and responding to change over following a plan" [BEC01].

"The best preparation for good work tomorrow is to do good work today."

Elbert Hubbard

Object technologies, coupled with component-based software engineering

(Chapter 30), are a natural outgrowth of the trend toward incremental and evolu-

CHAPTER 32 THE ROAD AHEAD 897

tionary process models. Both will have a profound impact on software development

productivity and product quality. Component reuse provides immediate and com

peliing benefits. When reuse is coupled with CASE tools for application prototyping,

program increments can be built far more rapidly than through the use of conven-

tional approaches. Prototyping draws the customer into the process. Therefore, it is

likely that customers and users will become much more involved in the development

of software. This, in turn, may lead to higher end-user satisfaction and better soft-

ware quality overall.

The rapid growth in network and multimedia technologies (e.g., the exponential in-

crease in WebApps over the past decade) is changing both the software engineering

process and its participants. Again, we encounter an agile, incremental paradigm that

emphasizes immediacy, security, and aesthetics as well as more conventional soft-

ware engineering concerns. Modern software teams (e g., a Web engineering team) of-

ten meld technologists with content specialists (e.g., artists, musicians, videographers)

to build an information source for a community of users that is both large and unpre-

dictable. The software that has grown out of these technologies has already resulted

in radical economic and cultural change. Although the basic concepts and principles

discussed in this book are applicable, the software engineering process must adapt.

32.5 New Mopes for Representing Information

Over the history of computing, a subtle transition has occurred in the terminology

that is used to describe software development work performed for the business com-

munity. Forty years ago, the term data processing was the operative phrase for de-

scribing the use ofcomputers in a business context. Today, data processing has given

way to another phrase—information technology—that implies the same thing but

presents a subtle shift in focus. The emphasis is not merely to process large quanti-

ties of data but rather to extract meaningful information from this data. Obviously,

this was always the intent, but the shift in terminology reflects a far more important

shift in management philosophy.

When software applications are discussed today, the words data and information

occur repeatedly. We encounter the word knowledge in some artificial intelligence

applications, but its use is relatively rare. Virtually no one discusses wisdom in the

context of software applications.

Data is raw information—collections of facts that must be processed to be mean-

ingful. Information is derived by associating facts within a given context. Knowledge

associates information obtained in one context with other information obtained in a

different context. Finally, wisdom occurs when generalized principles are derived

from disparate knowledge. Each of these four views of "information" is represented

schematically in Figure 32.1.

To date, the vast majority of all software has been built to process data or infor-

mation. Software engineers are now equally concerned with systems that process

898 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

An “informa-

tion" spectrum

Data:

no associativity

Information:

associativity within

one context

Knowledge:

associativity within

multiple contexts

Wisdom:

creation of generalized

principles based on

existing knowledge

from different sources

knowledge. 1 Knowledge is two-dimensional. Information collected on a variety of

related and unrelated topics is connected to form a body of fact that we call knowl-

edge. The key is our ability to associate information from a variety of different

sources that may not have any obvious connection and combine it in a way that pro-

vides us with some distinct benefit.

"Wisdom is the power that enables us lo use knowledge for the benefit of ourselves and others.'

Thomas J. Watson

To illustrate the progression from data to knowledge, consider census data indi-

cating that the birthrate in 1996 in the United States was 4.9 million. This number

represents a data value. Relating this piece of data with birthrates for the preceding

40 years, we can derive a useful piece of information—aging "baby boomers" of the

1950s and early 1960s made a last gasp effort to have children prior to the end of

their child-bearing years. In addition "gen-Xers" began their childbearing years. The

census data can then be connected to other seemingly unrelated pieces of informa-

tion. For example, the current number of elementary school teachers who will retire

during the next decade, the number of college students graduating with degrees in

primary and secondary education, the pressure on politicians to hold down taxes and

therefore limit pay increases for teachers.

All of these pieces of information can be combined to formulate a representation

of knowledge—there will be significant pressure on the education system in the

United States in the first decade of the twenty-first century, and this pressure will

1 The rapid growth of data mining and data warehousing technologies reflect this growing trend.

CHAPTER 32 THE ROAD AHEAD 899

continue for over a decade. Using this knowledge, a business opportunity may

emerge. There may be significant opportunity to develop new modes of learning that

are more effective and less costly than current approaches.

The road ahead for software leads to systems that process knowledge. We have

been processing data using computers for over 50 years and extracting information

for more than three decades. One of the most significant challenges facing the soft-

ware engineering community is to build systems that take the next step along the

spectrum—systems that extract knowledge from data and information in a way that

is practical and beneficial.

32.6 Technology as a Driver

The people who build and use software, the software engineering process that is ap-

plied. and the information that is produced are all affected by advances in hardware

and software technology. Historically, hardware has served as the technology driver

in computing. A new hardware technology provides potential. Software builders

then react to customer demands in an attempt to tap the potential.

The road ahead for hardware technology is likely to progress along two parallel

paths. Along one path, hardware technologies will continue to evolve at a rapid

pace. With greater capacity provided by traditional hardware architectures, the de-

mands on software engineers will continue to grow.

But the real changes in hardware technology may occur along another path.

The development of nontraditional hardware architectures (e.g., carbon nan-

otubes, EUL microprocessors, cognitive machines, grid- computing) may cause

radical changes in the kind of software that we build and fundamental changes in

our approach to software engineering. Since these nontraditional approaches are

only now maturing, it is difficult to determine which will have broad-based impact

and even more difficult to predict how the world of software will change to ac-

commodate them.

The road ahead for software engineering is driven by software technologies.

Reuse and component-based software engineering offer the best opportunity for or-

der ofmagnitude improvements in system quality and time to market. In fact, as time

passes, the software business may begin to look very much like the hardware business

of today. There may be vendors that build discrete devices (reusable software com-

ponents), other vendors that build system components (e.g., a set of tools for human/

computer interaction), and system integrators that provide solutions (products and

custom-built systems) for the end-user.

Software engineering will change—of that we can be certain. But regardless of

how radical the changes are, we can be assured that quality will never lose its im-

portance and that effective analysis and design and competent testing will always

have a place in the development of computer-based systems.

900 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Technology Trends

ip. Cripwell Associates (www.jpcripwell.com), a

consulting firm specializing in knowledge

management and information engineering, discusses five

technology drivers that will influence technology directions

in the coming years:

Combination technologies. When two important

technologies are merged, the impact of the merged result

is often greater than the sum of the impact of each taken

separately. For example, GPS satellite technology, coupled

with on-board computing capability, coupled with LCD

display technologies has resulting in sophisticated

automobile mapping systems. Technologies often evolve

along separate paths, but significant business or societal

impact occurs only when someone combines them to solve

a problem.

Data fusion. The more data we acquire, the more data

we need. More importantly, the more data we acquire,

the more difficult it is to extract useful information. In fact,

we often need to acquire still more data to understand

(1)
what data are important; what data are relevant to a

particular need or source, and what data should be used

for decision making. This is the data fusion problem. J. P.

Cripwell uses an advanced automobile traffic monitoring

system as an example. Digital speed sensors (in the

roadway) and digital cameras sense an accident. The

severity of the accident must be determined (via

camera?). Based on severity, the monitoring system must

contact police, fire, or ambulance; traffic must be

rerouted; media (radio) must broadcast warnings; and

individual cors (if equipped with digital sensors or wireless

communication) must be informed. To accomplish this, a

variety of decisions, based on data acquired from the

monitoring system (data fusion), must be made.

Technology push. In years past, a problem surfaced

and technology was developed to solve it. Because the

problem was evident to many people, the market for the

new technology was well-defined. Today, some

technologies evolve as solutions looking for problems. A
market must be pushed to recognize that it needs the new

technology (e.g., mobile phones, PDAs). As people

recognize the need, the technology accelerates, improves,

and often morphs as combination technologies evolve.

Networking and serendipity. In this context

networking implies connections between people or

between people and information. As the network grows,

the likelihood of synergy between two network nodes (e.g.,

people, information sources) also grows. A chance

connection (serendipity) can lead to inspiration and a new

technology or application.

Information overload. A vast sea of information is

accessible by anyone with an Internet connection. The

problem, of course, is to find the right information,

determine its validity, and then translate it into practical

application at a business or personnel level.

J

32.7 The Software Engineer’s Responsibility.

WebRef
A complete Isaission

of the ACM./ltEf code

of ethics can be found

at

seeri.etsu.edu/

Codes /default,

shtm.

Software engineering has evolved into a respected, worldwide profession. As pro-

fessionals, software engineers should abide by a code of ethics that guides the work

that they do and the products that they produce. An ACM/IEEE-CS Joint Task Force

has produced a Software Engineering Code of Ethics and Professional Practices (Ver-

sion 5.1). The code [ACM98] states:

Software engineers shall commit themselves to making the analysis, specification, de-

sign, development, testing and maintenance of software a beneficial and respected pro-

fession. in accordance with their commitment to the health, safety and welfare of the

public, software engineers shall adhere to the following Eight Principles:

I . PUBLIC—Software engineers shall act consistently with the public interest.

CHAPTER 32 THE ROAD AHEAD 901

2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public interest.

3. PRODUCT—Software engineers shall ensure that their products and related modifica-

tions meet the highest professional standards possible.

4. JUDGMENT—Software engineers shall maintain integrity and independence in their

professional judgment.

5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and pro-

mote an ethical approach to the management of software development and maintenance.

6. PROFESSION—Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

7. COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues

8. SELF—Software engineers shall participate in lifelong learning regarding the prac-

tice of their profession and shall promote an ethical approach to the practice of the

profession.

Although each of these eight principles is equally important, an overriding theme ap-

pears: a software engineer should work in the public interest. On a personal level, a

software engineer should abide by the following rules:

• Never steal data for personal gain.

• Never distribute or sell proprietary information obtained as part of your work
on a software project.

• Never maliciously destroy or modify another person's programs, files, or

data.

• Never violate the privacy of an individual, a group, or an organization.

• Never hack into a system for sport or profit.

• Never create or promulgate a computer virus or worm.

• Never use computing technology to facilitate discrimination or harassment.

Over the past decade, certain members of the software industry have lobbied for

protective legislation that [SEE03]:

1 • Allows companies to release software without disclosing known defects;

2. Exempts developers from liability for any damages resulting from these

known defects;

3. Constrains others from disclosing defects without permission from the origi-

nal developer;

4. Allows the incorporation of "self-help" software within a product that can
disable (via remote command) the operation of the product;

5. Exempts developers of software with "self-help" from damages should the

software be disabled by a third party.

902 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Like all legislation, debate often centers on issues that are political, not technological.

However, many people (including this author) feel that protective legislation, if im-

properly drafted, conflicts with the software engineering code of ethics by indirectly ex-

empting software engineers from their responsibility to produce high-quality software.

32.8 A Concluding: Comment

It has been 25 years since the first edition of this book was written. I can still recall

sitting at my desk as a young professor, writing the manuscript (by hand) for a book

on a subject that few people cared about and even fewer really understood. I re-

member the rejection letters from publishers, who argued (politely, but firmly) that

there would never be a market for a book on "software engineering." Luckily,

McGraw-Hill decided to give it a try’.
2 and the rest, as they say, is history.

Over the past 25 years, this book has changed dramatically—in scope, in size, in

style, and in content. Like software engineering, it has grown and (I hope) matured

over the years.

An engineering approach to the development of computer software is now con-

ventional wisdom. Although debate continues on the "right paradigm," the impor-

tance of agility, the degree of automation, and the most effective methods, the

underlying principles of software engineering are now accepted throughout the in-

dustry. Why, then, have we seen their broad adoption only recently?

The answer, 1 think, lies in the difficulty of technology transition and the cultural

change that accompanies it. Even though most of us appreciate the need for an en-

gineering discipline for software, we struggle against the inertia of past practice and

face new application domains (and the developers who work in them) that appear

ready to repeat the mistakes of the past.

To ease the transition we need many things—an agile, adaptable, and sensible soft-

ware process; more effective methods; more powerful tools; better acceptance by prac-

titioners and support from managers; and no small dose ofeducation and "advertising."

Software engineering has not had the benefit ofmassive advertising, but as time passes,

the concept sells itself. In a way, this book is an "advertisement" for the technology.

You may not agree with every approach described in this book. Some of the tech-

niques and opinions are controversial; others must be tuned to work well in differ-

ent software development environments. It is my sincere hope, however, that

Software Engineering: A Practitioner's Approach has delineated the problems we face,

demonstrated the strength of software engineering concepts, and provided a frame-

work of methods and tools.

As we move into the twenty-first century, software has become the most impor-

tant product and the most important industry on the world stage. Its impact and im-

2 Actually, credit should go to Peter Freeman and Eric Munson, who convinced McGraw-Hill that it

was worth a shot.

CHAPTER 32 THE ROAD AHEAD 903

portance have come a long, long way. And yet, a new generation of software devel-

opers must meet many of the same challenges that faced earlier generations. Let us

hope that the people who meet the challenge—software engineers—will have the

wisdom to develop systems that improve the human condition.

BEESBEMCES
[ACM98| ACM/IEEE-CS Joint Task Force. Software Engineering Code of Ethics and Professional

Practice, 1998, available at http://www.acm.org/serving/se/code.htm,

[BEC01] Beck, K., et al., "Manifesto for Agile Software Development," http://www.
agilemanifesto.org/.

[BOL9I] Bollinger, T., and C. McGowen, 'A Critical Look at Software Capability Evaluations,"

IEEE Software, July 1991
.
pp. 25-4 1

.

[G1L96] Gilb, T., "What Is Level Six?" IEEE Software, January 1996, pp. 97-98, 103.

(HOP90) Hopper, M. D., "Rattling SABRE, New Ways to Compete on Information," Harvard Busi-

ness Review, May-June 1990.

[PAU93] Paulk, M., et al., Capability Maturity Modelfor Software, Software Engineering Institute,

Carnegie Mellon University, 1993.

|PCM03] "Technologies to Watch," PC Magazine. July 2003, available at

http://www.pcmag.eom/article2/0.4 1 49, 1 1 30591 .OO.asp.

[PRE91
1
Pressman, R. S., and S. R. Herron, Software Shock, Dorset House, 1991.

|SEE03] The Software Engineering Ethics Research Institute, "UC1TA Updates," 2003, available

at http://seeri.etsu.edu/default.htm.

Problems and Points to Ponder
32. 1

.

Review the discussion of the agile, incremental process models in Chapter 4. Do some re-

search. and collect recent papers on the subject. Summarize the strengths and weaknesses of
agile paradigms based on experiences outlined in the papers.

32.2.

Attempt to develop an example that begins with the collection of raw data and leads to

acquisition of information, then knowledge, and finally, wisdom

32.3.

Get a copy of this week's major business and news magazines (e g., Newsweek, Time.
Business Week). List every article or news item that can be used to illustrate the importance of
software.

32.4. Write a brief description of an ideal software engineer’s development environment circa
2010. Describe the elements of the environment (hardware, software, and communications
technologies) and their impact on quality and time to market.

32.5. One of the hottest software application domains is Web-based systems and applications.

Discuss how people, communication, and process have to evolve to accommodate the devel-
opment of "next generation" WebApps.

32.6. Provide specific examples that illustrate one of the eight software engineering ethics
principles noted in Section 32.7.

Eubiher Readings and Information Souroes
Books that discuss the road ahead for software and computing span a vast array of technical,
scientific, economic, political, and social issues. Sterling (TomorrowNow Random House. 2002) re-

minds us that real progress is rarely orderly and efficient. Teich (Technology and the Future, Wad-
worth, 2002) presents thoughtful essays on the societal impact of technology and how changing

904 PAST FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

culture shapes technology. Naisbitt, Philips, and Naisbitt (.High Tech/High Touch, Nicholas Brealey,

2001) note that many of us have become "intoxicated" with high technology and that the "great

irony of the high-tech age is that we've become enslaved to devices that were supposed to give us

freedom." Zey (The Future Factor, McGraw-Hill, 2000) discusses five forces that will shape human

destiny during this century. Canton (Technojutures

,

Hay House, 1 999) discusses how technology will

transform business in the twenty-first century, Robertson (The New Renaissance. Computers and the

Next Level of Civilization, Oxford” university Press, 1998) argues that the computer revolution may

be the single most significant advance in the history of civilization.

Broderick (Spike. Forge, 2001) discusses the impact of emerging technologies. Dertrouzos

and Gates (What Will Be: How the New World of Information Will Change Our Uves, Harper-

Business, 1998) provide a thoughtful discussion of some of the directions that information

technologies may take in the first few decades of this century. Barnatt (Valueware: Technology,

Humanity and Organization, Praeger Publishing, 1999) presents an intriguing discussion of an

"ideas economy” and how economic value will be created as cyber-business evolves. Negro-

pontes fBeing Digital, Alfred A. Knopf, 1995) was a best seller in the mid-1990s and continues

to provide an interesting view of computing and its overall impact.

Kroker and Kroker (Digital Delirium, New World Perspectives, 1997) have edited a contro-

versial collection of essays, poems, and humor that examines the impact of digital technologies

on people and society. Brin (The Transparent Society: Will Technology Force Us to Choose Between

Privacy and Freedom

?

Perseus Books, 1999) revisits the continuing debate associated with the

inevitable loss of personal privacy that accompanies the growth of information technologies.

Shenk (Data Smog. Summing the Information Glut, HarperCollins, 1998) discusses the problems

associated with an "information -infested society" that is suffocating from the volume of infor-

mation that software produces.

Brockman (The Next Fifty Years, Vintage Books, 2002) and Miller and his colleagues (2 1st Cen-

tury Technologies: Promises and Perils of a Dynamic Future, Brookings Institution Press, 1999)

have edited a collection of papers and essays on the impact of technology on social, business,

and economic structures. For those interested in technical issues, Luiyi, Xu, and Zaslavsky (Fu-

ture Trends in Microelectronics, Wiley, 1999) have edited a collection of papers on probable di-

rections for computer hardware with an emphasis on nanotechnologies. Hayzelden and Bigham

(Software Agents for Future Communication Systems, Springer-Verlag, 1999) have edited a col-

lection that discusses trends in the development of intelligent software agents.

As software becomes part of the fabric of virtually every facet of our lives, cyberethics has

evolved as an important topic of discussion. Books by Spinello (Cyberethics: Morality and Lav/ in

Cyberspace, Jones & Bartlett Publishers, 2002), Halbert and Ingulii (Cyberethics, South-Western

College Publishers, 2001), and Baird and his colleagues (Cyberethics: Social and Moral Issues in

the ComputerAge, Prometheus Books, 2000) consider the topic in detail. The U S government

has published a voluminous report on CD-ROM (2 1st Century Guide to Cybercrime, Progressive

Management, 2003) that considers all aspects of computer crime, intellectual property issues,

and the National infrastructure Protection Center (NIPC).

Kurzweil (The Age of Spiritual Machines, When Computers Exceed Human Intelligence,

Viking/Penguin Book?, 1 999) argues that within 20 years, hardware technology will have the ca-

pacity to fully model the human brain. Borgmann (Holding on to Reality: The Nature ofInforma-

tion at the Turn of the Millennium, University of Chicago Press, 1999) has written an intriguing

history of information, tracing its role in the transformation of culture. Devlin (infoSense: Turning

Information into Knowledge, W. H. Freeman & Co., 1999) tries to make sense of the constant flow

of information that bombards us on a daily basis. Gleick (Faster: The Acceleration ofJust About

Everything. Pantheon Books, 2000) discusses the ever-accelerating rate of technological change

and its impact on every aspect of modem life, jonscher (
The Evolution of Wired Life: From the Al-

phabet to the Soul-Catcher Chip—How Information Technologies Change Our World, Wiley, 2000)

argues that human thought and interaction transcend the importance of technology.

A wide variety of information sources on future directions in software-related technologies

and software engineering is available on the internet. An up-to-date list of World Wide Web ref-

erences can be found at the SEPA Web site:

http://www.mhhe.com/pressman.

Abstraction, 265
Acceptance tests, 1 13

Accessibility, 380
Action paths, 316
Actions, 55
Activities, 54
Activity diagram, 168, 197,

223, 348

Activity network, 715

Actors, 191,221

Adaptive cycle planning, 1 14

Adaptive Software Development
(ASD), 1 14

Aesthetic design, 565, 573

layout issues, 573
WebApps, 573

Agile manifesto, 103

Agile modeling, 121

principles, 122, 143

Agile process, 106

politics of, 107

Agile teams, 636
Agility, 105. See also Agile process

definition of, 105

human factors, 108

principles of, 1 05

AI software, 4

1

Airlie Council, 644

Alpha testing, 407
Analysis, 208. See also

Requirements analysis

object-oriented, 217

patterns, 200 (See also

Patterns)

rules of thumb, 210

Analysis classes

attributes, 235
characteristics of, 235
identification of, 233
operations, 238

types of, 234, 24

1

WebApps, 548
Analysis model

elements of, 196,212
relationship to design, 260
WebApps, 545

Analysis modeling, 1 78, 207

approaches, 21

1

behavioral, 198,248
class-based, 198, 233
content, 545
flow-oriented, 199,226
interaction, 548
principles, 140

scenario-based, 197,218

task set, 141

Web engineering, 540

Analysis packages, 248

Anchor points, 86

Application architecture, 161

Application software, 40

Appraisal costs, 747

Archetypes, 300
Architectural Description

Languages (ADLs), 307

Architectural design, 286, 298

assessment of, 304
complexity of, 306
mapping data flow, 307

refinement of, 301 , 320

WebApps, 577
Architectural patterns, 291

refinement of, 297
types of, 577

Architectural styles, 291

call and return, 294

data flow, 293
data-centered, 293
layered, 295
object-oriented, 294
taxonomy of, 292

Architecture, 265
data, 161

description of, 287
importance of, 288
MVC, 580
sensitivity analysis, 305

WebApp, 579
Architecture context diagram

(ACD), 298
Architecture trade-off analysis

method (ATAM), 304

Aspect-oriented development, 93

Aspectual requirements, 93

Associations, 246
Attributes, 236
Audits, 780. See also

Configuration audit

Authentication, 618
Authorization, 90
Availability, WebApps, 562

Backlog, 1 19

Baseline, 775
Baseline

definition of, 775
metrics, 665

Basis path testing, 425
example of, 429

Basis set, 427

Bathtub curve, 37
Behavioral model, 249

Beta testing, 407
Black-box specification, 834

Black-box testing, 424, 434

Boundary classes, 241

Boundary value analysis,

438, 612
Box structure specification, 833

Bus tracking, 782

Bugs, 751

Build, 401

Business process engineering

(BPR), 161

hierarchy, 162

Business process reengineering

(BPR), 870
process model, 871

Business processes, 871

Cardinality, 215, 246

CASE. See Tools

CBA IP1, 66
CBSE, 847

cost analysis, 863
economics of, 862

process, 850
Certification, 843
Change, 38, 138

impact on software, 38

origin of, 772
scope of, 893

Change control, 784

types of, 785
workflow, 785

Change control authority

(CCA), 784
Change management, 771. See

also SCM
WebApps, 793

Change order, 784

Change report, 784

Change request, 784

Change set, 783
Chaos, 77
Characterization functions, 852

Checklists
requirements validation,

179, 203
WebApp design quality, 562

CK metrics suite, 480
Class diagram, 1 70, 237

Classes
composite aggregate, 244

multiplicity, 246

90

906 INDEX

Classic life cycle model, 79
Class-responsibility-collaborator,

240. See also CRC
modeling

Cleanroom software engineering
92, 828

certification, 843
design, 836
differentiating characteris-

tics, 832
formal specification, 833
strategy, 830
testing, 841

Clear-box specification, 835
Cluster testing, 405
CMMI, 59

adoption of, 62
capability levels, 59
continuous model, 59
goals, 61

practices, 6

1

staged model, 62
COCOMO II, 692
Code restructuring, 877
Coding, principles, 145
Cohesion, 272, 480

levels of, 335
metrics for, 486

Collaboration, 108, 134, 183
CRC definition, 242

Common closure principle

(CCP), 333
Common reuse principle

(CRP), 333
Communication, 56, 133

principles of, 133
task set, 135
stakeholders, 519
Web engineering, 507, 519

Compatibility tests, 610
Completeness, 480
Complexity, 480

metrics, 488
Component qualification, 855
Component wrapping, 855
Component-based construction, 39
Component-based

development, 91
Component-based development

(CBD), 851
activities, 853

Component-based software
engineering, 847. See
also CBSE

Component-based systems, 848
Component-level design, 324

basic principles, 331
guidelines, 334
steps, 339
WebApps, 584

Components
adaptation, 855

class-based, 330
classification, 860
composition, 856
conventional, 327, 347
definition of, 325, 849
describing, 859
design example, 329
engineering, 857
off-the-shelf, 679
OO view, 326
reusable, 679

Computer-Aided Software
Engineering. See Tools

Concurrency, 296
Concurrent development

model, 88
Concurrent Versions System

(CVS), 783
Condition testing, 432
Condition-transition-

consequence (CTC)
format, 737

Configuration audit, 787
WebApps, 796

Configuration management, 801.
See also SCM

Configuration objects, 776
WebApps, 790

Configuration review, 406
Configuration testing

client-side, 6 16
server-side, 616
WebApps, 600, 615

Consequences, unintended, 33
Construction, 56

practice, 144
task set, 146
Web engineerino 508

Constructive specification, 809
Content architecture, 577

structures, 577
Content design, 575
Content hierarchy, 547
Content management, 790
Content model, 545
Content objects, 546, 575
Content relationships, 548
Content testing, 601
Context diagram, 227
Control flow modeling, 229
Control specification

(CSPEC)
,
230

Controller classes, 241
Core product, 80
Correctness, 662

conditions, 838
proof of, 837
verification, 837

Cost, variance, 723
Coupling, 272, 480

levels of, 337
metrics, 485, 487

CRC model
building, 240
collaborations, 242
responsibilities, 241
review guidelines, 244

CRC modeling, 240
in XP, 1 1

1

Critical path, 716
Crosscutting concerns, 93
Crystal, 1 19
Customers, 134
Cyclomatic complexity, 427

Data architecture, 161
Data attributes, 214
Data design, 275

architectural level, 289
component level, 290

Data flow diagram (DFD),

227, 309
Data flow mapping, 308
Data flow testing, 432
Data invariant, 805
Data mining, 289
Data modeling, 213

relationships, 214
Data object, 213
Data restructuring, 877
Data tree, 547
Data warehouse, 289
Database testing, 603
Debugging, 4 1

1

process, 4 1

1

psychological considera-
tions, 413

strategies, 414
tactics, 4 1

4

Decision table, 349
Decision tree analysis, 699
Deep structure, 446
Defect amplification model, 752
Defect removal efficiency

(DRE), 663
Defects, 751
Dependencies, 246
Dependency inversion principle

(DIP), 332
Dependency tracking, 779
Deployment, 56

principles, 148
task set, 1 49
Web engineering, 508

Deployment diagram, 1 68
Design, 258, 286, 324, 356

aesthetic, 573
architectural, 286, 577
cleanroom software

engineering, 836
component level, 324, 584
hypermedia, 586
metrics, 477
process, 261

INDEX
907

proving correct, 837
quality attributes, 263

quality guidelines, 262

task set, 144, 264
user interfaces, 356
verification, 836
WebApp interfaces. 565
WebApps, 559

Design classes, 271
characteristics of, 272

types of, 271

Design elements
architecture, 275
components, 278
data, 275
deployment, 279
interface, 276

Design engineering, 258

Design model, 260
dimensions of, 274
relationship to analysis, 260

Design modeling, principles, 141

Design notation

comparison of, 352
graphical, 348
tabular, 349
text-based, 350

Design patterns, 266. See also

Patterns

description of, 280
template, 280
use of, 281

Design structure quality index

(DSQ1), 479
Deterioration, 38
Distribution, 297
Document restructuring, 876

Domain analysis, 2 1

0

Domain engineering, 851

Drivers, 396
DSDM, 116

Earned value analysis

(EVA), 722

Efficiency, 465
Effort distribution, 712

Elaboration, 177, 639
objects, 369
tasks, 368

Elicitation, 177, 184

work products, 190

Embedded software, 40

Encryption, 618
End-users, 134

Engineering/scientific

software, 40
Entity classes, 241
Entity-relationship diagrams, 216

Equivalence class, 437
Equivalence partitioning,

437,612
Error handling, 378

Errors, 751

correcting, 4 1

6

relative cost, 748
Estimates

reconciling, 690
Web engineering, 531

Estimation, 674, 680
agile development, 696
automated techniques, 691

decomposition, 681

empirical models, 691

FP-based, 685
LOC-based, 683
observations, 675
OO projects, 695
Models, 692
problem-based, 682
process-based, 686
use-cases, 688
WebApps, 697

Ethics, 900
code of, 900
personal considerations, 901

Events, 230, 249
Evolution. See Software

evolution

Evolutionary models, 83

Extreme Programming (XP), 1 10

coding, 1 12

design, 1 1

1

framework activities. 110

planning, 110

testing, 1 13

Factoring, first level, 312

Failure costs, 747
Failure curves, 38
Feasibility, 677
Feature, definition of, 1 20

Feature Driven Development
(FDD), 120

Fiit's Law, 568
Filters, 293
Fire-fighting mode, 726

Firewalls, 618
Flow graph, 425, 427
Flowchart, 348
Formal methods, 92, 802

concepts, 802, 805
definition of, 802
guidelines, 823
mathematical preliminaries,

808
Formal specification, 813

Formal specification languages,

815
Formal technical reviews (FTR),

263, 569, 751. See also

Reviews
Formulation, 507, 514

questions, 515
requirements gathering, 517

Forward engineering, 878, 884

client server, 885

OO systems, 886
user interfaces, 887

40-20-40 rule, 712
Framework activities, 54, 56

generic, 56
PSP, 68
TSP, 70

Frameworks, 281

Function points, 472, 656
computation of, 475
programming languages, 657
reconciling, 656

Functional decomposition, 368

Functional independence, 268
Functional model, 551

Functionality, 464

GQM paradigm, 468
Grammatical parse, 227
Granularity, 137

Graph matrices, 431

Graphic design. See Aesthetic

design

Halstead metrics, 490
Hatley-Pirbhai modeling, 165

Hazard analysis, 739

Help facilities, 378
Human factors, 108

Idioms, 281

Immediacy, 503
Inception, 176

Increment. See Software
increment

Incremental delivery, 107

Incremental models, 80

Independent paths, 426
Independent test group (ITG), 389

Indicators, 466
Information hiding, 268
Information, representation

of, 897
Information spectrum, 898

Infrastructure, technology, 161

Inspections, 751. See also

Reviews
Integration testing, 39 1 , 397

bottom-up, 400
breadth-first, 399
depth-first, 398
documentation, 403
top down, 398

Integrity, 662
Interaction model, 548
interface design, 356

analysis, 365
patterns, 376
principles, 357, 566
process, 363

908 INDEX

Interface design

—

Corn.
workflow, 373, 571
WebApps, 565

Interface segregation principle
(ISP), 332

internationalization, 380
Inventory analysis. 875
ISO 9000, 765

"

ISO 900 1:2000, 67,765
outline of, 765

Issues list, 1 87
Iterative models, 83

KISS, 131

Knowledge, 898

Labeling, menus and
commands, 379

Law of Demeter, 272
Legacy software, 42

quality of, 43
Line-of-code (LOC) metric, 655
Link weight, 431, 435
Liskov substitution principle

(LSP), 332
Load testing, 620
Logic operators, 812
Loop testing, 433

Maintainability, 465, 662
Maintenance, 39, 43, 873

metrics, 492
Make facility, 782
Make-buy decision, 698
Manifesto, agile software

development, 103
McCall's quality factors, 463
Mean-time-between-failures

(MTBF), 763
Mean-time-to-repair (MTTR)

,
763

Measurement, 466
Measures, 466

direct, 654
indirect, 654

Metaphor, 569
Methods, 54
Metrics

analysis, 472
architectural design, 477
arguments for, 665
attributes of, 469
baseline, 665
challenges, 466
class-oriented, 484
cohesion, 486
complexity, 488
component-level, 486
coupling, 485
definition, 466
design, 477
establishing, 668
etiquette, 652

function-based, 472
maintenance, 492
object-oriented, 480, 491,

658
operation-oriented, 488
private, 651
process, 649, 666
product, 461, 470, 653
productivity, 682
public, 652
quality, 661
size-o’riented, 655
small organizations, 666
source code, 490
specification quality, 476
testing, 491
types of, 470
user interface, 489
WebApps, 532, 588, 659

Middleware. 330
Milestones, 720

anchor points, 86
Mini-specs, 187
Modality, 216
Modeling, 56

Web engineering, 508
Model-view-controller

(MVC), 580
Modularity, 267
MOOD metrics suite, 484
Multiplicity, 246
Myths, 45

customer, 46
management, 45
practitioner, 46

Navigation, 553, 565
analysis of, 554, 555
questions, 554
semantics, 581, 614
syntax, 581, 583, 613

Navigation design, 581
Navigation nodes, 582
Navigation semantic unit (NSU),

582,614
Navigation testing, 613
•Navigational links, 582
Negotiation, 135, 178, 201
Netsourcing, 41

New economy, 42

Object constraint language
(OCL), 345, 816

example of, 818
invariant, 346
notation, 8 1

7

overview, 816
pre-/post conditions, 346

Object elaboration, 369
Object points, 693
Object request broker

architecture, 857

Object-oriented

concepts, 2 1

7

estimation, 695
project tracking, 720

OMG/CORBA, 856
OOHDM, 586

abstract interface design, 588
conceptual design, 586
navigational design, 587

Open source, 4

1

Open-closed principle (OOP), 331
Operations, 237, 805

identifying, 237
Orthogonal array testing, 439
Outsourcing, 700

Web engineering, 526

Packages, 247
Pair programming, 1 12
Pareto principle, 147
Partitioning, 639
Path testing, 612
Patterns, 132, 142, 146

analysis, 200
analysis patterns template, 200
architectural, 292, 296
design, 266
hypermedia design, 584
hypermedia repositories, 585
process, 66
template for, 66
testing, 456
user interface, 375

PDL, 350
People, 599, 895

management issues, 629
relationship with effort, 710
stakeholders, 631

Performance testing, 410, 619
Persistence, 297
Personal software process

(PSP) ,69
PERT/CPM, 716
Pipes, 293
Planning, 56, 642

principles, 136, 642
task set, 139
WebE, 508, 522

Portability, 465
Postcondition, 806
Practice (software engineering)

,

127-153
Precondition, 805
Prescriptive models, 78. See also

Process models
failures of, 104

Prevention costs, 747
Primitiveness, 272, 480
Principles

agile modeling, 143
analysis, 139

coding, 145

INDEX
909

communication, 133

deployment, 148

design, 142

planning, 136

software engineering, 131

testing, 146

Priority points, 183

Problem decomposition, 639

Problem solving, 1 29
Process, 54

assessment, 66
decomposition, 641

framework, 54
future directions, 896
management issues, 630
metrics, 649
project management

issues, 640
relationship to product, 72

Process models
agile, 106

ASD, 114

blocking states, 80

BPR, 871
CBSE, 850
cleanroom, 829
concurrent development, 88

Crystal, 1 19

differences, 58
DSDM, 116

evolutionary, 83
Extreme Programming, 1 10

FDD, 120
incremental, 80
prescriptive, 78
prototyping, 83
RAD, 81

reengineering, 874
risk driven, 86
Scrum, 1 17

specialized, 91

Spiral, 86
waterfall, 79

Process patterns, 63
example of, 66

Process specification (PSPEC), 232

Process technology, 7

1

Product, 638
management issues, 630
relationship to process, 72

Product engineering, 162

Productivity metrics, 682
Product-line software, 40
Program design language.

See PDL
Project database, 775. See also

Repository

Project estimation. See
Estimation

Project management, 628
critical practices, 644
issues, 630

Project planning, 676
Project scheduling. See

Scheduling
Project table, 719
Project tracking, WebE, 531

Project velocity, 1 1

1

Projects

differences, 522
estimation, 674
metrics for, 653
OO metrics, 658
problems, 642
tracking, 718
types of, 7 1

3

Proof of correctness, 837

Prototyping, 83
problems with, 85

Putnam-Raleigh-Norden
curve, 71

1

Quality

CBSE context, 862

cost of, 747
definition of, 462, 746
determinants, 651

factors, 463
guidelines for WebE, 51

1

ISO 9126 factors, 464
measurement of, 662

metrics, 66

1

Quality assurance, 747
activities, 750
history, 749
plan, 766
statistical, 759

Quality control, 746

Quality function deployment
(QFD), 188

Quality management, 744. See

also Quality assurance

Quality of conformance,
746

Quality of design, 746

Quality requirements tree,

WebApps, 561

Questions, context free, 183

RAD model, 81

drawbacks, 83
Recovery testing, 409
Reengineering, 873

economics of, 887

process model, 874
Refactoring, 112, 270
Refinement, 269
Regression testing, 401

Relationship Navigation analysis

(RNA), 553
Release reuse equivalency

principle (REP), 333

Reliability, 464, 762

measures, 763

Repository, 775
characteristics of, 778
content, 778
SCM, 777

Requirements analysis, 208. See

also Analysis

objectives of, 209
Web engineering, 540

Requirements elicitation, 184

Requirements engineering, 1 74

tasks, 176
Requirements gathering

collaborative, 185 {See also

Elicitation)

guidelines, 185

team, 186
Requirements gathering,

WebApps, 517
Requirements management,

180
Requirements tracing, 780

Requirements validation

checklist, 179

Requirements, validation of, 203

Resources, environmental, 679
Resources, human, 678
Resources, project, 677
Response time, 378
Responsibilities, CRC

definition, 24

1

Restructuring

code, 882 *

data, 883
Reusability, 91

Reuse, 39, 132,280, 333, 861

analysis and design, 858
environment, 861

Reverse engineering, 877
data, 880
processing, 880
user interfaces, 881

Reviews. See also Formal
technical reviews (FTR)

guidelines, 756
meeting format, 754
recordkeeping, 755
reporting, 755
sample driven, 757
summary report, 755

Risk, 137
components, 731

CTC format, 737
definition of, 727
drivers, 731

identification, 729
impact, 732, 735
planning, 737
projection, 732
refinement of, 737
strategies, 726
types of, 727

Risk assessment, 730, 735

910 INDEX

Risk exposure, 736
computation of, 735

Risk information sheets, 735, 740
Risk item checklist, 729
Risk management, 726

principles of, 729
Risk mitigation, 738
Risk monitoring, 738
Risk table, 732
RMMM Plan, 739, 740

SafeHome
ACD, 300
activity diagram, 224, 552
analysis classes, 235, 548
architectural structure, 302,

316, 319
class diagram, 1 98, 239
class relationships, 30

1

component design, 351
conceptual schema, 587
content objects, 576
CRC index card, 240
CRC model, 245
data flow diagram, 227,

228,310
data tree, 547
deployment diagram, 279
design classes, 273
NSU, 583
processing narrative, 227
PSPEC, 232
screen layout, 376
security function structure, 302
sequence diagram, 252, 549
state diagram, 231, 251 , 550
swimlane diagram, 225
use-case diagram, 195, 223
use-cases, 193, 220, 374, 543

SafeHome (sidebars), 48, 85, 90,

113, 135, 163, 188, 190,

195, 199, 202,219,222,
231, 238, 245, 270, 273,
295, 305,315, 332,336,
338, 359, 368, 392, 407,
413, 423,428, 447, 471,
483,518,529,543, 569,
61 1, 638, 653, 664, 685,

701, 721, 736, 758, 786
Sample driven reviews, 757
Scalability, WebApps, 562
SCAMPI, 67
Scheduling, 705, 708, 716

concepts, 706
principles, 709
tracking, 718
variance, 722

SCM, 772
elements of, 774
functions, 779
identification, 781
process, 780

process layers, 781
scenario, 773
standards, 797
Web engineering, 788

Scope, 136
Scrum, 1 17

meetings, 1 19
principles, 117

Security, 409, 503
testing, 409, 617
WebApps, 561

Self-organization, 109
Semantic domain, 815
Sequence diagrams, 251

WebApps, 549
Sequences, 812
Set operators, 810
Similarity, 480
Six Sigma, 761
Size. 480
Sizing, software projects, 68

1

Smoke testing, 401
Software

characteristics of, 37
definition of, 36
evolving role of, 34
fundamental questions, 36
historical references, 35
legacy applications, 42
myths about, 45

Software, application

categories, 40
Software capital, 52
Software configuration, 772
Software configuration items

(SCIs), 775
Software Configuration

Management. See SCM
Software engineering

cleanroom, 828
definition of, 53
ethics, 900
future of, 892
layers, 54
practice, 128 (See also

Practice)

•principles, 131

Software equation, 694, 71

1

Software evolution, 43
laws of, 44

Software increments, 80, 107
Software maintenance, 39, 43,

873. See also

Maintenance
Software metrics. See Metrics
Software process improvement

(SP1), 650
statistical, 652

Software project management.
See Project

management
Software projects. See Projects

Software Quality. See Quality
Software quality assurance

(SQA). See Quality
assurance

Software reviews, 75 1 . See also

Reviews
Software safety, 739, 763
Software scope, 638, 677

bounding, 677
Software teams. See Teams
Software testing. See Testing
Software tools. See Tools
Source code

metrics, 490
program level, 490
volume, 490

Specification, 179
SPICE, 66
Spike solution, 112
Spiral model, 86

problems with, 88
Sprint, 1 19
SQA Plan, 766
Stakeholder, 56, 631

identification of, 1 82
multiple viewpoints, 1 82

State, 805
State diagram, 199,231,

250, 550
testing using. 451

State-box specification, 835
Statechart, 344
Statistical SQA, 759
Statistical use testing, 842
Status reporting, 788
Stepwise refinement, 269
Stereotype, 246
Stress testing, 409, 620
Structural modeling, 853
Structure chart, 328
Structure points, 853

characteristics of, 853
cost analysis, 863

Structured constructs. 348
Structured programming, 348
Stubs, 396
Subproofs, 838
Sufficiency, 480
Support, 148
Surface structure, 446
System

definition of, 155
macro element, 1 56

System context diagram, 165
System elements, 1 55
System engineering, 1 54

hierarchy, 157
world view, 157

System flow diagram (SFD), 166
System model template, 1 65
System modeling, 1 58, 1 64

restraining factors, 159

INDEX 911

UML, 167
System simulation, 1 60
System software, 40
System testing, 391 , 408

Task analysis, 367
Task elaboration, 368
Task network, 7 1

5

Task set

analysis modeling, 1 4

1

communication, 135
construction, 146
customer communication, 521
definition of, 57
deployment, 149
design, 144
planning, 139
project planning, 676
refinement of, 714
selecting, 713
testing, 147
WebApp testing, 601

Team leader, 632
Team software process (TSP)

framework activities, 70
objectives, 70
scripts, 71

Team toxicity, 635
Teams

agile, 108, 636
chief programmer, 634
coordination, 637
jelled, 109, 115,635
self organizing, 109
types of, 634
Web engineering, 523

Technologies, future, 894, 899
Test cases

characteristics of, 422
deriving, 428

Test planning, 386, 598
Testability, characteristics of, 42

1

Testing

basis path, 425
behavioral models, 450
boundaries, 438
class hierarchy, 444
class-based, 447
cleanroom software

engineering, 841
client/server, 452
completion criteria, 392
component level, 611, 600
content, 599, 601
control structure, 432
conventional

architectures, 390
data flow modeling, 437
database, 603
deep structure, 446
documentation, 453
equivalence partitioning, 437

exhaustive, 424
fault-based, 443
finite state modeling, 437
generic characteristics, 387
graph-based, 435
GUIs, 452
help facilities, 453
interfaces, 599, 605, 606,

608
metrics for, 49

1

multiple class, 449
navigation, 600
OO architectures, 391
OO methods, 442
OO strategies, 404
options, 402
orthogonal array, 439
partition, 448
patterns, 456
principles, 146

process for WebApps, 598
random, 447
real-time systems, 454
scenario-based, 444
specialized, 452
statistical use, 842
strategies, 387, 393
surface structure, 446
task set, 147
techniques, 420
thread-based, 405
transaction flow

modeling, 436
usability, 608
use-based, 405
WebApps, 594

Time-boxing, 720
Timeline chart, 717
Time-to-market, WebApps, 562
Tools, 54

ADLS, 307
agile development, 123
analysis modeling in

UML, 253
BPR, 872
CBD, 862
change management, 795
content management, 793
data mining, 290
data modeling, 216
data warehousing, 290
debugging, 415
estimation, 698
formal methods, 822
middleware, 330
PDL, 352
process management, 94
process modeling, 72
product metrics, 493
project and process

metrics, 66

1

project management, 645

quality management, 766
requirements

engineering, 181

reverse engineering, 88

1

restructuring, 883
risk management, 741
scheduling, 7 1

7

SCM support, 788
structured analysis, 233
system modeling, 171

system simulation, 160
test case design, 441
test planning, 410
UML/OCL, 347
use-cases, 196
user interface

development, 380
Web engineering project

management, 532
WebApp metrics, 589
WebApp testing, 621

Traceability tables, 180
Transaction, 308
Transaction center, 316
Transaction mapping, 316
Transform flow, 308^

Transform mapping, 309

Ubiquitous computing, 41
Umbrella activities, 54, 57
UML

activity diagram, 168, 197,

224, 343
class diagram, 170, 198
collaboration diagram, 340
component elaboration, 327
deployment diagram, 168,

279
interface representations,

277, 341
OCL, 345, 816
packages, 248
sequence diagrams, 252
state diagram, 199, 231, 251
statechart, 344
stereotype, 246
swimlane diagram, 224, 37!
system modeling

diagram, 168
use-case diagram, 170,

195,542
Unified Process (UP), 94

history of, 95
phases, 96
work products, 98

Unit test, 113
Unit testing, 391,394

considerations, 395
environment for, 397
procedures, 396

Usability, 361, 464, 663
testing, 608

912 INDEX

Use-case diagram, 1 70

Use-cases—96, 367
development of, 191

identifying events, 249
metrics, 659
questions about, 192

task analysis, 335WebApps,
521,542,549

writing, 218
User analysis, methods for, 367
User categories, definition of, 5 1

7

User hierarchy, 541

User interface, 356. See also

under Interface

analysis, 365
analysis model, 362
consistency, 360
control mechanisms, 57 i

display content, 372
memory load, 359
patterns, 376
prototype, 551, 572
reverse engineering, 881

testing, 605
user control, 357

User interface design, 356
evaluation of, 38

1

golden rules, 357
issues, 377
metrics, 489
principles of, 358
process, 363
steps, 373
task analysis, 367
workflow analysis, 370

User scenarios, 189

User stories, 1 10

Validation, 179, 388
Validation testing, 391, 406

criteria, 406
principles, 145

Variation control, 745

Verification, 388
Version control, 779, 782

WebApps, 795
Vital few, 760
Volatility, 480

W 5HH Principle, 138, 644
Walkthrough, 75 1 . See also

Reviews
Waterfall model, 79

problems with, 79
Ways of navigation (WoN), 582

Wear, 37
Web applications. See

WebApps
Web engineering (WebE), 500

analysis modeling, 539
architectural design, 577
basic questions, 509
best practices, 510
component-level design,

584
content design, 575
design metrics, 588
estimation, 697
formulation, 514 (See also

Formulation)

framework activities, 507
in-house development, 530
interface design, 565
methods, 505
metrics, 532
navigation design, 581

outsourcing, 526
planning, 522
process, 504, 506, 508
quality guidelines, 51 i

SCM, 788
team building, 524
team characteristics, 523
testing, 594, 597, 601

tools, 506
use-cases, 542

worst practices, 534
Web Engineering, design

pyramid, 564
Web sites, well designed, 575
WebApps, 41, 501

aesthetics, 503
analysis model, 545
attributes of, 502
business value metrics, 534
change management, 793
configuration objects, 790
content management, 790
database layers, 604
design of, 559, 663
errors, 596
metrics, 588
navigation testing, 613
performance testing, 619
quality attributes, 560
quality dimensions, 595
requirements analysis, 539
SCM, 788
security testing, 617
types of, 504
user hierarchy, 54

1

version control, 795
White-box testing, 424
Wisdom, 898
Work breakdown structure

(WBS), 716
Work environment, 373
Workflow analysis, 370
Wrapping, 855

XP. See Extreme Programming
(XP)

Z Specification language, 820
example, 820
notation, 821

ami
McGRAW-HILL INTERNATIONAL EDITION

Praise for earlier editions of

SOFTWARE ENGINEERING: A Practitioner's Approach
Pressman has written a solid c.omprel

engineering for both students of the discipline and software developers end managers
practicing it—or needing to practice it.

"

IEEE Software

"This is a classic modern textbook, dear and authoritative, with lots of pictures, oxompies,

I recommend it to anyone who osks, 'Whoquestions, ond references

engineering and where is if now?'

Roger S. Pressman, Ph. D

hat is software

ACM Computing Reviews

"
- . . had the best explanations of what I want to cover ..."

"
. . . The definitive book on the subject as far as I'm concerned ..."

" A good textbook as well as reference ..."
from comp.software-eng FAQ

"As a practicing Software Engineer, I find this book to be invaluable. It has served as a
great reference for all the projects that I have worked on."

review from Amazon.com

For a quarter century, Software Engineering: A Practitioner's Approach has been the best-selling guide to software

engineering for students and industry professionals alike.

In its sixth edition, the book has been completely restructured ond redesigned, undergoing a substantial content

update that addresses every important topic in what many have called "the engineering discipline of the 21st century."

Throughout the book, the addition of unique sidebars presents an entertaining and informative project scenario, as well

as many complementary software engineering topics.

The content of the sixth edition has been compartmentalized to further improve the ease of using the book in the

classroom and as a self-study guide:

• Part 1 ,
The Software Process, presents both prescriptive and agile process models.

• Part 2, Software Engineering Practice, presents modern analysis, design, and testing methods with a new emphasis on

UMl-based modeling.
49 Part 3, Applying Web Engineering, is new to the sixth edition and describes how software engineering practice can

be adapted to the engineering of Web applications.

• Part 4, Managing Software Projects, presents topics that are relevant to those who plan, manage, and control a
software project.

• Part 5, Advanced Software Engineering Topics, presents dedicated chapters that address formal methods, cleanroom

software engineering, component-based approaches, and reengineering.

Visit the book's On-Line Learning Center at \vww4nhhe.C0m/prftssme:n.
The'sile, visited by thousands of readers each month, has been significantly expanded and updated to provido

comprehensive software engineering resources for students, instructors, and industry professionals.

Additional McGraw-Hill International Editions

are available in the following subjects:

Accounting

Agriculture

Biological Sciences

Business and Industrial Management

Chemistry and Chemical Engineering

Civil Engineering

Economics

Education

Electrical Engineering

Electronics and Computer Science

Geology and Mineralogy

Industnal Arts and Vocational Education

Mathematics

Mechanical Engineering

Modicine

Meteorology

Physics

Political Scien

Psychology

Sociology

The McGraw-Hill Companies

Higher Education

Some ancillaries. including electronic and print components,

may not be available to customers outside the United States.

ISBN 007-123840-9

9 780071 238403
www • mhhe . com

This book cannot be re-exported from the country to which it is sold by McGraw-Hill.

The International Edition is not available in North America.

