JSOFTWARE PROJECT
MANAGEMENT

A UNIFIED FRAMEWORK

WALKER ROYCE

Foreword by Barry Boehm

BUUEH
{ REWEN
4 RUMBAUGH

¢ <t SERIES EDITORS =

SOFTWARE

PROJECT |
MANAGEMENT
A Unified
Framework

WALKER ROYCE

The Addison-Wesley Object Technology Series

Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information check out the series web site [http://www.awl.com/cseng/otseries/].

Armour/Miller, Advanced Use Case Modeling, Volume |

Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools

Blakley, CORBA Security: An Introduction to Safe Computing
with Objects

Booch, Object Solutions: Managing the Object-Oriented Project

Booch, Object-Oriented Analysis and Design with Applications,
Second Edition

Booch/Rumbaugh/Jacobson, The Unified Modeling Language
User Guide

Box, Essential COM

Box/Brown/Ewald/Sells, Effective COM: 50 Ways to Improve
Your COM and MTS-based Applications

Cockburn, Surviving Object-Oriented Projects: A Manager's
Guide

Collins, Designing Object-Oriented User Interfaces

Conallen, Building Web Applications with UML

D’Souza/Wills, Objects, Components, and Frameworks with
UML: The Catalysis Approach

Douglass, Doing Hard Time: Developing Real-Time Systems with
UML, Objects, Frameworks, and Patterns

Douglass, Real-Time UML, Second Edition: Developing Efficient
Objects for Embedded Systems

Fowler, Analysis Patterns: Reusable Object Models
Fowler/Beck/Brant/Opdyke/Roberts, Refactoring: Improving the
Design of Existing Code

Fowler/Scott, UML Distilled, Second Edition: A Brief Guide 10
the Standard Object Modeling Language

Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML

Gorton, Enterprise Transaction Processing Systems: Putting the
CORBA OTS, Encina++ and Orbix OTM to Work

Graham, Object-Oriented Methods, Third Edition: Principles and
Practice

Heinckiens, Building Scalable Database Applications: Object-
QOriented Design, Architectures, and Implementations
Hofmeister/Nord/Dilip, Applied Software Architecture
Jacobson/Booch/Rumbaugh, The Unified Software Development
Process

Jacobson/Christerson/Jonsson/Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach
Jacobson/Ericsson/Jacaobson, The Object Advantage: Business
Process Reengineering with Object Technology

Jacobson/Griss/Jonsson, Software Reuse. Architecture, Process
and Organization for Business Success

Jordan, C++ Object Databases: Programming with the ODMG
Standard

Kruchten, The Rational Unified Process, An Introduction, Second
Edition

Lau, The Art of Objects: Object-Oriented Design and Architecture

Leffingwell/Widrig, Managing Software Requirements: A Unified
Approach

Marshall, Enterprise Modeling with UML: Designing Successful
Software through Business Analysis

Mowbray/Ruh, Inside CORBA: Distributed Object Standards and
Applications

Oestereich, Developing Software with UML: Object-Oriented
Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML
Pohl, Object-Oriented Programming Using C++, Second Edition

Pooley/Stevens, Using UML: Software Engineering with Objects
and Components

Quatrani, Visual Modeling with Rational Rose 2000 and UML
Rector/Sells, ATL Internals
Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Use Case Driven Object Modeling with UML: A
Practical Approach

Royce, Software Project Management: A Unified Framework

Ruh/Herron/Klinker, /{OP Complete: Understanding CORBA and
Middleware Interoperability

Rumbaugh/Jacobson/Booch, The Unified Modeling Language
Reference Manual

Schneider/Winters, Applying Use Cases: A Practical Guide

Shan/Earle, Enterprise Computing with Objects: From
Client/Server Environments to the Internet

Warmer/Kleppe, The Object Constraint Language: Precise
Modeling with UML

White, Software Configuration Management Strategies and
Rational ClearCase®: A Practical Introduction

The Component Software Series

Clemens Szyperski, Series Editor
For more information check out the series web site
[http://www.awl.com/cseng/csseries/].

Allen, Realizing eBusiness with Components

Cheesman/Daniels, UML Components: A Simple Process for
Specifying Component-Based Software

SOFTWARE
PROJECT |
MANAGEMENT

~ A Unified
Framework

WALKER ROYCE

RATIONAL SOFTWARE CORPORATION

A
\A4

ADDISON-WESLEY

Boston ¢ San Francisco ® New York ¢ Toronto ¢ Montreal
London ¢ Munich « Paris ¢ Madrid

Capetown ¢ Sydney ¢ Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more informa-
tion, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458

(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Royce, Walker, 1955-
Software project management : a unified framework / Walker Royce.
p. cm. - (The Addison-Wesley object technology series)
Includes bibliographical references and index.
ISBN 0-201-30958-0
1. Computer software—Development—Management. 1. Title.
II. Series.
QA76.76. D4TR69 1998
005.1’2—dc21 98-20071
. \ CIP
Special permission to paraphrase and use the Maturity Questionnaire, CMU/SEI-94-SR-007 © 1998 by
Carnegie Mellon University, in the book Software Project Management: A Unified Framework is granted
by the Software Engineering Institute.

Capability Maturity Model is a service mark of Carnegie Mellon University, CMMSM registered in the
U.S. Patent and Trademark Office.

Copyright © 1998 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada. '

ISBN 0-201-30958-0

Text printed on recycled paper

67 89 10—MA—0403020100
Sixth printing, November 2000

This work is dedicated to my
father, Winston Royce, whose
vision and practicality were
always in balance.

—Walker

Contents

LiSt Of FIGUIES .eecveruiriireeierieieneetetenieeseesneneeenesnenneens RO xiil

List Of TAbIES cuvevcveiriiiiiiiiriireie st cseeceteesre e st see s eeneenne xvii

FOrewordc.ooeieeiiieectee et xxi

Preface......... ettt ettt e s e ettt et b e st et eae s e e e e e e enesasrens xxiii

PART I SOFTWARE MANAGEMENT RENAISSANCE 1
CHAPTER 1 Conventional Software Management ..., 5
1.1 The Waterfall Modelccoormieeiiiiiiiiieninnniiiiis 6

1,11 In TREOTY ceveereeeiireeecieteceitee et e et eeee e s 6

1.1.2 In PractiCe..iiiiiniiiiiiiiiiiniiinniecincsieceeeeeneee e 11

1.2 Conventional Software Management Performance................... 17

CHAPTER 2 Evolution of Software ECONOMICS.......cccuriiimsicsinssissssisnssisisssssesssenss 21
2.1 Software ECONOMICS ..covvviriernvirercinniiniiiienisiresiceie et 21

2.2 Pragmatic Software Cost Estimationccccccevinviiiiiiinnninnnnns 26

CHAPTER 3 Improving Software ECONOMICScovcminiminiinsenissesessmssnssesssssssasssns 31
3.1 Reducing Software Product Sizecccocovvveineinnninniniiinnnecann 33

3101 LanguagesS..ccceeeeeeeeeeieeeiinieetree e 34

3.1.2 Object-Oriented Methods and Visual Modeling........... 36

3,13 REUSE cueeeiieiieee ettt ettt et s 38

3.1.4 Commercial Components......c.ccccerrirmnnnisnieeiineesieennnns 39

3.2 Improving SOftware ProCesSesccccveerreeerenrrerniersieesneeseeneenes 40

3.3 Improving Team Effectivenesscccceererevvinicnnininninciinnennnns 43

vii

viii CONTENTS

3.4 Improving Automation through Software Environments.......... 46

3.5 Achieving Required Quality ..c.cccovevrvieriiinviiiieireecniie e 48

3.6 Peer Inspections: A Pragmatic VIEW.......ccccceevrmrreernriinecinnnnnens 51

CHAPTER 4 The Old Way and the Newc.cmnienmsnesinmsnemssnmssssisesssunsssenisss 5
4.1 The Principles of Conventional Software Engineering S5

4.2 The Principles of Modern Software Management.........c...ce..... 63

4.3 Transitioning to an Iterative Process........cccoecvviiiviininininnnn. 66

PART Ii A SOFTWARE MANAGEMENT PROCESS FRAMEWORK 69
CHAPTER 5§ Life-Cycle Phases ..o 73
5.1 Engineering and Production Stages.......cccccvvrvmrvervenervnnvencrnenn, 74

5.2 Inception Phasecocceveirieiienieiiieeceiee ettt vae e 76

5.3 Elaboration PRasec.cccovevvieeeriiiiicniiinnenieeccecre e 77

5.4 Construction Phaseccoccvveiiieeiieeniiinnneinenieesnneesseieevaeenes 79

5.5 Transition Phaseccoccccevveiieirieiniiineeenern e screre e eseraee e snenns 80

CHAPTER 6 Artifacts of the Process........c.ocouvnirssinisesne: 83
6.1 The Artifact SEtS...covuvieiicimierrrireecreesieeersetrssseeecreeesstasssaeennns 84

6.1.1 The Management Set.......cccccvevererniineniineenisissecenenernecas 85

6.1.2 The Engineering Sets......cccocrmmieeeiinrininesiinenneecennnnn 86

6.1.3 Artifact Evolution over the Life Cycle........cc.ccevereeenees 92

6.1.4 Test Artifacts ccoeeevvecrccnvciirreeiiecriiinsnerecneceseneasiere s 93

6.2 Management Artifacts........ccoccevvmineenieenneenieeneesireeniesseeseeaee 96

6.3 Engineering Artifactsccccverrrerrrerceriinneeniecie e 103

6.4 Pragmatic Artifacts....coccceiinnieiirerieinienee e 105

CHAPTER 7 Model-Based Software Architectures..........co.cuviminmenncennennnescsnissniens 109
7.1 Architecture: A Management Perspectivecocoivvciiniinnninnne 110

7.2 Architecture: A Technical Perspective......ccocceerveivionennieenvecnnen. 111

CHAPTER 8 Workflows of the Process..........covusississsnssssnssensssinsssesssssssessssessssnss 117
8.1 Software Process Workflows........ccoeveeciinneeciinninnnieecienneeniens 118

8.2 Iteration Workflowscccocervirviinnieniiiiiieniiinien e 121

CHAPTER 9 Checkpoints of the Process........c..cummmmmisermssnrmsursissessersseessssmsensarsmtsesanens 125
9.1 Major MileStonescovvuivevrecviieniireresireesnee s e eriieessrre e errae e 126

9.2 MiInor MIlesStones.....ccuveeviriiircuiemiieciniririecinesnreessisenssnrressnneeanne 132

9.3 Periodic Status ASSESSIMENTS......cuuuurrerrrerirrareeeiieicurrrrreeeeseeseesannes 133

CONTENTS ix

PART III SOFTWARE MANAGEMENT DISCIPLINES 135
CHAPTER 10- Iterative Process Planning ... 139
10.1 Work Breakdown Structures.........cooivvievivinivenineninnininsnine 139

10.1.1 Conventional WBS Issues.......ccccvcinvcinnninniinnnennn. 140

10.1.2 Evolutionary Work Breakdown Structures................... 142

10.2 Planning Guidelinesceveiurueuerrieeeurireccieieteneseeseeseaeieesenenas 146

10.3 The Cost and Schedule Estimating Processcccccceecerveerruennnn. 149

10.4 The Iteration Planning Processccceeueveereererureeerereersersesensnee. 150

10.5 Pragmatic Planning........cccvvvnieiniiiniinninninninniieennne e 153

CHAPTER 11 Project Organizations and Responsibilities...........c.uoumeerserssnesmssersnerissnnns 155
11.1 Line-of-Business Organizationscccoeeiviiiininnnneinnneneennns 156

11.2 Project Organizations ..u.eeieeiineineennneeieessiesssnssessssssssssans 158

11.3 Evolution of Organizationscceceeeriiiiiininiinnninnnnneeenns 165

CHAPTER 12 Process AUtOMALIONurrrersmessreeresssaesssessessasssssesssssasssssesssssssassessesseses 167
12.1 Tools: Automation Building Blockscccceeveeviiceceneninccncencn. 168

12.2 The Project Environment......ccccceevevmerneenineeeceeneennccscnencnnns 172

12.2.1 Round-Trip Engineering........cceccovvvinvirniirniniiiniinininne 173

12.2.2 Change Managementc.ccevvveirnennisineeinneisncineinieonne 174

12.2.3 InfrastructuresS.....ooeeveerveereecrrerniiinereerteciesveenneesensnne 181

12.2.4 Stakeholder Environmentsccocevvininiinnnicinicnnninne 184

CHAPTER 13 Project Control and Process Instrumentation.........ccoeccecsnnsssssssnnacans 187
13.1 The Seven Core MEtriCS. ..ueueerreenreeneerrrernreenreenreeereeeaenreseeeees 188

13.2 Management Indicators........cccveviivivinininiinininncninnnnen 190

13.2.1 Work and Progress......c.cceecveeevececnenninenineenniecssececnees 190

13.2.2 Budgeted Cost and Expenditures........ccccceeverevniiinennne, 191

13.2.3 Staffing and Team Dynamics.........ccoovnee. e 195

13.3 Quality INdiCators .ceeeveereerieecieenieeeeeneesre et 196

13.3.1 Change Traffic and Stability......ccccocevvervenrnnnninencenee. 196

13.3.2 Breakage and Modularity......ccccoeceeeioerenninninnnnnnnnnene 197

13.3.3 Rework and Adaptability.......ccceevivirniieenviecnririenscernneenn 197

13.3.4 MTBF and Maturityeeeeeemeeeeniiiiieeniieeeeniieeeeeeeeeene 198

13.4 Life-Cycle EXpectationsc.cccvciiiniiiiiininenninnneniiicsireeeanens 199

13.5 Pragmatic Software Metrics.......cccviriiiivinniniincnicnnccs 201

13.6 MEtricsS AULOMALION vuuvrvrenreieneeerieneeereenesrsrsaessarecsenssesesssneeesssnnnes 202

X CONTENTS

CHAPTER 14 Tailoring the Processccummcrsernmenssnas vervesseressesnns . 209
14.1 Process DISCIIMIMANES....vcierrereeerirrerreinseesirinsensaesssesarssssssrearaneens 209

14.1.1 SCale voovinriie et er s 210

14.1.2 Stakeholder Cohesion or Contentionco.cvvivivesrcncs 214

14.1.3 Process Flexibility or Rigor.covvevinivinnevccninicnninnns 218

14.1.4 Process Matlrity..ooocecereeriercnicernreneeneessirccosncesnnressacnss 215

14.1.5 Architectural RisK.cooorrviriieicieiniiiceccirrecn e 217

14.1.6 Domain EXperience..c..ccccvcnvcriminicnmneernnccnniensecninne 217

14.2 Example: Small-Scale Project versus Large-Scale Project........... 218

PART IV LOOKING FORWARD 221
CHAPTER 15 Modern Project Profilescuencs P s e 225
15.1 Continuous INtegrationcccccveeriecivrniiiine et 226

15.2 Early Risk Resolution.......ccoccemiiicvernnieiniiiienreninneeeneeesieneenene 227

15.3 Evolutionary ReQUITEMENTS «..covveeeviieiiisiereneieriiinennreesriesvanenenes 228

15.4 Teamwork among Stakeholders......... bttt be st 229

15.5 Top 10 Software Management Principlescoovvnccceninenn 231

15.6 Software Management Best Practicesoceeccerreeernvenvnarnnesvenenens 232

CHAPTER 16 Next-Generation Software Economics 237
16.1 Next-Generation Cost Models .ooovveiimvinnmennninnninsccicnninne 237

16.2 Modern Software ECONOMICS covvivveeccarennvnnieeracrennresiesrenseessnnsas 242

CHAPTER 17 Modern Process Transitions 247
171 Culture Shifts oo 248

17.2 DeNOUEMENT . c.ecciiiriniirirric et cesran s e s sarecsaaresnebsecevns 251

PART V CASE STUDIES AND BACKUP MATERIAL 255
APPENDIX A The State of the Practice in Software Managementcccoeuuvvinnscrnens 259
APPENDIX B The COCOMO Cost Estimation Modelccouceinnneiicrsscsvcrinns R 265
B.1l COCOMO ...t cteserenes st e ssne st s seesnaesses e sasanane 266

B2 Ada COCOMO ittt eir et see e reesie e senesseeseeenne 269

B.3 COCOMO I .o scireserasvee e esiessaeeesne e bt ee e 274

CONTENTS Xi

APPENDIX C

APPENDIX D

Change MEtIiCScuuumevnseersresessnsesseessenannss et st nnes 283
C.l OVEIVIEW .ttt ettt e saee e sttt seinas 284
C.2 Metrics Derivation ...c....ccccoueieieeeciennineennniicnitcssiee e essanaeensensn 286
C.2.1 Collected StatiStics «c.c.vveevueerrrreersreeraeeeanaeessneraneessseeena 288
C.2.2 End-Product Quality Metricscc.eeeveerrevrvirneereiecsenneenes 291
C.2.3 In-Progress Indicatorsc.cccoveveciiiiviceecnninininniniinnee. 293
C.3 Pragmatic Change MetTics....oo.evriirerienrinuererrenesiaseesieseeseeenene 297
CCPDS-R Case StUAY........cocrnmmarmmmmversesmmsmmsnsensessmsssrsmsesssmsssssssssssmsssesssssess 299
D.1 Context for the Case Study......cceveeervrerviercerieenreninenrensernenee 300
D.2 Common Subsystem OVErviEWceeivcvenriieiseeeeniececnensneassenens 301
D.3 Project Organizationcoiieivierieiniiiiieennnniisisninessnnisesssnnnes 304
D.4 Common Subsystem Product Overview.........cccecceerveeennercnsueenn. 305
D.5 Process OVEIVIEWcciiiiiiiiiiiiiiiiein e 310
D.5.1 Risk Management: Build Content.........ccoccovvernensunnnne. 312
D.5.2 The Incremental Design Process.......cccoeveveriiiinenecnienene 315
D.5.3 Component Evolution.......ccccccvvrvvecenrenveesinincrenssineeenn. 318
D.5.4 The Incremental Test Processo.ceeeveeveeeeeecreecneeeruenene. 321
D.5.5 DOD-STD-2167A Artifacts ..ccocvvveecreennrennreenneerneeseennes 323
D.6 Demonstration-Based AsSeSSMEnt......ccorvveveerveerveerscerreensenriuenne 326
D.7 Core MEtriCs ..cccccoriiiiiimiieiiiniiiiiiieccn it 337
D.7.1 Development Progress.......ccccooiivveoininiucsnineinnnininnnnens 338
D.7.2 Test Progress....oocvivvvciiiisinniiiiinineniiiiieccenenenieeee s 340
D.7.3 Stability.. et 343
D.7.4 Modularity...cccoovvimmiirinireniiiiieeeciecieeenee e 343
D.7.5 Adaptability ...ccccoviivcininniiiie e, 344
D.7.6 Maturity coocceeereeiriiiiieeeerniiereenenniee e sistesssssee s 345
D.7.7 Cost/Effort Expenditures by ACtivity.....occeeveerierieenens 345
D.8 Other MetriCs . ccooiiiceiiiniieiiieereiirres st ereessae s cennees 348
D.8.1 Software Size Evolutionccccevvvviiiiiiiecnnnniinniecnnnnnn 348
D.8.2 Subsystem Process Improvements.........ccoeveeeeecnernnnnne 352
D.8.3 SCO Resolution Profilecccceecuereeereensennennennennennne 353
D.8.4 (CSCI Productivities and Quality Factors.......cccveeuvenen 354
D.9 People Factorscoccveiiriiniiciicieniicerein s 356
D.9.1 Core Team ...cccevenriiiiiieeeiniiiiiiirrininics e 357
D.9.2 Award Fee Flowdown Planccoocveeviiiiiiiniiiinnieniienene 358

D.10

CONCIUSIONS tevtteeeeeeetiiteeeeeeeeeeereeere e e e e e e s eeeeeeeeereeaaaseaeeneaenanaaenes 359

Xii CONTENTS

APPENDIX E

Process Improvement and Mapping to the CMM.........cccccounsinricrrncrnnnns 363
E.l CMM OVEIVIEW ..oeeriieeiiivireeeirteeeeieeceeseeeenssseneeaesssssavinseessssnenes 363
E.2 Pragmatic Process Improvement..........ccoocueviveeniiecnneecninnnieennne 366
E.3 Maturity QUESHIONNAITE. ...cceeeiieeraerinrerrantrirreesereesesesenreeeeensnnens 367
E.4 Questions Not Asked by the Maturity Questionnaire............... 387
E.5 Overall Process ASSESSMENT ..cevuuvervrecervreriurersvareescssresnereesssesenns 390
GLOSSATY ettt ettt et e srta e st a e sabt e s e aaesasaesans 391
REFETENCES .uvvrviieriieiiiiiesitecirecee et eeeeebee e s e e see e sre e s e e s e e ne s raenes 397

FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 1-4

FIGURE 2-1

FIGURE 2-2
FIGURE 2-3
FIGURE 3-1

FIGURE 4-1
FIGURE 5-1
FIGURE 6-1
FIGURE 6-2
FIGURE 6-3
FIGURE 6-4
FIGURE 6-5
FIGURE 6-6
FIGURE 6-7
FIGURE 6-8
FIGURE 6-9
FIGUilE 6-10

List of Figures

The waterfall model........coocooiriiniciiinccceree e 7
Progress profile of a conventional software project.........ceveeeruereeeceenns 12
Risk profile of a conventional software project across its life cycle 14
Suboptimal software component organization resulting from a
requirements-driven approach.........ocoveeeveererieescerieninesieseesensnsececeneens 16
Three generations of software economics leading to the

TArEEt ODJECIVE. c.viuvieecereiirrrisiecene e eeeeenre e eeee st esessassnasnessesseens 23
Return on investment in different domains........cc.cceeveeevereercreecenrennne. 25
The predominant cost eStimation ProCESS......o.vvereererueerereenerrerseeesseneens 28
Cost and schedule investments necessary to achieve reusable

COIMPOMEIILS «vvrrrrrreerrsessssunmnnrrreressssiiissmneeesesssssrssssasesessessisisssressssssssssses 39
The top five principles of a modern process........covevvverveevevernnrreereeenenne 64
The phases of the life-cycle process........oouveviricceccnnennrincenceninnreeneeneens 75
Overview of the artifact Sets....ccccerurnrirverrerruerieseesesrenirenrenrensenssesseeseenes 85
Life-cycle focus on artifact SEtsccvevverreererreeseeeseenuesiensersinsesesssessesses 89
Life-cycle evolution of the artifact SEtsceveeeverrerrveseereerersesessennns 92
Typical business case OULHNEcccverrierrerernriniiiecerentesrenienerise s 97
Typical release specification outhineccoecceeeveeereeesrenvrenieenseseeesienns 97
Typical software development plan outlinecoeeeeveerceevrernniencneeeens 99
Typical release description outlingccceeecveeveeesiiriiniineseeieeeeeenenns 100
Artifact sequences across a typical life cycle .oooeverececnnneninninencnnenn. 102
Typical vision document OULINEoceovervvirierrrereeirencnriennneeseesrenene 103

Typical architecture description outline

xiii

Xiv LIST OF FIGURES

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

7-1

8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
10-1

10-2
10-3
10-4
11-1
11-2
11-3
11-4
11-5
i1-6
11-7
12-1

12-2
12-3
12-4
12-5
12-6
13-1
13-2
13-3
13-4
13-5
13-6
13-7

Architecture, an organized and abstracted view into the

design MOELS c..eevvereiiiiiriiiee ettt 113
Activity levels across the life-cycle phases.......cccoveevvevrvieecriiiencinneennn. 119
The workflow of an Iterationceeeveeverreeenreceenensieeeneteseeserneseesiees 121
Iteration emphasis across the life cyclecoocoeviivinicrinnincncnicciercenne, 123
A typical'build sequence associated with a layered architecture............ 124
A typical sequence of life-cycle checkpoints........ceeeeerveerniiniccncenneenne 127
Engineering artifacts available at the life-cycle architecture milestone.. 130
Default agendas for the life-cycle architecture milestone 131
Typical minor milestones in the life cycle of an iteration 133
Conventional work breakdown structure, following the

Product hierarchyccovveevcivciecinnriee e 141
Default work breakdown structurecccoeeervcireenicieiceinniceneenicnecnnen 144
Evolution of planning fidelity in the WBS over the life cycle................. 147
Planning balance throughout the life cycleccoceccnnivivninniiiinnnnnne. 151
Default roles in a software line-of-business organization........c..cecceun... 156
Default project organization and responsibilities.........ccvirrrcnienncnnnee. 159
Software management team aCHIVITIES.......ceeireerriiiiiececoniniiieeensnneconnee 160
Software architecture team activitiesooueeeviiveennriincenineniineneaee 161
Software development team activities 162
Software assesSMENt teaMm ACHVLIES....vv....rrrrreernrrereerrrreene. 164
Software project team evolution over the life cycle _ 165
Typical automation and tool components that support the

Process WOLKIIOWS ..couvirieeuiirierimnivenereeineireecesseesnsieesseeenssensesseessessaens 169
Round-trip engineeringcccvveeiiniieeiiinieercnniensniien st ceesessieesiseeesans 174
The primitive components of a software change orderccocceecvvennnnne. 176

Example release histories for a typical project and a typical product.... 179

- Organization polCY OULHNE ...cc.eeveecererereriireenieenceieneeneeeeeseeeseenesenens 183
Extending environments into stakeholder domains SO 185
Expected progress for a typical project with three major releases 191
The basic parameters of an earned value system.......cccccoveeevccineenncrann. 193
Assessment of book progress (€Xample)oo.evvemisevereresvesreeereeens 194
Typical staffing Profile.....cccveririiierriiieiirieccinierece et eeeesn e etae e 196
Stability expectation over a healthy project’s life cycle.....c...ocevevevuenn.. 197
Modularity expectation over a healthy project’s life cycle............ou...... 197

Adaptability expectation over a healthy project’s life cycle 198

LIST OF FIGURES xXv

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

13-8
13-9
13-10
14-1
14-2
15-1
15-2
15-3

15-4

16-1
16-2
16-3

17-1
B-1
B-2
B-3
C-1
C-2
D1
D-2
D-3
D-4
D-5
D-6
D-7
D-8
D-9
D-10
D-11
D-12
D-13
D-14
D-15
D-16
E-1

Maturity expectation over a healthy project’s life cycle......ccoceevuevennnnn. 198
Examples of the fundamental metrics classes........cccccovvvrennniiininnne, 205
Example SPCP display for a top-level project situation........oceeeeeneeeee. 206
The two primary dimensions of process variability.......c.cceceveenvinenninn 210
Priorities for tailoring the process framework........cccociiveciecconcennins 211
Progress profile of a modern project......ueveercereereccniiineeneenreeneeesnes 226
Risk profile of a typical modern project across its life cycle 229

Organization of software components resulting from a
MOAEIN PIOCESS ..oiiiieieieeeiet et iete et st sete et e conte et e s s e e aeesanne s 230

Balanced application of modern principles to achieve
CCOMNOMIC TESUIES....eiuiieetireiieeeereieetiestressrneeesseeesseesastannreesneeesnseesnecas

Next-generation cost MOdels......oooieiiiiirieeeniniiiniieieeeeec s

Differentiating potential solutions through cost estimation

Automation of the construction process in next-generation

ETLVITOIUTIENIES «eevtrreeeeurereeerannerensstreeesmeneesannnneerssissessssnaneeesnuesssssssnessns 242
Next-generation project perfOrmance.....ococeecceeeenuiniiierinennnensneeesneenn 252
Profile of a conventional project.........ccccvvcevevccrniniiiniinnciccciiiiiiienns 270
Software estimation over a project life cyclecovvniiniiiiiiiiiniiciiinins 276
COCOMO 11 estimation over a project life cycle......coocvrmvniianininiennans 276
Expected trends for in-progress INdicators.......evveeceenreeruenieeneeseeseennes 294
Expectations for quality trends...........occecceriinnmmnnninineneeneneeee e 295
CCPDS-R life-cycle OVEIVIEW ...cereeeriireerinieneeneeeecivessececieeenee e 302
Full-scale development phase project organization........cccccceccenrveencnenn 306

Common Subsystem SAS evolution

Overview of the CCPDS-R macroprocess, milestones, and schedule..... 311
Common Subsystem builds 313
Basic activities sequence for an individual buildccocccovceiiiniinncnnne, 315
Incremental baseline evolution and test activity flowcccevneeneencenn. 322
CCPDS-R first demonstration activities and schedule.......ccovceereenneeee. 330
Development progress SUMMATYccovvernririiieiinniiiiniecceerereerenneesnnnes 339
Common Subsystem development progress.......coecvvvveiceeenennerecnsennes 340
Common SubSYStem tEST PrOZIESS wevevvrrevrrersereerreeerrreesseeseeeessseesarecene 342
Common Subsystem stability ...oocciiiiiiiiiiiiee e 343
Common Subsystem modularitycccceeceienvienninniiiie e 344
Common Subsystem adaptabilitycoveerveernenicniiiiiie 345
Common Subsysterm MAtUFILYcccevviererceecrerneenreeieeeesee s saeonas 346
Common Subsystem SCO change profile.......cccooceeriiiiniiiiinniennienieens 355

Project performance expectations for CMM maturity levels................. 365

TABLE
TABLE
TABLE
TABLE
TABLE

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

TABLE
TABLE
TABLE
TABLE

TABLE
TABLE
TABLE
TABLE

1-1
1-2
3-1
3-2
3-3

3-4
3-5
4-1
5-1
8-1
9-1

9-2

10-1
10-2
12-1

13-1
13-2
13-3
14-1

List of Tables

Expenditures by activity for a conventional software project................ 13
Results of conventional software project design reviews......cc.cceeveerueenne 17
Important trends in improving software eCOnOMICS......ccveeruereereeereunnne 32
Language expressiveness of some of today’s popular languages............ 34
Advantages and disadvantages of commercial components versus

CUSTOIML SOfTWATE.c.eeeeutieeiieririeieenieeteesteesveesneeaneesnee e s sunesseesseeennesnbssanes 40
Three levels of process and their attributes ‘ 41
General quality improvements with a modern process............... 49
Modern process approaches for solving conventional problems 66
The two stages of the life cycle: engineering and production................. 74
The artifacts and life-cycle emphases associated with each workflow ... 120
The general status of plans, requirements, and products across the

MAJOL MIESTONES ..cuviiiiiiiiiiieiiiiiitie e eereeniee et saa e s es 128
Default content of status asseSSMENT FEVIEWS vuveruvereerrirrereerieerreenneernnenas 134
WBS budgeting defaultsocueeeuiereeiiiireeciininreeeeee e 148
Default distributions of effort and schedule by phasecccccccevvveeie 148
Representative examples of changes at opposite ends of the

PIOJECT SPECLIUTL «uutiiiiernnrereeernmnreessiaireeeesnreessisasessennesessesaanesssnnnnsasias 180
Overview of the SEVEN COTe MELTICS. ...c.uvevuiivereeereeriereceseeeeeenee e 189
Measurement of actual progress of book development (example)......... 194
The default pattern of life-cycle metrics evolutionccocveevveereeneenen. 200
Process discriminators that result from differences in project size.......... 213

/

xvii

XViii LIST OF TABLES

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE
TABLE
TABLE
TABLE

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

14-2

14-3

14-4

14-$S

14-6

14-7

14-8

14-9
15-1

15-2.

A-l
A-2
A-3
B-1

B-7
C-1
C-2
C-3
D-1
D-2
D-3
D-4
D-5

D-7

Process discriminators that result from differences in

stakeholder cohesion.......coveiiiiiiii e 214
Process discriminators that result from differences in

process flexibity ...o.cooivviiieinii e 216
Process discriminators that result from differences in

PrOCESS MALULILY 1oiieiutiiieriiiieeeeiitierressiieeessineeesssianees et semesiesesainsneesssinne 216
Process discriminators that result from differences in

architectural risK. ... oot 217
Process discriminators that result from differences in

dOMAIN EXPELIENICE c.euvviiinriiiiiiiiiitiite ettt 218
Schedule distribution across phases for small and large projects........... 218
Differences in workflow priorities between small and large projects..... 219
Differences in artifacts between small and large projectsccceeun.e. 220
Differences in workflow cost allocations between a conventional

process and a MOAErN ProCeSScovvervuereueerierierieeceerreeeeesaeeeeessaenas 227
Results of major milestones in a modern process........cccocevevvviireerereeanens 231
Technologies used on software projects.........ceccvrverrreercrreenericenennnens 260
Social factors observed on software projectscccoveeeveieeneersiiesiennnnnes 261
Factors that affect the success of software projects.......cococevvueeereenneenne. 262
COCOMO project characterization Parameters.... oo vuveeeervevressernsees 267
Effort and schedule partition across conventional life-cycle phases....... 268
Default effort allocations across COCOMO WBS activities 269
Ada COCOMO improvements to the effort adjustment factors........... 272
Early design model effort adjustment factors......occvecceeviineeecinrceeninens 277
COCOMO II post-architecture model updates to Ada COCOMO

and COCOMO ...ttt st st es e te st e tnestesbae e 278
COCOMO Il process eXpOnent Parametersc.oevveeevvrernrereecenersinennne 281
Definitions of collected StAtiSTICS wooovvvierirririirrrree e srreere e eeeenraae e 288
End-product quality metrics.......ccoovviennennicn.d et e s e aaraesaaaees 291
Definitions of in-progress indicators...........cocoenceninineineincennincecs R 293
COCT SUMIMATY . .teieiiiiteeiiiiiiaeeeeiieeeesreeeeessaneeaessasesassesnennsessansnaeesenasanen 307
A typical component evolution from creation through turnover........... 319
NAS CSCI metrics summary at month 10cc.ccimeiiiiiiiiiiiiniieieene 320
CCPDS-R software artifacts....c..coeuenee 325
Software development file evolution 326
SCO characteristics for build 2 BIT testing......ccccceennnee. 341
Requirements verification work by test type and CSCI 342

LIST OF TABLES XiX

TABLE D-8
TABLE D-9
TABLE D-10
TABLE D-11
TABLE D-12
TABLE D-13
TABLE D-14
TABLE D-15
TABLE E-1

Common Subsystem cost expenditures by top-level WBS element 346
Common Subsystem lower level WBS elementscococeeriiiniveennenn. 347
Common Subsystem CSCI SIZES......eovuirrrenerierreerienieneeretieeeneeniesns 349
SLOC-t0-ESLOC conversion factorsceeceereeerunrruerreerseernreenieesienene 350
Common Subsystem CSCI sizes in ESLOCcccccccniiininenininniinnneennne 352
CCPDS-R subsystemn changes by CSCI......cccccomiiviiiiiiinnniin, 354
Common Subsystem CSCI SUmmarycocceveeiniiinieeniennrenneniieeseenieenns 355
CCPDS-R technology improvements.c.oeceeeciureinrienceeennuecrsniensaeeess 360

Industry distribution across maturity levels.......cocomiinieininnininnnnens 364

Foreword

his book blazes the way toward the next generation of software management prac-

tice. Many organizations still cling to the waterfall model because, even with its
shortfalls, it provides the most fully elaborated management guidelines on how to
proceed in a given software situation.

It has been difficult to find a fully articulated alternative management approach
for dealing with such issues as commercial component integration, software reuse,
risk management, and evolutionary/incremental/spiral software processes. This book
provides a new experience-tested framework and set of guidelines on how to proceed.

Walker Royce developed and tested this software management approach during
his inception-to-delivery participation in the large, successful CCPDS-R project per-
formed by TRW for the U.S. Air Force. He then refined and generalized it across a
wide spectrum of government, aerospace, and commercial software development
experiences at Rational.

Chapters 1 through 4 of the book motivate the approach by showing how it
gives you management control of the key software economics leverage points with
respect to traditional software management. These are (1) reducing the amount of
software you need to build, (2) reducing rework via improved processes and team-
work, and (3) reducing the labor-intensiveness of the remaining work via automation.

Chapters § through 10 present the specifics of a new organization of the soft-
ware life cycle, which also forms the management basis for Rational’s Unified process.
It combines the flexibility of the spiral model with the discipline of risk management
and a set of major life-cycle phases and milestones. These milestones are focused on
major management commitments to life-cycle courses of action.

As with our Anchor Point approach at USC, the life-cycle objectives milestone
involves a management commitment to engage in a software architecting effort based
on a business case analysis (or not to engage, in which case the project is mercifully

xxi

XXii FOREWORD

killed). The life-cycle architecture milestone involves a management commitment to
proceed into full-scale development based on establishing and demonstrating a sound
architecture and resolving all major risk items. The initial operational capability mile-
stone involves a management commitment to proceed to beta testing the product with
outside users, or its equivalent.

In these chapters, Royce provides a set of views showing how these milestones
differ from conventional document-oriented or code-oriented milestones. Instead, the
key product artifact sets (requirements, design, implementation, deployment) concur-
rently evolve and coalesce in a manner consistent with the project’s objectives and its
strategies for controlling risk.

In Chapters 10 through 14, Royce addresses how to ensure that the software
project’s management artifacts are also concurrently evolving and coalescing. These
include the project’s plans and associated cost and schedule estimates, the project’s
organization and team-building activities, and the project’s metrics, instrumentation,
and control processes. Chapter 14 is particularly noteworthy. It not only emphasizes
that the management solutions are situation-dependent, it also provides guidelines for
tailoring them to the project’s scale, team culture, process maturity, architectural risk,
and domain experience.

In Chapters 15 through 17, Royce looks forward to where the best software
developers are going with their practices: toward product line management, round-
trip engineering, and smaller teams with managers as performers and quality assur-
ance as everyone’s job. Appendixes relate his software management approach to the
current state of the practice, to the COCOMO and COCOMO II family of cost mod-
els, and to the SEI Capability Maturity Model. Appendix D provides a convincing
case study of how the approach was successfully used on the large, technically chal-
lenging CCPDS-R project.

Royce has a refreshing candor about some of the fads, follies, and excesses in the
software field. This comes out particularly in several “pragmatic” sections that
address such topics as software cost estimation, inspections, artifacts, planning, and
metrics. Not everyone will agree with all of his assessments, particularly on inspec-
tions, but they are incisive and thought-provoking.

I feel extremely fortunate to have been able to work with both Walker Royce
and his equally insightful father, Winston Royce; to have learned from their experi-
ences; and to have interacted with them as they evolved their path-breaking ideas.

Barry Boehm
Director, USC Center for Software Engineering
April 1998

Preface

he software industry moves unrelentingly toward new methods for managing the
ever-increasing complexity of software projects. In the past, we have seen evolu-
tions, revolutions, and recurring themes of success and failure. While software technol-
ogies, processes, and methods have advanced rapidly, software engineering remains a
people-intensive process. Consequently, techniques for managing people, technology,
resources, and risks have profound leverage.
This book captures a software management perspective that emphasizes a bal-
anced view of these elements:

* Theory and practice
¢ Technology and people
¢ Customer value and provider profitability

* Strategies and tactics

Throughout, you should observe a recurring management theme of paramount
importance: balance. It is especially important to achieve balance among the objec-
tives of the various stakeholders, who communicate with one another in a variety of
languages and notations. Herein is the motivation for the part opener art, an abstract
portrayal of the Rosetta stone. The three fundamental representation languages inher-
ent in software engineering are requirements (the language of the problem space),
design (the transformation languages of software engineers), and realizations (the lan-
guage of the solution space executable on computers). Just as the Rosetta stone enabled
the translation of Egyptian hieroglyphics, software management techniques enable the
translation of a problem statement into a solution that satisfies all stakeholders.

xxiii

XXiV PREFACE

There is no cookbook for software management. There are no recipes for obvi-
ous good practices. I have tried to approach the issues with as much science, realism,
and experience as possible, but management is largely a matter of judgment, (un)jcom-
mon sense, and situation-dependent decision making. That’s why managers are paid
big bucks.

Some chapters include sections with a pragmatic and often hard-hitting treat-
ment of a particular topic. To differentiate this real-world guidance from the general
process models, techniques, and disciplines, headings of these sections include the
word pragmatic. By pragmatic I mean having no illusions and facing reality squarely,
which is exactly the intent of these sections. They contain strong opinions and pro-
vocative positions, and will strike nerves in readers who are entrenched in some obso-
lete or overhyped practices, tools, or techniques.

I have attempted to differentiate among proven techniques, new approaches,
and obsolete techniques using appropriate substantiation. In most cases, I support my
positions with simple economic arguments and common sense, along with anecdotal
experience from field applications. Much of the material synthesizes lessons learned
(state-of-the-practice) managing successful software projects over the past 10 years.
On the other hand, some of the material represents substantially new (state-of-the-
art), hypothesized approaches that do not have clear substantiation in practice.

I have struggled with whether to position this book as management education or
management training. The distinction may seem nitpicky, but it is important. An
example 1 heard 15 years ago illustrates the difference. Suppose your 14-year-old
daughter came home from school one day and asked, “Mom and Dad, may I take the
sex education course offered at school?” Your reaction would likely be different if she
asked, “May I take the sex training course offered at school?” (This meant less to me
then than it does now that my three daughters are teenagers!)

Training has an aspect of applied knowledge that makes the knowledge more or
less immediately useful. Education, on the other hand, is focused more on teaching
the principles, experience base, and spirit of the subject, with the application of such
knowledge left to the student. I have tried to focus this book as a vehicle for software
management education. (I am not sure there is such a thing as management training
other than on-the-job experience.) I will not pretend that my advice is directly appli-
cable on every project. Although 1 have tried. to substantiate as many of the position
statements as possible, some of them are left unsubstantiated as pure hypotheses. I
hope my conjecture and advice will stimulate further debate and progress.

My intended audience runs the gamut of practicing software professionals. Pri-
mary target readers are decision makers: those people who authorize investment and
expenditure of software-related budgets. This group includes organization managers,
project managers, software acquisition officials, and their staffs. For this audience, I
am trying to provide directly applicable guidance for use in today’s tactical decision

PREFACE XXV

“making and tomorrow’s strategic investments. Another important audience is soft-
ware practitioners who negotiate and execute software project plans and deliver on
organizational and project objectives.

Style

Because I am writing for a wide audience, I do not delve into technical perspectives or
technical artifacts, many of which are better discussed in other books. Instead, I pro-
vide fairly deep discussions of the economics, management artifacts, work breakdown
strategies, organization strategies, and metrics necessary to plan and execute a success-
ful software project.

Illustrations are included to make these complex topics more understandable.
The precision and accuracy of the figures and tables merit some comment. While most
of the numerical data accurately describe some concept, trend, expectation, or rela-
tionship, the presentation formats are purposely imprecise. In the context of software
management, the difference between precision and accuracy is not as trivial as it may
seem, for two reasons:

1. Software management is full of gray areas, situation dependencies, and
ambiguous trade-offs. It is difficult, if not impossible, to provide an accu-
rate depiction of many concepts and to retain precision of the presentation
across a broad range of domains.

2. Understanding the difference between precision and accuracy is a funda-
mental skill of good software managers, who must accurately forecast esti-
mates, risks, and the effects of change. Unjustified precision—in
requirements or plans—has proven to be a substantial, yet subtle, recurring
obstacle to success.

In many of my numeric presentations, the absolute values are unimportant and quite
variable across different domains and project circumstances. The relative values con-
stitute the gist of most of the figures and tables.

I occasionally provide anecdotal evidence and actual field experience to put the
management approaches into a tangible context and provide relatively accurate and
precise benchmarks of performance under game conditions. Several appendixes clar-
ify how the techniques presented herein can be applied in real-world contexts. My
flagship case study is a thoroughly documented, successful, large-scale project that
provides a concrete example of how well many of these management approaches can
work. It also provides a framework for rationalizing some of the improved processes
and techniques.

xxvi

PREFACE

Organization

The book is laid out in five parts, each with multiple chapters:

Part I, Software Management Renaissance. Describes the current state of
software management practice and software economics, and introduces the
state transitions necessary for improved software return on investment.

Part I, A Software Management Process Framework. Describes the process
primitives and a framework for modern software management, including
the life-cycle phases, artifacts, workflows, and checkpoints.

Part III, Software Management Disciplines. Summarizes some of the criti-
cal techniques associated with planning, controlling, and automating a
modern software process.

Part IV, Looking Forward. Hypothesizes the project performance expectations
for modern projects and next-generation software economics, and discusses
the culture shifts necessary for success.

Part V, Case Studies and Backup Material. Five appendixes provide substan-
tial foundations for some of the recommendations, guidance, and opinions
presented elsewhere.

Acknowledgments

Although my perspective of iterative development has been influenced by many sources,
I have drawn on relatively few published works in writing this book. Providing a more
detailed survey of related publications might have helped some readers and satisfied

some authors, but most of the correlation with my views would be coincidental.

The foundation of niy material comes basically from three sources, on which I

have drawn extensively:

1.

TRW’s Ada Process Model Guidebook [Royce, Walker, 1989]. I wrote this
guidebook to capture the process description implemented successfully on
a large-scale TRW project so that it could be used throughout TRW.

. Rational Software Corporation’s software management seminar [Royce,

Walker, 1997]. I wrote this two-day seminar on software best practices to
describe Rational’s software management approach. The peer reviewers for
this material included Don Andres (TRW), Barry Boehm (University of
Southern California), Larry Druffel (Software Engineering Institute), Lloyd
Mosemann (U.S. Air Force), and Winston Royce (TRW), in addition to
numerous field practitioners and executives within Rational. The seminar
was delivered dozens of times in the mid-1990s to a broad range of audi-
ences, including government groups, defense contractors, and commercial
organizations.

PREFACE XXVii

3. Rational’s Unified process. The acquisition of Objectory by Rational
resulted in a large internal investment to merge the techniques of the
Objectory process (focused on use-case-driven techniques) and the existing
Rational process (focused on management techniques and object-oriented
modeling). This investment is on-going, as Rational continues to broaden
the process description and prescription across more of the life-cycle activi-
ties, tools, and methods, resulting in the Unified process.

Several other sources had a significant effect on the management process pre-
sented in this book. Their influence is the result of long-term relationships that encap-
sulate years of interaction, exchange of ideas, and extensive firsthand communication.

® My association with Barry Boehm over the past 15 years has been a rich
source of software engineering knowledge.

* Don Andres’s extraordinary leadership and project management expertise
set him apart from the many project managers I have worked for and with,
and I have learned much from him.

® Dave Bernstein, Robert Bond, Mike Devlin, Kevin Haar, Paul Levy, John
Lovitt, and Joe Marasco, senior managers at Rational, have evolved a nim-
ble company with a clear vision of software engineering as a business.

* Philippe Kruchten’s work on software architecture and process frame-
works, as well as his own field experience, has helped gel many of my per-
spectives and presentations.

® Grady Booch, Ivar Jacobson, and Jim Rumbaugh, Rational’s three senior
methodologists, have done the software engineering community a great
service in defining the Unified Modeling Language.

e Hundreds of dedicated software professionals in the Rational field organi-
zation have been responsible for delivering value to software projects and
transitioning software engineering theory into practice.

The most important influence on this work was my father, Winston Royce, who
set my context, validated my positions, critiqued my presentation, and strengthened
my resolve to take a provocative stand and stimulate progress.

Several people invested their own time reviewing early versions of my manu-
script and contributing to the concepts, presentation, and quality contained herein.
My special thanks go to Ali Ali, Don Andres, Peter Biche, Barry Boehm, Grady
. Booch, Doug Ishigaki, Ivar. Jacobson, Capers Jones, Hartmut Kocher, Philippe
Kruchten, Eric Larsen, Joe Marasco, Lloyd Mosemann, Roger Oberg, Rich Reitman,
Jim Rumbaugh, and John Smith.

XXViii PREFACE

Finally, the overall presentation quality, consistency, and understandability of
this material are substantially the work of Karen Ailor. Her critique, sense of organi-
zation, attention to detail, and aggressive nitpicking contributed greatly to the overall
substance captured in this book.

PART 1

SOFTWARE
MANAGEMENT
RENAISSANCE

cHAPTER 1 CONVENTIONAL SOFTWARE

MANAGEMENT

cHarTER 2 EVOLUTION OF SOFTWARE
‘ECONOMICS

cHaprTer 3 IMPROVING SOFTWARE
ECONOMICS

cHapTER 4 THE OLD WAY AND THE NEW

he software industry is experiencing a renaissance. Many ingrained software
engineering principles are going by the wayside, obsolesced by new technol-
ogy or replaced by better techniques or advanced levels of automation.

No matter what the discipline, it is important that the practitioner under-
stand the current state before attempting to transition to a new one. Before con-
sidering a software management framework for the future, it is necessary to
understand where the industry is today and how it got here.

In the past 10 years, | have participated in the software process improve-
ment efforts of several Fortune 500 companies. Typical goals of these efforts are
to achieve a 2X, 3X, or 10X increase in productivity, quality, time to market, or
some combination of all three, where X corresponds to how well the company
does now. The funny thing is that many of these organizations have no idea
what X is, in objective terms.

The chapters in Part | introduce the state of the practice in the software
industry and define the X associated with the conventional software manage-
ment process.

he best thing about software is its flexibil-

ity: It can be programmed to do almost
anything. The worst thing about software is
also its flexibility: The “almost anything”
characteristic has made it difficult to plan,
monitor, and control software development.
This unpredictability is the basis of what has
been referred to for the past 30 years as the

“software crisis.’

CHAPTER 1

Conventional
Software
Management

Key Points

A Conventional software management .
practices are mostly sound in theéry, but y
practice is still tied to archaic technol-
ogy and techniques. i

A Conventional software economics
provides a benchmark of performance
for conventional software manage-
ment principles.

In the mid-1990s, at least three important analyses of the state of the software
engineering industry were performed. The results were presented in Patterns of Soft-
ware Systems Failure and Success [Jones, 1996], in “Chaos” [Standish Group, 1995],
and in Report of the Defense Science Board Task Force on Acquiring Defense Software
Commercially [Defense Science Board, 1994]. Appendix A highlights some of the rele-

vant results.

All three analyses reached the same general conclusion: The success rate for soft-
ware projects is very low. Although the analyses had some differing perspectives, their
primary messages were complementary and consistent. They can be summarized as

follows:

1. Software development is still highly unpredictable. Only about 10% of
software projects are delivered successfully within initial budget and sched—

ule estimates.

2. Management discipline is more of a discriminator in success or failure than

are technology advances.

3. The level of software scrap and rework is indicative of an immature process.

6 CONVENTIONAL SOFTWARE MANAGEMENT

The three analyses provide a good introduction to the magnitude of the software
problem and the current norms for conventional software management performance.
There is much room for improvement.

The remainder of this chapter summarizes the software management process
framework that most conventional software projects have used. While this frame-
work, known as the waterfall model, has many derivatives, it is the baseline process
for most of the software project experience amassed to date. And while it is dangerous
to generalize, it is important to lay out a good context for the process improvement
techniques discussed throughout this book.

1.1 THE WATERFALL MODEL

Most software engineering texts present the waterfall model as the source of the “con-
ventional” software process. I regard it more as a benchmark of that process. This
section examines and critiques the waterfall model theory, then looks at how most of
the industry has practiced the conventional software process. In reality, although the
industry has ignored much of the theory, it has still managed to evolve many good
practices (and some not-so-good practices), especially when they are used with mod-
ern technologies.

1.1.1 IN THEORY

In 1970, my father, Winston Royce, presented a paper titled “Managing the Develop-
ment of Large Scale Software Systems” at IEEE WESCON [Royce, Winston, 1970].
This paper, based on lessons he had learned managing large software projects,
remains the most quoted source of the waterfall model. It provides an insightful and
concise summary of conventional software management philosophy circa 1970, and
most of its 30-year-old advice has stood the test of time in the face of immense tech-
nology turnover.

The paper made three primary points. (Quotations and paraphrased statements
are presented in italics.)

1. There are two essential steps common to the development of computer
programs: analysis and coding.

2. In order to manage and control all of the intellectual freedom associated
with software development, one must introduce several other “overhead”
steps, including system requirements definition, software requirements def-
inition, program design, and testing. These steps supplement the analysis
and coding steps. Figure 1-1 illustrates the resulting project profile and the
basic steps in developing a large-scale program.

1.1 THE WATERFALL MODEL

Waterfall Model Part 1: The two basic steps to building a program

Analysis
Analysis and coding both involve
creative work that directly

contributes to the usefulness of
" the end product.

Coding

Waterfall Model Part 2: The large-scale system approach

System

requirements \

‘\ Software
requirements \'

\ Analysis \'

Program design \'
‘\ Coding \

‘\ Testing \
‘\ Operations

Waterfall Model Part 3 : Five necessary improvements for this approach to work

. Complete program design before analysis and coding begin.
. Maintain current and complete documentation.

Do the job twice, if possible.

Plan, control, and monitor testing.

Involve the customer.

AR A

FIGURE 1-1. The waterfall model

8 CONVENTIONAL SOFTWARE MANAGEMENT

3. The basic framework described in the waterfall model is risky and invites
failure. The testing phase that occurs at the end of the development cycle is
the first event for which timing, storage, input/output transfers, etc., are
experienced as distinguished from analyzed. The resulting design changes
are likely to be so disruptive that the software requirements upon which
the design is based are likely violated. Either the requirements must be
modified or a substantial design change is warranted.

Item 1, which is seemingly trivial, will be expanded later into one of my overall
management themes: the separation of the engineering stage from the production
stage.

Seven of the article’s nine pages are devoted to describing five improvements to
the basic waterfall process that would eliminate most of the development risks
alluded to in item 3. These five improvements are presented next. (Quotations and
paraphrased statements are presented in italics, followed by my comments, in the con-
text of today’s technology and terminology.)

1. Program design comes first. The first step toward a fix is to insert a prelim-
inary program design phase between the software requirements generation
phase and the analysis phase. By this technique, the program designer
assures that the software will not fail because of storage, timing, and data
flux. As analysis proceeds in the succeeding phase, the program designer
must impose on the analyst the storage, timing, and operational constraints
in such a way that he senses the consequences. If the total resources to be
applied are insufficient or if the embryonic operational design is wrong, it
will be recognized at this early stage and the iteration with requirements
and preliminary design can be redone before final design, coding, and test
commences. How is this program design procedure implemented? The fol-
lowing steps are required:

Begin the design process with program designers, not analysts or pro-
grammers. :

Design, define, and allocate the data processing modes even at the risk of
being wrong. Allocate processing functions, design the database, allo-
cate execution time, define interfaces and processing modes with the
operating system, describe input and output processing, and define pre-
liminary operating procedures.

Write an overview document that is understandable, informative, and
current so that every worker on the project can gain an elemental under-
standing of the system.

1.1 THE WATERFALL MODEL

A The essence of the process framework | present in later chapters is architecture-
first development. Although a few terms may be changed (for example, architecture
is used instead of program design), the essence of a modern process is congruent
with the explanation given here. As described later, the architecture comes first and
is designed and developed in parallel with planning and requirements definition as
part of the engineering stage of a project.

. Document the design. The amount of documentation required on most
software programs is quite a lot, certainly much more than most program-
mers, analysts, or program designers are willing to do if left to their own
devices. Why do we need so much documentation? (1) Each designer must
communicate with interfacing designers, managers, and possibly custom-
ers. (2) During early phases, the documentation is the design. (3) The real
monetary value of documentation is to support later modifications by a
separate test team, a separate maintenance team, and operations personnel
who are not software literate.

A If we ignore the technological inadequacies of the time frame in which the paper
was written, the essence of this “document the design” message is still valid. Under-
standable representations of the artifacts, accessible by all stakeholders and teams,
are essential. However, major advances in notations, languages, browsers, tools,
and methods have rendered the need for many of the documents obsolete. in later
chapters, | argue at length that to focus on documentation is wrong and counter-
productive. This is because today's technologies support rigorous and self-docu-
menting notations for requirements, designs, and implementations.

. Do it twice. If a computer program is being developed for the first time,
arrange matters so that the version finally delivered to the customer for
operational deployment is actually the second version insofar as critical
design/operations are concerned. Note that this is simply the entire process
done in miniature, to a time scale that is relatively small with respect to the
overall effort. In the first version, the team must have a special broad com-
petence where they can quickly sense trouble spots in the design, model
them, model alternatives, forget the straightforward aspects of the design
that aren’t worth studying at this early point, and, finally; arrive at an
error-free program.

A This is a concise and simplistic description of architecture-first development, in
which an architecture team is responsible for the initial engineering. Géneralizing
this practice, as | do later, results in a “do it N times” approach that is a principle of
modern-day iterative development.

10

CONVENTIONAL SOFTWARE MANAGEMENT

Without this first pass, the project manager is at the mercy of human judg-
ment. With this first-pass “simulation,” he can at least perform experimen-
tal test of some key hypotheses and scope down what remains for buman
judgment, which in the area of computer program design (as in the estima-
tion of takeoff gross weight, costs to complete, or the daily double) is
invariably and seriously optimistic.

A This is a great description of the spirit of iterative development and its inherent
advantages for risk management.

. Plan, control, and monitor testing. Without question, the biggest user of

project resources—manpower, computer time, and/or management judg-
ment—is the test phase. This is the phase of greatest risk in terms of cost
and schedule. It occurs at the latest point in the schedule, when backup
alternatives are least available, if at all. The previous three recommenda-
tions were all aimed at uncovering and solving problems before entering
the test phase. However, even after doing these things, there is still a test
phase and there are still important things to be done, including: (1) employ
a team of test specialists who were not responsible for the original design;
(2) employ visual inspections to spot the obvious errors like dropped minus
signs, missing factors of two, jumps to wrong addresses (do not use the
computer to detect this kind of thing, it is too expensive); (3) test every
logic path; (4) employ the final checkout on the target computer.

A Here we have some good advice and some obsolete advice. Items 1 and 4, still
good advice, are discussed at length in later chapters. Item 2 is still a popular quality
assurance fad (use software inspections), but its purpose as presented here is mostly
obsolete. Although it may have been a good, cost-effective practice using 1970
technology, it is not today. Computers, compilers, analyzers, and other tools are far
more efficient mechanisms for catching obvious errors. As for item 3, testing every
logic path was difficult enough in 1970, without the added complexity of distribu-
tion, reusable components, and several other complicating factors. It is certainly not
feasible with most of today’s systems. This is especially true with distributed comput-
ing, in which, with time as an additional dimension, there are an infinite number of
logic paths. In a modern process, testing is a life-cycle activity that, when executed
properly, requires fewer total resources and uncovers issues far earlier in the life
cycle, when backup alternatives can still be used.

Involve the customer. For some reason, what a software design is going to
do is subject to wide interpretation, even after previous agreement. It is
important to involve the customer in a formal way so that he has committed

1.1 THE WATERFALL MODEL 11

himself at earlier points before final delivery. There are three points follow-
ing requirements definition where the insight, judgment, and commitment
of the customer can bolster the development effort. These include a “prelim-
inary software review” following the preliminary program design step, a
sequence of “critical software design reviews” during program design, and a
“final software acceptance review” following testing.

A This insight has been pursued for many years and, where practiced, has produced
positive results. Involving the customer with early demonstrations and planned
alpha/beta releases is a proven, valuable technigue.

I have always been overwhelmed by the insight presented in this paper. While
most of the industry has spent considerable energy bashing the waterfall model
approach, I find only minor flaws in the theory even when it is applied in the context
of today’s technology. The criticism should have been targeted at the practice of the
approach, which incorporated various unsound and unworkable elements. I suspect
that most critics never really understood this theory; they just understood the default
practice.

Throughout this book, I refer to the past and current practice of the waterfall
model approach, discussed next, as the “conventional” software management
approach or process. I argue that it is no longer a good framework for modern soft-
ware engineering practices and technologies, and I use it as the reality benchmark to
rationalize an improved process that eliminates some of its fundamental flaws.

1.1.2 IN PRACTICE

Despite the advice of many software experts and the theory behind the waterfall
model, some software projects still practice the conventional software management
approach. However, because its use is declining and was far more prevalent in the
past, I refer to it in the past tense throughout.

It is useful to summarize the characteristics of the conventional process as it has
typically been applied, which is not necessarily as it was intended. Projects destined
for trouble frequently exhibit the following symptoms:

® Protracted integration and late design breakage
e Late risk resolution

* Requirements-driven functional decomposition

Adversarial stakeholder relationships

Focus on documents and review meetings

12 CONVENTIONAL SOFTWARE MANAGEMENT

Protracted Integration and Late Design Breakage

For a typical development project that used a waterfall model management process,
Figure 1-2 illustrates development progress versus time. Progress is defined as percent
coded, that is, demonstrable in its target form. (The software was compilable and exe-
cutable; it was not necessarily complete, compliant, nor up to specifications.) The fol-
lowing sequence was common:

» Early success via paper designs and thorough (often oo thorough) briefings
e Commitment to code late in the life cycle

* Integration nightmares due to unforeseen implementation issues and inter-
face ambiguities

Heavy budget and schedule pressure to get the system working

Late shoe-horning of nonoptimal fixes, with no time for redesign

A very fragile, unmaintainable product delivered late

Format Ad hoc text Flowcharts S:;;ce Configuration baselines

Activity Requirements | Program Coding and Protracted integration and testing
analysis design unit testing

Product Documents Documents Coded units Fragile baselines

Sequential activities: requirements — design — coding — integration — testing

_;
=)
S
o~
|

Integration
begins
[}
7]
Q .
= Late design
g breakage
2 &
= T
3
£
g<
g
3 Original

target date

A JAN A

Project Schedule
FIGURE 1-2. Progress profile of a conventional software project

1.1 THE WATERFALL MODEL 13

TaBLE 1-1. Expenditures by activity for a
conventional software project

ACTIVITY COST
Management 5%
Requirements 5%
Design . 10%
Code and unit testing 30%
Integration and test 40%
Deployment 5%
Environment 5%

Total 100%

Given the immature languages and technologies used in the conventional
approach, there was substantial emphasis on perfecting the “software design” before
committing it to the target programming language, where it was difficult to under-
stand or change. This practice resulted in the use of multiple formats (requirements in
English, preliminary design in flowcharts, detailed design in program design lan-
guages, and implementations in the target language, such as FORTRAN, COBOL, or
C) and error-prone, labor-intensive translations between formats.

Conventional techniques that imposed a waterfall model on the design process
inevitably resulted in late integration and performance showstoppers. In the conven-
tional model, the entire system was designed on paper, then implemented all at once,
then integrated. Only at the end of this process was it possible to perform system test-
ing to verify that the fundamental architecture (interfaces and structure) was sound.
One of the recurring themes of projects following the conventional process was that
testing activities consumed 40% or more of life-cycle resources. Table 1-1 provides a
typical profile of cost expenditures across the spectrum of software activities.

Late Risk Resolution

A serious issue associated with the waterfall life cycle was the lack of early risk resolu-
tion. This was not so much a result of the waterfall life cycle as it was of the focus on
early paper artifacts, in which the real design, implementation, and integration risks
were still relatively intangible. Figure 1-3 illustrates a typical risk profile for conven-
tional waterfall model projects. It includes four distinct periods of risk exposure,
where risk is defined as the probability of missing a cost, schedule, feature, or quality
goal. Early in the life cycle, as the requirements were being specified, the actual risk

14 CONVENTIONAL SOFTWARE MANAGEMENT

Requirements . Design — Coding . Integration ! Testing)

High
Focused Risk : Controlled Risk
Resolution - Management

o Period Period
5
[2}
[o]
Q
>
i
X~
)
c
B
(]
I3 !
o .

Risk Exploration ;| Risk Elaboration

Period . Period
Low

Project Life Cycle
FIGURE 1-3. Risk profile of a conventional software project across its life cycle

exposure was highly unpredictable. After a design concept was available to balance
the understanding of the réquirements, even if it was just on paper, the risk exposure
stabilized. However, it usually stabilized at a relatively high level because there were
too few tangible facts for a software manager to achieve an objective assessment. As
the system was coded, some of the individual component risks got resolved. Then
integration began, and the real system-level qualities and risks started becoming tan-
gible. It was usually during this period that many of the real design issues were
resolved and engineering trade-offs were made. However, resolving these issues late in
the life cycle, when there was great inertia inhibiting changes to the mass of artifacts,
was very expensive. Consequently, projects tended to have a protracted integration
phase (as illustrated in Figure 1-2) as major redesign initiatives were implemented.
This process tended to resolve the important risks, but not without sacrificing the
quality of the end product, especially its maintainability. I use the term redesign
loosely. Most of this effort would be described better as shoe-horning late fixes and
patches into the existing implementation so that the overall resolution effort was min-
imized. These sorts of changes did not conserve the overall design integrity and its
corresponding maintainability.

Requirements-Driven Functional Decomposition

Traditionally, the software development process has been requirements-driven: An
attempt is made to provide a precise requirements definition and then to implement

1.1 THE WATERFALL MODEL 15

exactly those requirements. This approach depends on specifying requirements com-
pletely and unambiguously before other development activities begin. It naively treats
all requirements as equally important, and depends on those requirements remaining
constant over the software development life cycle. These conditions rarely occur in
the real world. Specification of requirements is a difficult and important part of the
software development process. As discussed in Appendix A, virtually every major
software program suffers from severe difficulties in requirements specification. More-
over, the equal treatment of all requirements drains away substantial numbers of engi-
neering hours from the driving requirements and wastes those efforts on paperwork
associated with traceability, testability, logistics support, and so on—paperwork that
is inevitably discarded later as the driving requirements and subsequent design under-
standing evolve.

As an example, consider a large-scale project such as CCPDS-R, presented as a
case study in Appendix D, where the software requirements included 2,000 shalls. (A
shall is a discrete requirement such as “the system shall tolerate all single-point hard-
ware failures with no loss of critical capabilities.”) Dealing adequately with the design
drivers in such systems (typically only 20 to 50 of the shalls) is difficult when the con-
tractual standards require that all 2,000 shalls be defined first and dealt with at every
major milestone. The level of engineering effort that can be expended on the important
design issues is significantly diluted by carrying around the excess baggage of more
than 1,950 shalls and dealing with traceability, testability, documentation, and so on.

Another property of the conventional approach is that the requirements were
typically specified in a functional manner. Built into the classic waterfall process was
the fundamental assumption that the software itself was decomposed into functions;
requirements were then allocated to the resulting components. This decomposition
was often very different from a decomposition based on object-oriented design and
the use of existing components. The functional decomposition also became anchored
in contracts, subcontracts, and work breakdown structures, often precluding a more
architecture-driven approach. Figure 1-4 illustrates the result of requirements-driven
approaches: a software structure that is organized around the requirements specifica-
tion structure. '

Adversarial Stakeholder Relationships

The conventional process tended to result in adversarial stakeholder relationships, in
large part because of the difficulties of requirements specification and the exchange of
information solely through paper documents that captured engineering information
in ad hoc formats. The lack of rigorous notation resulted mostly in subjective reviews
and opinionated exchanges of information.

16 CONVENTIONAL SOFTWARE MANAGEMENT

System Software Software Software
Requirements Requirements Components Units
Ra B
Rb Fa Fb Fc Fa Fb Fc
—» —»
Re
T R D Fi Fj Fk Fi fj Fk
R2 Rj
. . > —»
RN Rk
Rx L™ Fx Fy Fz Fx Fy Fz
Ry
. —> —>
Rz

FIGURE 1-4. Suboptimal software component organization resulting from a requirements-
driven approach

The following sequence of events was typical for most contractual software
efforts:

1. The contractor prepared a draft contract-deliverable document that cap-
tured an intermediate artifact and delivered it to the customer for approval.

2. The customer was expected to provide comments (typically within 15 to 30
days).

3. The contractor incorporated these comments and submitted (typically
within 15 to 30 days) a final version for approval.

This one-shot review process encouraged high levels of sensitivity on the part of
customers and contractors. The overhead of such a paper exchange review process
was intolerable. This approach also resulted in customer-contractor relationships
degenerating into mutual distrust, making it difficult to achieve a balance among
requirements, schedule, and cost.

Focus on Documents and Review Meetings

The conventional process focused on producing various documents that attempted to
describe the software product, with insufficient focus on producing tangible incre-
ments of the products themselves. Major milestones were usually implemented as cer-

1.2 CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE 17

TABLE 1-2. Results of conventional software project design reviews

APPARENT RESULTS REAL RESULTS

Big briefing to a diverse audience Only a small percentage of the audience under-
stands the software,

Briefings and documents expose few of the impor-
tant assets and risks of complex software systems.

A design that appears to be compliant There is no tangible evidence of compliance.

Compliance with ambiguous requirements is of
little value.

Coverage of requirements (typically Few (tens) are design drivers.

hundreds)

Dealing with all requirements dilutes the focus on
the critical drivers.

A design considered “innocent until The design is always guilty.

proven guilty” Design flaws are exposed later in the life cycle.

emonious meetings defined solely in terms of specific documents. Contractors were
driven to produce literally tons of paper to meet milestones and demonstrate progress
to stakeholders, rather than spend their energy on tasks that would reduce risk and
produce quality software. Typically, presenters and the audience reviewed the simple
things that they understood rather than the complex and important issues. Most
design reviews therefore resulted in low engineering value and high cost in terms of
the effort and schedule involved in their preparation and conduct. They presented
merely a facade of progress. Table 1-2 summarizes the results of a typical design
review. ,

Diagnosing the five symptoms of projects headed for trouble (just discussed) can
be difficult, especially in early phases of the life cycle when problems with the conven-
tional approach would have been most easily cured. Consequently, modern software
projects must use mechanisms that assess project health in early life-cycle phases and
that continue with objective, periodic checkups.

1.2 CONVENTIONAL SOFTWARE MANAGEMENT
PERFORMANCE

Barry Boehm’s one-page “Industrial Software Metrics Top 10 List” [Boehm, 1987] is
a good, objective characterization of the state of software development. (There is very
little evidence of significant changes in the past decade.) Although many of the metrics
are gross generalizations, they accurately describe some of the fundamental economic
relationships that resulted from the conventional software process practiced over the
past 30 years.

18 CONVENTIONAL SOFTWARE MANAGEMENT

In the following paragraphs, quotations from Boehm’s top 10 list are presented
in italics, followed by my comments.

1. Finding and fixing a software problem after delivery costs 100 times more
than finding and fixing the problem in early design phases.

A This metric dominates the rationale for virtually every dimension of process
improvement discussed in this or any other book. It is not unique to software devel-
opment. When one of the big automobile companies implements a recall for a post-
delivery defect, the cost of repair can be many orders of magnitude greater than the
cost of fixing the defect during the engineering or production stage.

2. You can compress software development schedules 25% of nominal, but
no more.

A One reason for this is that an N% reduction in schedule would require an M%
increase in personnel resources (assuming that other parameters remain fixed). Any
increase in the number of people requires more management overhead. In general,
the limit of flexibility in this overhead, along with scheduling concurrent activities,
conserving sequential activities, and other resource constraints, is about 25%. Opti-
mally, a 100-staff-month effort may be achievable in 10 months by 10 people.
Could the job be done in one month with 100 people? Two months with 50 people?
How about 5 months with 20 people? Clearly, these alternatives are unrealistic. The
25% compression metric says that the limit in this case is 7.5 months (and would
require additional staff-months, perhaps as many as 20). Any further schedule com-
pression is doomed to fail. On the other hand, an optimal schedule could be
extended almost arbitrarily and, depending on the people, could be performed in a
much longer time with many fewer staff resources. For example, if you have the lux-
ury of a 25-month schedule, you may need only 75 staff-months and three people.

3. For every $1 you spend on development, you will spend $2 on maintenance.

A Boehm calls this the “iron law of software development.” Whether you build a
long-lived product that undergoes commercial version upgrades twice a year or
build a one-of-a-kind custom software system, twice as much money will probably
be spent over the maintenance life cycle than was spent in the development life
cycle. It is hard to tell at first whether this relationship is good or bad. In the com-
mercial product domain, the primary driver of this relationship is the product’s suc-
cess in the marketplace. Successful software products (such as Oracle, Microsoft
applications, Rational Rose, and the UNIX operating system) are very long lived and
can result in much higher ratios of maintenance cost to development cost. Manag-
ers of one-of-a-kind software projects, on the other hand, rarely plan to expend this
much on software maintenance. In either case, anyone working in the software
industry over the past 10 to 20 years knows that most of the software in operation is
considered to be difficult to maintain.

1.2 CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE

19

. Software development and maintenance costs are primarily a function of
the number of source lines of code.

A This metric is primarily the result of the predominance of custom software devel-
opment, lack of commercial componentry, and lack of reuse inherent in the era of
the conventional process.

. Variations among people account for the biggest differences in software
productivity.

A This is a key piece of conventional wisdom: Hire good people. This metric is a sub-
ject of both overhype and underhype. When you don't know objectively why you
succeeded or failed, the obvious scapegoat is the quality of the people. This judg-
ment is subjective and difficult to challenge. -

. The overall ratio of software to hardware costs is still growing. In 1955 it
was 15:85; in 1985, 85:15.

A The fact that software represents 85% of the cost of most systems is not so much
a statement about software productivity (which is, arguably, not as good as we
want) as it is about the level of functionality being allocated to software in system
solutions. The need for software, its breadth of applications, and its complexity con-
tinue to grow almost without limits.

. Only about 15% of software development effort is devoted to programming.

A This is an important indicator of the need for balance. Many activities besides
coding are necessary for software project success. Requirements management,
design, testing, planning, project control, change management; and toolsmithing
are equally important considerations that consume roughly 85% of the resources.

. Software systems and products typically cost 3 times as much per SLOC as
individual software programs. Software-system products (i.e., system of sys-
tems) cost 9 times as much.

A This exponential relationship is the essence of what is called diseconomy of scale.
Unlike other commodities, the more software you build, the more expensive it is per
source line.

. Walkthroughs catch 60% of the errors.

A This may be true. However, given metric 1, walkthroughs are not catching the
errors that matter and certainly are not catching them early enough in the life cycle.
All defects are not created equal. In general, walkthroughs and other forms of
human inspection are good at catching surface probiems and style issues. If you are
using ad hoc design notations, human review may be your primary quality assurance

20 CONVENTIONAL SOFTWARE MANAGEMENT

mechanism, but it is not good at uncovering second-, third-, and Nth-order issues
such as resource contention, performance bottlenecks, control conflicts, and so on.
Furthermore, few humans are good at reviewing even first-order semantic issues in a
code segment. How many programmers get their code to compile the first time?

10. 80% of the contribution comes from 20% of the contributors.

A This is a motherhood statement that is true across almost any engineering disci-
pline (or any professional discipline, for that matter). | have expanded this metric
into a more specific interpretation for software. The following fundamental postu-
lates underlie the rationale for a modern software management process framework:

80% of the engineering is consumed by 20% of the requirements.
80% of the software cost is consumed by 20% of the components.
80% of the errors are caused by 20% of the components.

80% of software scrap and rework is caused by 20% of the errors.
80% of the resources are consumed by 20% of the components.
80% of the engineering is accomplished by 20% of the tools.

80% of the progress is made by 20% of the people.

These relationships provide some good benchmarks for evaluating process
improvements and technology improvements. They represent rough rules of thumb
that objectively characterize the performance of the conventional software manage-
ment process and conventional technologies. In later chapters, I return to many of
these measures to rationalize a new approach, defend an old approach, and quantify
process or technology improvements.

oftware engineering is dominated by intel-

lectual activities that are focused on solving
problems of immense complexity with numer-
ous unknowns in competing perspectives. The
early software approaches of the 1960s and
1970s can best be described as craftsmanship,
with each project using a custom process and
custom tools. In the 1980s and 1990s, the soft-
ware industry matured and transitioned to
more of an engineering discipline. However,
most software projects in this era were still
primarily research-intensive, dominated by
human creativity and diseconomies of scale.
The next generation of software processes,
specifically the techniques presented in this

CHAPTER 2

Evolution of
Software
Economics

Key Points
A Economic results of conventional soft-

. ware projects reflect an industry domi-

nated by custom development, ad hoc

‘ processes, and diseconomies of scale.

A Today’s cost models are based prima-
rily on empirical project databases with
very few modern iterative development

" success stories.

A Good software cost estimates are dif-

. ficult to attain. Decision makers must

deal with highly imprecise estimates.

A A modern process framework attacks
the primary sources of the inherent
diseconomy of scale in the conventional

, software process.

book, is driving toward a more production-intensive approach dominated by automa-

tion and economies of scale.

2.1 SOFTWARE ECONOMICS

Most software cost models can be abstracted into a function of five basic parameters:
size, process, personnel, environment, and required quality.

1. The size of the end product (in human-generated components), which is
typically quantified in terms of the number of source instructions or the
number of function points required to develop the required functionality

21

22 EVOLUTION OF SOFTWARE ECONOMICS

2. The process used to produce the end product, in particular the ability of the
process to avoid non-value-adding activities (rework, bureaucratic delays,
communications overhead)

3. The capabilities of software engineering personnel, and particularly their
experience with the computer science issues and the applications domain
issues of the project

4. The environment, which is made up of the tools and techniques available
to support efficient software development and to automate the process

S. The required quality of the product, including its features, performance,
reliability, and adaptability

The relationships among these parameters and the estimated cost can be written
as follows:

Effort = (Personnel)(Environment)(Quality)(SizeProcess)

Several parametric models have been developed to estimate software costs; all of
them can be generally abstracted into this form. One important aspect of software
economics (as represented within today’s software cost models) is that the relation-
ship between effort and size exhibits a diseconomy of scale. The diseconomy of scale
of software development is a result of the process exponent being greater than 1.0.
Contrary to most manufacturing processes, the more software you build, the more
expensive it is per unit item.

For example, for a given application, a 10,000-line software solution will cost
less per line than a 100,000-line software solution. How much less? Assume that a
100,000-line system requires 900 staff-months for development, or about 111 lines
per staff-month, or 1.37 hours per line. If this same system were only 10,000 lines,
and all other parameters were held constant, this project would be estimated at 62
staff-months, or about 175 lines per staff-month, or 0.87 hour per line. (Figure B-1
in Appendix B provides a more detailed description of this example using the
COCOMO cost estimation model.) The per-line cost for the smaller application is
much less than for the larger application. The reason is primarily the complexity of
managing interpersonal communications as the number of team members (and corre-
sponding objectives, win conditions, technical biases) scales up. This diseconomy of
scale is characteristic of any research project in which the product is a one-of-a-kind
instance of intellectual property.

Figure 2-1 shows three generations of basic technology advancement in tools,
components, and processes. The required levels of quality and personnel are assumed
to be constant. The ordinate of the graph refers to software unit costs (pick your
favorite: per SLOC, per function point, per component) realized by an organization.

FIGURE 2-1.

2.1 SOFTWARE ECONOMICS

23

Target objective: improved ROI

A

Cost

Software
ROI

Software Size

- 1960s-1970s

- Waterfall model

- Functional design

- Diseconomy of scale

- 1980s—-1990s

- Process impovement
- Encapsulation-based
- Diseconomy of scale

v

- 2000 and on

- iterative development
- Component-based

- Return on investment

Corresponding environment, size, and process technologies

Conventional Transition Modern Practices
Environments/tools: Environment/tools: Environment/tools:
Custom Off-the-shelf, separate Off-the-shelf, integrated
Size: Size: Size:
30% component-based 70% component-based
100% custom 70% custom 30% custom
Process: Process: Process:
Ad hoc Repeatable Managed/measured
Typical project performance
Predictably bad : Unpredictable Predictable
Always; Infrequently: Usually:
Over budget On budget On budget
Over schedule On schedule On schedule

Three generations of software economics leading to the target objective

24 EVOLUTION OF SOFTWARE ECONOMICS

The abscissa represents the life cycle of the software business engaged in by the organi-
zation. The three generations of software development are defined as follows:

1. Conventional: 1960s and 1970s, craftsmanship. Organizations used cus-
tom tools, custom processes, and virtually all custom components built in
primitive languages. Project performance was highly predictable in that
cost, schedule, and quality objectives were almost always underachieved.

2. Transition: 1980s and 1990s, software engineering. Organizations used
more-repeatable processes and off-the-shelf tools, and mostly (>70%) cus-
tom components built in higher level languages. Some of the components
(<30%) were available as commercial products, including the operating
system, database management system, networking, and graphical user
interface. During the 1980s, some organizations began achieving econo-
mies of scale, but with the growth in applications complexity (primarily in
the move to distributed systems), the existing languages, techniques, and
technologies were just not enough to substain the-desired business perfor-
mance.

3. Modern practices: 2000 and later, software production. This book’s philos-
ophy is rooted in the use of managed and measured processes, integrated
automation -environments, and mostly (70%) off-the-shelf components.
Perhaps as few as 30% of the components need to be custom built. With
advances in software technology and integrated production environments,
these component-based systems can be produced very rapidly.

Technologies for environment automation, size reduction, and process improve-
ment are not independent of one another. In each new era, the key is complementary
growth in all technologies. For example, the process advances could not be used suc-
cessfully without new component technologies and increased tool automation.

The transition to modern practices and the promise of improved software eco-
nomics are by no means guaranteed. We must be realistic in comparing the promises
of a well-executed, next-generation process using modern technologies against the
ugly realities of history. It is a sure bet that many organizations attempting to carry
out modern projects with modern techniques and technologies will end up with the
same old snafu.

Organizations are achieving better economies of scale in successive technology
eras—with very large projects (systems of systems), long-lived products, and lines of
business comprising multiple similar projects. Figure 2-2 provides an overview of how
a return on investment (ROI) profile can be achieved in subsequent efforts across life
cycles of various domains.

2.1 SOFTWARE ECONOMICS

25

Achieving ROI across a line of business

Investment in common architecture,
process, and environment for all
line-of-business systems

Cost per unit

Line-of-Business Life Cycle: Successive Systems

Achieving ROI across a project with multiple iterations

Investment in robust architecture, mature
iterative process, and process automation

Cost per unit

Project Life Cycle: Successive Iterations

Achieving ROI across a life cycle of product releases

Investment in product architecture,
life-cycle release process, and process
automation

Cost per unit

Product Life Cycle: Successive Releases

FIGURE 2-2. Return on investment in different domains

26 EVOLUTION OF SOFTWARE ECONOMICS

2.2 PRAGMATIC SOFTWARE COST ESTIMATION

One critical problem in software cost estimation is a lack of well-documented case
studies of projects that used an iterative development approach. Although cost model
vendors claim that their tools are suitable for estimating iterative development
projects, few are based on empirical project databases with modern iterative develop-
ment success stories. Furthermore, because the software industry has inconsistently
defined metrics or atomic units of measure, the data from actual projects are highly
suspect in terms of consistency and comparability. It is hard enough to collect a homo-
geneous set of project data within one organization; it is extremely difficult to homog-
enize data across different organizations with different processes, languages, domains,
and so on. For example, the fundamental unit of size (a source line of code or a func-
tion point) can be, and is, counted differently across the industry. It is surprising that
modern language standards (such as Ada 95 and Java) don’t make a simple definition
. of a source line reportable by the compiler. The exact definition of a function point or
a SLOC is not very important, just as the exact length of a foot or a meter is equally
arbitrary. It is simply important that everyone uses the same definition.
There have been many long-standing debates among developers and vendors of
software cost estimation models and tools. Three topics of these debates are of partic-
ular interest here:

1. Which cost estimation model to use
2. Whether to measure software size in source lines of code or function points

3. What constitutes a good estimate

About 50 vendors of software cost estimation tools, data, and services compete
within the software industry. There are several popular cost estimation models (such
as COCOMO, CHECKPOINT, ESTIMACS, KnowledgePlan, Price-S, ProQMS,
SEER, SLIM, SOFTCOST, and SPQR/20), as well as numerous organization-specific
models. Because my firsthand experience with these models has been centered on
COCOMO and its successors, Ada COCOMO and COCOMO 11, it is the basis of
many of my software economics arguments and perspectives. COCOMO is also one
of the most open and well-documented . cost estimation models. The evolution of
COCOMO into its current version, COCOMO II, is summarized in Appendix B.
While portions of the appendix are not directly applicable to today’s techniques and
technologies, it provides an interesting historical perspective on the evolution of the
issues and priorities of software economics over the past 20 years.

The measurement of software size has been the subject of much rhetoric. There
are basically two objective points of view: source lines of code and function points.
Both perspectives have proven to be more valuable than a third, which is the subjec-
tive or ad hoc point of view practiced by many immature organizations that use no
systematic measurement of size.

2.2 PRAGMATIC SOFTWARE COST ESTIMATION 27

Many software experts have argued that SLOC is a lousy measure of size. How-
ever, when a code segment is described as a 1,000-source-line program, most people
feel comfortable with its general “mass.” If the description were 20 function points, 6
classes, 5 use cases, 4 object points, 6 files, 2 subsystems, 1 component, or 6,000
bytes, most people, including software experts, would ask further questions to gain an
understanding of the subject code. (Many of them would ask how many SLOC.) So
SLOC is one measure that still has some value. .

I was a SLOC zealot a decade ago because SLOC worked well in applications
that were predominantly custom-built and because SLOC measurement was easy to
automate and instrument. Today, language advances and the use of components,
automatic source code generation, and object orientation have made SLOC a much
more ambiguous measure. As an acute example, the case study in Appendix D
describes the carefully crafted approaches for counting SLOC to accommodate reuse,
custom development, and code generation tools on a large software project.

The use of function points has a large following, including Capers Jones, who
cites the hazards associated with using SLOC metrics for object-oriented programs
[Jones, 1994]. The International Function Point User’s Group, formed in 1984, is the
dominant software measurement association in the industry. The primary advantage
of using function points is that this method is independent of technology and is there-
fore a much better primitive unit for comparisons among projects and organizations.
The main disadvantage is that the primitive definitions are abstract and measurements
are not easily derived directly from the evolving artifacts.

Although both measures of size have their drawbacks, I think an organization
can make either one work. The use of some measure is better than none at all. Anyone
doing cross-project or cross-organization comparisons should be using function
points as the measure of size. Function points are also probably a more accurate esti-
mator in the early phases of a project life cycle. In later phases, however, SLOC
becomes a more useful and precise measurement basis of various metrics perspectives.
Chapter 16 presents my hypothesis of a next-generation cost model that could mini-
mize or even obsolesce the need to measure SLOC.

The general accuracy of conventional cost models (such as COCOMO) has been
described as “within 20% of actuals, 70% of the time.” This level of unpredictability
in the conventional software development process should be truly frightening to every
investor, especially in light of the fact that few projects miss their estimate by doing
better than expected. This is an interesting phenomenon to be considered when sched-
uling labor-intensive efforts. Unless specific incentives are provided for beating the
overall schedule, projects rarely do better than planned. Why? Teams and individuals
perform subplanning to meet their objectives. If the time objective is lenient, they
either expend energy elsewhere (in further training, helping others, or goofing off), or
they continue to add quality beyond what is necessary. They almost never propose to
accelerate the schedule. If they did, their suggestion would most likely meet with

28 EVOLUTION OF SOFTWARE ECONOMICS

“This project must cost $X
to win this business.”

“Here's how to
justify that cost.”

FIGURE 2-3. The predominant cost estimation process

resistance from other stakeholders who are expecting to synchronize. So plans need to
be as ambitious as can possibly be achieved. ,

Most real-world use of cost models is bottom-up (substantiating a target cost)
rather than top-down (estimating the “should” cost). Figure 2-3 illustrates the pre-
dominant practice: The software project manager defines the target cost of the soft-
-ware, then manipulates the parameters and sizing until the target cost can be justified.
The rationale for the target cost may be to win a proposal, to solicit customer fund-
ing, to attain internal corporate funding, or to achieve some other goal.

The process described in Figure 2-3 is not all bad. In fact, it is absolutely neces-
sary to analyze the cost risks and understand the sensitivities and trade-offs objec-
tively. It forces the software project manager to examine the risks associated with
achieving the target costs and to discuss this information with other stakeholders. The
result is usually various perturbations in the plans, designs, process, or scope being
proposed. This process provides a good vehicle for a basis of estimate and an overall
cost analysis.

A practical lesson learned from the field is that independent cost estimates (those
done by people who are independent of the development team) are usually inaccurate.
The only way to produce a credible estimate is for a competent team—the software
project manager and the software architecture, development, and test managers—to
iterate through several estimates and sensitivity analyses. This team must then take
ownership of that cost estimate for the project to succeed.

What constitutes a good software cost estimate? This tough question is dis-
cussed in detail in Chapter 10. In summary, a good estimate has the following
attributes:

2.2 PRAGMATIC SOFTWARE COST ESTIMATION 29

e [t is conceived and supported by the project manager, architecture team,
development team, and test team accountable for performing the work.

e It is accepted by all stakeholders as ambitious but realizable.
e It is based on a well-defined software cost model with a credible basis.

* Itis based on a database of relevant project experience that includes similar
processes, similar technologies, similar environments, similar quality
requirements, and similar people.

e It is defined in enough detail so that its key risk areas are understood and
the probability of success is objectively assessed.

Extrapolating from a good estimate, an ideal estimate would be derived from a
mature cost model with an experience base that reflects multiple similar projects done
by the same team with the same mature processes and tools. Although this situation
rarely exists when a project team embarks on a new project, good estimates can be
achieved in a straightforward manner in later life-cycle phases of a mature project
using a mature process.

CHAPTER 3

Improving
Software
Economics

mprovements in the economics of software

. * Key Points
development have been not only difficult to :
. . A Modern software technology is
achieve but also difficult to measure and sub- . enabling systems to be built with fewer
stantiate. In software textbooks, trade jour- human-generated source lines.

nals, and product literature, the treatment of ~ A Modern software procésses are
this topic is plagued by inconsistent jargon, ' iterative.
inconsistent units of measure, disagreement 4 Modern software development
. and maintenance environments are
among experts, and unending hyperbole. If we 4,0 delivery mechanism for process
examine any one aspect of improving software automation.
economics, we end up with fairly narrow con-
clusions and an observation of limited value.
Similarly, if an organization focuses too much on improving only one aspect of its
software development process, it will not realize any significant economic improve-
ment even though it improves this one aspect spectacularly.

The key to substantial improvement is a balanced attack across several inter-
related dimensions. I have structured the presentation of the important dimensions
around the five basic parameters of the software cost model presented in Chapter 2.

1. Reducing the size or complexity of what needs to be developed
2. Improving the development process

3. Using more-skilled personnel and better teams (not necessarily the same
thing)

4. Using better environments (tools to automate the process)

5. Trading off or backing off on guality thresholds

W11

32 IMPROVING SOFTWARE ECONOMICS

These parameters are given in priority order for most software domains.
Table 3-1 lists some of the technology developments, process improvement efforts,
and management approaches targeted at improving the economics of software devel-
opment and integration.

Most software experts would also stress the significant dependencies among
these trends. For example, tools enable size reduction and process improvements,
size-reduction approaches lead to process changes, and process improvements drive
tool requirements. Consider the domain of user interface software. Two decades ago,
teams developing a user interface would spend extensive time analyzing operations,
human factors, screen layout, and screen dynamics. All this would be done on paper
because it was extremely expensive to commit designs, even informal prototypes, to
executable code. Therefore, the process emphasized a fairly heavyweight set of early
paper artifacts and user concurrence so that these “requirements” could be frozen and
the high construction costs could be minimized.

TABLE 3-1. Important trends in improving software economics

COST MODEL PARAMETERS TRENDS
Size Higher order languages (C++, Ada 95, Java, Visual Basic,
etc.)

Abstraction and component-based

development technologies Object-oriented (analysis, design, programming)
Reuse

Commercial components

Process Iterative development
Methods and techniques Process maturity models
. Architecture-first development

Acquisition reform

Personnel Training and personnel skill development

People factors Teamwork

Win-win cultures

Environment Integrated tools (visual modeling, compiler, editor,

Automation technologies and tools debugger, change management, etc.)
Open systems
Hardware platform performance

Automation of coding, documents, testing, analyses

Quality
Performance, reliability, accuracy

Hardware platform performance
Demonstration-based assessment

Statistical quality control

3.1 REDUCING SOFTWARE PRODUCT SIZE 33

Grapbhical user interface (GUI) technology is a good example of tools enabling a
‘new and different process. As GUI technology matured, the conventional user inter-
face process became obsolete. GUI builder tools permitted engineering teams to con-
struct an executable user interface faster and at less cost. The paper descriptions were
now unnecessary; in fact, they were an obstacle to the efficiency of the process. Oper-
ations analysis and human factors analysis were still important, but these activities
could now be done in a realistic target environment using existing primitives and
building blocks. Engineering and feedback cycles that used to take months could now
be done in days or weeks. The old process was geared toward ensuring that the user
interface was completely analyzed and designed, because the project could afford only
one construction cycle. The new process was geared toward taking the user interface
through a few realistic versions, incorporating user feedback all along the way, and
achieving a stable understanding of the requirements and the design issues in balance
with one another.

It could be argued that the process advances (such as the need for iteration and
experimentation in defining user interfaces) drove the development of the tools, or
that the technology advances drove the process change. Reality is probably a mixture
of both. The point is that the five basic parameters of the cost estimation equation are
not mutually exclusive, nor are they independent of one another. They are interrelated.

Another important factor that has influenced software technology improve-
ments across the board is the ever-increasing advances in hardware performance. The
availability of more cycles, more memory, and more bandwidth has eliminated many
sources of software implementation complexity. Simpler, brute-force solutions are
now possible, and hardware improvements are probably the enabling advance behind
most software technology improvements of substance.

3.1 REDUCING SOFTWARE PRODUCT SIZE

The most significant way to improve affordability and return on investment (ROI) is
usually to produce a product that achieves the design goals with the minimum
amount of human-generated source material. Component-based development is
introduced here as the general term for reducing the “source” language size necessary
to achieve a software solution. Reuse, object-oriented technology, automatic code
production, and higher order programming languages are all focused on achieving a
given system with fewer lines of human-specified source directives (statements). This
size reduction is the primary motivation behind improvements in higher order lan-
guages (such as C++, Ada 95, Java, Visual Basic, and fourth-generation languages),
automatic code generators (CASE tools, visual modeling tools, GUI builders), reuse of
commercial components (operating systems, windowing environments, database
management systems, middleware, networks), and object-oriented technologies (Uni-
fied Modeling Language, visual modeling tools, architecture frameworks).

34 IMPROVING SOFTWARE ECONOMICS

One caveat is warranted when discussing a reduction in product size. On the
surface, this recommendation stems from a simple observation: Code that isn’t there
doesn’t need to be developed and can’t break. But this is not entirely the case. The
reduction is defined in terms of human-generated source material. In general, when
size-reducing technologies are used, they reduce the number of human-generated
source lines. However, all of them tend to increase the amount of computer-process-
able executable code. So the first part of the observation is true, but the second part is
not necessarily true. The bottom line, as experienced by many project teams, is that
mature and reliable size reduction technologies are extremely powerful at producing
economic benefits. Immature size reduction technologies may reduce the development
size but require so much more investment in achieving the necessary levels of quality
and performance that they have a negative impact on overall project performance.

3.1.1 LANGUAGES

Universal function points (UFPs) are useful estimators for language-independent,
early life-cycle estimates. The basic units of function points are external user inputs,
external outputs, internal logical data groups, external data interfaces, and external
inquiries. SLOC metrics are useful estimators for software after a candidate solution
is formulated and an implementation language is known. Substantial data have been
documented relating SLOC to function points [Jones, 1995]. Some of these results are
shown in Table 3-2.

The data in the table illustrate why people are interested in modern languages
such as C++, Ada 95, Java, and Visual Basic: The level of expressibility is very attrac-
tive. However, care must be taken in applying these data because of numerous possible

TABLE 3-2. Language expressiveness of some
of today’s popular languages

LANGUAGE SLOC PER UFP
Assembly 320
C 128
FORTRAN 77 . 105
COBOL 85 91
Ada 83 71
C++ 56
Ada 95 55
Java 55

Visual Basic 35

3.1 REDUCING SOFTWARE PRODUCT SIZE 35

misuses. While I believe that the data accurately represent an important relationship,
the numbers are far too precise. (They are undoubtedly the precise average of several
imprecise numbers.) Each language has a domain of usage. Visual Basic is very expres-
sive and powerful in building simple interactive applications, but it would not be a
wise choice for a real-time, embedded, avionics program. Similarly, Ada 95 might be
the best language for a catastrophic cost-of-failure system that controls a nuclear
power plant, but it would not be the best choice for a highly parallel, scientific, num-
ber-crunching program running on a supercomputer. Software industry data such as
these, which span application domains, corporations, and technology generations,
must be interpreted and used with great care.

Two interesting observations within the data concern the differences and rela-
tionships between Ada 83 and Ada 95, and between C and C++. The interest of the
Department of Defense (DOD) in developing Ada 83 was due in part to the increase it
would provide in expressiveness. (Other reasons included reliability, support for real-
time programming, maintainability, and improved ROI through language standard-
ization.) A significant economic motivation was the ability to develop a program in
substantially fewer lines of code than were required in the traditional language alter-
natives of FORTRAN, COBOL, C, and assembly. Embodied in the Ada language are
numerous software engineering technology advances, including language-enforced
configuration control, separation of interface and implementation, architectural con-
trol primitives, encapsulation, concurrency support, and many others. Ada 95 repre-
sented a well-planned language upgrade to accommodate new technology and
incorporate lessons learned in field applications. The difference in expressibility
between Ada 83 and Ada 95 is mainly due to the features added to support object-
oriented programming. Thus, a first-order estimation of the value of object-oriented
programming is that it allows programs to be written in 30% fewer source lines.

The difference between C and C++ is even more profound. C++ incorporated
several (although not all) of the advances within Ada as well as advanced support for
object-oriented programming. However, C++ was also developed to support C as a
subset. This requirement has its pros and cons. On one hand, the C compatibility
made it very easy for C programmers to transition to C++. On the downside, one
noticeable trend in the industry is a significant population of programmers using a
C++ compiler but programming with a C mindset, therefore failing to achieve the
expressibility of object-oriented C++. The evolution of Java has eliminated many of
the problems in the C++ language (particularly the native support for C, which
encourages several dangerous programming practices) while conserving the object-
oriented features and adding further support for portability and distribution.

Universal function points can be used to indicate the relative program sizes
required to implement a given functionality. For example, to achieve a given applica-
tion with a fixed number of function points, one of the following program sizes would
be required:

36 IMPROVING SOFTWARE ECONOMICS

1,000,000 lines of assembly language
400,000 lines of C

220,000 lines of Ada 83

175,000 lines of Ada 95 or C++

The values indicate the relative expressiveness provided by various languages.
Commercial components and automatic code generators (such as CASE tools and
GUI builders) can further reduce the size of human-generated source code, which in
turn reduces the size of the team and the time needed for development. Extending this
example, adding a commercial database management system (DBMS), commercial
GUI builder, and commercial middleware could reduce the effective size of develop-
ment to the following final size:

75,000 lines of Ada 95 or C++ plus integration of several commercial
components

Because the difference between large and small projects has a greater than linear
impact on the life-cycle cost, the use of the highest level language and appropriate
commercial components has a large potential impact on cost. Furthermore, simpler is
generally better: Reducing size usually increases understandability, changeability, and
reliability. One typical negative side effect is that the higher level abstraction technol-
ogies tend to degrade performance, increasing consumption of resources such as pro-
cessor cycles, memory, and communications bandwidth. Most of these drawbacks
have been overcome by hardware performance improvements and optimizations.
These improvements are far less effective in embedded platforms.

3.1.2 OBJECT-ORIENTED METHODS AND VISUAL MODELING

There has been a widespread movement in the 1990s toward object-oriented technol-
ogy. I spend very little time on this topic because object-oriented technology is not ger-
mane to most of the software management topics discussed here, and books on
object-oriented technology abound. Some studies have concluded that object-oriented
programming languages appear to benefit both software productivity and software
quality [Jones, 1994], but an economic benefit has yet to be demonstrated because of
the steep cost of training in object-oriented design methods such as the Unified Mod-
eling Language (UML).

By providing more-formalized notations for capturing and visualizing software
abstractions, the fundamental impact of object-oriented technology is in reducing the
overall size of what needs to be developed. Booch has described three other reasons

3.1 REDUCING SOFTWARE PRODUCT SIZE

37

that certain object-oriented projects succeed [Booch, 1996]. These are interesting
examples of the interrelationships among the dimensions of improving software eco-
nomics. (Quotations are presented in italics.)

1

Booch also summarized five characteristics of a successful object-oriented project.

i

. An object-oriented model of the problem and its solution encourages a

common vocabulary between the end users of a system and its developers,
thus creating a shared understanding of the problem being solved.

A Here is an example of how object-oriented technology permits corresponding
improvements in teamwork and interpersonal communications.

The use of continuous integration creates opportunities to recognize risk
early and make incremental corrections without destabilizing the entire
development effort.

A This aspect of object-oriented technology enables an architecture-first process, in
which integration is an early and continuous life-cycle activity.

. An object-oriented architecture provides a clear separation of concerns
among disparate elements of a system, creating firewalls that prevent a
change in one part of the system from rending the fabric of the entire
architecture.

A This feature of object-oriented technology is crucial to the supporting languages
and environments available to implement object-oriented architectures.

. A ruthless focus on the development of a system that provides a well-
understood collection of essential minimal characteristics

The existence of a culture that is centered on results, encourages communi-
cation, and yet is not afraid to fail

The effective use of object-oriented modeling

4. The existence of a strong architectural vision

The application of a well-managed iterative and incremental development
life cycle

These characteristics have little to do with object orientation. However, object-
oriented methods, notations, and visual modeling provide strong technology support

for

the process framework.

38 IMPROVING SOFTWARE ECONOMICS

3.1.3 REUSE

Reusing existing components and building reusable components have been natural
software engineering activities since the earliest improvements in programming lan-
guages. Software design methods have always dealt implicitly with reuse in order to
minimize development costs while achieving all the other required attributes of per-
formance, feature set, and quality. Reuse achieves undeserved importance within the
software engineering community only because we don’t do it as well as we should. In
all other engineering and manufacturing disciplines, reuse is more or less an underly-
ing assumption, not some necessary technological breakthrough. I try to treat reuse as
a mundane part of achieving a return on investment. Common architectures, common
processes, precedent experience, and common environments are all instances of reuse.

One of the biggest obstacles to reuse has been fragmentation of languages, oper-
ating systems, notations, machine architectures, tools, and even “standards.” As a
counterexample, the level of reuse made possible by Microsoft’s success on the PC
platform has been immense.

In general, things get reused for economic reasons. Therefore, the key metric in
identifying whether a component (or a class of components, or a commercial product)
is truly reusable is to see whether some organization is making money on it. Without
this economic motive, reusable components are rare. Beware of “open” reuse libraries
sponsored by nonprofit organizations. They lack economic motivation, trustworthi-
ness, and accountability for quality, support, improvement, and usability. Most truly
reusable components of value are transitioned to commercial products supported by
organizations with the following characteristics:

¢ They have an economic motivation for continued support.

* They take ownership of improving product quality, adding new features,
and transitioning to new technologies.

® They have a sufficiently broad customer base to be profitable.

The cost of developing a reusable component is not trivial. Figure 3-1 examines
the economic trade-offs. The steep initial curve illustrates the economic obstacle to
developing reusable components. It is difficult to develop a convincing business case
for development unless the objective is to support reuse across many projects. Positive
business cases rarely occur in software development organizations that are not
focused on selling commercial components as their main line of business. Most orga-
nizations cannot compete economically with established commercial organizations
whose investments are broadly amortized across the user base. To succeed in the mar-
ketplace for commercial components, an organization needs three enduring elements:
a development group, a support infrastructure, and a product-oriented sales and mar-

3.1 REDUCING SOFTWARE PRODUCT SIZE 39

Many-project solution: Operating with high
value per unit investment, typical of

commercial products ¢
k=)
cw
S8
@5
S3
- 2
c C
g % 5 project solution: 125% more cost and
29 T 150% more time
=20
o L
g 3 T 2 project solution: 50% more cost and 100% more time
1 project solution: $N and M months

Number of Projects Using Reusable Components

FIGURE 3-1. Cost and schedule investments necessary to achieve reusable components

keting infrastructure. Another consideration is that the complexity and cost of devel-
oping reusable components are often naively underestimated.

Although the value of reuse can be immense, I have never been a fan of identify-
ing reuse as a separate “technology.” Reuse is an important discipline that has an
impact on the efficiency of all workflows and the quality of most artifacts. I think of it
as a synonym for return on investment, which should be a consideration in almost
every activity and decision. There have been very few success stories in software com-
ponent reuse except for commercial products such as operating systems, database
management systems, middleware, networking, GUI builders, and office applications.
On the other hand, every software success story has probably exploited some key ave-
nues of reuse (without calling it that) to achieve results efficiently.

3.1.4 CoMMERCIAL COMPONENTS

A common approach being pursued today in many domains is to maximize integra-
tion of commercial components and off-the-shelf products. While the use of commer-
cial components is certainly desirable as a means of reducing custom development, it
has not proven to be straightforward in practice. Table 3-3 identifies some of the
advantages and disadvantages of using commercial components. (These trade-offs are
particularly acute in mission-critical domains.) Because the trade-offs frequently have
global effects on quality, cost, and supportability, the selection of commercial compo-
nents over development of custom components has significant impact on a project’s
overall architecture. The paramount message here (discussed further in Chapter 7) is
that these decisions must be made early in the life cycle as part of the architectural
design.

40 IMPROVING SOFTWARE ECONOMICS

TABLE 3-3. Advantages and disadvantages of commercial components versus custom software
APPROACH ADVANTAGES DISADVANTAGES
Commercial Predictable license costs Frequent upgrades
components Broadly used, mature technology Up-front license fees
Available now Recurring maintenance fees
Dedicated support organization Dependency on vendor
Hardware/software independence Run-time efficiency sacrifices
Rich in functionality Functionality constraints
Integration not always trivial
No control over upgrades and
maintenance
Unnecessary features that consume
extra resources
Often inadequate reliability and
stability
Multiple-vendor incompatibilities
Custom Complete change freedom Expensive, unpredictable development
development

Smaller, often simpler
implementations

Often better performance

Control of development and
enhancement

Unpredictable availability date
Undefined maintenance model
Often immature and fragile
Single-platform dependency

Drain on expert resources

3.2 IMPROVING SOFTWARE PROCESSES

Process is an overloaded term. For software-oriented organizations, there are many
processes and subprocesses. I use three distinct process perspectives.

* Metaprocess: an organization’s policies, procedures, and practices for pur-
suing a software-intensive line of business. The focus of this process is on
organizational economics, long-term strategies, and a software ROL.

* Macroprocess: a project’s policies, procedures, and practices for producing
a complete software product within certain cost, schedule, and quality con-
straints. The focus of the macroprocess is on creating an adequate instance
of the metaprocess for a specific set of constraints.

® Microprocess: a project team’s policies, procedures, and practices for
achieving an artifact of the software process. The focus of the microprocess
is on achieving an intermediate product baseline with adequate quality and
adequate functionality as economically and rapidly as practical.

3.2 IMPROVING SOFTWARE PROCESSES 41

TABLE 3-4. Three levels of process and their attributes

ATTRIBUTES METAPROCESS MACROPROCESS MICROPROCESS
Subject Line of business Project Iteration
Objectives Line-of-business Project profitability Resource management
profitability Risk management Risk resolution
Competitiveness Project budget, Milestone budget,
schedule, quality schedule, quality
Audience Acquisition authori- Software project Subproject managers
ties, customers managers Software engineers
Organizational Software engineers
management
Metrics Project predictability On budget, on On budget, on schedule
Revenue, market schedule Major milestone progress
share Major milestone Release/iteration scrap
success and rework
Project scrap and
rework
Concerns Bureaucracy vs. Quality vs. finan- Content vs. schedule
standardization cial performance
Time scales 6 to 12 months 1 to many years 1 to 6 months

Although these three levels of process overlap somewhat, they have different objec-
tives, audiences, metrics, concerns, and time scales, as shown in Table 3-4. The mac-
roprocess is the project-level process that affects the cost estimation model discussed
in this chapter.

To achieve success, most software projects require an incredibly complex web of
sequential and parallel steps. As the scale of a project increases, more overhead steps
must be included just to manage the complexity of this web. All project processes con-
sist of productive activities and overhead activities. Productive activities result in tan-
gible progress toward the end product. For software efforts, these activities include
prototyping, modeling, coding, debugging, and user documentation. Overhead activi-
ties that have an intangible impact on the end product are required in plan prepara-
tion, documentation, progress monitoring, risk assessment, financial assessment,
configuration control, quality assessment, integration, testing, late scrap and rework,
management, personnel training, business administration, and other tasks. Overhead
activities include many value-added efforts, but, in general, the less effort devoted to
these activities, the more effort that can be expended in productive activities. The
objective of process improvement is to maximize the allocation of resources to pro-
ductive activities and minimize the impact of overhead activities on resources such as
personnel, computers, and schedule.

42 IMPROVING SOFTWARE ECONOMICS

Some people may be offended by my categorization of late scrap and rework and
personnel training as overhead activities that need to be minimized. I have modified
scrap and rework with late to differentiate it from the sort of scrap and rework that is
a natural by-product of prototyping efforts. Early scrap and rework is a productive
necessity for most projects to resolve the innumerable unknowns in the solution
space, but it is clearly undesirable in the later phases of the life cycle. With a good pro-
cess, it is clearly unnecessary.

People will argue that personnel training cannot be a bad thing, but it is for a
project. Training is an organizational responsibility, not a project responsibility. Any
project manager who bears the burden of training people in processes, technologies,
or tools is far worse off than a project manager who has a fully trained work force.
Staffing every project with a fully trained work force may not be possible, but employ-
ing trained people is always better than employing untrained people, other things
being equal. In this sense, training is not considered a value-added activity.

The quality of the software process strongly affects the required effort and there-
fore the schedule for producing the software product. In practice, the difference
between a good process and a bad one will affect overall cost estimates by 50% to
100%, and the reduction in effort will improve the overall schedule. Furthermore, a
better process can have an even greater effect in reducing the time it will take for the
team to achieve the product vision with the required quality. Why is this true?

Schedule improvement has at least three dimensions.

1. We could take an N-step process and improve the efficiency of each step.

2. We could take an N-step process and eliminate some steps so that it is now
only an M-step process.

3. We could take an N-step process and use more concurrency in the activities
being performed or the resources being applied.

Many organizational time-to-market improvement strategies emphasize the first
dimension. However, the focus of most process improvements described in this book
is on achieving the second and third dimensions, where there is greater potential. In
particular, the primary focus of process improvement should be on achieving an ade-
quate solution in the minimum number of iterations and eliminating as much down-
stream scrap and rework as possible.

Every instance of rework introduces a sequential set of tasks that must be
redone. For example, suppose that a team completes the sequential steps of analysis,
design, coding, and testing of a feature, then uncovers a design flaw in testing. Now a
sequence of redesign, recode, and retest is required. These task sequences are the primary
obstacle to schedule compression. Notwithstanding technological breakthroughs that

3.3 IMPROVING TEAM EFFECTIVENESS 43

can eliminate complete process steps, the primary impact of process improvement
should be the reduction of scrap and rework in late life-cycle phases.

In a perfect software engineering world with an immaculate problem descrip-
tion, an obvious solution space, a development team of experienced geniuses, ade-
quate resources, and stakeholders with common goals, we could execute a software
development process in one iteration with almost no scrap and rework. Because we
work in an imperfect world, however, we need to manage engineering activities so
that scrap and rework profiles do not have an impact on the win conditions of any
stakeholder. This should be the underlying premise for most process improvements.

3.3 IMPROVING TEAM EFFECTIVENESS

It has long been understood that differences in personnel account for the greatest
swings in productivity. The original COCOMO model, for example, suggests that the
combined effects of personnel skill and experience can have an impact on productivity
of as much as a factor of four. This is the difference between an unskilled team of
amateurs and a veteran team of experts. In practice, it is risky to assess a given team as
being off-scale in either direction. For a large team of, say, 50 people or more, you
almost always end up with nominal people and experience. It is impossible to staff a
nontrivial project with personnel who all have optimal experience, are fully trained in
the tools and technologies, and possess IQs greater than 130. If you did pull this off,
the team would likely be dysfunctional. So the old “Just hire good people” approach
needs to be applied carefully. A better way to state this is “Just formulate a good
team.”

Balance and coverage are two of the most important aspects of excellent teams.
Whenever a team is out of balance, it is vulnerable. To use a sports analogy, a football
team has a need for diverse skills, very much like a software development team. There
has rarely been a great football team that didn’t have great coverage: offense, defense,
and special teams, coaching and personnel, first stringers and reserve players, passing
and running. Great teams need coverage across key positions with strong individual
players. But a team loaded with superstars, all striving to set individual records and
competing to be the team leader, can be embarrassed by a balanced team of solid play-
ers with a few leaders focused on the team result of winning the game.

Teamwork is much more important than the sum of the individuals. With soft-
ware teams, a project manager needs to configure a balance of solid talent with highly
skilled people in the leverage positions. Some maxims of team management include
the following:

* A well-managed project can succeed with a nominal engineering team.

44 IMPROVING SOFTWARE ECONOMICS

* A mismanaged project will almost never succeed, even with an expert team
of engineers.

e A well-architected system can be built by a nominal team of software
builders.

e A poorly architected system will flounder even with an expert team of

builders.

In examining how to staff a software project, Boehm offered the following five
staffing principles [Boehm, 1981]. (Quotations are presented in stalics.)

1. The principle of top talent: Use better and fewer people.

A This tenet is fundamental, but it can be applied only so far. There is a “natural”
team size for most jobs, and being grossly over or under this size is bad for team
dynamics because it results in too little or too much pressure on individuals to
perform.

2. The principle of job matching: Fit the tasks to the skills and motivation of
the people available.

A This principle seems obvious. On a football team you use a good leader as your
coach, a good passer as the quarterback, a superfast runner as a wide receiver, and
a 300-pound bruiser as a lineman. With software engineers, it is more difficult to
discriminate the mostly intangible personnel skills and optimal task allocations. Per-
sonal agendas also complicate assignments. In football, the 300-pound lineman
would never think about being promoted to quarterback; the skill sets are too obvi-
ously different. On software teams, however, it is common for talented program-
mers to seek promotions to architects and managers. | think the skill sets are equally
different, because most superstar programmers are innately unqualified to be archi-
tects and managers, and vice versa. Yet individuals and even their organizations
often view such promotions as desirable.There are countless cases of great software
engineers being promoted prematurely into positions for which they were unskilled
and unqualified. This makes a B player out of an A player, taking an A player out of
a moderate- to high-leverage position and putting a B player in a higher leverage
position. It's a double whammy.

3. The principle of career progression: An organization does best in the long
run by helping its people to self-actualize.

A Good performers usually self-actualize in any environment. Organizations can
help and hinder employee self-actualization, but organizational energy will benefit
average and below-average performers the most. Organizational training programs

3.3 IMPROVING TEAM EFFECTIVENESS

45

are typically strategic undertakings with educational value. Project training programs
are purely tactical, intended to be useful and applied the day after training ends.

. The principle of team balance: Select people who will complement and har-
monize with one another.

A Although this principle sounds a little drippy, its spirit is the paramount factor in
good teamwork. Software team balance has many dimensions, and when a team is
unbalanced in any one of them, a project becomes seriously at risk. These dimen-
sions include:

Raw skills: intelligence, objectivity, creativity, organization, analytical thinking

Psychological makeup: leaders and followers, risk takers and conservatives,
visionaries and nitpickers, cynics and optimists

Obijectives: financial, feature set, quality, timeliness

. The principle of phaseout: Keeping a misfit on the team doesn’t benefit
anyone.

A This is really a subprinciple of the other four. A misfit gives you a reason to find a
better person or to live with fewer people. A misfit demotivates other team mem-
bers, will not self-actualize, and disrupts the team balance in some dimension. Mis-
fits are obvious, and it is almost never right to procrastinate weeding them out.

Software development is a team sport. Managers must nurture a culture of team-

work and results rather than individual accomplishment. Of the five principles, team
balance and job matching should be the primary objectives. The top talent and phase-
out principles are secondary objectives because they must be applied within the con-
text of team balance. Finally, although career progression needs to be addressed as an
employment practice, individuals or organizations that stress it over the success of the
team will not last long in the marketplace.

Software project managers need many leadership qualities in order to enhance

1. Hiring skills. Few decisions are as important as hiring decisions. Placing

the right person in the right job seems obvious but is surprisingly hard to
achieve.

2. Customer-interface skill. Avoiding adversarial relationships among stake-

holders is a prerequisite for success.

team effectiveness. Although these qualities are intangible and outside the scope of
this book, I would be remiss if I didn’t mention them. The following are some crucial
attributes of successful software project managers that deserve much more attention:

46 IMPROVING SOFTWARE ECONOMICS

3. Decision-making skill. The jillion books written about management have
failed to provide a clear definition of this attribute. We all know a good
leader when we run into one, and decision-making skill seems obvious
despite its intangible definition.

4. Team-building skill. Teamwork requires that a manager establish trust,
motivate progress, exploit eccentric prima donnas, transition average peo-
ple into top performers, eliminate misfits, and consolidate diverse opinions
into a team direction.

5. Selling skill. Successful project managers must sell all stakeholders (includ-
ing themselves) on decisions and priorities, sell candidates on job positions,
sell changes to the status quo in the face of resistance, and sell achieve-
ments against objectives. In practice, selling requires continuous negotia-
tion, compromise, and empathy.

3.4 IMPROVING AUTOMATION THROUGH SOFTWARE
ENVIRONMENTS .

The tools and environment used in the software process generally have a linear effect
on the productivity of the process. Planning tools, requirements management tools,
visual modeling tools, compilers, editors, debuggers, quality assurance analysis tools,
test tools, and user interfaces provide crucial automation support for evolving the
software engineering artifacts. Above all, configuration management environments
provide the foundation for executing and instrumenting the process. At first order, the
isolated impact of tools and automation generally allows improvements of 20% to
40% in effort. However, tools and environments must be viewed as the primary deliv-
ery vehicle for process automation and improvement, so their impact can be much
higher.

Section 3.2 focused on process improvements that reduce scrap and rework,
thereby eliminating steps and minimizing the number of iterations in the process. The
other form of process improvement is to increase the efficiency of certain steps. This is
one of the primary contributions of the environment: to automate manual tasks that
are inefficient or error-prone. The transition to a mature software process introduces
new challenges and opportunities for management control of concurrent activities
and for tangible progress and quality assessment. Project experience has shown that a
highly integrated environment is necessary both to facilitate and to enforce manage-
ment control of the process. An environment that provides semantic integration (in
which the environment understands the detailed meaning of the development arti-
facts) and process automation can improve productivity, improve software quality,
and accelerate the adoption of modern techniques. An environment that supports
incremental compilation, automated system builds, and integrated regression testing

3.4 IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS 47

can provide rapid turnaround for iterative development and allow development teams
to iterate more freely.

An important emphasis of a modern approach is to define the development and
maintenance environment as a first-class artifact of the process. A robust, integrated
development environment must support the automation of the development process.
This environment should include requirements management, document automation,
host/target programming tools, automated regression testing, continuous and inte-
grated change management, and feature/defect tracking. A common thread in success-
ful software projects is that they hire good people and provide them with good tools
to accomplish their jobs. Automation of the design process provides payback in qual-
ity, the ability to estimate costs and schedules, and overall productivity using a smaller
team. Integrated toolsets play an increasingly important role in incremental/iterative
development by allowing the designers to traverse quickly among development arti-
facts and keep them up-to-date.

Round-trip engineering is a term used to describe the key capability of environ-
ments that support iterative development. As we have moved into maintaining differ-
ent information repositories for the engineering artifacts, we need automation support
to ensure efficieat and error-free transition of data from one artifact to another. For-
ward engineering is the automation of one engineering artifact from another, more
abstract representation. For example, compilers and linkers have provided automated
transition of source code into executable code. Reverse engineering is the generation
or modification of a more abstract representation from an existing artifact (for exam-
ple, creating a visual design model from a source code representation).

Round-trip engineering describes the environment support needed to change an
artifact freely and have other artifacts automatically changed so that consistency is
maintained among the entire set of requirements, design, implementation, and
deployment artifacts. This concept is developed more fully in Chapter 12.

As architectures started using heterogeneous components, platforms, and lan-
guages, the complexity of building, controlling, and maintaining large-scale webs of
components introduced new needs for configuration control and automation of build
management. However, today’s environments do not come close to supporting auto-
mation to the extent possible. For example, automated test case construction from use
case and scenario descriptions has not yet evolved to support anything beyond the
most trivial cases, such as unit test scenarios.

One word of caution is necessary in describing the economic improvements
associated with tools and environments. It is common for tool vendors to make rela-
tively accurate individual assessments of life-cycle activities to support claims about
the potential economic impact of their tools. For example, it is easy to find statements
such as the following from companies in a particular tool niche:

48 IMPROVING SOFTWARE ECONOMICS

e Requirements analysis and evolution activities consume 40% of life-cycle
costs.

e Software design activities have an impact on more than 50% of the
resources.

¢ Coding and unit testing activities consume about 50% of software devel-
opment effort and schedule.

e Test activities can consume as much as 50% of a project’s resources.

e Configuration control and change management are critical activities that
can consume as much as 25% of resources on a large-scale project.

* Documentation activities can consume more than 30% of project engineer-
ing resources.

¢ Project management, business administration, and progress assessment can
consume as much as 30% of project budgets.

Taken individually, none of these claims is really wrong; they are just too sim-
plistic. (Given these claims, no wonder it takes 275% of budget and schedule re-
sources to complete most projects!) When taken together, the claims can be very
misleading. Beware of this type of conclusion:

This testing tool will improve your testing productivity by 20%. Because test
activities consume 50% of the life cycle, there will be a 10% net productivity
gain to the entire project. With a $1 million budget, you can afford to spend
$100,000 on test tools.

The interrelationships of all the software development activities and tools are far
too complex for such simple assertions to be reasonable. In my experience, the com-
bined effect of all tools tends to be less than about 40%, and most of this benefit is not
realized without some corresponding change in process. It is unlikely that any individ-
ual tool will improve a project’s productivity by more than 5%. In general, you are
better off normalizing most vendor claims to the virtual 275% total than the 100%
total you must deal with in the real world.

3.5 ACHIEVING REQUIRED QUALITY

Many of what are accepted today as software best practices are derived from the
development process and technologies summarized in this chapter. These practices
have impact in addition to improving cost efficiency. Many of them also permit
improvements in quality for the same cost. Table 3-5 summarizes some dimensions of
quality improvement.

3.5 ACHIEVING REQUIRED QUALITY 49

TABLE 3-5. General quality improvements with a modern process

CONVENTIONAL MODERN ITERATIVE
QUALITY DRIVER PROCESS PROCESSES
Requirements Discovered late Resolved early
misunderstanding

Development risk

Unknown until late

Understood and resolved early

Commercial components

Mostly unavailable

Still a quality driver, but trade-
offs must be resolved early in the
life cycle

Change management

Late in the life cycle,
chaotic and malignant

Early in the life cycle, straight-
forward and benign

Design errors

Discovered late

Resolved early

Automation

Mostly error-prone
manual procedures

Mostly automated, error-free
evolution of artifacts

Resource adequacy

Unpredictable

Predictable

Schedules

Overconstrained

Tunable to quality, performance,
and technology

Target performance

Paper-based analysis or
separate simulation

Executing prototypes, early per-
formance feedback, quantitative
understanding

Software process rigor

Document-based

Managed, measured, and tool-
supported

Key practices that improve overall software quality include the following;:

Focusing on driving requirements and critical use cases early in the life
cycle, focusing on requirements completeness and traceability late in the
life cycle, and focusing throughout the life cycle on a balance between
requirements evolution, design evolution, and plan evolution

Using metrics and indicators to measure the progress and quality of an
architecture as it evolves from a high-level prototype into a fully compliant
product

Providing integrated life-cycle environments that support early and contin-
uous configuration control, change management, rigorous design methods,
document automation, and regression test automation

Using visual modeling and higher level languages that support architectural
control, abstraction, reliable programming, reuse, and self-documentation

50

IMPROVING SOFTWARE ECONOMICS

e Farly and continuous insight into performance issues through demonstra-

tion-based evaluations

Improved insight into run-time performance issues is even more important as
projects incorporate mixtures of commercial components and custom-developed
components. Conventional development processes stressed early sizing and timing
estimates of computer program resource utilization. However, the typical chronology

of events in performance assessment was as follows:

¢ Project inception. The proposed design was asserted to be low risk with

adequate performance margin.

Initial design review. Optimistic assessments of adequate design margin
were based mostly on paper analysis or rough simulation of the critical
threads. In most cases, the actual application algorithms and database sizes
were fairly well understood. However, the infrastructure—including the
operating system overhead, the database management overhead, and the
interprocess and network communications overhead—and all the second-
ary threads were typically misunderstood.

Mid-life-cycle design review. The assessments started whittling away at the
margin, as early benchmarks and initial tests began exposing the optimism
inherent in earlier estimates.

Integration and test. Serious performance problems were uncovered, neces-
sitating fundamental changes in the architecture. The underlying infra-
structure was usually the scapegoat, but the real culprit was immature use
of the infrastructure, immature architectural solutions, or poorly under-
stood early design trade-offs.

This sequence occurred because early performance insight was based solely on
naive engineering judgment of innumerable criteria. In most large-scale distributed
systems composed of many interacting components; a demonstration-based approach
can provide significantly more-accurate assessments of performance issues. These
early demonstrations may be on host or target platforms or partial network configu-
rations. In any case, they can be planned and managed to provide a fruitful engineer-
ing exercise. Early performance issues are typical. They may even be healthy, because
they tend to expose architectural flaws or weaknesses in commercial components

early in the life cycle when the right trade-offs can be made.

3.6 PEER INSPECTIONS: A PRAGMATIC VIEW 51

3.6 PEER INSPECTIONS: A PRAGMATIC VIEW

Peer inspections are frequently overhyped as the key aspect of a quality system. In my
experience, peer reviews are valuable as secondary mechanisms, but they are rarely
significant contributors to quality compared with the following primary quality
mechanisms and indicators, which should be emphasized in the management process:

* Transitioning engineering information from one artifact set to another,
thereby assessing the consistency, feasibility, understandability, and tech-
nology constraints inherent in the engineering artifacts

¢ Major milestone demonstrations that force the artifacts to be assessed
against tangible criteria in the context of relevant use cases

¢ Environment tools (compilers, debuggers, analyzers, automated test suites)
that ensure representation rigor, consistency, completeness, and change
control

* Life-cycle testing for detailed insight into critical trade-offs, acceptance cri-
teria, and requirements compliance

* Change management metrics for objective insight into multiple-perspective
change trends and convergence or divergence from quality and progress
goals

Although T believe that inspections are overemphasized, in certain cases they
provide a significant return. One value of inspections is in the professional develop-
ment of a team. It is generally useful to have the products of junior team members
reviewed by senior mentors. Putting the products of amateurs into the hands of
experts and vice versa is a good mechanism for accelerating the acquisition of knowl-
edge and skill in new personnel. Gross blunders can be caught and feedback can be
appropriately channeled, so that bad practices are not perpetuated. This is one of the
best ways for junior software engineers to learn.

Inspections are also a good vehicle for holding authors accountable for quality
products. All authors of software and documentation should have their products
scrutinized as a natural by-product of the process. Therefore, the coverage of inspec-
tions should be across all authors rather than across all components. Junior authors
need to have a random component inspected periodically, and they can learn by
inspecting the products of senior authors. Varying levels of informal inspection are
performed continuously when developers are reading or integrating software with
another author’s software, and during testing by independent test teams. However,
this “inspection” is much more tangibly focused on integrated and executable aspects
of the overall system.

52 IMPROVING SOFTWARE ECONOMICS

Finally, a critical component deserves to be inspected by several people, prefera-
bly those who have a stake in its quality, performance, or feature set. An inspection
focused on resolving an existing issue can be an effective way to determine cause or
arrive at a resolution once the cause is understood.

Notwithstanding these benefits of inspections, many organizations overempha-
size meetings and formal inspections, and require coverage across all engineering
products. This approach can be extremely counterproductive. Only 20% of the tech-
nical artifacts (such as use cases, design models, source code, and test cases) deserve
such detailed scrutiny when compared with other, more useful quality assurance
activities. A process whose primary quality assurance emphasis is on inspections will
not be cost-effective. Several published studies emphasize the importance and high
ROI of inspections. I suspect that many of these studies have been written by career
quality assurance professionals who exaggerate the need for their discipline. I am fre-
quently a lone voice on this topic, but here is my rationale.

Significant or substantial design errors or architecture issues are rarely obvious
from a superficial review unless the inspection is narrowly focused on a particular
issue. And most inspections are superficial. Today’s systems are highly complex, with
innumerable components, concurrent execution, distributed resources, and other
equally demanding dimensions of complexity. It would take human intellects similar
to those of world-class chess players to comprehend the dynamic interactions within
some simple software systems under some simple use cases. Consequently, random
human inspections tend to degenerate into comments on style and first-order semantic
issues. They rarely result in the discovery of real performance bottlenecks, serious
control issues (such as deadlocks, races, or resource contention), or architectural
weaknesses (such as flaws in scalability, reliability, or interoperability). In all but triv-
ial cases, architectural issues are exposed only through more rigorous engineering
activities such as the following:

* Analysis, prototyping, or experimentation
¢ Constructing design models

¢ Committing the current state of the design model to an executable imple-
mentation

® Demonstrating the current implementation strengths and weaknesses in
the context of critical subsets of the use cases and scenarios

* Incorporating lessons learned back into the models, use cases, implementa-
tions, and plans

Achieving architectural quality is inherent in an iterative process that evolves the
artifact sets together in balance. The checkpoints along the way are numerous, including

3.6 PEER INSPECTIONS: A PRAGMATIC VIEW 53

human review and inspections focused on critical issues. But these inspections are not
the primary checkpoints. Early life-cycle artifacts are certainly more dependent on
subjective human review than later ones are. Focusing a large percentage of a project’s
resources on human inspections is bad practice and only perpetuates the existence of
low-value-added box checkers who have little impact on project success. Look at any
successful software effort and ask the key designers, testers, or developers about the
discriminators of their success. It is unlikely that any of them will cite meetings, inspec-
tions, or documents.

Quality assurance is everyone’s responsibility and should be integral to almost
all process activities instead of a separate discipline performed by quality assurance
specialists. Evaluating and assessing the quality of the evolving engineering baselines
should be the job of an engineering team that is independent of the architecture and
development team. Their life-cycle assessment of the evolving artifacts would typi-
cally include change management, trend analysis, and testing, as well as inspection.

CHAPTER 4

The Old Way
and the New

Over the past two decades there has beena kéy Points Tl
significant re-engineering of the software . —

A Conventional software engineering
development process. Many of the conven- hasnumerous well-established princi-
tional management and technical practices . ples. Many are still valid; others are
have been replaced by new approaches that ' obsolete.
combine recurring themes of successful project , 4 A modern software management

. ith ad . f . process will incorporate many conven-
expe'rlencc with a Vaqces n 'S.O tware eng%- tional principles but will also transition
neering technology. This transition was moti- | to some substantially new approaches.
vated by the insatiable demand for more :
software features produced more rapidly under more competitive pressure to reduce
cost. In the commercial software industry, the combination of competitive pressures,
profitability, diversity of customers, and rapidly changing technology caused many
organizations to initiate new management approaches. In the defense and aerospace
industries, many systems required a new management paradigm to respond to budget
pressures, the dynamic and diverse threat environment, the long operational lifetime
of systems, and the predominance of large-scale, complex applications.

4.1 THE PRINCIPLES OF CONVENTIONAL SOFTWARE
ENGINEERING

There are many descriptions of engineering software “the old way.” After years of
software development experience, the software industry has learned many lessons and
formulated many principles. This section describes one view of today’s software engi-
neering principles as a benchmark for introducing the primary themes discussed
throughout the remainder of the book. The benchmark I have chosen is a brief article
titled “Fifteen Principles of Software Engineering” [Davis, 1994]. The article was

| =l =

56 THE OLD WAY AND THE NEW

subsequently expanded into a book [Davis, 1995] that enumerates 201 principles.
Despite its title, the article describes the top 30 principles, and it is as good a summary
as any of the conventional wisdom within the software industry. While I endorse
much of this wisdom, I believe some of it is obsolete. Davis’s top 30 principles are
quoted next, in italics. For each principle, I comment on whether the perspective pro-
vided later in this book would endorse or change it. I make several assertions here that
are left unsubstantiated until later chapters.

1. Make quality #1. Quality must be quantified and mechanisms put into
place to motivate its achievement.

A Defining quality commensurate with the project at hand is important but is not
easily done at the outset of a project. Consequently, a modern process framework
strives to understand the trade-offs among features, quality, cost, and schedule as
early in the life cycle as possible. Until this understanding is achieved, it is not possi-
ble to specify or manage the achievement of quality.

2. High-quality software is possible. Techniques that have been demon-
strated to increase quality include involving the customer, prototyping,
simplifying design, conducting inspections, and hiring the best people.

A This principle is mostly redundant with the others.

3. Give products to customers early. No matter how hard you try to learn
users’ needs during the requirements phase, the most effective way to deter-
mine real needs is to give users a product and let them play with it.

A This is a key tenet of a modern process framework, and there must be several
mechanisms to involve the customer throughout the life cycle. Depending on the
domain, these mechanisms may include demonstrable prototypes, demonstration-
based milestones, and alpha/beta releases.

4. Determine the problem before writing the requirements. When faced with
what they believe is a problem, most engineers rush to offer a solution.
Before you try to solve a problem, be sure to explore all the alternatives
and don’t be blinded by the obvious solution.

A This principle is a clear indication of the issues involved with the conventional
requirements specification process. The parameters of the problem become more
tangible as a solution evolves. A modern process framework evolves the problem
and the solution together until the probiem is well enough understood to commit to
full production.

S. Evaluate design alternatives. After the requirements are agreed upon, you
must examine a variety of architectures and algorithms. You certainly do

4.1 THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

57

10.

not want to use an “architecture” simply because it was used in the
requirements specification.

A This principle seems anchored in the waterfall mentality in two ways: (1) The
requirements precede the architecture rather than evolving together. (2) The archi-
tecture is incorporated in the requirements specification. While a modern process
clearly promotes the analysis of design alternatives, these activities are done concur-
rently with requirements specification, and the notations and artifacts for require-
ments and architecture are explicitly decoupled.

Use an appropriate process model. Each project must select a process that
makes the most sense for that project on the basis of corporate culture,
willingness to take risks, application area, volatility of requirements, and
the extent to which requirements are well understood.

A It's true that no individual process is universal. | use the term process framework
to represent a flexible class of processes rather than a single rigid instance. Chapter
14 discusses configuration and tailoring of the process to the various needs of a
project.

. Use different languages for different phases. Our industry’s eternal thirst

for simple solutions to complex problems has driven many to declare that
the best development method is one that uses the same notation through-
out the life cycle. Why should software engineers use Ada for requirements,
design, and code unless Ada were optimal for all these phases?

A This is an important principle. Chapter 6 describes an appropriate organization
and recommended languages/notations for the primitive artifacts of the process.

Minimize intellectual distance. To minimize intellectual distance, the soft-
ware’s structure should be as close as possible to the real-world structure.

A This principle has been the primary motivation for the development of object-
oriented techniques, component-based development, and visual modeling.

Put techniques before tools. An undisciplined software engineer with a tool
becomes a dangerous, undisciplined software engineer.

A Although this principle is valid, it misses two important points: (1) A disciplined
software engineer with good tools will outproduce disciplined software experts with
no tools. (2) One of the best ways to promote, standardize, and deliver good tech-
niques is through automation.

Get it right before you make it faster. It is far easier to make a working
program run faster than it is to make a fast program work. Don’t worry
about optimization during initial coding.

58

THE OLD WAY AND THE NEW

11.

12.

13.

14.

A This is an insightful statement. It has been misstated by several software experts
more or less as follows: “Early performance problems in a software system are a sure
sign of downstream risk.” Every successful, nontrivial software project | know of had
performance issues arise early in the life cycle. | would argue that almost all imma-
ture architectures (especially targe-scale ones) have performance issues in their first
executable iterations. Having something executing (working) early is a prerequisite
to understanding the complex performance trade-offs. It is just too difficult to get
this insight through analysis.

Inspect code. Inspecting the detailed design and code is a much better way
to find errors than testing.

A The value of this principle is overhyped for all but the simplest software systems.
Today's hardware resources, programming languages, and automated environments
enable automated analyses and testing to be done efficiently throughout the life
cycle. Continuous and automated life-cycle testing is a necessity in any modern iter-
ative development. General, undirected inspections (as opposed to inspections
focused on known issues) rarely uncover architectural issues or global design trade-
offs. This is not to say that all inspections are ineffective. When used judiciously and
focused on a known issue, inspections are extremely effective at resolving problems.
But this principle should not be in the top 15, especially considering that the indus-
try’s default practice is to overinspect.

Good management is more important than good technology. The best
technology will not compensate for poor management, and a good man-
ager can produce great results even with meager resources. Good manage-
ment motivates people to do their best, but there are no universal “right”
styles of management.

A My belief in this principle caused me to write this book. My only argument here is
that the term meager resources is ambiguous. A great, well-managed team can do
great things with a meager budget and schedule. Good management and a team
meager in quality, on the other hand, are mutually exclusive, because a good man-
ager will attract, configure, and retain a quality team.

People are the key to success. Highly skilled people with appropriate expe-
rience, talent, and training are key. The right people with insufficient tools,
languages, and process will succeed. The wrong people with appropriate
tools, languages, and process will probably fail.

A This principle is too low on the list.

Follow with care. Just because everybody is doing something does not
make it right for you. It may be right, but you must carefully assess its

4.1 THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

59

1.

16.

17.

applicability to your environment. Object orientation, measurement,
reuse, process improvement, CASE, prototyping—all these might increase
quality, decrease cost, and increase user satisfaction. The potential of such
techniques is often oversold, and benefits are by no means guaranteed or
universal.

A This is sage advice, especially in a rapidly growing industry in which technology
fads are difficult to distinguish from technology improvements. Trading off features,
costs, and schedules does not always favor the most modern technologies.

Take responsibility. When a bridge collapses we ask, “What did the engi-
neers do wrong?” Even when software fails, we rarely ask this. The fact is
that in any engineering discipline, the best methods can be used to produce

awful designs, and the most antiquated methods to produce elegant

designs.

A This is a great corollary to item 14. It takes more than good methods, tools, and
components to succeed. It also takes good people, good management, and a learn-
ing culture that is focused on forward progress even when confronted with numer-
ous and inevitable intermediate setbacks.

Understand the customer’s priorities. It is possible the customer would tol-
erate 90% of the functionality delivered late if they could have 10% of it
on time.

A Understanding the customer’s priorities is important, but only in balance with
other stakeholder priorities. "The customer is always right” is a mentality that has
probably resulted in more squandering of money than any other misconception. Par-
ticularly in the government contracting domain, but more generally whenever a cus-
tomer contracts with a system integrator, the customer is frequently wrong.

The more they see, the more they need. The more functionality (or perfor-
mance) you provide a user, the more functionality (or performance) the
user wants.

A This principle is true, but it suggests that you would never want to show a user
anything. It should read, “The more users see, the better they understand.” Not all
stakeholders are 100% driven by greed. They know that they have limited resources
and that developers have constraints. Demonstrating intermediate results is a high-
visibility activity that is necessary to synchronize stakeholder expectations. The rami-
fication of this principle on a modern process is that the software project manager
needs to have objective data with which to argue the inevitable change requests
and maintain a balance of affordability, features, and risk.

60

THE OLD WAY AND THE NEW

18.

19.

20.

21.

Plan to throw one away. One of the most important critical success factors
is whether or not a product is entirely new. Such brand-new applications,
architectures, interfaces, or algorithms rarely work the first time.

A You should not plan to throw one away. Rather, you should plan to evolve a prod-
uct from an immature prototype to a mature baseline. If you have to throw it away,
OK, but don't plan on it from the outset. This may have been sage advice for the
100% custom, leading-edge software development projects of the past. In today’s
software systems, however, much of the componentry exists (at least the operating
system, DBMS, GUI, network, and middleware), and much of what is built in the first
pass can be conserved.

Design for change. The architectures, components, and specification tech-
niques you use must accommodate change.

A This is a very simple statement that has proven to be exceedingly complex to real-
ize. Basically, it says that we must predict the future and construct a framework that
can accommodate change that is not yet well defined. Nevertheless, | endorse this
principle wholeheartedly because it is critical to success. It is difficult to predict the
future accurately, but attempting to predict the sorts of changes that are likely to
occur in a system’s life cycle is a useful exercise in risk management and a recurring
theme of successful software projects.

Design without documentation is not design. I have often heard software
engineers say, “I have finished the design. All that is left is the documen-
tation.”

A This principle is also anchored in the document-driven approach of the past, in
which the documentation was separate from the software itself. With visual model-
ing and higher order programming languages, it is usually counterproductive to
maintain separate documents for the purpose of describing the software design.
High-level architecture documents can be extremely helpful if they are written crisply
and concisely, but the primary artifacts used by the engineering team are the design
notations, source code, and test baselines. I would modify this principle as follows,
to better exploit today's technological advances: "Software artifacts should be
mostly self-documenting.” This principle is discussed at length in Chapter 6.

Use tools, but be realistic. Software tools make their users more efficient.

A This principle trivializes a crucial aspect of modern software engineering: the
importance of the development environment. A mature process must be well estab-
lished, automated, and instrumented. iterative development projects require exten-
sive automation. It is unwise to underinvest in the capital environment.

4.1 THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

61

22.

23.

24.

25.

26.

Avoid tricks. Many programmers love to create programs with tricks—
constructs that perform a function correctly, but in an obscure way. Show
the world how smart you are by avoiding tricky code.

A | find it hard to believe that this is one of the top 30 principles. It is difficult to
draw the line between a “trick” and an innovative solution. | know exactly what
Davis is getting at, but | would not want to enact a principle that has any connota-
tion of stifling innovation. Obfuscated coding techniques should be avoided unless
there are compelling reasons to use them. Unfortunately, such compelling reasons
are common in nontrivial projects.

Encapsulate. Information-hiding is a simple, proven concept that results in
software that is easier to test and much easier to maintain.

A Component-based design, object-oriented design, and modern design and pro-
gramming notations have advanced this principle into mainstream practice. Encap-
sulation is as fundamental a technigue to a software engineer as mathematics is to a
physicist. It should be the sole subject of a semester course in universities that teach
software engineering.

Use coupling and cobesion. Coupling and cohesion are the best ways to
measure software’s inherent maintainability and adaptability.

A This vital principle is difficult to apply. Coupling and cohesion are abstract
descriptions of components for which | know of no weli-established, objective defi-
nitions. Coupling and cohesion are therefore difficult to measure. Modern metrics
for addressing maintainability and adaptability are centered on measuring the
amount of software scrap and rework. Cohesive components with minimal coupling
are more easily adapted with less scrap and rework. We can reason about the dis-
ease (too much coupling and too little cohesion) only by observing and measuring
the symptoms (scrap and rework).

Use the McCabe complexity measure. Although there are many metrics
available to report the inherent complexity of software, none is as intuitive
and easy to use as Tom McCabe’s.

A Complexity metrics are important for identifying some of the critical components
that need special attention. In my experience, however, the really complex stuff is
obvious, and it is rare to see these complexity measures used in field applications to
manage a project or make decisions. These metrics are interesting from an academic
perspective (metaproject research and strategic decision making) and can be useful
in project management (if automated), but they do not belong in the top principles.

Don’t test your own software. Software developers should never be the pri-
mary testers of their own software.

62

THE OLD WAY AND THE NEW

27.

28.

29.

30.

A This principle is often debated. On one hand, an independent test team offers an
objective perspective. On the other hand, software developers need to take owner-
ship of the quality of their products. In Chapter 11, | endorse both perspectives:
Developers should test their own software, and so should a separate team.

Analyze causes for ervors. It is far more cost-effective to reduce the effect of
an error by preventing it than it is to find and fix it. One way to do this is to
analyze the causes of errors as they are detected.

A On the surface, this is a good principle, especially in the construction phase,
when errors are likely to repeat. But analyses of errors in complex software systems
have found one of the critical sources to be overanalysis and overdesign on paper in
the early stages of a project. To some degree, these activities were “error preven-
tion"” efforts. They resulted in a lower return on investment than would have been
realized from committing to prototyping and construction activities, which would
have made the errors more obvious and tangible. Therefore, | would restate this as
two principles: (1) Don’t be afraid to make errors in the engineering stage. (2) Ana-
fyze the cause for errors in the production stage.

Realize that software’s entropy increases. Any software system that under-
goes continuous change will grow in complexity and will become more and
more disorganized.

A This is another remnant of conventional software architectures. Almost all soft-
ware systems undergo continuous change, and the sign of a poor architecture is
that its entropy increases in a way that is difficult to manage. Entropy tends to
increase dangerously when interfaces are changed for tactical reasons. The integrity
of an architecture is primarily strategic and inherent in its interfaces, and it must be
controlled with intense scrutiny. Modern change management tools force a project
to respect and enforce interface integrity. A quality architecture is one in which
entropy increases minimally and change can be accommodated with stable, predict-
able results. An ideal architecture would permit change without any increase in
entropy.

People and time are not interchangeable. Measuring a project solely by
person-months makes little sense.

A This principle is timeless.

Expect excellence. Your employees will do much better if you have high
expectations for them.

A This principle applies to all disciplines, not just software management.

4.2 THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT 63

I have used some provocative words in my comments. My purpose was neither
to endorse nor to refute specifically Davis’s principles, but rather to expose my biases
and provoke thought. While I see tremendous merit in about half of the principles, the
other half either need a change in priority or have been obsolesced by new technology.

4.2 THE PRINCIPLES OF MODERN SOFTWARE
MANAGEMENT

Although the current software management principles described in Section 4.1 evolved
from and improved on conventional techniques, they still do not emphasize the mod-
ern principles on which this book is based. Building on Davis’s format, here are my top
10 principles of modern software management. (The first five, which are the main
themes of my definition of an iterative process, are summarized in Figure 4-1.) The
principles are in priority order, and the bold-faced italicized words are used through-
out the book as shorthand for these expanded definitions.

1. Base the process on an architecture-first approach. This requires that a
demonstrable balance be achieved among the driving requirements, the
architecturally significant design decisions, and the life-cycle plans before
the resources are committed for full-scale development.

2. Establish an iterative life-cycle process that confronts risk early. With
today’s sophisticated software systems, it is not possible to define the entire
problem, design the entire solution, build the software, then test the end
product in sequence. Instead, an iterative process that refines the problem
understanding, an effective solution, and an effective plan over several iter-
ations encourages a balanced treatment of all stakeholder objectives.
Major risks must be addressed early to increase predictability and avoid
expensive downstream scrap and rework.

3. Transition design methods to emphasize component-based development.
Moving from a line-of-code mentality to a component-based mentality is
necessary to reduce the amount of human-generated source code and cus-
tom development. A component is a cohesive set of preexisting lines of
code, either in source or executable format, with a defined interface and
behavior.

4. Establish a change management enviroriment. The dynamics of iterative
development, including concurrent workflows by different teams working
on shared artifacts, necessitates objectively controlled baselines.

64 THE OLD WAY AND THE NEW

Waterfall Process Iterative Process
Requirements first Architecture first
Custom development Component-based development
Change avoidance Change management
Ad hoc tools Round-trip engineering
Planning and .
1 Requirements analysis l\, analysis Design
l Design \4 f
| Code and unit test /— \
‘ Subsystem integration ’\' \\:y
| System test l |
Assessment implementation
Architecture-first approach The central design element
Design and integration first, then production and test
Iterative life-cycle process The risk management element

Risk control through ever-increasing function, performance, quality

Component-based development —» The technology element
Object-oriented methods, rigorous notations, visual modeling

Change management environment—» The control element
Metrics, trends, process instrumentation

Round-trip engineering _ —» The automation element
Complementary tools, integrated environments

FIGURE 4-1. The top five principles of a modern process

5. Enhance change freedom through tools that support round-trip engineer-
ing. Round-trip engineering is the environment support necessary to auto-
mate and synchronize engineering information in different formats (such as
requirements specifications, design models, source code, executable code,
test cases). Without substantial automation of this bookkeeping, change
management, documentation, and testing, it is difficult to reduce iteration
cycles to manageable time frames in which change is encouraged rather
than avoided. Change freedom is a necessity in an iterative process, and
establishing an integrated environment is crucial.

4.2 THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT 65

6. Capture design artifacts in rigorous, model-based notation. A model-
based approach (such as UML) supports the evolution of semantically rich
graphical and textual design notations. Visual modeling with rigorous
notations and a formal machine-processable language provides for far
more objective measures than the traditional approach of human review
and inspection of ad hoc design representations in paper documents.

7. Instrument the process for objective quality control and progress assess-
ment. Life-cycle assessment of the progress and the quality of all intermedi-
ate products must be integrated into the process. The best assessment
mechanisms are well-defined measures derived directly from the evolving
engineering artifacts and integrated into all activities and teams.

8. Use a demonstration-based approach to assess intermediate artifacts.
Transitioning the current state-of-the-product artifacts (whether the arti-
fact is an early prototype, a baseline architecture, or a beta capability) into
an executable demonstration of relevant scenarios stimulates earlier con-
vergence on integration, a more tangible understanding of design trade-
offs, anid earlier elimination of architectural defects.

9. Plan intermediate releases in groups of usage scenarios with evolving levels
of detail. It is essential that the software management process drive toward
early and continuous demonstrations within the operational context of the
system, namely its use cases. The evolution of project increments and gener-
ations must be commensurate with the current level of understanding of the
requirements and architecture. Cohesive usage scenarios are then the pri-
mary mechanism for organizing requirements, defining iteration content,
assessing implementations, and organizing acceptance testing.

10. Establish a configurable process that is economically scalable. No single
process is suitable for all software developments. A pragmatic process
framework must be configurable to a broad spectrum of applications. The
process must ensure that there is economy of scale and return on invest-
ment by exploiting a common process spirit, extensive process automation,
and common architecture patterns and components.

My top 10 principles have no scientific basis. They do, however, capture a bal-
anced view of the recurring themes presented throughout this book. Table 4-1 maps
what I consider to be the top 10 risks of the conventional process to the key attributes
and principles of a modern process. Although the table contains gross generalities, at
a high level it provides an introduction to the principles of a modern process.

66 THE OLD WAY AND THE NEW

TABLE 4-1. Modern process approaches for solving conventional problems

CONVENTIONAL PROCESS: MODERN PROCESS: INHERENT RISK
TOP 10 RISKS IMPACT RESOLUTION FEATURES
1. Late breakage and Quality, Architecture-first approach
excessive scrap/rework cost, Iterative development
schedule
Automated change management
Risk-confronting process
2. Attrition of key personnel Quality, Successful, early iterations
cost,

s schedule Trustworthy management and planning

3. Inadequate development Cost, Environments as first-class artifacts of the process
resources schedule Industrial-strength, integrated environments
Model-based engineering artifacts

Round-trip engineering

4. Adversarial stakeholders Cost, Demonstration-based review
schedule Use-case-oriented requirements/testing
5. Necessary technology Cost, Architecture-first approach
insertion schedule Component-based development
6. Requirements creep Cost, Iterative development
schedule

Use case modeling

Demonstration-based review

7. Analysis paralysis Schedule Demonstration-based review

Use-case-oriented requirements/testing

8. Inadequate performance Quality Demonstration-based performance assessment

Early architecture performance feedback

9. Overempbhasis on artifacts Schedule Demonstration-based assessment

Objective quality control

10. Inadequate function Quality Iterative development

Early prototypes, incremental releases

4.3 TRANSITIONING TO AN ITERATIVE PROCESS

Modern software development processes have moved away from the conventional
waterfall model, in which each stage of the development process is dependent on com-
pletion of the previous stage. Although there are variations, modern approaches gen-
erally require that an initial version of the system be rapidly constructed early in the

4.3 TRANSITIONING TO AN ITERATIVE PROCESS 67

development process, with an emphasis on addressing the high-risk areas, stabilizing
the basic architecture, and refining the driving requirements (with extensive user input
where possible). Development then proceeds as a series of iterations, building on the
core architecture until the desired levels of functionality, performance, and robustness
are achieved. (These iterations have been called spirals, increments, generations, or
releases.) An iterative process emphasizes the whole system rather than the individual
parts. Risk is reduced early in the life cycle through continuous integration and refine-
ment of requirements, architecture, and plans. The downstream surprises that have
plagued conventional software projects are avoided.

The economic benefits inherent in transitioning from the conventional waterfall
model to an iterative development process are significant but difficult to quantify. As
one benchmark of the expected economic impact of process improvement, consider
the process exponent parameters of the COCOMO II model. (Appendix B provides
more detail on the COCOMO model.) This exponent can range from 1.01 (virtually
no diseconomy of scale) to 1.26 (significant diseconomy of scale). The parameters
that govern the value of the process exponent are application precedentedness,
process flexibility, architecture risk resolution, team cohesion, and software process
maturity.

The following paragraphs map the process exponent parameters of COCOMO 11
to my top 10 principles of a modern process.

* Application precedentedness. Domain experience is a critical factor in
understanding how to plan and execute a software development project.
For unprecedented systems, one of the key goals is to confront risks and
establish early precedents, even if they are incomplete or experimental.
This is one of the primary reasons that the software industry has moved to
an iterative life-cycle process. Early iterations in the life cycle establish
precedents from which the product, the process, and the plans can be elab-
orated in evolving levels of detail.

* Process flexibility. Development of modern software is characterized by
such a broad solution space and so many interrelated concerns that there is
a paramount need for continuous incorporation of changes. These changes
may be inherent in the problem understanding, the solution space, or the
plans. Project artifacts must be supported by an efficient change manage-
ment environment commensurate with project needs. Both a rigid process
and a chaotically changing process are destined for failure except with the
most trivial projects. A configurable process that allows a common frame-
work to be adapted across a range of projects is necessary to achieve a soft-
ware return on investment.

68

THE OLD WAY AND THE NEW

Architecture risk resolution. Architecture-first development is a crucial
theme underlying a successful iterative development process. A project
team develops and stabilizes an architecture before developing all the com-
ponents that make up the entire suite of applications components. An
architecture-first and component-based development approach forces
the infrastructure, common mechanisms, and control mechanisms to be
elaborated early in the life cycle and drives all component make/buy deci-
sions into the architecture process. This approach initiates integration
activity early in the life cycle as the verification activity of the design pro-
cess and products. It also forces the development environment for life-cycle
software engineering to be configured and exercised early in the life cycle,
thereby ensuring early attention to testability and a foundation for demon-
stration-based assessment.

Team cohesion. Successful teams are cohesive, and cohesive teams are suc-
cessful. I am not sure which is the cause and which is the effect, but success-
ful teams and cohesive teams share common objectives and priorities.
Cohesive teams avoid sources of project turbulence and entropy that may
result from difficulties in synchronizing project stakeholder expectations.
While there are many reasons for such turbulence, one of the primary rea-
sons is miscommunication, particularly in exchanging information solely
through paper documents that present engineering information subjec-
tively. Advances in technology (such as programming languages, UML, and
visual modeling) have enabled more rigorous and understandable nota-
tions for communicating software engineering information, particularly in
the requirements and design artifacts that previously were ad hoc and
based completely on paper exchange. These model-based formats have
also enabled the round-trip engineering support needed to establish
change freedom sufficient for evolving design representations.

Software process maturity. The Software Engineering Institute’s Capability
Maturity Model (CMM) is a well-accepted benchmark for software pro-
cess assessment. Just as domain experience is crucial for avoiding the appli-
cation risks and exploiting the available domain assets and lessons learned,
software process maturity is crucial for avoiding software development
risks and exploiting the organization’s software assets and lessons learned.
(The pros and cons of the CMM are discussed at length in Appendix E.)
One of my key themes is that truly mature processes are enabled through
an integrated environment that provides the appropriate level of automa-
tion to instrument the process for objective quality control.

PART ITI

A SOFTWARE
MANAGEMENT
PROCESS
FRAMEWORK

cHAPTER 5 LIFE-CYCLE PHASES

cHAPTER 6 ARTIFACTS OF THE PROCESS

cHAPTER 7 MODEL-BASED SOFTWARE
ARCHITECTURES

cHAPTER 8 WORKFLOWS OF THE PROCESS

cuapTER 9 CHECKPOINTS OF THE PROCESS

tandardizing on a common process is a courageous undertaking for a soft-

ware organization, and there is a wide spectrum of implementations. The pro-
cess framework recommended in this book comprises only a handful of specific
standards: life-cycle phases, life-cycle artifacts, life-cycle workflows, and life-cycle
checkpoints. These elements are key discriminators in making the transition from
the conventional approach to an iterative, line-of-business approach. | have seen
organizations attempt to do less (too little, or no, standardization) and more
(too much standardization), with little success in improving software return on
investment. Process standardization requires a balanced approach.

The chapters in Part Il describe the framework of a modern, iterative soft-
ware management process: the life-cycle phases, the artifacts, the workflows,
and the checkpoints. Architecture first is a key theme integrated throughout
these chapters, and a chapter on architecture is sandwiched in with the others.
Although this book is not intended to be about architecture, the management
perspective of architecture and of the architecture’s emphasis is vital to the suc-
cess of the whole approach,

CHAPTER

Life-Cycle Phases

he most discriminating characteristic of a Key Points
successful software development process is - .

. - A The engineering stage of the life cycle
the well-defined separation between “research eyolves the plans, the requirements,
and development” activities and “production” and the architecture together, resolving
activities. When software projects do not suc- the development risks. This stage con-

d. th . . Il fail cludes with an executable architecture

ceed, the primary reason is usually a failure to paeline,
cr.xsply define and execute these 'two Stages, 4 The production stage of the life cycle
with proper balance and appropriate empha- constructs usable versions of capability
sis. This is true for conventional as well as iter- ~ Within the context of the baseline plans,

tive processes. Most unsuccessful proiects requirements, and architecture devel-
a . 'p : . ceessiu _p. jec oped in the engineering stage.
exhibit one of the following characteristics:

* An overemphasis on research and development. Too many analyses or
-paper studies are performed, or the construction of engineering baselines is
procrastinated. This emphasis is typical of and promoted in the conven-
tional software process.

* An overemphasis on production. Rush-to-judgment designs, premature
work by overeager coders, and continuous hacking are typical.

Successful modern projects—and even successful projects developed under the
conventional process—tend to have a very well-defined project milestone when there
is a noticeable transition from a research attitude to a production attitude. Earlier
phases focus on achieving functionality. Later phases revolve around achieving a
product that can be shipped to a customer, with explicit attention to robustness, per-
formance, fit, and finish. This life-cycle balance, which is somewhat subtle and still too
intangible, is one of the underpinnings of successful software project management.

74 LIFE-CYCLE PHASES

A modern software development process must be defined to support the
following:

e Evolution of the plans, requirements, and architecture, together with well-
defined synchronization points

¢ Risk management and objective measures of progress and quality

® Evolution of system capabilities through demonstrations of increasing
functionality

5.1 ENGINEERING AND PRODUCTION STAGES

The economic foundations presented in previous chapters provide a simple frame-
work for deriving a life-cycle description. To achieve economies of scale and higher
returns on investment, we must move toward a software manufacturing process
driven by technological improvements in process automation and component-based
development. At first order are the following two stages of the life cycle:

1. The engineering stage, driven by less predictable but smaller teams doing
design and synthesis activities

2. The production stage, driven by more predictable but larger teams doing
construction, test, and deployment activities

Table 5-1 summarizes the differences in emphasis between these two stages.

TABLE 5-1. The two stages of the life cycle: engineering and production

LIFE-CYCLE ENGINEERING STAGE PRODUCTION STAGE
ASPECT EMPHASIS EMPHASIS

Risk reduction Schedule, technical feasibility Cost

Products Architecture baseline Product release baselines
Activities Analysis, design, planning Implementation, testing
Assessment Demonstration, inspection, analysis Testing

Economics Resolving diseconomies of scale Exploiting economies of scale

Management Planning Operations

5.1 ENGINEERING AND PRODUCTION STAGES 75

The transition between engineering and production is a crucial event for the var-
ious stakeholders. The production plan has been agreed upon, and there is a good
enough understanding of the problem and the solution that all stakeholders can make
a firm commitment to go ahead with production. Depending on the specifics of a
project—and particularly the key discriminants described later in this chapter—the
time and resources dedicated to these two stages can be highly variable.

Attributing only two stages to a life cycle is a little too coarse, too simplistic, for
most applications. Consequently, the engineering stage is decomposed into two dis-
tinct phases, inception and elaboration, and the production stage into construction
and transition. These four phases of the life-cycle process are loosely mapped to the
conceptual framework of the spiral model [Boehm, 1988], as shown in Figure 5-1,
and are named to depict the state of the project. In the figure, the size of the spiral cor-
responds to the inertia of the project with respect to the breadth and depth of the arti-
facts that have been developed. This inertia manifests itself in maintaining artifact
consistency, regression testing, documentation, quality analyses, and configuration
control. Increased inertia may have little, or at least very straightforward, impact on
changing any given discrete component or activity. However, the reaction time for
accommodating major architectural changes, major requirements changes, major
planning shifts, or major organizational perturbations clearly increases in subsequent
phases.

In most conventional life cycles, the phases are named after the primary activity
within each phase: requirements analysis, design, coding, unit test, integration test, and
system test. Conventional software development efforts emphasized a mostly sequential
process, in which one activity was required to be complete before the next was begun.

Engineering Stage Production Stage

Inception Elaboration Construction Transition

a
N

&

Idea Beta Releases Products

Architecture _

FIGURE 5-1. The phases of the life-cycle process

76 LIFE-CYCLE PHASES

With an iterative process, each phase includes all the activities, in varying proportions.
The activity levels during the four phases are discussed in Chapter 8. The primary objec-
tives, essential activities, and general evaluation criteria for each phase are discussed
here.

5.2 INCEPTION PHASE

The overriding goal of the inception phase is to achieve concurrence among stake-
holders on the life-cycle objectives for the project.

PRIMARY OBJECTIVES

¢ Establishing the project’s software scope and boundary conditions, includ-
ing an operational concept, acceptance criteria, and a clear understanding
of what is and is not intended to be in the product

¢ Discriminating the critical use cases of the system and the primary scenar- -
ios of operation that will drive the major design trade-offs

¢ Demonstrating at least one candidate architecture against some of the pri-
mary scenarios

¢ Estimating the cost and schedule for the entire project (including detailed
estimates for the elaboration phase)

 Estimating potential risks (sources of unpredictability) ‘

ESSENTIAL ACTIVITIES

* Formulating the scope of the project. This activity involves capturing the
requirements and operational concept in an information repository that
describes the user’s view of the requirements. The information repository
should be sufficient to define the problem space and derive the acceptance
criteria for the end product.

 Synthesizing the architecture. Design trade-offs, problem space ambigu-
ities, and available solution-space assets (technologies and existing compo-
nents) are evaluated. An information repository is created that is sufficient
to demonstrate the feasibility of at least one candidate architecture and an
initial baseline of make/buy decisions so that the cost, schedule, and
resource estimates can be derived.

e Planning and preparing a business case. Alternatives for risk management,
staffing, iteration plans, and cost/schedule/profitability trade-offs are eval-
uated. The infrastructure (tools, processes, automation support) sufficient
to support the life-cycle development task is determined.

5.3 ELABORATION PHASE 77

PrRIMARY EVALUATION CRITERIA

¢ Do all stakeholders concur on the scope definition and cost and schedule
estimates?

* Are requirements understood, as evidenced by the fidelity of the critical use
cases?

® Are the cost and schedule estimates, priorities, risks, and development pro-
cesses credible?

® Do the depth and breadth of an architecture prototype demonstrate the
preceding criteria? (The primary value of prototyping a candidate architec-
ture is to provide a vehicle for understanding the scope and assessing the
credibility of the development group in solving the particular technical
problem.)

® Are actual resource expenditures versus planned expenditures accept-

able?

5.3 ELABORATION PHASE

It is easy to argue that the elaboration phase is the most critical of the four phases. At
the end of this phase, the “engineering” is considered complete and the project faces
its reckoning: The decision is made whether or not to commit to the production
phases. For most projects, this decision corresponds to the transition from a nimble
operation with low cost risk to an operation with higher cost risk and substantial
inertia. While the process must always accommodate changes, the elaboration phase
activities must ensure that the architecture, requirements, and plans are stable
enough, and the risks sufficiently mitigated, that the cost and schedule for the comple-
tion of the development can be predicted within an acceptable range. Conceptually,
this level of fidelity would correspond to that necessary for an organization to commit
to a fixed-price construction phase.

During the elaboration phase, an executable architecture prototype is built in
one or more iterations, depending on the scope, size, risk, and novelty of the project.
"This effort addresses at least the critical use cases identified in the inception phase,
which typically expose the top technical risks of the project. Although an evolution-
ary prototype of production-quality components is always a goal, it does not exclude
the development of one or more exploratory, throw-away prototypes to mitigate spe-
cific risks such as design/requirements trade-offs, component feasibility analyses, or
demonstrations to investors.

78

LIFE-CYCLE PHASES

PRIMARY OBJECTIVES

Baselining the architecture as rapidly as practical (establishing a configura-
tion-managed snapshot in which all changes are rationalized, tracked, and
maintained)

Baselining the vision
Baselining a high-fidelity plan for the construction phase

Demonstrating that the baseline architecture will support the vision at a
reasonable cost in a reasonable time

ESSENTIAL ACTIVITIES

Elaborating the vision. This activity involves establishing a high-fidelity
understanding of the critical use cases that drive architectural or planning
decisions.

Elaborating the process and infrastructure. The construction process, the
tools and process automation support, and the intermediate milestones and
their respective evaluation criteria are established.

Elaborating the architecture and selecting components. Potential compo-
nents are evaluated and make/buy decisions are sufficiently understood so
that construction phase cost and schedule can be determined with confi-
dence. The selected architectural components are integrated and assessed
against the primary scenarios. Lessons learned from these activities may
well result in a redesign of the architecture as alternative designs are con-
sidered or the requirements are reconsidered.

PRIMARY EVALUATION CRITERIA

Is the vision stable?
Is the architecture stable?

Does the executable demonstration show that the major risk elements have
been addressed and credibly resolved?

Is the construction phase plan of sufficient fidelity, and is it backed up with
a credible basis of estimate?

Do all stakeholders agree that the current vision can be met if the current
plan is executed to develop the complete system in the context of the cur-
rent architecture?

Are actual resource expenditures versus planned expenditures acceptable?

5.4 CONSTRUCTION PHASE 79

5.4 CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are
integrated into the application, and all features are thoroughly tested. Newly devel-
oped software is integrated where required. The construction phase represents a pro-
duction process, in which emphasis is placed on managing resources and controlling
operations to optimize costs, schedules, and quality. In this sense, the management
mindset undergoes a transition from the development of intellectual property during
inception and elaboration activities to the development of deployable products during
construction and transition activities.

Many projects are large enough that parallel construction increments can be
spawned. These parallel activities can significantly accelerate the availability of
deployable releases; they can also increase the complexity of resource management
and synchronization of workflows and teams. A robust architecture is highly corre-
lated with an understandable plan. In other words, one of the critical qualities of any
architecture is its ease of construction. This is one reason that the balanced develop-
ment of the architecture and the plan is stressed during the elaboration phase.

PRIMARY OBJECTIVES

* Minimizing development costs by optimizing resources and avoiding
unnecessary scrap and rework

® Achieving adequate quality as rapidly as practical

* Achieving useful versions (alpha, beta, and other test releases) as rapidly as
practical

ESSENTIAL ACTIVITIES
» Resource management, control, and process optimization
e Complete component development and testing against evaluation criteria

* Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA

e Is this product baseline mature enough to be deployed in the user commu-
nity? (Existing defects are not obstacles to achieving the purpose of the
next release.)

* Is this product baseline stable enough to be deployed in the user commu-
nity? (Pending changes are not obstacles to achieving the purpose of the
next release.)

¢ Are the stakeholders ready for transition to the user community?

* Are actual resource expenditures versus planned expenditures acceptable?

80 LIFE-CYCLE PHASES

5.5 TRANSITION PHASE

The transition phase is entered when a baseline is mature enough to be deployed in
the end-user domain. This typically requires that a usable subset of the system has
been achieved with acceptable quality levels and user documentation so that transi-
tion to the user will provide positive results. This phase could include any of the fol-
lowing activities:

1. Beta testing to validate the new system against user expectations

2. Beta testing and parallel operation relative to a legacy system it is replacing
3. Conversion of operational databases
4.

Training of users and maintainers

The transition phase concludes when the deployment baseline has achieved the
complete vision. For some projects, this life-cycle end point may coincide with the life-
cycle starting point for the next version of the product. For others, it may coincide
with a complete delivery of the information sets to a third party responsible for oper-
ation, maintenance, and enhancement.

The transition phase focuses on the activities required to place the software into
the hands of the users. Typically, this phase includes several iterations, including beta
releases, general availability releases, and bug-fix and enhancement releases. Consid-
erable effort is expended in developing user-oriented documentation, training users,
supporting users in their initial product use, and reacting to user feedback. (At this
point in the life cycle, user feedback should be confined mostly to product tuning,
configuring, installing, and usability issues.)

PRIMARY OBJECTIVES
¢ Achieving user self-supportability

¢ Achieving stakeholder concurrence that deployment baselines are complete
and consistent with the evaluation criteria of the vision

¢ Achieving final product baselines as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

e Synchronization and integration of concurrent construction increments
into consistent deployment baselines

5.5 TRANSITION PHASE 81

¢ Deployment-specific engineering (cutover, commercial packaging and pro-
duction, sales rollout kit development, field personnel training)

¢ Assessment of deployment baselines against the complete vision and accep-
tance criteria in the requirements set

EVALUATION CRITERIA
¢ Is the user satisfied?

® Are actual resource expenditures versus planned expenditures acceptable?

Each of the four phases consists of one or more iterations in which some techni-
cal capability is produced in demonstrable form and assessed against a set of criteria.
An iteration (discussed in Chapter 8) represents a sequence of activities for which
there is a well-defined intermediate event (a milestone, discussed in Chapter 9); the
scope and results of the iteration are captured via discrete artifacts (discussed in
Chapter 6). Whereas major milestones at the end of each phase use formal (stake-
holder-approved) versions of evaluation criteria and release descriptions, minor mile-
stones use informal (internally controlled) versions of these artifacts. Each phase
corresponds to the completion of a sufficient number of iterations to achieve a given
overall project state. The transition from one phase to the next maps more to a signif-
icant business decision than to the completion of a specific software development
activity. These intermediate phase transitions are the primary anchor points of the
software process, when technical and management perspectives are brought into syn-
chronization and agreement among all stakeholders is achieved with respect to the
current understanding of the requirements, design, and plan to complete.

CHAPTER 6

Artifacts of the
Process

onventional software projects focused on .
. Key Points
the sequential development of software .

. . . A The artifacts of the process are orga-
artifacts: build the requirements, construct a pized into five sets: management,
design model traceable to the requirements, requirements, design, implementation,
build an implementation traceable to the ~ anddeployment.
design model, and compile and test the imple- 4 The management artifacts capture

. for depl Thi the information necessary to synchro-
mentation for deployment. This process can e stakeholder expectations,
work fqr sma!l-scale, pure‘ly custom develpp— A The requirements, design, implemen-
ments in which the design representation, tation, and deployment artifacts are
implementation representation, and deploy- ~ captured in rigorous notations that sup-

. . port automated analysis and browsing.

ment representation are closely aligned. For
example, a single program that is intended to
run on a single computer of a single type and is composed entirely of special-purpose
custom components can be constructed with straightforward traceability among all
the representations. :

However, this approach doesn’t work very well for most of today’s software sys-
tems, in which the system complexity (in many dimensions) results in such numerous
risks and subtle traceability relationships that you cannot efficiently use a simplistic
sequential transformation. Most modern systems are composed of numerous compo-
nents (some custom, some reused, some commercial products) intended to execute in
a heterogeneous network of distributed platforms. They require a very different
sequence of artifact evolution and a very different approach to traceability.

Over the past 20 years, the software industry has matured and has transitioned
the management process to be iterative. Rather than being built sequentially, the arti-
facts are evolved together, and the constraints, the different levels of abstractions, and
the degrees of freedom are balanced among competing alternatives. Recurring themes

83

84 ARTIFACTS OF THE PROCESS

from successful projects demonstrate that the software artifacts evolve together with
balanced levels of detail. Artifacts do not evolve in a one-way, linear progression from
requirements to design to implementation to deployment. Choices about implementa-
tion and deployment affect the way in which the requirements are stated and the way
in which the design proceeds. Information and decisions can flow in various ways
among artifacts. The purpose of a good development process is to remove inappropri-
ate, premature constraints on the design and to accommodate the real engineering
constraints.

And what is the impact of iterative development on evolving artifacts? The pri-
mary difference from the conventional approach is that within each life-cycle phase,
the workflow activities do not progress in a simple linear way, nor does artifact build-
ing proceed monotonically from one artifact to another. Instead, the focus of activities
sweeps across artifacts repeatedly, incrementally enriching the entire system descrip-
tion and the process with the lessons learned in preserving balance across the breadth
and depth of information.

6.1 - THE ARTIFACT SETS

To make the development of a complete software system manageable, distinct collec-
tions of information are organized into artifact sets. Each set comprises related arti-
facts that are persistent and in a uniform representation format (such as English text,
C++, Visual Basic, Java, a standard document template, a standard spreadsheet tem-
plate, or a UML model). While a set represents a complete aspect of the system, an
artifact represents cohesive information that typically is developed and reviewed as a
single entity. In any given organization, project, or system, some of these artifacts—
and even some sets—may be trivial or unnecessary. In general, however, some infor-
mation needs to be captured in each set to satisfy all stakeholders.

Life-cycle software artifacts are organized into five distinct sets that are roughly
partitioned by the underlying language of the set: management (ad hoc textual for-
mats), requirements (organized text and models of the problem space), design (models
of the solution space), implementation (human-readable programming language and
associated source files), and deployment (machine-processable languages and associ-
ated files).

The emergence of rigorous and more powerful engineering notations for re-
quirements and design artifacts that support architecture-first development was a
major technology advance. In particular, the Unified Modeling Language has evolved
into a suitable representation format, namely visual models with a well-specified syn-
tax and semantics for requirements and design artifacts. Visual modeling using UML
is a primitive notation for early life-cycle artifacts. The artifact sets are shown in
Figure 6-1; their purposes and notations are described next.

6.1 THE ARTIFACT SETS

85

Requirements Set

1. Vision document

Design Set

1. Design model(s)

Implementation Set

1. Source code

Deployment Set

1. Integrated product

2. Requirements 2. Test model baselines executable
model(s) 3. Software 2. Associated baselines
architecture compile-time 2. Associated
description files run-time files

3. Component

3. User manual

executables

“Management Set
Planning Artifacts
1. Work breakdown structure
2. Business case
3. Release specifications
4. Software development plan

Operational Artifacts

5. Release descriptions

6. Status assessments

7. Software change order database
8. Deployment documents

9. Environment

FIGURE 6-1. Ouerview of the artifact sets

6.1.1

The management set captures the artifacts associated with process planning and exe-
cution. These artifacts use ad hoc notations, including text, graphics, or whatever rep-
resentation is required to capture the “contracts” among project personnel {project
management, architects, developers, testers, marketers, administrators), among stake-
holders (funding authority, user, software project manager, organization manager,
regulatory agency), and between project personnel and stakeholders. Specific artifacts
included in this set are the work breakdown structure (activity breakdown and finan-
cial tracking mechanism), the business case (cost, schedule, profit expectations), the
release specifications (scope, plan, objectives for release baselines), the software devel-
opment plan (project process instance), the release descriptions (results of release
baselines), the status assessments (periodic snapshots of project progress), the soft-
ware change orders (descriptions of discrete baseline changes), the deployment docu-
ments (cutover plan, training course, sales rollout kit), and the environment
(hardware and software tools, process automation, documentation, training collat-
eral necessary to support the execution of the process described in the software devel-
opment plan and the production of the engineering artifacts).

THE MANAGEMENT SET

86 ARTIFACTS OF THE PROCESS

Management set artifacts are evaluated, assessed, and measured through a com-
bination of the following;:

e Relevant stakeholder review

e Analysis of changes between the current version of the artifact and previ-
ous versions (management trends and project performance changes in
terms of cost, schedule, and quality)

® Major milestone demonstrations of the balance among all artifacts and, in
particular, the accuracy of the business case and vision artifacts

6.1.2 THE ENGINEERING SETS

The engineering sets consist of the requirements set, the design set, the implementa-
tion set, and the deployment set. The primary mechanism for evaluating the evolving
quality of each artifact set is the transitioning of information from set to set, thereby
maintaining a balance of understanding among the requirements, design, implemen-
tation, and deployment artifacts. Each of these components of the system description
evolves over time.

Requirements Set

Structured text is used for the vision statement, which documents the project scope
that supports the contract between the funding authority and the project team. Ad
hoc formats may also be used for supplementary specifications (such as regulatory
requirements) and user mockups or other prototypes that capture requirements. UML
notation is used for engineering representations of requirements models (use case
models, domain models). The requirements set is the primary engineering context for
evaluating the other three engineering artifact sets and is the basis for test cases.

Requirements artifacts are evaluated, assessed, and measured through a combi-
nation of the following:

¢ Analysis of consistency with the release specifications of the management
set

* Analysis of consistency between the vision and the requirements models

* Mapping against the design, implementation, and deployment sets to eval-
uate the consistency and completeness and the semantic balance between
information in the different sets

* Analysis of changes between the current version of requirements artifacts
and previous versions (scrap, rework, and defect elimination trends)

¢ Subjective review of other dimensions of quality

6.1 THE ARTIFACT SETS 87

Design Set

UML notation is used to engineer the design models for the solution. The design set
contains varying levels of abstraction that represent the components of the solution
space (their identities, attributes, static relationships, dynamic interactions). The
design models include enough structural and behavioral information to ascertain a
bill of materials (quantity and specification of primitive parts and materials, labor,
and other direct costs). Design model information can be straightforwardly and, in
many cases, automatically translated into a subset of the implementation and deploy-
ment set artifacts. Specific design set artifacts include the design model, the test model,
and the software architecture description (an extract of information from the design
model that is pertinent to describing an architecture).

The design set is evaluated, assessed, and measured through a combination of
the following:

¢ Analysis of the internal consistency and quality of the design model
¢ Analysis of consistency with the requirements models

* Translation into implementation and deployment sets and notations (for
example, traceability, source code generation, compilation, linking) to
evaluate the consistency and completeness and the semantic balance
between information in the sets

* Analysis of changes between the current version of the design model and
previous versions (scrap, rework, and defect elimination trends)

¢ Subjective review of other dimensions of quality

Because the level of automated analysis available on design models is currently
limited, human analysis must be relied on. This situation should change over the next
few years with the maturity of design model analysis tools that support metrics collec-
tion, complexity analysis, style analysis, heuristic analysis, and consistency analysis.

Implementation Set

The implementation set includes source code (programming language notations) that
represents the tangible implementations of components (their form, interface, and
dependency relationships) and any executables necessary for stand-alone testing of
components. These executables are the primitive parts needed to construct the end
product, including custom components, application programming interfaces (APIs) of
commercial components, and APIs or reusable or legacy components in a program-
ming language source (such as Ada 95, C++, Visual Basic, Java, or Assembly). Imple-
mentation set artifacts can also be translated (compiled and linked) into a subset of

88 ARTIFACTS OF THE PROCESS

the deployment set (end-target executables). Specific artifacts include self-document-
ing product source code baselines and associated files (compilation scripts, configura-
tion management infrastructure, data files), self-documenting test source code
baselines and associated files (input test data files, test result files), stand-alone com-
ponent executables, and component test driver executables.

Implementation sets are human-readable formats that are evaluated, assessed,
and measured through a combination of the following:

* Analysis of consistency with the design models

* Translation into deployment set notations (for example, compilation and
linking) to evaluate the consistency and completeness among artifact sets

* Assessment of component source or executable files against relevant evalu-
ation criteria through inspection, analysis, demonstration, or testing

* Execution of stand-alone component test cases that automatically compare
expected results with actual results

* Analysis of changes between the current version of the implementation set
and previous versions (scrap, rework, and defect elimination trends)

» Subjective review of other dimensions of quality

Deployment Set

The deployment set includes user deliverables and machine language notations, exe-
cutable software, and the build scripts, installation scripts, and executable target-
specific data necessary to use the product in its target environment. These machine
language notations represent the product components in the target form intended for
distribution to users. Deployment set information can be installed, executed against
scenarios of use (tested), and dynamically reconfigured to support the features
required in the end product. Specific artifacts include executable baselines and associ-
ated run-time files, and the user manual.

Deployment sets are evaluated, assessed, and measured through a combination
of the following:

* Testing against the usage scenarios and quality attributes defined in the
requirements set to evaluate the consistency and completeness and the
semantic balance between information in the two sets

e Testing the partitioning, replication, and allocation strategies in mapping
components of the implementation set to physical resources of the deploy-
ment system (platform type, number, network topology)

6.1 THE ARTIFACT SETS 89

o Testing against the defined usage scenarios in the user manual such as
installation, user-oriented dynamic reconfiguration, mainstream usage, and
anomaly management

¢ Analysis of changes between the current version of the deployment set and
previous versions (defect elimination trends, performance changes)

¢ Subjective review of other dimensions of quality

The rationale for selecting the management, requirements, design, implementa-
tion, and deployment sets was not scientific. The goal was to optimize presentation of
the process activities, artifacts, and objectives. Some of the rationale that resulted in
this conceptual framework is described next. Although there are several minor excep-
tions to these generalizations, they are useful in understanding the overall artifact sets.

Each artifact set uses different notation(s) to capture the relevant artifacts. Man-
agement set notations (ad hoc text, graphics, use case notation) capture the plans,
process, objectives, and acceptance criteria. Requirements notations (structured text
and UML models) capture the engineering context and the operational concept.
Design notations (in UML) capture the engineering blueprints (architectural design,
component design). Implementation notations (software languages) capture the
building blocks of the solution in human-readable formats. Deployment notations
(executables and data files) capture the solution in machine-readable formats.

Each artifact set is the predominant development focus of one phase of the life
cycle; the other sets take on check and balance roles. As illustrated in Figure 6-2, each

Management

Requirements

Design

Implementation

Deployment

FIGURE 6-2. Life-cycle focus on artifact sets

90 ARTIFACTS OF THE PROCESS

phase has a predominant focus: Requirements are the focus of the inception phase;
design, the elaboration phase; implementation, the construction phase; and deploy-
ment, the transition phase. The management artifacts also evolve, but at a fairly con-
stant level across the life cycle.

Most of today’s software development tools map closely to one of the five arti-
fact sets.

1. Management: scheduling, workflow, defect tracking, change management,
documentation, spreadsheet, resource management, and presentation tools

s

2. Requirements: require“rr}’ o}

s management tools
3. Design: visual modeling tools

4. Implementation: compiler/debugger tools, code analysis tools, test cover-
age analysis tools, and test management tools

5. Deployment: test coverage and test automation tools, network manage-
ment tools, commercial components (operating systems, GUIs, DBMSs,
networks, middleware), and installation tools

Allocation of responsibilities among project teams is straightforward and aligns
with the process workflows presented in Chapter 8.

Implementation Set versus Deployment Set

The separation of the implementation set (source code) from the deployment set (exe-
cutable code) is important because there are very different concerns with each set. The
structure of the information delivered to the user (and typically the test organization)
is very different from the structure of the source code information. Engineering deci-
sions that have an impact on the quality of the deployment set but are relatively
incomprehensible in the design and implementation sets include the following:

* Dynamically reconfigurable parameters (buffer sizes, color palettes, number
of servers, number of simultaneous clients, data files, run-time parameters)

e Effects of compiler/link optimizations (such as space optimization versus
speed optimization)

¢ Performance under certain allocation strategies (centralized versus distrib-
uted, primary and shadow threads, dynamic load balancing, hot backup
versus checkpoint/rollback)

* Virtual machine constraints (file descriptors, garbage collection, heap size,
maximum record size, disk file rotations)

6.1 THE ARTIFACT SETS 91

¢ Process-level concurrency issues (deadlock and race conditions)

 Platform-specific differences in performance or behavior

Much of this configuration information is important engineering source data
that should be captured either in the implementation set (if it is embedded within
source code) or in the deployment set (if it is embedded within data files, configura-
tion files, installation scripts, or other target-specific components). In dynamically
reconfigurable systems or portable components, it is usually better to separate the
source code implementation concerns from the target environment concerns (for rea-
sons of performance, dynamic adaptability, or source code change management).
With this approach, the implementation can be decoupled from the actual platform
type and from the number and topology of the underlying computing infrastructure,
which includes operating systems, middleware, networks, and DBMSs.

As an example, consider the software architecture of a one million SLOC missile
warning system (a project described in detail in the case study, Appendix D) with
extreme requirements for fault tolerance and data processing performance. On this
project, significantly different configurations of executables could be built from the
same source sets.

* A version that includes only the primary thread of processing on a develop-
ment host to do a subset of scenario tests

® A version that includes primary and backup processing threads on a devel-
opment host, which could then exercise some of the logical reconfiguration
scenarios

* Functionally equivalent versions of the two preceding configurations that
could execute on the target processors to assess the required throughput
and response time of the critical-thread scenarios on the candidate target
configuration

* A version that could execute a primary thread of servers on one target pro-
cessor, a shadow thread of servers on a separate backup target processor, a
test/exercise thread on either target, and a suite of thread-independent user
interface clients on user workstations. The latter, which could support a
broad range of dynamic reconfigurations, was essentially the final target
configuration.

Deployment of commercial products to customers can also span a broad range
of test and deployment configurations. For example, middleware products provide
high-performance, reliable object request brokers that are delivered on several platform
implementations, including workstation operating systems, bare embedded processors,

92 ARTIFACTS OF THE PROCESS

large mainframe operating systems, and several real-time operating systems. The
product configurations support various compilers and languages as well as various
implementations of network software. The heterogeneity of all the various target con-
figurations results in the need for a highly sophisticated source code structure and a
huge suite of different deployment artifacts.

6.1.3 ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final system
description. Early in the life cycle, precision is low and the representation is generally
high. Eventually, the precision of representation is high and everything is specified in
full detail. At any point in the life cycle, the five sets will be in different states of com-
pleteness. However, they should be at compatible levels of detail and reasonably
traceable to one another. Performing detailed traceability and consistency analyses
early in the life cycle (when precision is low and changes are frequent) usually has a
low return on investment. As development proceeds, the architecture stabilizes, and
maintaining traceability linkage among artifact sets is worth the effort.

. Each phase of development focuses on a particular artifact set. At the end of
each phase, the overall system state will have progressed on all sets, as illustrated in
Figure 6-3.

The inception phase focuses mainly on critical requirements, usually with a sec-
ondary focus on an initial deployment view, little focus on implementation except per-
haps choice of language and commercial components, and possibly some high-level
focus on the design architecture but not on design detail.

During the elaboration phase, there is much greater depth in requirements,
much more breadth in the design set, and further work on implementation and
deployment issues such as performance trade-offs under primary scenarios and make/
buy analyses. Elaboration phase activities include the generation of an executable

Engineering Stage Production Stage
Inception Elaboration Construction Transition
0 [I € o |l e c € 8 s € @ c [-S
S8 2|8 5 -6 21218
2z |5 ¢ 1% |58 s g (5|8 5|2 |8 &
s |o/§18 § (5|52 §19/518 §io151(2
=1 1518 S158 2| (518 E 58
= = a = Q o =
& g] e 4 g 4 g
= £ E
L [liﬂanagement _—I |_ Management] [Management J] Management]

FIGURE 6-3. Life-cycle evolution of the artifact sets

6.1 THE ARTIFACT SETS 93

prototype. This prototype involves subsets of development in all four sets and specifi-
cally assesses whether the interfaces and collaborations among components are con-
sistent and complete within the context of the system’s primary requirements and
scenarios. Although there is generally a broad understanding of component inter-
faces, there is usually not much depth in implementation for custom components.
(However, commercial or other existing components may be fully elaborated.) A por-
tion of all four sets must be evolved to some level of completion before an architecture
baseline can be established. This evolution requires sufficient assessment of the design
set, implementation set, and deployment set artifacts against the critical use cases of
the requirements set to suggest that the project can proceed predictably with well-
understood risks.

The main focus of the construction phase is design and implementation. The
main focus early in this phase should be the depth of the design artifacts. Later in con-
struction, the emphasis is on realizing the design in source code and individually
tested components. This phase should drive the requirements, design, and implemen-
tation sets almost to completion. Substantial work is also done on the deployment set,
at least to test one or a few instances of the programmed system through a mechanism
such as an alpha or beta release.

The main focus of the transition phase is on achieving consistency and complete-
ness of the deployment set in the context of the other sets. Residual defects are
resolved, and feedback from alpha, beta, and system testing is incorporated.

As development proceeds, each of the parts evolves in more detail. When the sys-
tem is complete, all four sets are fully elaborated and consistent with one another. In
contrast to the conventional practice, you do not specify the requirements, then do the
design, and so forth. Instead, you evolve the entire system; decisions about the deploy-
ment may affect requirements, not just the other way around. The key emphasis here
is to break the conventional mold, in which the default interpretation is that one set
precedes another. Instead, one state of the entire system evolves into a more elaborate
state of the system, usually involving evolution in each of the parts. During the transi-
tion phase, traceability between the requirements set and the deployment set is
extremely important. The evolving requirements set captures a mature and precise
representation of the stakeholders’ acceptance criteria, and the deployment set repre-
sents the actual end-user product. Therefore, during the transition phase, complete-
ness and consistency between these two sets are important. Traceability among the
other sets is necessary only to the extent that it aids the engineering or management
activities. :

6.1.4 TEST ARTIFACTS

Conventional software testing followed the same document-driven approach that was
applied to software development. Development teams built requirements documents,

94 ARTIFACTS OF THE PROCESS

top-level design documents, and detailed design documents before constructing any
source files or executables. Similarly, test teams built system test plan documents, sys-
tem test procedure documents, integration test plan documents, unit test plan docu-
ments, and unit test procedure documents before building any test drivers, stubs, or
instrumentation. This document-driven approach caused the same problems for the
test activities that it did for the development activities. .

One of the truly discriminating tenets of a modern process is to use exactly the
same sets, notations, and artifacts for the products of test activities as are used for
product development. In essence, we are simply identifying the test infrastructure nec-
essary to execute the test process as a required subset of the end product. By doing
this, we have forced several engineering disciplines into the process.

® The test artifacts must be developed concurrently with the product from
inception through deployment. Thus, testing is a full-life-cycle activity, not
a late life-cycle activity.

® The test artifacts are communicated, engineered, and developed within the
same artifact sets as the developed product.

® The test artifacts are implemented in programmable and repeatable for-
mats (as software programs).

¢ The test artifacts are documented in the same way that the product is docu-
mented.

* Developers of the test artifacts use the same tools, techniques, and training
as the software engineers developing the product.

These disciplines allow for significant levels of homogenization across project
workflows, which are described in Chapter 8. Everyone works within the notations
and techniques of the four sets used for engineering artifacts, rather than with sepa-
rate sequences of design and test documents. Interpersonal communications, stake-
holder reviews, and engineering analyses can be performed with fewer distinct
formats, fewer ad hoc notations, less ambiguity, and higher efficiency.

Testing is only one aspect of the assessment workflow. Other aspects include
inspection, analysis, and demonstration. Testing refers to the explicit evaluation
through execution of deployment set components under a controlled scenario with an
expected and objective outcome. The success of a test can be determined by compar-
ing the expected outcome to the actual outcome with well-defined mathematical
precision. Tests are exactly the forms of assessment that are automated.

Although the test artifact subsets are highly project-specific, the following exam-
ple clarifies the relationship between test artifacts and the other artifact sets. Consider
a project to perform seismic data processing for the purpose of oil exploration. This

6.1 THE ARTIFACTSETS 95

system has three fundamental subsystems: (1) a sensor subsystem that captures raw
seismic data in real time and delivers these data to (2) a technical operations sub-
system that converts raw data into an organized database and manages queries to this
database from (3) a display subsystem that allows workstation operators to examine
seismic data in human-readable form. Such a system would result in the following test
artifacts: ‘

* Management set. The release specifications and release descriptions cap-
ture the objectives, evaluation criteria, and results of an intermediate mile-
stone. These artifacts are the test plans and test results negotiated among
internal project teams. The software change orders capture test results
(defects, testability changes, requirements ambiguities, enhancements) and
the closure criteria associated with making a discrete change to a baseline.

® Requirements set. The system-level use cases capture the operational con-
cept for the system and the acceptance test case descriptions, including the
expected behavior of the system and its quality attributes. The entire
requirements set is a test artifact because it is the basis of all assessment
activities across the life cycle.

* Design set. A test model for nondeliverable components needed to test the
product baselines is captured in the design set. These components include
such design set artifacts as a seismic event simulation for creating realistic
sensor data; a “virtual operator” that can support unattended, after-hours
test cases; specific instrumentation suites for early demonstration of
resource usage; transaction rates or response times; and use case test driv-
ers and component stand-alone test drivers.

® Implementation set. Self-documenting source code representations for test
components and test drivers provide the equivalent of test procedures and
test scripts. These source files may also include human-readable data files
representing certain statically defined data sets that are explicit test source
files. Output files from test drivers provide the equivalent of test reports.

* Deployment set. Executable versions of test components, test drivers, and
data files are provided.

For any release, all the test artifacts and product artifacts are maintained using
the same baseline version identifier. They are created, changed, and obsolesced as a
consistent unit. Because test artifacts are captured using the same notations, methods,
and tools, the approach to testing is consistent with design and development. This
approach forces the evolving test artifacts to be maintained so that regression testing
can be automated easily.

96 ARTIFACTS OF THE PROCESS

6.2 MANAGEMENT ARTIFACTS

The management set includes several artifacts that capture intermediate results and
ancillary information necessary to document the product/process legacy, maintain the
product, improve the product, and improve the process. These artifacts are summa-
rized next and discussed in detail in subsequent chapters, where the ‘'management
workflows and activities are elaborated. Although the following descriptions use the
word document to describe certain artifacts, this is only meant to imply that the data
could be committed to a paper document. In many cases, the data may be processed,
reviewed, and exchanged via electronic means only.

Work Breakdown Structure

A work breakdown structure (WBS) is the vehicle for budgeting and collecting costs.
To monitor and control a project’s financial performance, the software project man-
ager must have insight into project costs and how they are expended. The structure of
cost accountability is a serious project planning constraint. Lessons learned in numer-
ous less-than-successful projects have shown that if the WBS is structured improperly,
it can drive the evolving design and product structure in the wrong direction. A
project manager should not lay out lower levels of a WBS (thereby defining specific
boundaries of accountability) until a commensurate level of stability in the product
structure is achieved. A functional breakdown in the WBS will result in a functional
decomposition in the software. The concept of an evolutionary WBS is developed further
in Chapter 10.

Business Case

The business case artifact provides all the information necessary to determine whether
the project is worth investing in. It details the expected revenue, expected cost, techni-
cal and management plans, and backup data necessary to demonstrate the risks and
realism of the plans. In large contractual procurements, the business case may be
implemented in a full-scale proposal with multiple volumes of information. In a small-
scale endeavor for a commercial product, it may be implemented in a brief plan with
an attached spreadsheet. The main purpose is to transform the vision into economic
terms so that an organization can make an accurate ROI assessment. The financial
forecasts are evolutionary, updated with more accurate forecasts as the life cycle
progresses. Figure 6-4 provides a default outline for a business case.

Release Specifications

The scope, plan, and objective evaluation criteria for each baseline release are derived
from the vision statement as well as many other sources (make/buy analyses, risk
management concerns, architectural considerations, shots in the dark, implementa-

6.2 MANAGEMENT ARTIFACTS 97

. Context (domain, market, scope)
Il. Technical approach
A. Feature set achievement plan
B. Quality achievement plan
C. Engineering trade-offs and technical risks
Il. Management approach
A. Schedule and schedule risk assessment
B. Objective measures of success
IV. Evolutionary appendixes
A. Financial forecast
1. Cost estimate
2. Revenue estimate
3. Bases of estimates

FIGURE 6-4. Typical business case outline

tion constraints, quality thresholds). These artifacts are intended to evolve along with
the process, achieving greater fidelity as the life cycle progresses and requirements
understanding matures. Figure 6-5 provides a default outline for a release specification.

There are two important forms of requirements. The first is the vision statement
(or user need), which captures the contract between the development group and the
buyer. This information should be evolving, but varying slowly, across the life cycle. It
should be represented in a form that is understandable to the buyer (an ad hoc format
that may include text, mockups, use cases, spreadsheets, or other formats). A use case
model in the vision statement context serves to capture the operational concept in
terms the user/buyer will understand. ,

Evaluation criteria, the second form of requirements contained in release specifi-
cations, are transient snapshots of objectives for a given intermediate life-cycle mile-
stone. Evaluation criteria in release specifications are defined as management artifacts
rather than as part of the requirements set. They are derived from the vision statement
as well as many other sources (make/buy analyses, risk management concerns,
architectural considerations, shots in the dark, implementation constraints, quality

I. lteration content
ll. Measurable objectives
A. Evaluation criteria
B. Followthrough approach
Hl. Demonstration plan
A. Schedule of activities
B. Team responsibilities
IV. Operational scenarios (use cases demonstrated)
A. Demonstration procedures
B. Traceability to vision and business case

FIGURE 6-5. Typical release specification outline

98 ARTIFACTS OF THE PROCESS

thresholds). These management-oriented requirements may be represented by use
cases, use case realizations, annotations on use cases, or structured text representations.

The system requirements (user/buyer concerns) are captured in the vision state-
ment. Lower levels of requirements are driven by the process (organized by iteration
rather than by lower level component) in the form of evaluation criteria (typically
captured by a set of use cases and other textually represented objectives). Thus, the
lower level requirements can evolve as summarized in the following conceptual exam-
ple for a relatively large project:

1. Inception iterations. Typically, 10 to 20 evaluation criteria capture the
driving issues associated with the critical use cases that have an impact on
architecture alternatives and the overall business case.

2. Elaboration iterations. These evaluation criteria (perhaps 50 or so), when
demonstrated against the candidate architecture, verify that the critical use
cases and critical requirements of the vision statement can be met with low
risk. '

3. Construction iterations. These evaluation criteria (perhaps hundreds) asso-
ciated with a meaningful set of use cases, when passed, constitute useful
subsets of the product that can be transitioned to formal test or to alpha or
beta releases.

4. Transition iterations. This complete set of use cases and associated evalua-
tion criteria (perhaps thousands) constitutes the acceptance test criteria
associated with deploying a version into operation.

This process is naturally evolutionary and is loosely coupled to the actual design
and architecture that evolves. In the end, 100% traceability becomes important, but
intermediate activities and milestones are far less concerned with consistency and
completeness than they were when the conventional approach to software develop-
ment was used. Each iteration’s evaluation criteria are discarded once the milestone is
completed; they are transient artifacts. A better version is created at each stage, so
there is much conservation of content and lessons learned in each successive set of
evaluation criteria. Release specification artifacts and their inherent evaluation crite-
ria are more concerned early on with ensuring that the highest risk issues are resolved.

Software Development Plan

The software development plan (SDP) elaborates the process framework into a fully
detailed plan. It is the defining document for the project’s process. It must comply
with the contract (if any), comply with organization standards (if any), evolve along
with the design and requirements, and be used consistently across all subordinate
'organizations doing software development. Two indications of a useful SDP are peri-

6.2 MANAGEMENT ARTIFACTS 99

Il. Context (scope, objectives)
Il. Software development process
A. Project primitives
1. Life-cycle phases
2. Artifacts
3. Workfiows
4. Checkpoints
B. Major milestone scope and content
C. Process improvement procedures
Ill. Software engineering environment
A. Process automation (hardware and software resource configuration)
B. Resource allocation procedures (sharing across organizations, security
access)
IV. Software change management
A. Configuration control board plan and procedures
B. Software change order definitions and procedures
C. Configuration baseline definitions and procedures
V. Software assessment
A. Metrics collection and reporting procedures
B. Risk management procedures (risk identification, tracking, and resolution)
C. Status assessment plan
D. Acceptance test plan
VI. Standards and procedures
A. Standards and procedures for technical artifacts
! Vil. Evolutionary appendixes
A. Minor milestone scope and content
B. Human resources (organization, staffing plan, training plan)

]

FIGURE 6-6. Typical software development plan outline

odic updating (it is not stagnant shelfware) and understanding and acceptance by
managers and practitioners alike. Figure 6-6 provides a default outline for a software
development plan.

Release Descriptions

Release description documents describe the results of each release, including perfor-
mance against each of the evaluation criteria in the corresponding release specifica-
tion. Release baselines should be accompanied by a release description document that
describes the evaluation criteria for that configuration baseline and provides substan-
tiation (through demonstration, testing, inspection, or analysis) that each criterion
has been addressed in an acceptable manner. This document should also include a
metrics summary that quantifies its quality in absolute and relative terms (compared
to the previous versions, if any). The results of a post-mortem review of any release
would be documented here, including outstanding issues, recommendations for pro-
cess and product improvement, trade-offs in addressing evaluation criteria, follow-up
actions, and similar information. Figure 6-7 provides a default outline for a release
description.

100 ARTIFACTS OF THE PROCESS

l. Context
A. Release baseline content
B. Release metrics
Il. Release notes
A. Release-specific constraints or limitations
ll. Assessment results
A. Substantiation of passed evaluation criteria
B. Follow-up plans for failed evaluation criteria
C. Recommendations for next release
IV. Outstanding issues
A. Action items
B. Post-mortem summary of lessons learned

FIGURE 6-7. Typical release description outline

Status Assessments

Status assessments provide periodic snapshots of project health and status, including
the software project manager’s risk assessment, quality indicators, and management
indicators. Although the period may vary, the forcing function needs to persist. The
paramount objective of a good management process is to ensure that the expectations
of all stakeholders (contractor, customer, user, subcontractor) are synchronized and
consistent. The periodic status assessment documents provide the critical mechanism
for managing everyone’s expectations throughout the life cycle; for addressing, com-
municating, and resolving management issues, technical issues, and project risks; and
for capturing project history. They are the periodic heartbeat for management atten-
tion. Section 9.3 discusses status assessments in more detail. |

Typical status assessments should include a review of resources, personnel staff-
ing, financial data (cost and revenue), top 10 risks, technical progress (metrics snap-
shots), major milestone plans and results, total project or product scope, action items,
and follow-through. Continuous open communications with objective data derived
directly from on-going activities and evolving product configurations are mandatory
In any project.

Software Change Order Database

Managing change is one of the fundamental primitives of an iterative development
process. With greater change freedom, a project can iterate more productively. This
flexibility increases the content, quality, and number of iterations that a project can
achieve within a given schedule. Change freedom has been achieved in practice
through automation, and today’s iterative development environments carry the bur-
den of change management. Organizational processes that depend on manual change
management techniques have encountered major inefficiencies. Consequently, the
change management data have been elevated to a first-class management artifact that

6.2 MANAGEMENT ARTIFACTS 101

is described as a database to instill the concept of a need for automation. Once soft-
ware is placed in a controlled baseline, all changes must be formally tracked and man-
aged. By automating data entry and maintaining change records on-line, most of the
change management bureaucracy and metrics collection and reporting activities can
be automated. Software change orders are discussed in detail in Chapter 12.

Deployment

A deployment document can take many forms. Depending on the project, it could
include several document subsets for transitioning the product into operational
status. In big contractual efforts in which the system is delivered to a separate mainte-
nance organization, deployment artifacts may include computer system operations
manuals, software installation manuals, plans and procedures for cutover (from a
legacy system), site surveys, and so forth. For commercial software products, deploy-
ment artifacts may include marketing plans, sales rollout kits, and training courses.

Environment

An important emphasis of a modern approach is to define the development and main-
tenance environment as a first-class artifact of the process. A robust, integrated devel-
opment environment must support automation of the development process. This
environment should include requirements management, visual modeling, document
automation, host and target programming tools, automated regression testing, inte-
grated change management, and defect tracking. A common theme from successful
software projects is that they hire good people and provide them with good tools to
accomplish their jobs. Automation of the software development process provides pay-
back in quality, the ability to estimate costs and schedules, and overall productivity
using a smaller team. By allowing the designers to traverse quickly among develop-
ment artifacts and easily keep the artifacts up-to-date, integrated toolsets play an
increasingly important role in incremental and iterative development.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously developed
artifacts are updated to incorporate lessons learned and to capture further depth and
breadth of the solution. Some artifacts are updated at each major milestone, others at
each minor milestone. Figure 6-8 identifies a typical sequence of artifacts across the
life-cycle phases.

102 ARTIFACTS OF THE PROCESS

A Informal version

A Controlled baseline
Inception

Elaboration

Construction

Transition

Iteration 1

Iteration 2 | lteration 3

lteration 4 [Iteration 5 | Iteration 6

iteration 7

Management Set
1. Work breakdown structure

2. Business case

3. Release specifications

4. Software development plan
5. Release descriptions

6. Status assessments

7. Software change order data
8. Deployment documents

9. Environment

Requirements Set
1. Vision document

2. Requirements model(s)

Design Set
1. Design model(s)

2. Test model
3. Architecture description

Implementation Set
1. Source code baselines

2. Associated compile-time files
3. Component executables

Deployment Set

1. Integrated product-executable
baselines

2. Associated run-time files

3. User manual

> > >

>>> D

A

> > > > >

A

Dl N N N N N N 2 A A

A A

A A

A A

> > > > >
> > > > >

FIGURE 6-8. Artifact sequences across a typical life cycle

A
A
A

A

>> > P> > > >

JANY AN AN ANRANRYANRYANRYANRYANANVANVARVAY

> > >

> > > > >

6.3 ENGINEERING ARTIFACTS 103

6.3 ENGINEERING ARTIFACTS

Most of the engineering artifacts are captured in rigorous engineering notations such
as UML, programming languages, or executable machine codes. Because this book is
written from a management perspective, it does not dwell on these artifacts. However,
three engineering artifacts are explicitly intended for more general review, and they
deserve further elaboration.

Vision Document

The vision document provides a complete vision for the software system under devel-
opment and supports the contract between the funding authority and the develop-
ment organization. Whether the project is a huge military-standard development
(whose vision could be a 300-page system specification) or a small, internally funded
commercial product (whose vision might be a two-page white paper), every project
needs a source for capturing the expectations among stakeholders. A project vision is
meant to be changeable as understanding evolves of the requirements, architecture,
plafis, and technology. A good vision document should change slowly. Figure 6-9 pro-
vides a default outline for a vision document.

The vision document is written from the user’s perspective, focusing on the
essential features of the system and acceptable levels of quality. The vision document
should contain at least two appendixes. The first appendix should describe the opera-
tional concept using use cases (a visual model and a separate artifact). The second
appendix should describe the change risks inherent in the vision statement, to guide
defensive design efforts.

The vision statement should include a description of what will be included as
well as those features considered but not included. It should also specify operational
capacities (volumes, response times, accuracies), user profiles, and interoperational
interfaces with entities outside the system boundary, where applicable. The vision
should not be defined only for the initial operating level; its likely evolution path

I. Feature set description
A. Precedence and priority
lIl. Quality attributes and ranges
Il. Required constraints
A. External interfaces
IV. Evolutionary appendixes
A. Use cases
1. Primary scenarios
2. Acceptance criteria and tolerances
B. Desired freedoms (potential change scenarios)

FIGURE 6-9. Typical vision document outline

104 ARTIFACTS OF THE PROCESS

should be addressed so that there is a context for assessing design adaptability. The
operational concept involves specifying the use cases and scenarios for nominal and
off-nominal usage. The use case representation provides a dynamic context for under-
standing and refining the scope, for assessing the integrity of a design model, and for
developing acceptance test procedures. The vision document provides the contractual
basis for the requirements visible to the stakeholders.

Architecture Description

The architecture description provides an organized view of the software architecture
under development. It is extracted largely from the design model and includes views
of the design, implementation, and deployment sets sufficient to understand how the
operational concept of the requirements set will be achieved. The breadth of the archi-
tecture description will vary from project to project depending on many factors. The
architecture can be described using a subset of the design model or as an abstraction
of the design model with supplementary material, or a combination of both. As exam-
ples of these two forms of descriptions, consider the architecture of this book:

e A subset form could be satisfied by the table of contents. This description
of the architecture of the book is directly derivable from the book itself.

* An abstraction form could be satisfied by a “Cliffs Notes” treatment.
(Cliffs Notes are condensed versions of classic books used as study guides
by some college students.) This format is an abstraction that is developed
separately and includes supplementary material that is not directly deriv-
able from the evolving product.

The approach described in Section 7.2 allows an architecture description to be tai-
lored to the specific needs of a project. Figure 6-10 provides a default outline for an
architecture description.

Software User Manual

The software user manual provides the user with the reference documentation neces-
sary to support the delivered software. Although content is highly variable across
application domains, the user manual should include installation procedures, usage
procedures and guidance, operational constraints, and a user interface description, at
a minimum. For software products with a user interface, this manual should be devel-
oped early in the life cycle because it is a necessary mechanism for communicating and
stabilizing an important subset of requirements. The user manual should be written
by members of the test team, who are more likely to understand the user’s perspective
than the development team. If the test team is responsible for the manual, it can be
generated in parallel with development and can be evolved early as a tangible and rel-

6.4 PRAGMATIC ARTIFACTS 105

rI. Architecture overview
A. Objectives
B. Constraints
C. Freedoms
Il. Architecture views
A. Design view
B. Process view
C. Component view
D. Deployment view
Hl. Architectural interactions
A. Operational concept under primary scenarios
B. Operational concept under secondary scenarios
C. Operational concept under anomalous conditions
IV. Architecture performance
V. Rationale, trade-offs, and other substantiation

FIGURE 6-10. Typical architecture description outline

evant perspective of evaluation criteria. It also provides a necessary basis for test plans
and test cases, and for construction of automated test suites.

6.4 PRAGMATIC ARTIFACTS

Conventional document-driven approaches squandered incredible amounts of engi-
neering time on developing, polishing, formatting, reviewing, updating, and distribut-
ing documents. Why? There are several reasons that documents became so important
to the process. First, there were no rigorous engineering methods or languages for
requirements specification or design. Consequently, paper documents with ad hoc text
and graphical representations were the default format. Second, conventional lan-
guages of implementation and deployment were extremely cryptic and highly unstruc-
tured. To present the details of software structure and behavior to other interested
reviewers (testers, maintainers, managers), a more human-readable format was
needed. Probably most important, software progress needed to be “credibly”
assessed. Documents represented a tangible but misleading mechanism for demon-
strating progress.

In some domains, document-driven approaches have degenerated over the past
30 years into major obstacles to process improvement. The quality of the documents
became more important than the quality of the engineering information they repre-
sented. And evaluating quality through human review of abstract descriptions is a
highly subjective process. Much effort was expended assessing single-dimensional
surface issues, with very little attention devoted to the multidimensional issues that
drive architecture qualities, such as performance and adaptability.

106 ARTIFACTS OF THE PROCESS

Document production cycles, review cycles, and update cycles also injected very
visible and formal snapshots of progress into the schedule, thereby introducing more
schedule dependencies and synchronization points. For example, the following sce-
nario was not uncommon on large defense projects: Spend a month preparing a
design document, deliver the document to the customer for review, wait a month to
receive comments back, then spend a month responding to comments and incorporat-
ing changes. With many, many multiple-month document review cycles to be man-
aged, scheduled, and synchronized, it is not surprising that many such projects ended
up with five-year development life cycles. Lengthy and highly detailed documents,
which were generally perceived to demonstrate more progress, resulted in premature
engineering details and increased scrap and rework later in the life cycle.

A more effective approach is to redirect this documentation effort to improving
the rigor and understandability of the information source and allowing on-line review
of the native information source by using smart browsing and navigation tools. Such
an approach can eliminate a huge, unproductive source of scrap and rework in the
process and allow for continuous review by everyone who is directly concerned with
the evolving on-line artifacts.

This philosophy raises the following cultural issues:

* People want to review information but don’t understand the language of
the artifact. Many interested reviewers of a particular artifact will resist
having to learn the engineering language in which the artifact is written. It
is not uncommon to find people (such as veteran software managers, vet-
eran quality assurance specialists, or an auditing authority from a regula-
tory agency) who react as follows: “I’m not going to learn UML, but I want
to review the design of this software, so give me a separate description such
as some flowcharts and text that I can understand.” Would we respond to a
similar request by someone reviewing the engineering blueprints of a build-
ing? No. We would require that the reviewer be knowledgeable in the engi-
neering notation. We should stop patronizing audiences who resist treating
software as an engineering discipline. These interested parties typically add
cost and time to the process without adding value.

* People want to review the information but don’t have access to the tools. It
is not very common for the development organization to be fully tooled; it
is extremely rare that the other stakeholders have any capability to review
the engineering artifacts on-line. Consequently, organizations are forced to
exchange paper documents. Standardized formats (such as UML, spread-
sheets, Visual Basic, C++, and Ada 95), visualization tools, and the Web are
rapidly making it economically feasible for all stakeholders to exchange
information electronically. The approach to artifacts is one area in which

6.4 PRAGMATIC ARTIFACTS 107

the optimal software development process can be polluted if the philoso-
phy of the process is not accepted by the other stakeholders.

* Human-readable engineering artifacts should use rigorous notations that
are complete, consistent, and used in a self-documenting manner. Properly
spelled English words should be used for all identifiers and descriptions.
Acronyms and abbreviations should be used only where they are well-
accepted jargon in the context of the component’s usage. No matter what
languages or tools are used, there is no reason to abbreviate and encrypt
modeling or programming language source identifiers. Saving keystrokes
through abbreviation may simplify the artifact author’s job, but it intro-
duces errors throughout the rest of the life cycle. Disallowing this practice
will pay off in both productivity and quality. Software is written only once,
but it is read many times. Therefore, readability should be emphasized and
the use of proper English words should be required in all engineering arti-
facts. This practice enables understandable representations, browseable for-
mats (paperless review), more-rigorous notations, and reduced error rates.

e Useful documentation is self-defining: It is documentation that gets used.
Above all, building self-documenting engineering artifacts gives the devel-
opment organization the “right” to work solely in the engineering nota-
tions and avoid separate documents to describe all the details of a model,
component, or test procedure. If you find that information, and particu-
larly a document, is getting produced but not used, eliminate it in favor of
whatever is getting used to accomplish the intended purpose. Strive to
improve its self-documenting nature. '

» Paper is tangible; electronic artifacts are too easy to change. One reason
some stakeholders prefer paper documents is that once they are delivered,
they are tangible, static, and persistent. On-line and Web-based artifacts
can be changed easily and are viewed with more skepticism because of their
inherent volatility. Although electronic artifacts will and should be met
with healthy skepticism by many stakeholders, it is simply a matter of time
before the whole world operates this way. The advantages are substantial
and far-reaching across many domains. Rest assured that tools and envi-
ronments will evolve to support change management, audit trails, elec-
tronic signatures, and other advances in groupware so that electronic
interchange replaces paper.

It is extremely important that the information inherent in the artifact be empha-
sized, not the paper on which it is written. Short documents are usually more useful
than long ones. Software is the primary product; documentation is merely support
material.

CHAPTER 7

Model-Based
Software
Architectures

Software architecture is the central design Key poins ‘
problem of a comp le?(softwa.re system, in A An architecture is the software system
the same way that architecture is the central | yegign.
design problem of a complex skyscraper. How- 4 he uttimate goal of the engineering
ever, a software architecture has several addi- | stage is to converge on a stable archi-
tional dimensions of complexity. In contrast to = tecture baseline. A
the architecture of a large building, the critical = 4 An architecture baseline is not a

. paper document; it is a collection of
performance attributes and features of a com- g0 ravion across all the engineering |
plex software. system cannot be described ' sets. ‘
through stable laws of physics. They are not gov- a Architectures are described by
erned by any well-accepted form of mathematics. ' extracting the essential information
Thus, software architects have no irrefutable ~ from the design models.

b
first principles. There are many heuristics and
fuzzy guidelines, but the fundamental measures of goodness are highly situation-
dependent. Lacking established theory, software architects must rely on some form of
experimentation in formulating software architectures. This is one of the main reasons
for transitioning to an iterative process, in which early activities emphasize and promote
architecture evolution through prototyping and demonstration.

Previous chapters have made many assertions about architecture without defin-
ing the term. No definition of software architecture is accepted throughout the indus-
try. This chapter condenses some perspectives on architecture to build a context in
which the management perspective of an architecture-first process can be understood.

Because early software systems were far less powerful than present-day systems,
architectures were much simpler and required only informal representations. In a
single-computer, single-program system, the mapping among design objects, imple-
mentation objects, and deployment objects was generally trivial. In today’s complex

109

110 MODEL-BASED SOFTWARE ARCHITECTURES

software systems, we have evolved to multiple, distinct models and views to exploit
the advantages of modern technologies such as commercial components, object-
oriented methods, open systems, distributed systems, host and target environments,
and modern languages. A model is a relatively independent abstraction of a system. A
view is a subset of a model that abstracts a specific, relevant perspective.

7.1 ARCHITECTURE: A MANAGEMENT PERSPECTIVE

The most critical technical product of a software project is its architecture: the infra-
structure, control, and data interfaces that permit software components to cooperate
as a system and software designers to cooperate efficiently as a team. Establishing
accurate and precise communications among teams of people is a timeless problem in
any organization. When the communications media include multiple languages and
intergroup literacy varies, the communications problem can become extremely com-
plex and even unsolvable. If a software development team is to be successful, the
interproject communications, as captured in the software architecture, must be both
accurate and precise.

From a management perspective, there are three different aspects of an
architecture.

1. An architecture (the intangible design concept) is the design of a software
system, as opposed to the design of a component. This includes all engi-
neering necessary to specify a complete bill of materials. Significant make/
buy decisions are resolved, and all custom components are elaborated so
that individual component costs and construction/assembly costs can be
determined with confidence.

2. An architecture baseline (the tangible artifacts) is a slice of information
across the engineering artifact sets sufficient to satisfy all stakeholders that
the vision (function and quality) can be achieved within the parameters of
the business case (cost, profit, time, technology, people).

3. An architecture description (a human-readable representation of an archi-
tecture, which is one of the components of an architecture baseline) is an
organized subset of information extracted from the design set model(s). It -
includes the additional ad hoc notation (text and graphics) necessary to
clarify the information in the models. The architecture description commu-
nicates how the intangible concept is realized in the tangible artifacts.

These definitions are necessarily abstract, because architecture takes on different
forms across different system domains. In particular, the number of views and the

7.2 ARCHITECTURE: A TECHNICAL PERSPECTIVE 111

level of detail in each view can vary widely. The architecture of a resume, for example,
has a much simpler form than the architecture of a major motion picture, even though
both products may represent different forms of biographies. The architecture of a
glider has a much simpler form than the architecture of a jumbo jet, even though both
products are aircraft. Similarly, the architecture of the software for an air traffic con-
trol system is very different from the software architecture of a small development
tool.

The importance of software architecture and its close linkage with modern soft-
ware development processes can be summarized as follows:

* Achieving a stable software architecture represents a significant project
milestone at which the critical make/buy decisions should have been
resolved. This life-cycle event represents a transition from the engineering
stage of a project, characterized by discovery and resolution of numerous
unknowns, to the production stage, characterized by management to a pre-
dictable development plan.

* Architecture representations provide a basis for balancing the trade-offs
between the problem space (requirements and constraints) and the solution
space (the operational product).

® The architecture and process encapsulate many of the important (high-pay-
off or high-risk) communications among individuals, teams, organizations,
and stakeholders.

¢ Poor architectures and immature processes are often given as reasons for
project failures.

* A mature process, an understanding of the primary requirements, and a
demonstrable architecture are important prerequisites for predictable
planning.

* Architecture development and process definition are the intellectual steps
that map the problem to a solution without violating the constraints; they
require human innovation and cannot be automated.

72 ARCHITECTURE: A TECHNICAL PERSPECTIVE

Although software architecture has been discussed at length over the past decade,
convergence on definitions, terminology, and principles has been lacking. The follow-
ing discussion draws generally on the foundations of architecture developed at Ra-
tional Software Corporation and particularly on Philippe Kruchten’s concepts of
software architecture [Kruchten, 1995].

112 MODEL-BASED SOFTWARE ARCHITECTURES

Software architecture encompasses the structure of software systems (the selec-
tion of elements and the composition of elements into progressively larger sub-
systems), their behavior (collaborations among elements), and the patterns that guide
these elements, their collaborations, and their composition. The context of software
architecture structure, behavior, and patterns must include functionality, perfor-
mance, resilience, comprehensibility, economic trade-offs, technology constraints,
and aesthetic concerns.

An architecture framework is defined in terms of views that are abstractions of
the UML models in the design set. The design model includes the full breadth and
depth of information. An architecture view is an abstraction of the design model; it
contains only the architecturally significant information. Most real-world systems
require four views: design, process, component, and deployment. The purposes of
these views are as follows:

» Design: describes architecturally significant structures and functions of the
design model

® Process: describes concurrency and control thread relationships among the
design, component, and deployment views

¢ Component: describes the structure of the implementation set

e Deployment: describes the structure of the deployment set

The design view is probably necessary in every system; the other three views can
be added to deal with the complexity of the system at hand. For example, any distrib-
uted system would need a process view and a deployment view. Most large systems, as
well as systems that comprise a mixture of custom and commercial components,
would also require a separate component view.

Figure 7-1 summarizes the artifacts of the design set, including the architecture
views and architecture description. The architecture description is usually captured
electronically but is always maintained so that it is printable as a single cohesive doc-
ument. The engineering models and architectural views are defined as collections of
UML diagrams.

The requirements model addresses the behavior of the system as seen by its end
users, analysts, and testers. This view is modeled statically using use case and class
diagrams, and dynamically using sequence, collaboration, state chart, and activity
diagrams.

® The use case view describes how the system’s critical (architecturally signif-
icant) use cases are realized by elements of the design model. It is modeled
statically using use case diagrams, and dynamically using any of the UML
behavioral diagrams.

7.2 ARCHITECTURE: A TECHNICAL PERSPECTIVE 113

The requirements set may
include UML models
describing the problem
space.

Requirements Design Implementation | Deployment

The design set includes all
UML design models
describing the solution
space.

The design, process, and
use case models provide
for visualization of the
logical and behavioral
aspects of the design.

The component model
provides for visualization of
the implementation set.

Depending on its complexity, a system may require several
models or partitions of a single modei.

Use Case
Model!

Design Process "Component
Model Model Model

The deployment model
provides for visualization of
the deployment set.

Deployment
Model

Architecture Description
Document
Design view
Process view
Use case view
Component view
Deployment view
Other views (optional)
Other material:
* Rationale

N View ’
* Constraints

v Component Dep\|/9yment J\
View lew

Process
FIGURE 7-1. Architecture, an organized and abstracted view into the design models

[
An architecture is described through several views,
which are extracts of design models that capture the
significant structures, collaborations, and behaviors.

Use Case

by

View

The design mode! addresses the architecture of the system and the design of the
components within the architecture, including the functional structure, concurrency
structure, implementation structure, and execution structure of the solution space, as
seen by its developers. Static descriptions are provided with structural diagrams
(class, object, component, deployment diagrams). Dynamic descriptions are provided
with any of the UML behavioral diagrams (collaboration, sequence, state chart, activ-
ity diagrams).

114 MODEL-BASED SOFTWARE ARCHITECTURES

o The design view describes the architecturally significant elements of the
design model. This view, an abstraction of the design model, addresses the
basic structure and functionality of the solution. It is modeled statically
using class and object diagrams, and dynamically using any of the UML
behavioral diagrams.

® The process view addresses the run-time collaboration issues involved in
executing the architecture on a distributed deployment model, including
the logical software network topology (allocation to processes and threads
of control), interprocess communication, and state management. This view
is modeled statically using deployment diagrams, and dynamically using
any of the UML behavioral diagrams.

* The component view describes the architecturally significant elements of
the implementation set. This view, an abstraction of the design model,
addresses the software source code realization of the system from the per-
spective of the project’s integrators and developers, especially with regard
to releases and configuration management. It is modeled statically using
component diagrams, and dynamically using any of the UML behavioral
diagrams.

® The deployment view addresses the executable realization of the system,
including the allocation of logical processes in the distribution view (the log-
ical software topology) to physical resources of the deployment network (the
physical system topology). It is modeled statically using deployment dia-
grams, and dynamically using any of the UML behavioral diagrams.

Architecture descriptions take on different forms and styles in different organi-
zations and domains. At any given time, an architecture requires a subset of artifacts
in each engineering set. The actual level of content in each set is situation-dependent,
and there are few good heuristics for describing objectively what is architecturally sig-
nificant and what is not.

Generally, an architecture baseline should include the following;:

* Requirements: critical use cases, system-level quality objectives, and prior-
ity relationships among features and qualities

* Design: names, attributes, structures, behaviors, groupings, and relation-
ships of significant classes and components

* Implementation: source component inventory and bill of materials (num-
ber, name, purpose, cost) of all primitive components

* Deployment: executable components sufficient to demonstrate the critical
use cases and the risk associated with achieving the system qualities

7.2 ARCHITECTURE: A TECHNICAL PERSPECTIVE 115

Although the technical details of architecture description are not central to soft-
ware management, the underlying spirit of architecture-first development is crucial to
success. Drawing this line (what’s in the architecture and what’s not) is the challenge
of project management, for it is the ultimate question of balance that significantly
influences project success.

An architecture baseline is defined as a balanced subset of information across all
sets, whereas an architecture description is completely encapsulated within the de-
sign set. This distinction is a subtle but important difference between conventional
approaches and modern iterative development processes. Conventional approaches
would equate an architecture baseline with an architecture description (realized as a
document with no rigorous design notation), without any representation in the other
engineering artifact sets to validate the integrity of the description. In iterative devel-
opment, an architecture baseline is a partial realization of the architecture description
that is sufficient to provide tangible evidence that the architecture is valid in the con-
text of the requirements and plans.

The architecture description will take a wide range of forms, from a simple,
direct subset of UML diagrams to a complex set of models with a variety of distinct
views that capture and compartmentalize the concerns of a sophisticated system. The
former may be applicable for a small, highly skilled team building a development tool,
the latter for a highly distributed, large-scale, catastrophic-cost-of-failure command
and control system.

The artifact sets evolve through a project life cycle from the engineering stage
(when the focus is on the requirements and design artifacts) to the production stage
(when the focus shifts to the implementation and deployment artifacts). The transi-
tion point from the engineering stage to the production stage constitutes a state in
which the project has achieved a stable architecture baseline. From a management
perspective, this state is achieved when relevant stakeholders agree that the vision (as
supported by the requirements set and the architecture, represented in the design set,
and partially realized in the implementation and deployment sets) can be achieved
with a highly predictable cost and schedule (as supported in the management set).
Substantiation of this state typically requires not only briefings and documents, but
also executable prototypes that demonstrate evolving capabilities. These demonstra-
tions provide far more tangible feedback on the maturity of the solution. The more
standard components are used, the simpler this state is to achieve. The more custom
components are used, the harder it is to achieve and the harder it is to estimate con-
struction costs.

CHAPTER 8

Workflows of
the Process

Most process descriptions use sequences of

' activities as their primary representation
format. Sequentially oriented process descrip-
tions are simple to understand, represent, plan,
and conduct. From an individual’s point of
view, all activities are inherently sequential.
However, simplistic activity sequences are not
realistic on software projects that are team
efforts. Such efforts may include many teams,
making progress on many artifacts that must
be synchronized, cross-checked, homogenized,
merged, and integrated. The distributed nature
of the software process and its subordinate
workflows is the primary source of management complexity.

One of the more subtle flaws in the conventional software process was in pre-
senting the life-cycle macroprocess as a sequential thread of activities, from require-
ments analysis to design to code to test to delivery. In an abstract way, successful
projects did implement this progression, but the boundaries between the phases were
fuzzy and were accepted as such by nonadversarial stakeholders. Unsuccessful projects,
on the other hand, typically got mired in striving for crisp boundaries between phases.
For example, a typical project team might have pursued 100% frozen requirements
baselines before transitioning to design, or might have tried to write a fully detailed
design documentation before transitioning to coding. As a result, excessive effort
would have been expended in minutia while progress on the important engineering
decisions slowed or even stopped.

117

118 WORKFLOWS OF THE PROCESS

A modern process avoids naming the life-cycle phases after the predominant
activities. The phase names—inception, elaboration, construction, and transition—
specify the state of the project rather than a sequence of activities as in the waterfall
model. The intent is to recognize explicitly the continuum of activities in all phases
and avoid the inference that there is a sequential progression from requirements to
design to code to test to delivery.

8.1 SOFTWARE PROCESS WORKFLOWS

Previous chapters introduced a life-cycle macroprocess and the fundamental sets of
artifacts. The macroprocess comprises discrete phases and iterations, but not discrete
activities. A continuum of activities occurs in each phase and iteration. The next-level
process description is the microprocesses, or workflows, that produce the artifacts.
The term workflow is used to mean a thread of cohesive and mostly sequential activi-
ties. Workflows are mapped to product artifacts as described in Chapter 6 and to
project teams as described in Chapter 11. There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win condi-
tions for all stakeholders

2. Environment workflow: automating the process and evolving the mainte-
nance environment

3. Requirements workflow: analyzing the problem space and evolving the
requirements artifacts

4. Design workflow: modeling the solution and evolving the architecture and
design artifacts

5. Implementation workflow: programming the components and evolving the
implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user

Figure 8-1 illustrates the relative levels of effort expected across the phases in
each of the top-level workflows. It represents one of the key signatures of a modern
process framework and provides a viewpoint from which to discuss several of the key
principles introduced in Chapter 4.

1. Architecture-first approach. Extensive requirements analysis, design, imple-
mentation, and assessment activities are performed before the construction
phase, when full-scale implementation is the focus. This early life-cycle
focus on implementing and testing the architecture must precede full-scale

8.1 SOFTWARE PROCESS WORKFLOWS 119

Inception : Elaboration : Construcion : Transition

Management 1 t I —T—T T 1 I)

Environment T — 1 1

Requirements [——-‘—_—_I——l——| :
Design ~ ——y——— —{ | |t
Assessment —— T

Deployment ' i __— T |
FIGURE 8-1. Activity levels across the life-cycle phases

Implementation

development and testing of all the components and must precede the
downstream focus on completeness and quality of the entire breadth of the
product features.

2. lterative life-cycle process. In Figure 8-1, each phase portrays at least two
iterations of each workflow. This default is intended to be descriptive, not
prescriptive. Some projects may require only one iteration in a phase; oth-
ers may require several iterations. The point is that the activities and arti-
facts of any given workflow may require more than one pass to achieve
adequate results.

3. Round-trip engineering. Raising the environment activities to a first-class
workflow is critical. The environment is the tangible embodiment of the
project’s process, methods, and notations for producing the artifacts.

4. Demonstration-based approach. Implementation and assessment activities
are initiated early in the life cycle, reflecting the emphasis on constructing
executable subsets of the evolving architecture.

Some key themes of the conventional process are not carried over in the work-
flows of the modern process. Their absence is equally important. Documentation is
omitted because most documentation should be merely a secondary by-product of the
other activities. Quality assurance is omitted because it is worked into all activities,
not separated into a distinct workflow that operates independently from engineering
or management.

Table 8-1 shows the allocation of artifacts and the emphasis of each workflow in
each of the life-cycle phases of inception, elaboration, construction, and transition.

120 WORKFLOWS OF THE PROCESS

TABLE 8-1. The artifacts and life-cycle emphases associated with each workflow
WORKFLOW ARTIFACTS LIFE-CYCLE PHASE EMPHASIS
Management Business case Inception: Prepare business case and vision
Software development Elaboration: Plan development
plan Construction: Monitor and control development
Status assessments Transition: Monitor and control deployment
Vision
Work breakdown
structure
Environment Environment - Inception: Define development environment and
Software change order change management infrastructure
database Elaboration: Install development environment
and establish change management database
Construction: Maintain development environ-
ment and software change order database
Transition: Transition maintenance environment
and software change order database
Requirements Requirements set Inception: Define operational concept
Release specifications Elaboration: Define architecture objectives
Vision Construction: Define iteration objectives
Transition: Refine release objectives
Design Design set Inception: Formulate architecture concept
Architecture description Elaboration: Achieve architecture baseline
Construction: Design components
Transition: Refine architecture and components
Implementation Implementation set Inception: Support architecture prototypes
Deployment set Elaboration: Produce architecture baseline
Construction: Produce complete componentry
Transition: Maintain components
Assessment Release specifications Inception: Assess plans, vision, prototypes
Release descriptions Elaboration: Assess architecture
User manual Construction: Assess interim releases
Deployment set Transition: Assess product releases
Deployment Deployment set Inception: Analyze user community

Elaboration: Define user manual
Construction: Prepare transition materials

Transition: Transition product to user

8.2 ITERATION WORKFLOWS 121

The engineering workflows of requirements, design, implementation, and assessment
are more fully covered in other books about the Unified Modeling Language. Activi-
ties in the management workflow and the environment workflow are the main focus
in Part III. Deployment is discussed minimally because it is usually project-specific.

8.2 ITERATION WORKFLOWS

An iteration consists of a loosely sequential set of activities in various proportions,
depending on where the iteration is located in the development cycle. Each iteration is
defined in terms of a set of allocated usage scenarios. The components needed to
implement all selected scenarios are developed and integrated with the results of pre-
vious iterations. An individual iteration’s workflow, illustrated in Figure 8-2, gener-
ally includes the following sequence:

* Management: iteration planning to determine the content of the release
and develop the detailed plan for the iteration; assignment of work pack-
ages, or tasks, to the development team

¢ Environment: evolving the software change order database to reflect all
new baselines and changes to existing baselines for all product, test, and
environment components

Allocated Results from the » Up-to-date risk assessment
usage scenarios previous iteration « Controlled baselines of artifacts
* Demonstrable results
il & ~ Requirements understanding
— Design features/performance
Management — Plan credibility

Requirements

Design

Implementation

Assessment

Deployment

iy

Results for the next
iteration

FIGURE 8-2. The workflow of an iteration

122 WORKFLOWS OF THE PROCESS

® Requirements: analyzing the baseline plan, the baseline architecture, and
the baseline requirements set artifacts to fully elaborate the use cases to be
demonstrated at the end of this iteration and their evaluation criteria;
updating any requirements set artifacts to reflect changes necessitated by
results of this iteration’s engineering activities

* Design: evolving the baseline architecture and the baseline design set arti-
facts to elaborate fully the design model and test model components neces-
sary to demonstrate against the evaluation - criteria allocated to this
iteration; updating design set artifacts to reflect changes necessitated by the
results of this iteration’s engineering activities

¢ Implementation: developing or acquiring any new components, and
enhancing or modifying any existing components, to demonstrate the eval-
uation criteria allocated to this iteration; integrating and testing all new
and modified components with existing baselines (previous versions)

e Assessment: evaluating the results of the iteration, including compliance
with the allocated evaluation criteria and the quality of the current base-
lines; identifying any rework required and determining whether it should
be performed before deployment of this release or allocated to the next
release; assessing results to improve the basis of the subsequent iteration’s
plan

* Deployment: transitioning the release either to an external organization
(such as a user, independent verification and validation contractor, or regu-
latory agency) or to internal closure by conducting a post-mortem so that
lessons learned can be captured and reflected in the next iteration

As with any sequence of a software development workflow, many of the activities occur
concurrently. For example, requirements analysis is not done all in one continuous
lump; it intermingles with management, design, implementation, and so forth.

Iterations in the inception and elaboration phases focus on management, re-
quirements, and design activities. Iterations in the construction phase focus on design,
implementation, and assessment. Iterations in the transition phase focus on assess-
ment and deployment. Figure 8-3 shows the emphasis on different activities across the
life cycle.

These descriptions are pretty simplistic. In practice, the various sequences and
overlaps among iterations become more complex. The terms iteration and increment
deal with some of the pragmatic considerations. An iteration represents the state of
the overall architecture and the complete deliverable system. An increment represents

8.2 ITERATION WORKFLOWS 123

the current work in progress that will be combined with the preceding iteration to
form the next iteration. Figure 8-4, an example of a simple development life cycle,
illustrates the difference between iterations and increments. This example also
illustrates a typical build sequence from the perspective of an abstract layered
architecture.

Management

Requirements

Design
Implementation
Inception and Elaboration Phases Assessment
Deployment
Management
Requirements
Design
Implementation
Construction Phase Assessment
Deployment
Management
Requirements
Design
Implementation
Transition Phase Assessment
Deployment

FIGURE 8-3. Iteration emphasis across the life cycle

124 WORKFLOWS OF THE PROCESS

Inception

Elaboration

Construction Transition

100%

Progress

Progress can be measured as the % of
components under configuration control,
the % of demonstrable use cases, etc.

p—

]
lteration 1 Iteration 2 | Iteration 3
Increment 4
1. Increment 5
A .
: Increment 6 lteration 7
A

Iterafion 1 Iterafion 2 Iteration 3 lteration 4 Iteration 5 Iteration 6

Application-specific
components

Domain-specific
components

=
=

=l

B \m
el e

Middieware and common
mechanism components

Operating system and
networking components

@l G

B @[

EQ 02"
Ef

Iteration 1

Iteration 2

lteration 3

Iteration 7 adds no new
components, only upgrades,

lterations 1, 2, and 3 include
architecturally significant
components.

Increment 4

fixes, and enhancements.

Iteration 7

Increment 5

Increment 6

FIGURE 8-4. A typical build sequence associated with a layered architecture

CHAPTER 9

Checkpoints
of the Process

t is always important to have visible mile-
nes in the li le wh i - .

stones in the life cycle where various stake A Three sequences of project check-

holders meet, face to face, to discuss progress ' points are used to synchronize stake-

and plans. The purpose of these events is not i hoider expectations throughout the life

only to demonstrate how well a project is per- | cycle: major milestones, minor mile-

. . . © stones, and status assessments.
forming but also to achieve the following;: i oo
A The most important major milestone
)) is usually the event that transitions the
¢ Synchronize stakeholder expectations project from the elaboration phase into

and achieve concurrence on three evolv- ' the construction phase.

ing perspectives: the requirements, the 4 The formatand content of minor
desien. and the plan milestones are highly dependent on the
g, pla project and the organizational culture.

‘ Key Points

i
* Synchronize related artifacts into a con- & Periodic status assessments are crucial

sistent and balanced state * for focusing continuous attention on
I the evolving health of the project and

e Identify the important risks, issues, and i its dynamic priorities.
out-of-tolerance conditions el e

¢ Perform a global assessment for the whole life cycle, not just the current sit-
uation of an individual perspective or intermediate product

Milestones must have well-defined expectations and provide tangible results. This
does not preclude the renegotiation of the milestone’s objectives once the project has
gained further understanding of the trade-offs among the requirements, the design,
and the plan.

125

126 CHECKPOINTS OF THE PROCESS

Three types of joint management reviews are conducted throughout the process:

1. Major milestones. These systemwide events are held at the end of each
development phase. They provide visibility to systemwide issues, synchro-
nize the management and engineering perspectives, and verify that the aims
of the phase have been achieved.

2. Minor milestones. These iteration-focused events are conducted to review
the content of an iteration in detail and to authorize continued work.

3. Status assessments. These periodic events provide management with fre-
quent and regular insight into the progress being made.

Each of the four phases—inception, elaboration, construction, and transition—
consists of one or more iterations and concludes with a major milestone when a
planned technical capability is produced in demonstrable form. An iteration repre-
sents a cycle of activities for which there is a well-defined intermediate result—a
minor milestone—captured with two artifacts: a release specification (the evaluation
criteria and plan) and a release description (the results). Major milestones at the end
of each phase use formal, stakeholder-approved evaluation criteria and release
descriptions; minor milestones use informal, development-team-controlled versions
of these artifacts.

The level of ceremony and the number of milestones will vary depending on sev-
eral parameters, such as scale, number of stakeholders, business context, technical
risk, and sensitivity of cost and schedule perturbations. Most projects should establish
all four major milestones. Only in exceptional cases would you add other major mile-
stones or operate with fewer. (For a nationally important project under broad scru-
tiny, you might add more; for a scientific experiment with an organic user, you might
have fewer.) For simpler projects, very few or no minor milestones may be necessary
to manage intermediate results, and the number of status assessments may be infre-
quent (for example, quarterly). Figure 9-1 illustrates a typical sequence of project
checkpoints for a relatively large project.

9.1 MAJOR MILESTONES

The descriptions in this section closely follow the life-cycle anchor points approach
described in “Anchoring the Software Process” [Boehm, 1996]. The four major mile-
stones occur at the transition points between life-cycle phases. They can be used in
many different process models, including the conventional waterfall model. In an
iterative model, the major milestones are used to achieve concurrence among all

9.1 MAJOR MILESTONES 127

Inception Elaboration Construction Transition
Iteration 1 fteration 2] Iteration 3 IterationAJ Iteration 5] lteration 6 Iteration 7
Initial
Life-Cycle Life-Cycle Operational Product
Objectives Architecture Capability Release
Milestone Milestone Milestone Milestone
Major A A A A
Milestones Strategic focus on global concerns of the entire software project
Minor
Milestones Tactical focus on local concerns of the current iteration
Status IR CERC IR G IR G IRC IR ARG IR C ARG RS IR G IR G ARG ER G IR ¢
u

Assessments Periodic synchronization of stakeholder expectations

FIGURE 9-1. A typical sequence of life-cycle checkpoints

stakeholders on the current state of the project. Different stakeholders have very dif-
ferent concerns:

e Customers: schedule and budget estimates, feasibility, risk assessment,
requirements understanding, progress, product line compatibility

» Users: consistency with requirements and usage scenarios, potential for
accommodating growth, quality attributes

® Architects and systems engineers: product line compatibility, requirements
changes, trade-off analyses, completeness and consistency, balance among
risk, quality, and usability

* Developers: sufficiency of requirements detail and usage scenario descrip-
tions, frameworks for component selection or development, resolution of
development risk, product line compatibility, sufficiency of the development
environment

* Maintainers: sufficiency of product and documentation artifacts, under-
standability, interoperability with existing systems, sufficiency of maintenance
environment

® Others: possibly many other perspectives by stakeholders such as regula-
tory agencies, independent verification and validation contractors, venture
capital investors, subcontractors, associate contractors, and sales and mar-
keting teams

The milestones described in this section may be conducted as one continuous
meeting of all concerned parties or incrementally through mostly on-line review of the
various artifacts. There are considerable differences in the levels of ceremony for these

128 CHECKPOINTS OF THE PROCESS

TABLE 9-1. The general status of plans, requirements, and products across the major

milestones
SOLUTION SPACE
UNDERSTANDING PROGRESS
OF PROBLEM SPACE (SOFTWARE
MILESTONES PLANS (REQUIREMENTS) PRODUCT)
Life-cycle Definition of Baseline vision, Demonstration of at
objectives stakeholder including growth least one feasible
milestone responsibilities vectors, quality architecture
Low-fidelity life-cycle att‘rlb'u‘tes, and Make/buy/reuse
plan priorities trade-offs
High-fidelity elabora- Use case model Initial design model
tion phase plan
Life-cycle High-fidelity con- Stable vision and use Stable design set
arf:lhitecture s};r_illctifon pha.sel plan case model Make/buy/reuse
mulestone f tl) o lrlnatetr.la S)’ Evaluation criteria decisions
abor allocation .
,) for construction Critical component
Low-fidelity transi- releases, initial opera-
;) 2 prototypes
tion phase plan tional capability
Draft user manual
Initial High-fidelity transi- Acceptance criteria Stable implementation
operational tion phase plan for product release set
caﬁ)ablllty Releasable user Critical features and
milestone manual core capabilities
Objective insight into
product qualities
Product Next-generation Final user manual Stable deployment set
re!ease product plan Full features
milestone

Compliant quality

events, depending on several factors discussed in Chapter 14. The essence of each
major milestone is to ensure that the requirements understanding, the life-cycle plans,
and the product’s form, function, and quality are evolving in balanced levels of detail
and to ensure consistency among the various artifacts. Table 9-1 summarizes the bal-
ance of information across the major milestones.

Life-Cycle Objectives Milestone

The life-cycle objectives milestone occurs at the end of the inception phase. The goal is
to present to all stakeholders a recommendation on how to proceed with develop-
ment, including a plan, estimated cost and schedule, and expected benefits and cost
savings. The vision statement and the critical issues relative to requirements and the

9.1 MAJOR MILESTONES 129

operational concept are addressed. A draft architecture document and a prototype
architecture demonstration provide evidence of the completeness of the vision and the
software development plan. A successfully completed life-cycle objectives milestone
will result in authorization from all stakeholders to proceed with the elaboration
phase.

Life-Cycle Architecture Milestone

The life-cycle architecture milestone occurs at the end of the elaboration phase. The
primary goal is to demonstrate an executable architecture to all stakeholders. A more
detailed plan for the construction phase is presented for approval. Critical issues rela-
tive to requirements and the operational concept are addressed. This review will also
produce consensus on a baseline architecture, baseline vision, baseline software devel-
opment plan, and evaluation criteria for the initial operational capability milestone.
The baseline architecture consists of both a human-readable representation (the archi-
tecture document) and a configuration-controlled set of software components captured
in the engineering artifacts. A successfully completed life-cycle architecture milestone
will result in authorization from the stakeholders to proceed with the construction
phase.

Because the most important major milestone is usually the event that transitions
the project from the elaboration phase into the construction phase, the general con-
tent of a typical milestone is elaborated here in more detail. From a management and
contractual standpoint, this major milestone corresponds to achieving a software
development state in which the research and development stage is concluding and the
production stage is being initiated. A software development project ready for this
transition exhibits the following characteristics:

® The critical use cases have been defined, agreed upon by stakeholders, and
codified into a set of scenarios for evaluating the evolving architecture.

* A stable architecture has been baselined (subjected to configuration man-
agement) in the source language format. Stability here means that the
important qualities of the architecture (performance, robustness, scalabil-
ity, adaptability) have been demonstrated against the critical use cases suffi-
cient to resolve all major requirements and design and planning risks.
(Although the risks may not be resolved, the path to resolution has been
defined.)

e The risk profile is well understood. Although all risks do not need to be
fully resolved, there should be a common understanding among stakehold-
ers of outstanding risks that could have serious consequences, and mitiga-
tion plans should be fully elaborated.

130 CHECKPOINTS OF THE PROCESS

¢ The development plan for the construction and transition phases is defined
with enough fidelity that construction iterations can proceed with predict-
able results. Predictable here means that the development organization will
commit to fixed-price increments that can be transitioned to the user in less
than one year.

The content of this milestone will vary across project domains. It should include
at least the following:

* A presentation and overview of the current project state

* A configuration-controlled set of engineering information, available elec-
tronically or in hard copy

* An executable demonstration of capability

The technical data listed in Figure 9-2 should have been reviewed by the time of the life-
cycle architecture milestone. Figure 9-3 provides default agendas for this milestone.

Initial Operational Capability Milestone

The initial operational capability milestone occurs late in the construction phase. The
goals are to assess the readiness of the software to begin the transition into customer/user
sites and to authorize the start of acceptance testing. Issues are addressed concerning

l. Requirements
A. Use case model
B. Vision document (text, use cases)
C. Evaluation criteria for elaboration (text, scenarios)
Il. Architecture
Design view (object models)
Process view (if necessary, run-time layout, executable code structure)
Component view (subsystem layout, make/buy/reuse component
identification)
Deployment view (target run-time layout, target executable code structure)
Use case view (test case structure, test resuit expectation)
1. Draft user manual
lil. Source and executable libraries
A. Product components
B. Test components
C. Environment and tool components

mo om»

FIGURE 9-2. Engineering artifacts available at the life-cycle architecture milestone

9.1 MAJOR MILESTONES 131

Presentation Agenda

I. Scope and ebjectives
A. Demonstration overview
Il. Requirements assessment
A. Project vision and use cases
B. Primary scenarios and evaluation criteria
lll. Architecture assessment
A. Progress
1. Baseline architecture metrics (progress to date and baseline for
measuring future architectural stability, scrap, and rework)
2. Development metrics baseline estimate (for assessing future
progress)
3. Test metrics baseline estimate (for assessing future progress of
the test team)
B. Quality
1. Architectural features (demonstration capability summary vs.
evaluation criteria)
2. Performance (demonstration capability summary vs. evaluation
. criteria)
3. Exposed architectural risks and resolution plans
4. Affordability and make/buy/reuse trade-offs
IV. Construction phase plan assessment
A. lteration content and use case allocation
B. Next iteration(s) detailed plan and evaluation criteria
C. Elaboration phase cost/schedule performance
D. Construction phase resource plan and basis of estimate
E. Risk assessment

Demonstration Agenda

Il. Evaluation criteria

Il. Architecture subset summary

Iil. Demonstration environment summary

IV. Scripted demonstration scenarios

V. Evaluation criteria results and follow-up items

FIGURE 9-3. Default agendas for the life-cycle architecture milestone

installation instructions, software version descriptions, user and operator manuals,
and the ability of the development organization to support user sites. Software quality
metrics are reviewed to determine whether quality is sufficient for transition. The
readiness of the test environment and the test software for acceptance testing is
assessed. Acceptance testing can be done incrementally across multiple iterations or
can be completed entirely during the transition phase. The initiation of the transition
phase is not necessarily the completion of the construction phase. These phases typically
overlap until an initial product is delivered to the user for self-sufficient operation.

132 CHECKPOINTS OF THE PROCESS

Product Release Milestone

The product release milestone occurs at the end of the transition phase. The goal is to
assess the completion of the software and its transition to the support organization, if
any. The results of acceptance testing are reviewed, and all open issues are addressed.
These issues could include installation instructions, software version descriptions,
user and operator manuals, software support manuals, and the installation of the
development environment at the support sites. Software quality metrics are reviewed
to determine whether quality is sufficient for transition to the support organization.

9.2 MINOR MILESTONES

The number of iteration-specific, informal milestones needed depends on the content
and length of the iteration. For most iterations, which have a one-month to six-month
duration, only two minor milestones are needed: the iteration readiness review and
the iteration assessment review. For longer iterations, more intermediate review
points may be necessary. For example, on projects with very formal test procedures
that must be witnessed by other stakeholders, a test readiness review may be held at
which the test plans are reviewed and approved. Large-scale, unprecedented projects
may also use intermediate design walkthroughs as forcing functions for progress
assessment and dissemination throughout the project.

All iterations are not created equal. An iteration can take on very different forms
and priorities, depending on where the project is in the life cycle. Early iterations
focus on analysis and design, with substantial elements of discovery, experimentation,
and risk assessment. Later iterations focus much more on completeness, consistency,
usability, and change management. The milestones of an iteration and its associated
evaluation criteria need to focus the engineering activities on the project priorities as
defined in the overall software development plan, business case, and vision.

e Iteration Readiness Review. This informal milestone is conducted at the
start of each iteration to review the detailed iteration plan and the evalua-
tion criteria that have been allocated to this iteration.

» Iteration Assessment Review. This informal milestone is conducted at the
end of each iteration to assess the degree to which the iteration achieved its
objectives and satisfied its evaluation criteria, to review iteration results, to
review qualification test results (if part of the iteration), to determine che
amount of rework to be done, and to review the impact of the iteration
results on the plan for subsequent iterations.

The format and content of these minor milestones tend to be highly dependent on the
project and the organizational culture. Figure 9-4 identifies the various minor mile-
stones to be considered when a project is being planned.

9.3 PERIODIC STATUS ASSESSMENTS 133

Management
.‘ Requirements
Design
Implementation
Assessment

: : : Deployment

é lteration N—1 A :‘
o Iteration N
Itération N+1 i
feraton N peadincts Dosign Assessment "teratin N
Review Walkthrough Review

FIGURE 9-4. Typical minor milestones in the life cycle of an iteration

9.3 PERIODIC STATUS ASSESSMENTS

Managing risks requires continuous attention to all the interacting activities of a soft-
ware development effort. Periodic status assessments are management reviews con-
ducted at regular intervals (monthly, quarterly) to address progress and quality
indicators, ensure continuous attention to project dynamics, and maintain open com-
munications among all stakeholders. The paramount objective of these assessments is
to ensure that the expectations of all stakeholders (contractor, customer, user, subcon-
tractor) are synchronized and consistent.

Periodic status assessments serve as project snapshots. While the period may
vary, the recurring event forces the project history to be captured and documented.
Status assessments provide the following;:

* A mechanism for openly addressing, communicating, and resolving man-
agement issues, technical issues, and project risks

* Objective data derived directly from on-going activities and evolving prod-
uct configurations

¢ A mechanism for disseminating process, progress, quality trends, practices,
and experience information to and from all stakeholders in an open forum

Recurring themes from unsuccessful projects include status assessments that are
(1) high-overhead activities, because the work associated with generating the status is

134 CHECKPOINTS OF THE PROCESS

separate from the everyday work, and (2) frequently canceled, because of higher pri-
ority issues that require resolution. Recurring themes from successful projects include
status assessments that are (1) low-overhead activities, because the material already
exists as everyday management data, and (2) rarely canceled, because they are consid-
ered too important.

Periodic status assessments are crucial for focusing continuous attention on the
evolving health of the project and its dynamic priorities. They force the software
project manager to collect and review the data periodically, force outside peer review,
and encourage dissemination of best practices to and from other stakeholders. By
standardizing the format and the metrics that are reviewed, an organization can also
enable project-to-project comparisons and dissemination of best practices far more
efficiently.

The default content of periodic status assessments should include the topics
identified in Table 9-2. The only content the software project manager should have to
generate from scratch for each review is an assessment of the top 10 risks. Even this
will be predominantly an update of the previous assessment. A good rule of thumb is
that the status assessment charts should be easily produced by the project manager
with one day’s notice. This minimal effort is possible if the data exist within an auto-
mated environment. The topic technical progress, shown in the table, is discussed in
Chapter 13.

TABLE 9-2. Default content of status assessment reviews
TOPIC CONTENT

Personnel Staffing plan vs. actuals

Attritions, additions

Financial trends Expenditure plan vs. actuals for the previous, current, and next major
milestones

Revenue forecasts

Top 10 risks Issues and ériticality resolution plans

Quantification (cost, time, quality) of exposure

Technical progress Configuration baseline schedules for major milestones
Software management metrics and indicators
Current change trends

Test and quality assessments

Major milestone plans Plan, schedule, and risks for the next major milestone

and results Pass/fail results for all acceptance criteria

Total product scope Total size, growth, and acceptance criteria perturbations

[T1

SOFTWARE

PART

MANAGEMENT
DISCIPLINES

cHaprTER 10 |TERATIVE PROCESS PLANNING

cHAPTER 11 PROJECT ORGANIZATIONS AND
RESPONSIBILITIES

cuarTER 12 PROCESS AUTOMATION

cuarTer 13 PROJECT CONTROL AND
PROCESS INSTRUMENTATION

cHAaPTER 14 TAILORING THE PROCESS

Software management efforts span a broad range of domains, The chapters in
Part 1l discuss the major disciplines necessary for an effective management
workflow: planning, organization, automation, and project control. These disci-
plines of software project management are not easy to define in generic terms.
Therefore, another important discipline is tailoring the process framework to the
specific management needs of a given project.

Planning is the crux of management. The challenge is to develop a plan
that best balances the available resources to provide optimal win conditions for
all stakeholders. The project organization discipline concerns itself with the man-
agement of people—organizing them into teams and allocating responsibilities
for efficient operations. Automating the development process with an electronic
repository for the artifacts provides a foundation for objective instrumentation.
Project control activities act as the “senses” of the project. They are used to assess
the health of the plan, the quality of the artifacts, and the need for changes to
any of the management set artifacts that define the expectations among stake-
holders.

CHAPTER 10

lterative Process
Planning

Like software development, project planning Key Po.ints
requires an iterative process. Like software, .
. . .) . A Projects can underplan and they can
a plan is an intangible piece of intellectual gyerplan. Once again, balance is para-
property to which all the same concepts must ~ mount in the level of planning detail
be applied. Plans have an engineering stage, 2nd the buy-in among stakeholders.
during which the plan is developed, and a pro- fThﬁt""Tk b,':eafkfhm"’" S'F'“:t“’re 'sltthe
. . architecture” o e projec an.
duction stage, when the plan is executed. Plans projectP

: must encapsulate change and evolve
must evolve as the understanding evolves of with the appropriate level of detail

the problem space and the solution space. . throughoutthe life cycle.

Planning errors are just like product errors: 4 Cost ar(;d schedule bUdthS Shour:d be
: . estimated using macroanalysis tech-

The sooner in the life cycle they are resolved, niques (top-down project level) and

the less impact they have on project success. microanalysis technigues (bottom-up

Comprehensive project plans are highly - task level) to achieve predictable results.
dependent on numerous parameters, any one «
of which can have a significant impact on the direction of a project. Nevertheless,
generic planning advice is sought by every software project manager as a skeleton
from which to begin. This chapter is not a plan, a cookbook for a plan, nor a recipe
for a plan. It is simply a rough model of a few dimensions, perhaps a starting point for
a plan.

10.1 WORK BREAKDOWN STRUCTURES

A good work breakdown structure and its synchronization with the process frame-
work are critical factors in software project success. Although the concept and prac-
tice of using a WBS are well established, this topic is largely avoided in the published
literature. This is primarily because the development of a work breakdown structure
is dependent on the project management style, organizational culture, customer

‘ 139

140 ITERATIVE PROCESS PLANNING

preference, financial constraints, and several other hard-to-define, project-specific
parameters. Software Engineering Economics [Boehm, 1981] contains background
material on software-oriented work breakdown structures.

A WBS is simply a hierarchy of elements that decomposes the project plan into
the discrete work tasks. A WBS provides the following information structure:

* A delineation of all significant work
® A clear task decomposition for assignment of responsibilities

» A framework for scheduling, budgeting, and expenditure tracking

Many parameters can drive the decomposition of work into discrete tasks: prod-
uct subsystems, components, functions, organizational units, life-cycle phases, even
geographies. Most systems have a first-level decomposition by subsystem. Subsystems
are then decomposed into their components, one of which is typically the software.
This section focuses on software WBS elements, whether the software is the whole
project or simply one component of a larger system.

10.1.1 CONVENTIONAL WBS IsSuEes

Conventional work breakdown structures frequently suffer from three fundamental
flaws.

1. They are prematurely structured around the product design.

2. They are prematurely decomposed, planned, and budgeted in either too
much or too little detail.

3. They are project-specific, and cross-project comparisons are usually diffi-
cult or impossible.

Conventional work breakdown structures are prematurely structured around
the product design. Figure 10-1 shows a typical conventional WBS that has been
structured primarily around the subsystems of its product architecture, then further
decomposed into the components of each subsystem. Once this structure is ingrained
in the WBS and then allocated to responsible managers with budgets, schedules, and
expected deliverables, a concrete planning foundation has been set that is difficult and
expensive to change. A WBS is the architecture for the financial plan. Just as software
architectures need to encapsulate components that are likely to change, so must plan-
ning architectures. To couple the plan tightly to the product structure may make sense
if both are reasonably mature. However, a looser coupling is desirable if either the
plan or the architecture is subject to change.

10.1 WORK BREAKDOWN STRUCTURES

141

Management
System requirements and design
Subsystem 1
Component 11
Requirements
Design
Code
Test
Documentation
... (similar structures for other components)
Component 1N
Requirements
Design
Code
Test
Documentation
... (similar structures for other subsystems)
Subsystem M
Component M1
Requirements
Design
Code
Test
Documentation
. . . {similar structures for other components)
Component MN
Requirements
Design
Code
Test
Documentation
Integration and test
Test planning
Test procedure preparation
Testing
Test reports
Other support areas
Configuration control
Quality assurance
System administration

FIGURE 10-1. Conventional work breakdown structure, following the product
hierarchy

142 ITERATIVE PROCESS PLANNING

Conventional work breakdown structures are prematurely decomposed,
planned, and budgeted in either too little or too much detail. Large software projects
tend to be overplanned, and small projects tend to be underplanned. The WBS shown
in Figure 10-1 is overly simplistic for most large-scale systems, where six or more lev-
els of WBS elements are commonplace. The management team plans out each element
completely and creates a baseline budget and schedule for every task at the same level
of detail. On the other hand, most small-scale or in-house developments elaborate
their WBSs to a single level only, with no supporting detail. The management team
plans and conducts the project with coarse tasking and cost and schedule accountabil-
ity. Both approaches are out of balance. In general, a WBS elaborated to at least two
or three levels makes sense. For large-scale systems, additional levels may be necessary
in later phases of the life cycle. The basic problem with planning too much detail at
the outset is that the detail does not evolve with the level of fidelity in the plan. For
example, it is impossible to lay out accurately in month 1—when the plan is being
baselined, and before the architecture and test scenarios have been engineered—
details of the test activities that are scheduled 18 months later.

Conventional work breakdown structures are project-specific, and cross-project
comparisons are usually difficult or impossible. Most organizations allow individual
projects to define their own project-specific structure tailored to the project manager’s
style, the customer’s demands, or other project-specific preferences. With no standard
WBS structure, it is extremely difficult to compare plans, financial data, schedule
data, organizational efficiencies, cost trends, productivity trends, or quality trends
across multiple projects. Each project organizes the work differently and uses differ-
ent units of measure. Some of the following simple questions, which are critical to any
organizational process improvement program, cannot be answered by most project
teams that use conventional work breakdown structures.

® What is the ratio of productive activities (requirements, design, implemen-
tation, assessment, deployment) to overhead activities {management, envi-
ronment)?

e What is the percentage of effort expended in rework activities?

® What is the percentage of cost expended in software capital equipment (the
environment expenditures)?

* What is the ratio of productive testing versus (unproductive) integration?

® What is the cost of release N (as a basis for planning release N+1)?

10.1.2 EVOLUTIONARY WORK BREAKDOWN STRUCTURES

An evolutionary WBS should organize the planning elements around the process
framework rather than the product framework. This approach better accommodates

10.1 WORK BREAKDOWN STRUCTURES 143

the expected changes in the evolving plan and allows the level of planning fidelity to
evolve in a straightforward way. The basic recommendation for the WBS is to orga-
“nize the hierarchy as follows:

e First-level WBS elements are the workflows (management, environment,
requirements, design, implementation, assessment, and deployment). These
elements are usually allocated to a single team (as discussed in Chapter 11)
and constitute the anatomy of a project for the purposes of planning and
comparison with other projects.

¢ Second-level elements are defined for each phase of the life cycle (inception,
elaboration, construction, and transition). These elements allow the fidelity
of the plan to evolve more naturally with the level of understanding of the
requirements and architecture, and the risks therein.

* Third-level elements are defined for the focus of activities that produce the
artifacts of each phase. These elements may be the lowest level in the hier-
archy that collects the cost of a discrete artifact for a given phase, or they
may be decomposed further into several lower level activities that, taken
together, produce a single artifact.

A default WBS consistent with the process framework (phases, workflows, and
artifacts) is shown in Figure 10-2. This recommended structure provides one example
of how the elements of the process framework can be integrated into a plan. It pro-
vides a framework for estimating the costs and schedules of each element, allocating
them across a project organization, and tracking expenditures.

The structure shown is intended to be merely a starting point. It needs to be tai-
lored to the specifics of a project in many ways.

® Scale. Larger projects will have more levels and substructures.

¢ Organizational structure. Projects that include subcontractors or span mul-
tiple organizational entities may introduce constraints that necessitate dif-
ferent WBS allocations.

* Degree of custom development. Depending on the character of the project,
there can be very different emphases in the requirements, design, and
implementation workflows. A business process re-engineering project
based primarily on existing components would have much more depth in
the requirements element and a fairly shallow design and implementation
element. A fully custom development of a one-of-a-kind technical applica-
tion may require fairly deep design and implementation elements to man-
age the risks associated with the custom, first-generation components.

144

ITERATIVE PROCESS PLANNING

AA

AB

AC

AD

BA

BB

BC

BD

CA

CB

CcC
CD

A Management

Inception phase management

AAA Business case development

AAB Elaboration phase release specifications

AAC Elaboration phase WBS baselining

AAD Software development plan

AAE Inception phase project control and status assessments
Elaboration phase management

ABA Construction phase release specifications

ABB Construction phase WBS baselining

ABC Elaboration phase project control and status assessments
Construction phase management

ACA Deployment phase planning

ACB Deployment phase WBS baselining

ACC Construction phase project control and status assessments
Transition phase management

ADA Next generation planning

ADB Transition phase project control and status assessments

B Environment

Inception phase environment specification

Elaboration phase environment baselining

BBA Development environment installation and administration

BBB Development environment integration and custom
toolsmithing

BBC SCO database formulation

Construction phase environment maintenance

BCA Deveiopment environment installation and administration

BCB SCO database maintenance

Transition phase environment maintenance

BDA Development environment maintenance and administration

BDB SCO database maintenance

BDC Maintenance environment packaging and transition

C Requirements

Inception phase requirements development
CAA Vision specification

CAB Use case modeling

Elaboration phase requirements baselining
CBA Vision baselining

CBB Use case model baselining
Construction phase requirements maintenance
Transition phase requirements maintenance

10.1 WORK BREAKDOWN STRUCTURES 145

D Design
DA Inception phase architecture prototyping
DB Elaboration phase architecture baselining
DBA Architecture design modeling i
DBB Design demonstration planning and conduct
DBC Software architecture description
DC Construction phase design modeling
DCA Architecture design model maintenance
DCB Component design modeling
DD Transition phase design maintenance
E Implementation
EA Inception phase component prototyping
EB Elaboration phase component implementation
EBA Critical component coding demonstration integration
EC Construction phase component implementation
ECA Initial release(s) component coding and stand-alone testing
ECB Alpha release component coding and stand-alone testing
ECC Beta release component coding and stand-alone testing
ECD Component maintenance
ED Transition phase component maintenance
F Assessment ‘
FA Inception phase assessment planning
FB Elaboration phase assessment
FBA Test modeling
FBB Architecture test scenario implementation
FBC Demonstration assessment and release descriptions
FC Construction phase assessment
FCA Initial release assessment and release description
FCB Alpha release assessment and release description
FCC Beta release assessment and release description
FD Transition phase assessment
FDA Product release assessment and release descriptions
G Deployment
GA Inception phase deployment planning
GB Elaboration phase deployment planning
GC Construction phase deployment
GCA User manual baselining
GD Transition phase deployment
GDA Product transition to user

FIGURE 10-2. Default work breakdown structure

146 ITERATIVE PROCESS PLANNING

* Business context. Contractual projects require much more elaborate man-
agement and assessment elements. Projects developing commercial prod-
ucts for delivery to a broad customer base may require much more
elaborate substructures for the deployment element. An application de-
ployed to a single site may have a trivial deployment element (such as an
internally developed business application) or an elaborate one (such as
transitioning from a mission-critical legacy system with parallel operation,
to achieve zero downtime). ’

¢ Precedent experience. Very few projects start with a clean slate. Most of
them are developed as new generations of a legacy system (with a mature
WBS) or in the context of existing organizational standards (with preor-
dained WBS expectations). It is important to accommodate these con-
straints to ensure that new projects exploit the existing experience base and
benchmarks of project performance. '

The WBS decomposes the character of the project and maps it to the life cycle,
the budget, and the personnel. Reviewing a WBS provides insight into the important
attributes, priorities, and structure of the project plan. In performing project assess-
ments and software management audits over the past several years, I have found the
WBS to be the most valuable source of objective information about the project plan.
While the software development plan and the business case provide a context for
review, the WBS and the relative budgets allocated among the elements provide the
most meaningful indicators of the management approach, priorities, and concerns.

Another important attribute of a good WBS is that the planning fidelity inherent
in each element is commensurate with the current life-cycle phase and project state.
Figure 10-3 illustrates this idea. One of the primary reasons for organizing the default
WBS the way I have is to allow for planning elements that range from planning pack-
ages (rough budgets that are maintained as an estimate for future elaboration rather
than being decomposed into detail) through fully planned activity networks (with a
well-defined budget and continuous assessment of actual versus planned expenditures).

10.2 PLANNING GUIDELINES

Software projects span a broad range of application domains. It is valuable but risky
to make specific planning recommendations independent of project context. It is valu-
able because most people in management positions are looking for a starting point, a
skeleton they can flesh out with project-specific details. They know that initial plan-
ning guidelines capture the expertise and experience of many other people. Such
guidelines are therefore considered credible bases of estimates and instill some confi-
dence in the stakeholders.

10.2 PLANNING GUIDELINES 147

Inception : Elaboration
WBS Element Fidelity WBS Element Fidelity
Management High Management High
Environment Moderate : Environment High
Requirements High : Requirements High
Design Moderate . Design High
Implementation Low Implementation Moderate
Assessment Low Assessment Moderate
Deployment Low Deployment Low
WBS Element Fidelity E WBS Element Fidelity
Management High Management High
Environment High - Environment High
Requirements Low : Requirements Low
Design Low . Design Moderate
Impiementation Moderate : Implementation High
Assessment High Assessment High
Deployment High : Deployment Moderate

Transition - Construction

FIGURE 10-3. Evolution of planning fidelity in the WBS over the life cycle

Project-independent planning advice is also risky. There is the risk that the
guidelines may be adopted blindly without being adapted to specific project circum-
stances. Blind adherence to someone else’s project-independent planning advice is a
sure sign of an incompetent management team. There is also the risk of misinterpreta-
tion. The variability of project parameters, project business contexts, organizational
cultures, and project processes makes it extremely easy to make mistakes that have
significant potential impact. Within this book, I have tried to provide an adequate
context so that such misinterpretations can be avoided. To temper the project-
independent discussions, Appendix D presents a very detailed case study of a specific
real-world project. The case study provides a good example of a project that is 90%
consistent with the project-independent planning guidelines given here. It also pro-
vides examples and rationale for several minor deviations from these guidelines.

Two simple planning guidelines should be considered when a project plan is
being initiated or assessed. The first guideline, detailed in Table 10-1, prescribes a
default allocation of costs among the first-level WBS elements. The second guideline,
detailed in Table 10-2, prescribes the allocation of effort and schedule across the life-
cycle phases. Given an initial estimate of total project cost and these two tables, devel-
oping a staffing profile, an allocation of staff resources to teams, a top-level project

148 ITERATIVE PROCESS PLANNING

TABLE 10-1. WBS budgeting defaults

FIRST-LEVEL
WBS ELEMENT DEFAULT BUDGET
Management 10%
Environment 10%
Requirements 10%
Design 15%
Implementation 25%
Assessment 25%
Deployment 5%

Total 100%

schedule, and an initial WBS with task budgets and schedules is relatively straightfor-
ward. This sort of top-down plan development is a useful planning exercise that
should result in a baseline for further elaboration.

What is the source of the data in Table 10-1 and Table 10-2? Unfortunately, it is
not a data bank of well-documented case studies of numerous successful projects that
followed a modern software process. These data came mostly from my own experi-
ence, including involvement with software cost estimation efforts over the past
decade that spanned a broad range of software projects, organizations, processes, and
technologies.

Table 10-1 provides default allocations for budgeted costs of each first-level WBS
element. While these values are certain to vary across projects, this allocation provides
a good benchmark for assessing the plan by understanding the rationale for deviations
from these guidelines. An important point here is that this is cost allocation, not effort
allocation. To avoid misinterpretation, two explanations are necessary.

1. The cost of different labor categories is inherent in these numbers. For
example, the management, requirements, and design elements tend to use
more personnel who are senior and more highly paid than the other elements
use. If requirements and design together consume 25% of the budget

TABLE 10-2. Default distributions of effort and schedule by phase
DOMAIN INCEPTION ELABORATION CONSTRUCTION TRANSITION

Effort 5% 20% 65% 10%
Schedule 10% 30% 50% 10%

10.3 THE COST AND SCHEDULE ESTIMATING PROCESS 149

(employing people with an average salary of $100/hour), this sum may rep-
resent half as many staff hours as the assessment element, which also
accounts for 25% of the budget but employs personnel with an average sal-
ary of $50/hour.

2. The cost of hardware and software assets that support the process automa-
tion and development teams is also included in the environment element.

Table 10-2 provides guidelines for allocating effort and schedule across the life-
cycle phases. Although these values can also vary widely, depending on the specific
constraints of an application, they provide an average expectation across a spectrum
of application domains. Achieving consistency using these specific values is not as
important as understanding why your project may be different.

10.3 THE COST AND SCHEDULE ESTIMATING PROCESS

Project plans need to be derived from two perspectives. The first is a forward-looking,
top-down approach. It starts with an understanding of the general requirements and
constraints, derives a macro-level budget and schedule, then decomposes these ele-
ments into lower level budgets and intermediate milestones. From this perspective, the
following planning sequence would occur:

1. The software project manager (and others) develops a characterization of
the overall size, process, environment, people, and quality required for the
project.

2. A macro-level estimate of the total effort and schedule is developed using a
software cost estimation model.

3. The software project manager partitions the estimate for the effort into a
top-level WBS using guidelines such as those in Table 10-1. The project
manager also partitions the schedule into major milestone dates and parti-
tions the effort into a staffing profile using guidelines such as those in
Table 10-2. Now there is a project-level plan. These sorts of estimates tend
to ignore many detailed project-specific parameters.

4. At this point, subproject managers are given the responsibility for decom-
posing each of the WBS elements into lower levels using their top-level allo-
cation, staffing profile, and major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. You start
with the end in mind, analyze the micro-level budgets and schedules, then sum all
these elements into the higher level budgets and intermediate milestones. This approach

150 ITERATIVE PROCESS PLANNING

tends to define and populate the WBS from the lowest levels upward. From this per-
spective, the following planning sequence would occur: '

1. The lowest level WBS elements are elaborated into detailed tasks, for
which budgets and schedules are estimated by the responsible WBS element
manager. These estimates tend to incorporate the project-specific parame-
ters in an exaggerated way.

2. Estimates are combined and integrated into higher level budgets and mile-
stones. The biases of individual estimators need to be homogenized so that
there is a consistent basis of negotiation.

3. Comparisons are made with the top-down budgets and schedule milestones.
Gross differences are assessed and adjustments are made in order to con-
verge on agreement between the top-down and the bottom-up estimates.

Milestone scheduling or budget allocation through top-down estimating tends
to exaggerate the project management biases and usually results in an overly optimis-
tic plan. Bottom-up estimates usually exaggerate the performer biases and result in an
overly pessimistic plan. Iteration is necessary, using the results of one approach to
validate and refine the results of the other approach, thereby evolving the plan
through multiple versions. This process instills ownership of the plan in all levels of
management.

These two planning approaches should be used together, in balance, throughout
the life cycle of the project. During the engineering stage, the top-down perspective
will dominate because there is usually not enough depth of understanding nor stabil-
ity in the detailed task sequences to perform credible bottom-up planning. During the
production stage, there should be enough precedent experience and planning fidelity
that the bottom-up planning perspective will dominate. By then, the top-down
approach should be well tuned to the project-specific parameters, so it should be used
more as a global assessment technique. Figure 10-4 illustrates this life-cycle planning
balance.

10.4 THE ITERATION PLANNING PROCESS

So far, this discussion has dealt only with the application-independent aspects of bud-
geting and scheduling. Another dimension of planning is concerned with defining the
actual sequence of intermediate results. Planning the content and schedule of the
major milestones and their intermediate iterations is probably the most tangible form
of the overall risk management plan. An evolutionary build plan is important because
there are always adjustments in build content and schedule as early conjecture evolves
into well-understood project circumstances.

10.4 THE ITERATION PLANNING PROCESS 151

100%

Planning Emphasis

Bottom-up task-level planning based on
metrics from previous iterations

Top-down project-level planning based on
macroanalysis from previous projects

Engineering Stage

Production Stage

{nception Elaboration

Construction Transition

Feasibility iterations Architecture iterations

Engineering stage planning emphasis:

» Macro-level task estimation for
production-stage artifacts

* Micro-level task estimation for
engineering artifacts

» Stakeholder concurrence

» Coarse-grained variance analysis of
actual vs. planned expenditures

* Tuning the top-down project-independent

planning guidelines into project-specific
planning guidelines
« WBS definition and elaboration

Usable iterations Product releases

Production stage planning emphasis:

» Micro-level task estimation for
production-stage artifacts

» Macro-level task estimation for
maintenance of engineering artifacts

¢ Stakeholder concurrence

* Fine-grained variance analysis of actual
vs. planned expenditures

FIGURE 10-4. Planning balance throughout the life cycle

A generic build progression and general guidelines on the number of iterations in

each phase are described next. Iteration is used to mean a complete synchronization
across the project, with a well-orchestrated global assessment of the entire project
baseline. Other micro-iterations, such as monthly, weekly, or daily builds, are per-

formed en route to these project-level synchronization points.

e Inception iterations. The early prototyping activities integrate the founda-
tion components of a candidate architecture and provide an executable

152

ITERATIVE PROCESS PLANNING

framework for elaborating the critical use cases of the system. This frame-
work includes existing components, commercial components, and custom
prototypes sufficient to demonstrate a candidate architecture and sufficient
requirements understanding to establish a credible business case, vision,
and software development plan. Large-scale, custom developments may
require two iterations to achieve an acceptable prototype, but most
projects should be able to get by with only one.

Elaboration iterations. These iterations result in an architecture, including
a complete framework and infrastructure for execution. Upon completion
of the architecture iteration, a few critical use cases should be demonstra-
ble: (1) initializing the architecture, (2) injecting a scenario to drive the
worst-case data processing flow through the system (for example, the peak
transaction throughput or peak load scenario), and (3) injecting a scenario
to drive the worst-case control flow through the system (for example,
orchestrating the fault-tolerance use cases). Most projects should plan on
two iterations to achieve an acceptable architecture baseline. Unprece-
dented architectures may require additional iterations, whereas projects
built on a well-established architecture framework can probably get by
with a single iteration.

Construction iterations. Most projects require at least two major construc-
tion iterations: an alpha release and a beta release. An alpha release would
include executable capability for all the critical use cases. It usually repre-
sents only about 70% of the total product breadth and performs at quality
levels (performance and reliability) below those expected in the final prod-
uct. A beta release typically provides 95% of the total product capability
breadth and achieves some of the important quality attributes. Typically,
however, a few more features need to be completed, and improvements in
robustness and performance are necessary for the final product release to
be acceptable. Although most projects need at least two construction itera-
tions, there are many reasons to add one or two more in order to manage
risks or optimize resource expenditures.

Transition iterations. Most projects use a single iteration to transition a
beta release into the final product. Again, numerous informal, small-scale
iterations may be necessary to resolve all the defects, incorporate beta feed-
back, and incorporate performance improvements. However, because of
the overhead associated with a full-scale transition to the user community,
most projects learn to live with a single iteration between a beta release and
the final product release.

10.5 PRAGMATIC PLANNING 153

The general guideline is that most projects will use between four and nine itera-
tions. The typical project would have the following six-iteration profile:

* One iteration in inception: an architecture prototype

® Two iterations in elaboration: architecture prototype and architecture
baseline

® Two iterations in construction: alpha and beta releases

® One iteration in transition: product release

Highly precedented projects with a predefined architecture, or very small-scale
projects, could get away with a single iteration in a combined inception and elabora-
tion phase and could produce a product efficiently with the overhead of only four iter-
ations. A very large or unprecedented project with many stakeholders may require an
additional inception iteration and two additional iterations in construction, for a total
of nine iterations. The resulting management overhead may be well worth the cost to
ensure proper risk management and stakeholder synchronization.

10.5 PRAGMATIC PLANNING

Even though good planning is more dynamic in an iterative process, doing it accu-
rately is far easier. While executing iteration N of any phase, the software project
manager must be monitoring and controlling against a plan that was initiated in itera-
tion N - 1 and must be planning iteration N + 1. The art of good project-management
is to make trade-offs in the current iteration plan and the next iteration plan based on
objective results in the current iteration and previous iterations. This concept seems,
and is, overwhelming in early phases or in projects that are pioneering iterative devel-
opment. But if the planning pump is primed successfully, the process becomes surpris-
ingly easy as the project progresses into the phases in which high-fidelity planning is
necessary for success.

Aside from bad architectures and misunderstood requirements, inadequate plan-
ning (and subsequent bad management) is one of the most common reasons for
project failures. Conversely, the success of every successful project can be attributed in
part to good planning. This book emphasizes the importance of three perspectives:
planning, requirements, and architecture. The end products associated with these per-
spectives (a software development plan, requirements specifications, and an architec-
ture description document) are not emphasized. On most successful projects, they are
not very important once they have been produced. They are rarely used by most per-
formers on a day-to-day basis, they are not very interesting to the end user, and their
paper representations are just the tip of the iceberg with respect to the working details
that underlie them.

154 ITERATIVE PROCESS PLANNING

While a planning document is not very useful as an end item, the act of planning
is extremely important to project success. It provides a framework and forcing func-
tions for making decisions, ensures buy-in on the part of stakeholders and performers,
and transforms subjective, generic process frameworks into objective processes. A
project’s plan is a definition of how the project requirements will be transformed into
a product within the business constraints. It must be realistic, it must be current, it
must be a team product, it must be understood by the stakeholders, and it must be
used.

Plans are not just for managers. The more open and visible the planning process
and results, the more ownership there is among the team members who need to exe-
cute it. Bad, closely held plans cause attrition. Good, open plans can shape cultures
and encourage teamwork.

CHAPTER 11

Project
Organizations
and
Responsibilities

oftware lines of business and project teams Key Points

have different motivations. Software lines o
. . . A Organizational structures form the
of business are motivated by return on invest- architecture of the teams.
ment, new business discriminators, market ' 4 organizations engaged in a software
diversification, and profitability. Project teams ' line of business need to support projects
are motivated by the cost, schedule, and qual- ~ With the infrastructure necessary to use

. . . a common process.
ity of specific deliverables. . o
A Project organizations need to allocate

Software professionals in both types of artifacts and responsibilities clearly
organizations are motivated by career growth, across project teams to ensuré a balance
job satisfaction, and the opportunity to makea . of global (architecture) and local
difference. This topic is covered well in A Dis- (component) concerns.
cipline for Software Engineering [Humphrey,
1995].

In the past, most advice on organizations
was (rightfully) focused on the project, which is the level where software is developed
and delivered. Projects have selfish interests and will rarely invest in any technology or
service that does not have a direct impact on the cost, schedule, or quality of that
project’s deliverables. This chapter recommends and describes organizations for a line
of business and for a project. Prescribing organizational hierarchies is clearly a dan-
gerous undertaking in the context of specific organizations and people. Here, generic
roles, relationships, and responsibilities are discussed. For any given project or line of
business, these recommendations should be only default starting points. Tailoring
them to the domain, scale, cultures, and personalities of a specific situation may lead
to a variety of different implementations. It may be appropriate, for example, to orga-
nize a project or team differently, splitting or merging the roles presented. Neverthe-
less, these organizational guidelines incorporate many recurring themes of successful
projects and should provide a framework for most organizations.

A The organization must evolve with
the WBS and the life-cycle concerns.

155

156 PROJECT ORGANIZATIONS AND RESPONSIBILITIES

11.1 LINE-OF-BUSINESS ORGANIZATIONS

Figure 11-1 maps roles and responsibilities to a default line-of-business organization.
This structure can be tailored to specific circumstances.
The main features of the default organization are as follows:

* Responsibility for process definition and maintenance is specific to a cohe-
sive line of business, where process commonality makes sense. For example,
the process for developing avionics software is different from the process
used to develop office applications.

* Responsibility for process automation is an organizational role and is
equal in importance to the process definition role. Projects achieve process
commonality primarily through the environment support of common
tools.

* Organizational roles may be fulfilled by a single individual or several dif-
ferent teams, depending on the scale of the organization. A 20-person soft-
ware product company may require only a single person to fulfill all the
roles, while a 10,000-person telecommunications company may require
hundreds of people to achieve an effective software organization.

Organization
Manager
Software Engineering Project Review
Process Authority Authority
* Process definition * Project compliance
* Process improvement * Periodic risk assessment
Softwaré Engineering
Environment Authority infrastructure
* Process automation . PFOjeC‘ administration
* Engineering skill centers
* Professional development
Project A Project B Project C ProjectD | . | ProjectN
Manager Manager Manager Manager Manager

FIGURE 11-1. Default roles in a software line-of-business organization

11.1 LINE-OF-BUSINESS ORGANIZATIONS 157

Software Engineering Process Authority

The Software Engineering Process Authority (SEPA) facilitates the exchange of infor-
mation and process guidance both to and from project practitioners. This role is
accountable to the organization general manager for maintaining a current assess-
ment of the organization’s process maturity and its plan for future process improve-
ments. The SEPA must help initiate and periodically assess project processes.
Catalyzing the capture and dissemination of software best practices can be accom-
plished only when the SEPA understands both the desired improvement and the
project context. The SEPA is a necessary role in any organization. It takes on respon-
sibility and accountability for the process definition and its maintenance (modifica-
tion, improvement, technology insertion). The SEPA could be a single individual, the
general manager, or even a team of representatives. The SEPA must truly be an
authority, competent and powerful, not a staff position rendered impotent by ineffec-
tive bureaucracy.

Project Review Authority

The Project Review Authority (PRA) is the single individual responsible for ensuring
that a software project complies with all organizational and business unit software
policies, practices, and standards. A software project manager is responsible for meet-
ing the requirements of a contract or some other project compliance standard, and is
also accountable to the PRA. The PRA reviews both the project’s conformance to con-
tractual obligations and the project’s organizational policy obligations. The customer
monitors contract requirements, contract milestones, contract deliverables, monthly
- management reviews, progress, quality, cost, schedule, and risk. The PRA reviews
customer commitments as well as adherence to organizational policies, organizational
deliverables, financial performance, and other risks and accomplishments.

Software Engineering Environment Authority

The Software Engineering Environment Authority (SEEA) is responsible for automat-
ing the organization’s process, maintaining the organization’s standard environment,
training projects to use the environment, and maintaining organization-wide reusable
assets. The SEEA role is necessary to achieve a significant return on investment for a
common process. Tools, techniques, and training can be amortized effectively across
multiple projects only if someone in the organization (the SEEA) is responsible for
supporting and administering a standard environment. In many cases, the environ-
ment may be augmented, customized, or modified, but the existence of an 80%
default solution for each project is critical to achieving institutionalization of the
organization’s process and a good ROI on capital tool investments.

158 PROJECT ORGANIZATIONS AND RESPONSIBILITIES

Infrastructure

An organization’s infrastructure provides human resources support, project-indepen-
dent research and development, and other capital software engineering assets. The
infrastructure for any given software line of business can range from trivial to highly
entrenched bureaucracies. The typical components of the organizational infrastruc-
ture are as follows:

® Project administration: time accounting system; contracts, pricing, terms
and conditions; corporate information systems integration

¢ Engineering skill centers: custom tools repository and maintenance, bid
and proposal support, independent research and development

e Professional development: internal training boot camp, personnel recruit-
ing, personnel skills database maintenance, literature and assets library,
technical publications

An organizational service center promotes a standard environment funded by
the line of business and maintained as a capital asset for projects within the organiza-
tion. The SEEA is a companion group to the SEPA. The SEPA is responsible for pro-
cess definition and improvement, and the SEEA is responsible for process automation.

It is important that organization managers treat software development environ-
ments just as hardware development environments are treated—namely, as capital
equipment. There is resistance to this approach in most small-scale or immature orga-
nizations, where specific process development and tooling are included as direct
project expenses. For most mature software organizations, the process and tooling
should be organizational assets, just as they are in other engineering disciplines. As
such, they should be funded with capital resources. Financing models can include
absorption into overhead or general and administrative costs, or project billing based
on usage. In today’s software industry, characterized by ingrained accounting methods,
project-funded tooling, and software licensing methods, relatively few organizations
have transitioned to such a capital investment model for their software environments.
These organizations tend to be mature, large-scale software developers that have
achieved stable process definitions and have established long-term partnerships with
software tool vendors.

11.2 PROJECT ORGANIZATIONS

Figure 11-2 shows a default project organization and maps project-level roles and
responsibilities. This structure can be tailored to the size and circumstances of the spe-
cific project organization.

11.2 PROJECT ORGANIZATIONS

159

Software Management

Artifacts
* Business case
* Software development plan
¢ Status assessments

Activities
« Customer interface, PRA interface
* Planning, progress monitoring
* Risk management
* Software process definition

* Process improvement

Systems Engineering

Administration

Artifacts
* Vision statement
* Requirements set
Activities
* Requirements elicitation
* Requirements specification
* Use case modeling

Artifacts

Activities

* Work breakdown structure

* Financial forecasting, reporting
» WBS definition, administration

l

|

. Software
Software Archltecture Software Development Assessment
Artifacts Artifacts Artifacts
* Architecture description ¢ Design set * Deployment set
* Release specifications * implementation set * SCO database

* Design set

Activities
* Demonstration planning
* Analysis, design
* Architecture prototyping
* Architecture documentation
* Demonstration coordination
* Component design
* Make/buy/reuse analysis

* Requirements set
* Deployment set

Activities
« Component design
* Component implementation
* Component testing
* Component maintenance

FIGURE 11-2. Default project organization and responsibilities

* User manual

* Release descriptions

¢ Environment

* Deployment documents

Activities
* Release assessment
* Use case/scenario testing
* Test scenario development
» Change management
* Transition to user
* System administration
* Environment configuration
* Environment maintenance
* Toolsmithing

160 PROJECT ORGANIZATIONS AND RESPONSIBILITIES

The main features of the default organization are as follows:

* The project management team is an active participant, responsible for pro-
ducing as well as managing. Project management is not a spectator sport.

® The architecture team is responsible for real artifacts and for the integra-
tion of components, not just for staff functions.

® The development team owns the component construction and maintenance
activities. The assessment team is separate from development. This structure
fosters an independent quality perspective and focuses a team on testing and
product evaluation activities concurrent with on-going development.

* Quality is everyone’s job, integrated into all activities and checkpoints.
Each team takes responsibility for a different quality perspective.

Software Management Team

Most projects are overconstrained. Schedules, costs, functionality, and quality expec-
tations are highly interrelated and require continuous negotiation among multiple
stakeholders who have differing goals. The software management team carries the
burden of delivering win conditions to all stakeholders. In this regard, the software
project manager spends every day worrying about balance. Figure 11-3 shows the
focus of software management team activities over the project life cycle.

The software management team is responsible for planning the effort, conducting
the plan, and adapting the plan to changes in the understanding of the requirements or
the design. Toward this end, the team takes ownership of resource management and

Software Management

Artifacts Systems engineering Responsibilities
» Business case Financial administration » Resource commitments
* Vision Quality assurance * Personnel assignments
* Software development plan * Plans, priorities
» Work breakdown structure * Stakeholder satisfaction
¢ Status assessments « Scope definition
* Requirements set ¢ Risk management

* Project control
Life-Cycle Focus

Inception Elaboration Construction Transition
Elaboration phase Construction phase planning | Transition phase planning Customer satisfaction
planning Full staff recruitment Construction plan Contract closure
Team formulation Risk resolution optimization Sales support
Contract baselining Product acceptance criteria Risk management Next-generation planning
Architecture costs Construction costs

"FIGURE 11-3. Software management team activities

11.2 PROJECT ORGANIZATIONS 161

project scope, and sets operational priorities across the project life cycle. At an abstract
level, these activities correspond to managing the expectations of all stakeholders
throughout the project life cycle.

The software management team takes ownership of all aspects of quality. In par-
ticular, it is responsible for attaining and maintaining a balance among these aspects
so that the overall solution is adequate for all stakeholders and optimal for as many of
them as possible.

Software Architecture Team

The software architecture team is responsible for the architecture. This responsibility
encompasses the engineering necessary to specify a complete bill of materials for the
software and the engineering necessary to make significant make/buy trade-offs so
that all custom components are elaborated to the extent that construction/assembly
costs are highly predictable. Figure 11-4 shows the focus of software architecture
team activities over the project life cycle.

For any project, the skill of the software architecture team is crucial. It provides
the framework for facilitating team communications, for achieving system-wide qual-
ities, and for implementing the applications. With a good architecture team, an aver-
age development team can succeed. If the architecture is weak, even an expert
development team of superstar programmers will probably not succeed.

In most projects, the inception and elaboration phases will be dominated by two
distinct teams: the software management team and the software architecture team.
(Even this distinction may be blurred, depending on scale.) The software development
and software assessment teams tend to engage in support roles while preparing for the

Software Architecture

Artifacts Demonstrations Responsibilities
« Architecture description Use‘case modelers « Requirements trade-offs
* Requirements set Design modelers + Design trade-offs
* Design set Performance analysts » Component selection
* Release specifications « Initial integration

» Technical risk resolution

Life-Cycle Focus

Inception Elaboration Construction Transition
Architecture prototyping Architecture baselining Architecture maintenance Architecture maintenance
Make/buy trade-offs Primary scenario Multiple-component issue Multiple-component issue
Primary scenario definition demonstration resolution resolution
Architecture evaluation Make/buy trade-off Pertormance tuning Performance tuning

criteria definition baselining Quality improvements Quality improvements

FIGURE 11-4. Software architecture team activities

162 PROJECT ORGANIZATIONS AND RESPONSIBILITIES

full-scale production stage. By the time the construction phase is initiated, the archi-
tecture transitions into a maintenance mode and must be supported by a minimal
level of effort to ensure that there is continuity of the engineering legacy.

To succeed, the architecture team must include a fairly broad level of expertise,
including the following:

* Domain experience to produce an acceptable design view (architecturally
significant elements of the design model) and use case view (architecturally sig-
nificant elements of the use case model)

* Software technology experience to produce an acceptable process view
(concurrency and control thread relationships among the design, compo-
nent, and deployment models), component view (structure of the imple-
mentation set), and deployment view (structure of the deployment set)

The architecture team is responsible for system-level quality, which includes
attributes such as reliability, performance, and maintainability. These attributes span
multiple components and represent how well the components integrate to provide an
effective solution. In this regard, the architecture team decides how most multiple-
component design issues are resolved.

Software Development Team

Figure 11-5 shows the focus of software development team activities over the project
life cycle.

Software Development

Artifacts L Component teams Responsibilities
* Design set * Component design
¢ Implementation set » Component implementation
* Deployment set « Component stand-alone test

* Component maintenance
* Component documentation

Life-Cycle Focus

Inception Elaboration Construction Transition
Prototyping support Critical component design Component design Component maintenance
Make/buy trade-offs Critical component Component implementation Component documentation

implementation and test Component stand-alone test
Critical component baseline Component maintenance

FIGURE 11-5. Software development team activities

11.2 PROJECT ORGANIZATIONS 163

The software development team is the most application-specific group. In gen-
eral, the software development team comprises several subteams dedicated to groups
of components that require a common skill set. Typical skill sets include the following:

¢ Commercial component: specialists with detailed knowledge of commer-
cial components central to a system’s architecture

® Database: specialists with experience in the organization, storage, and
retrieval of data

* Graphical user interfaces: specialists with experience in the display organi-
zation, data presentation, and user interaction necessary to support human
input, output, and control needs

* Operating systems and networking: specialists with experience in the exe-
cution of multiple software objects on a network of hardware resources,
including all the typical control issues associated with initialization, syn-
chronization, resource sharing, name space management, reconfiguration,
termination, and interobject communications

* Domain applications: specialists with experience in the algorithms, appli-
cation processing, or business rules specific to the system

The software development team is responsible for the quality of individual com- -

ponents, including all component development, testing, and maintenance. Compo-
nent tests should be built as self-documented, repeatable software that is treated like
other operational component source code so that it is maintained naturally and is
available for automated regression testing. The development team decides how any
design or implementation issue local to a single component is resolved.

Software Assessment Team

Figure 11-6 shows the focus of software assessment team activities over the project
life cycle.

There are two reasons for using an independent team for software assessment.
The first has to do with ensuring an independent quality perspective. This often-
debated approach has its pros (such as ensuring that the ownership biases of develop-
ers do not pollute the assessment of quality) and cons (such as relieving the software
development team of ownership in quality, to some extent). A more important reason
for using an independent test team is to exploit the concurrency of activities. Sched-
ules can be accelerated by developing the software and preparing for testing in paral-
lel with development activities. Change management, test planning, and test scenario
development can be performed in parallel with design and development.

164 PROJECT ORGANIZATIONS AND RESPONSIBILITIES

Software Assessment

Artifacts Release testing Responsibilities
» Deployment set Change management * Project infrastructure
* SCO database Deployment * Independent testing
« User manual Environment support + Requirements verification
* Environment * Metrics analysis
* Release specifications * Configuration control
* Release descriptions * Change management
* Deployment documents * User deployment
Life-Cycle Focus
Inception Elaboration Construction Transition
Infrastructure planning | Infrastructure baseline Infrastructure upgrades Infrastructure maintenance
Primary scenario Architecture release testing Release testing Release baselining
prototyping Change management Change management Change management
Initial user manual User manual baseline Deployment to users
Requirements verification | Requirements verification

FIGURE 11-6. Software assessment team activities

A modern process should employ use-case-oriented or capability-based testing
(which may span many components) organized as a sequence of builds and mecha-
nized via two artifacts:

1. Release specification (the plan and evaluation criteria for a release)

2. Release description (the results of a release)

Each release may encompass several (perhaps incomplete) components, because
integration is proceeding continuously. Evaluation criteria will document what the
customer may expect to see at a major milestone, and release descriptions will sub-
stantiate the test results. The final iteration(s) will generally be equivalent to accep-
tance testing and include levels of detail similar to the levels of detail of conventional
software test plans, procedures, and reports. These artifacts evolve from fairly brief,
abstract versions in early iterations into more detailed and more rigorous documents,
with detailed completeness and traceability discussions in later releases. Even for use
case testing, test components should be developed in a manner similar to the develop-
ment of component test cases. For example, rather than develop test procedure docu-
ments, a project should generate self-documenting test scenarios that are software
programs in their own right. These scenarios should be subjected to change manage-
ment just like other software and are always maintained up-to-date for automated
regression testing.

Some component tests may get elevated to evaluation criteria, with their results
documented in release descriptions. Many components may undergo only informal
.component testing by the development team, with the results captured only within the

11.3 EVOLUTION OF ORGANIZATIONS 165

test software built by a developer. Formal testing for many components will then be
subsumed in higher level evaluation criteria (usually capability-oriented or thread-
oriented scenarios) and corresponding release descriptions. All components are not
created equal: Some of them deserve formal component testing to verify requirements,
while others are best tested in the context of capability testing. This judgment must be
left to the discretion of the assessment team.

The assessment team is responsible for the quality of baseline releases with
respect to the requirements and customer expectations. The assessment team is there-
fore responsible for exposing any quality issues that affect the customer’s expecta-
tions, whether or not these expectations are captured in the requirements.

11.3 EVOLUTION OF ORGANIZATIONS

The project organization represents the architecture of the team and needs to evolve
consistent with the project plan captured in the work breakdown structure.
Figure 11-7 illustrates how the team’s center of gravity shifts over the life cycle, with
about 50% of the staff assigned to one set of activities in each phase.

A different set of activities is emphasized in each phase, as follows:

e Inception team: an organization focused on planning, with enough support
from the other teams to ensure that the plans represent a consensus of all

perspectives
Software Software
Management Management
50% . 10%

Software Software Software Software Software Software
Architecture Development Assessment . Architecture Development Assessment
20% 20% 10%) 50% 20% 20%

Inception | Elaboration

Transition : Construction

Software : Software
Management Management
10% - 10%
Software Software Software . Software Software Software
Architecture Development Assessment . Architecture Development Assessment
5% 35% 50% . 10% 50% 30%

FIGURE 11-7. Software project team evolution over the life cycle

166 PROJECT ORGANIZATIONS AND RESPONSIBILITIES

® Elaboration team: an architecture-focused organization in which the driv-
ing forces of the project reside in the software architecture team and .are
supported by the software development and software assessment teams as
necessary to achieve a stable architecture baseline

e Construction team: a fairly balanced organization in which most of the
activity resides in the software development and software assessment teams

* Transition team: a customer-focused organization in which usage feedback
drives the deployment activities

It is equally important to elaborate the details of subteams, responsibilities, and
work packages, but not until the planning details in the WBS are stable. Defining all
the details of lower level team structures prematurely can result in serious down-
stream inefficiencies.

CHAPTER 12

Process
Automation

: Key Points

A The environment must be a first-class
. artifact of the process.

! A Process automation, and change

. management in particular, are critical to
' an iterative process. If change is too

. expensive, the development organiza-
tion will resist it.

Many software development organizations
are focused on evolving mature processes
to improve the predictability of software man-
agement and the performance of their software
lines of business (in terms of product quality,
time to market, return on investment, and pro-
ductivity). While process definition and tailor-
ing are necessary, a significant level of process
automation is also required in order for mod-
ern software development projects to operate

. A Round-trip engineering and inte-

' grated environments promote change
freedom and effective evolution of
technical artifacts.

profitably.

Automation needs grow depending on
the scale of the effort. Just as the construction
process varies depending on whether you are

A Metrics automation is crucial to

. effective project control.

' A External stakeholders need access
. to environment resources to improve

interaction with the development team

building a dollhouse, a single-family home, or
~ and add value to the process.

a skyscraper, the software process varies across
the spectrum from single-person spreadsheet
tasks to large-scale, multiple-organization, catastrophic cost-of-failure applications.
The techniques, training, time scales, acceptance criteria, and levels of automation dif-
fer significantly at opposite ends of the spectrum.

Most software organizations are confronted with the task of integrating their
own environment and infrastructure for software development. This process typically
results in the selection of more or less incompatible tools that have different informa-
tion repositories, are supplied by different vendors, work on different platforms, use
different jargon, and are based on different process assumptions. Integrating such an
infrastructure has proven to be much more problematic than expected.

167

168 PROCESS AUTOMATION

Automating the development process and establishing an infrastructure for sup-
porting the various project workflows are important activities of the engineering stage
of the life cycle. They include the tool selection, custom toolsmithing, and process
automation necessary to perform against the development plan with acceptable effi-
ciency. Evolving the development environment into the maintenance environment is
also crucial to any long-lived software development project.

To complicate matters further, it is rare to find stakeholders who treat the envi-
ronment as a first-class artifact necessary for the continued maintenance of the prod-
uct. The environment that provides the process automation is a tangible artifact that
is critical to the life-cycle cost of the system being developed. The top-level WBS rec-
ommended in Chapter 10 recognizes the environment as a first-class workflow.

Section 3.2 introduced three levels of process. Each level requires a certain degree
of process automation for the corresponding process to be carried out efficiently:

1. Metaprocess: an organization’s policies, procedures, and practices for man-
aging a software-intensive line of business. The automation support for
this level is called an infrastructure. An infrastructure is an inventory of
preferred tools, artifact templates, microprocess guidelines, macroprocess
guidelines, project performance repository, database of organizational skill
sets, and library of precedent examples of past project plans and results.

2. Macroprocess: a project’s policies, procedures, and practices for producing
a complete software product within certain cost, schedule, and quality con-
straints. The automation support for a project’s process is called an envi-
ronment. An environment is a specific collection of tools to produce a
specific set of artifacts as governed by a specific project plan.

3. Microprocess: a project team’s policies, procedures, and practices for
achieving an artifact of the software process. The automation support for
generating an artifact is generally called a tool. Typical tools include
requirements management, visual modeling, compilers, editors, debuggers,
change management, metrics automation, document automation, test auto-
mation, cost estimation, and workflow automation.

While the main focus of process automation is the workflow of a project-level
environment, the infrastructure context of the project’s parent organization and the
tool building blocks are important prerequisites.

12.1 TOOLS: AUTOMATION BUILDING BLOCKS

Many tools are available to automate the software development process. This section
provides an overview of the core environment necessary to support the process frame-

12.1 TOOLS: AUTOMATION BUILDING BLOCKS 169

Workflows Environment Tools and Process Automation
Management | Workflow automation, metrics automation]
Environment | Change management, document automation ,
Requirements | Requirements management I
Design | Visual modeling
Implementation |?ditor—compiler-debugger I
Assessment [Test automation, defect tracking J
Deployment Defect tracking |

Process Organization Policy

Life Cycle Inception Elaboration Construction Transition

FIGURE 12-1. Typical automation and tool components that support the process workflows

work. It introduces some of the important tools that tend to be needed universally
across software projects and that correlate well to the process framework. (Many
other tools and process automation aids are not included.) Most of the core software
development tools map closely to one of the process workflows, as illustrated in
Figure 12-1.

Each of the process workflows has a distinct need for automation support. In
some cases, it is necessary to generate an artifact; in others, it is needed for simple
bookkeeping. Some of the critical concerns associated with each workflow are dis-
cussed next.

Management

There are many opportunities for automating the project planning and control activi-
ties of the management workflow. Software cost estimation tools and WBS tools are
useful for generating the planning artifacts. For managing against a plan, workflow
management tools and a software project control panel that can maintain an on-line
version of the status assessment are advantageous. This automation support can con-
siderably improve the insight of the metrics collection and reporting concepts dis-
cussed in Chapter 13. The overall concept of a software project control panel is
discussed in Section 13.6.

170 PROCESS AUTOMATION

Environment

Configuration management and version control are essential in a modern iterative
development process. Much of the metrics approach recommended in Chapter 13 is
dependent on measuring changes in software artifact baselines. Section 12.2 dis-
cusses some of the change management automation that must be supported by the
environment.

Requirements

Conventional approaches decomposed system requirements into subsystem require-
ments, subsystem requirements into component requirements, and component
requirements into unit requirements. The equal treatment of all requirements drained
away engineering hours from the driving requirements, then wasted that time on
paperwork associated with detailed traceability that was inevitably discarded later as
the driving requirements and subsequent design understanding evolved.

In a modern process, the system requirements are captured in the vision state-
ment. Lower levels of requirements are driven by the process—organized by iteration
rather than by lower level component—in the form of evaluation criteria. These crite-
ria are typically captured by a set of use cases and other textually represented objec-
tives. The vision statement captures the contract between the development group and
the buyer. This information should be evolving but slowly varying, across the life
cycle, and should be represented in a form that is understandable to the buyer. The
evaluation criteria are captured in the release specification artifacts, which are tran-
sient snapshots of objectives for a given iteration. Evaluation criteria are derived from
the vision statement as well as from many other sources, such as make/buy analyses,
risk management concerns, architectural considerations, implementation constraints,
quality thresholds, and even shots in the dark.

Iterative models allow the customer and the developer to work with tangible,
evolving versions of the system. Pragmatically, requirements can—and must—be
evolved along with an architecture and an evolving set of application increments. In
this way, the customer and the developer have a common, objective understanding of
the priorities and the cost/schedule/performance trade-offs associated with those
requirements. Rather than focus on consistency, completeness, and traceability of
immature requirements specifications, projects need to focus on achieving the proper
specification of the project vision and to evolve the lower level specifications through
successive sets of evaluation criteria against the evolving design iterations.

The ramifications of this approach on the environment’s support for require-
ments management are twofold:

12.1 TOOLS: AUTOMATION BUILDING BLOCKS 171

1. The recommended requirements approach is dependent on both textual
and model-based representations. Consequently, the environment should
provide integrated document automation and visual modeling for captur-
ing textual specifications and use case models. It is necessary to manage
and track changes to either format and present them in human-readable
format, whether electronic or paper.

2. Traceability between requirements and other artifacts needs to be auto-
mated. The extent of traceability among sets, however, is the subject of a
long-standing debate. My opinion is that the requirements set artifacts
need a well-defined traceability to the test artifacts, because the overall
assessment team is responsible for demonstrating the product’s level of
compliance with the requirements. However, I do not see any compelling
reason to pursue strong traceability relationships between the requirements
set artifacts and the other technical artifacts. The problem space descrip-
tion, as represented in the requirements set, and the solution space de-
scription, as represented in the other technical artifact sets, often have
traceability that is very difficult to represent. This is especially true in com-
ponent-based architectures that have a large percentage of commercial
components. If the process demands tight traceability between the require-
ments and the design, the architecture is likely to evolve in a way that opti-
mizes requirements traceability rather than design integrity. This effect is
even more pronounced if tools are used to automate this process.

Design

The tools that support the requirements, design, implementation, and assessment
workflows are usually used together. In fact, the less separable they are, the better. The
primary support required for the design workflow is visual modeling, which is used
for capturing design models, presenting them in human-readable format, and trans-
lating them into source code. An architecture-first and demonstration-based process is
enabled by existing architecture components and middleware. '

Implementation

The implementation workflow relies primarily on a programming environment (edi-
tor, compiler, debugger, linker, run time) but must also include substantial integration
with the change management tools, visual modeling tools, and test automation tools
to support productive iteration.

172 PROCESS AUTOMATION

Assessment and Deployment

The assessment workflow requires all the tools just discussed as well as additional
capabilities to support test automation and test management. To increase change free-
dom, testing and document production must be mostly automated. Defect tracking is
another important tool that supports assessment: It provides the change management
instrumentation necessary to automate metrics and control release baselines. It is also
needed to support the deployment workflow throughout the life cycle.

12.2 THE PROJECT ENVIRONMENT

The project environment artifacts evolve through three discrete states: the prototyp-
ing environment, the development environment, and the maintenance environment.

1. The prototyping environment includes an architecture testbed for proto-
typing project architectures to evaluate trade-offs during the inception and
elaboration phases of the life cycle. This informal configuration of tools
should be capable of supporting the following activities:

® Performance trade-offs and technical risk analyses

Make/buy trade-offs and feasibility studies for commercial products

Fault tolerance/dynamic reconfiguration trade-offs

Analysis of the risks associated with transitioning to full-scale imple-
mentation

Development of test scenarios, tools, and instrumentation suitable for
analyzing the requirements

2. The development environment should include a full suite of development
tools needed to support the various process workflows and to support
round-trip engineering to the maximum extent possible.

3. The maintenance environment should typically coincide with a mature ver-
sion of the development environment. In some cases, the maintenance envi-
ronment may be a subset of the development environment delivered as one
of the project’s end products.

The transition to a mature software process introduces new challenges and
opportunities for management control of concurrent activities and for assessment of
tangible progress and quality. Real-world project experience has shown that a highly
integrated environment is necessary both to facilitate and to enforce management

12.2 THE PROJECT ENVIRONMENT 173

control of the process. Toward this end, there are four important environment
disciplines that are critical to the management context and the success of a modern
iterative development process:

1. Tools must be integrated to maintain consistency and traceability. Round-
trip engineering is the term used to describe this key requirement for envi-
ronments that support iterative development.

2. Change management must be automated and enforced to manage multiple
iterations and to enable change freedom. Change is the fundamental primi-
tive of iterative development.

3. Organizational infrastructures enable project environments to be derived
from a common base of processes and tools. A common infrastructure pro-
motes interproject consistency, reuse of training, reuse of lessons learned,
and other strategic improvements to the organization’s metaprocess.

4. Extending automation support for stakeholder environments enables fur-
ther support for paperless exchange of information and more effective
review of engineering artifacts.

12.2.1 ROUND-TRIP ENGINEERING

As the software industry moves into maintaining different information sets for the
engineering artifacts, more automation support is needed to ensure efficient and error-
free transition of data from one artifact to another. Round-trip engineering is the envi-
ronment support necessary to maintain consistency among the engineering artifacts.

Figure 12-2 depicts some important transitions between information reposito-
ries. The automated translation of design models to source code (both forward and
reverse engineering) is fairly well established. The automated translation of design
models to process (distribution) models is also becoming straightforward through
technologies such as ActiveX and the Common Object Request Broker Architecture
(CORBA).

Compilers and linkers have long provided automation of source code into exe-
cutable code. As architectures start using heterogeneous components, platforms, and
languages, the complexity of building, controlling, and maintaining large-scale webs
of components introduces new needs for configuration control and automation of
build management. However, today’s environments do not support automation to the
greatest extent possible. For example, automated test case construction from use case
and scenario descriptions has not yet evolved to support anything except the most
trivial examples, such as unit test scenarios. '

The primary reason for round-trip engineering is to allow freedom in changing
software engineering data sources. This configuration control of all the technical

174 PROCESS AUTOMATION

r Forward engineering (source generation from models) >

<7Fieverse engineering (models generation from source) |

Design Set Implementation Set

i UML Models Source Code :,5,

(=]]

3 ¥ Y S

= Requirements Set S

2 =

Automated production [© UML Models 3
hel

———l [°

] 2

£ y o

Traceability links g g

— > < Deployment Set ;5:'

Executable Code

~o <

<F Portability among platforms and network topologies j>

FIGURE 12-2. Round-trip engineering

artifacts is crucial to maintaining a consistent and error-free representation of the
evolving product. It is not necessary, however, to have bi-directional transitions in all
cases. For example, although we should be able to construct test cases for scenarios
defined for a given logical set of objects, we cannot “reverse engineer” the objects
solely from the test cases. Similarly, reverse engineering of poorly constructed legacy
source code into an object-oriented design model may be counterproductive.

Translation from one data source to another may not provide 100% complete-
ness. For example, translating design models into C++ source code may provide only
the structural and declarative aspects of the source code representation. The code
components may still need to be fleshed out with the specifics of certain object
attributes or methods.

12.2.2 CHANGE MANAGEMENT

Change management is as critical to iterative processes as planning. Tracking changes
in the technical artifacts is crucial to understanding the true technical progress trends
and quality trends toward delivering an acceptable end product or interim release. In
conventional software management processes, baseline configuration management
techniques for technical artifacts were predominantly a late life-cycle activity. In a
modern process—in which requirements, design, and implementation set artifacts are
captured in rigorous notations early in the life cycle and are evolved through multiple

12.2 THE PROJECT ENVIRONMENT 175

generations—change management has become fundamental to all phases and almost
all activities.

Software Change Orders

The atomic unit of software work that is authorized to create, modify, or obsolesce
components within a configuration baseline is called a software change order (SCO).
Software change orders are a key mechanism for partitioning, allocating, and schedul-
ing software work against an established software baseline and for assessing progress
and quality. The example SCO shown in Figure 12-3 is a good starting point for
describing a set of change primitives. It shows the level of detail required to achieve the
metrics and change management rigor necessary for a modern software process. By
automating data entry and maintaining change records on-line, the change management
bureaucracy associated with metrics reporting activities can also be automated.

The level at which an SCO is written is always an issue. What is a discrete
change? Is it a change to a program unit or to a component, a file, or a subsystem? Is it
a new feature, a defect resolution, or a performance enhancement? Within most
projects, the atomic unit of the SCO tends to be easily accepted. In general, an SCO
should be written against a single component so that it is easily allocated to a single
individual. If resolution requires two people on two different teams, two discrete
SCOs should be written.

The basic fields of the SCO are title, description, metrics, resolution, assessment,
and disposition.

o Title. The title is suggested by the originator and is finalized upon accep-
tance by the configuration control board (CCB). This field should include a
reference to an external software problem report if the change was initiated
by an external person (such as a user).

¢ Description. The problem description includes the name of the originator,
date of origination, CCB-assigned SCO identifier, and relevant version
identifiers of related support software. The textual problem description
should provide as much detail as possible, along with attached code
excerpts, display snapshots, error messages, and any other data that may
help to isolate the problem or describe the change needed.

e Metrics. The metrics collected for each SCO are important for planning,
for scheduling, and for assessing quality improvement. Change categories
are type 0 (critical bug), type 1 (bug), type 2 (enhancement), type 3 (new
feature), and type 4 (other), as described later in this section. Upon accep-
tance of the SCO, initial estimates are made of the amount of breakage and
the effort required to resolve the problem. The breakage item quantifies the

176 PROCESS AUTOMATION

Title:
Description Name: Date:
Project:
m Category: ______ (0/1 error, 2 enhancement, 3 new feature, 4 other)
Initial Estimate Actual Rework Expended
Breakage: __ Analysis: Test:
Rework: __ implement: Document:

EEETIN(C M Analyst:
Software Component:

i

|

Method: (inspection, analysis, demonstration, test)
Platforms: Date:
Disposition State: Release: Priority
Acceptance: Date:
Closure: Date:

FIGURE 12-3. The primitive components of a software change order

12.2 THE PROJECT ENVIRONMENT 177

volume of change, and the rework item quantifies the complexity of
change. Upon resolution, the actual breakage is noted, and the actual
rework effort is further elaborated. The analysis item identifies the number
of staff hours expended in understanding the required change (re-creating,
isolating, and debugging the problem if the change is type 0 or 1; analysis
and prototyping alternative solutions if it is type 2 or 3). The implement
itemn identifies the staff hours necessary to design and implement the resolu-
tion. The test item identifies the hours expended in testing the resolution,
and the document item identifies all effort expended in updating other arti-
facts such as the user manual or release description. Breakage quantifies the
extent of change and can be defined in units of SLOC, function points, files,
components, or classes. In the case of SLOC, a source file comparison pro-
gram that quantifies differences may provide a simple estimate of breakage.
In general, the precision of breakage numbers is relatively unimportant.
Changes between 0 and 100 lines should be accurate to the nearest 10,
changes between 100 and 1,000 to the nearest 100, and so forth.

® Resolution. This field includes the name of the person responsible for
implementing the change, the components changed, the actual metrics, and
a description of the change. Although the level of component fidelity with
which a project tracks change references can be tailored, in general, the
lowest level of component references should be kept at approximately the
level of allocation to an individual. For example, a “component” that is
allocated to a team is not a sufficiently detailed reference.

o Assessment. This field describes the assessment technique as either inspec-
tion, analysis, demonstration, or test. Where applicable, it should also ref-
erence all existing test cases and new test cases executed, and it should
identify all different test configurations, such as platforms, topologies, and
compilers.

e Disposition. The SCO is assigned one of the following states by the CCB:
® Proposed: written, pending CCB review
® Accepted: CCB-approved for resolution

® Rejected: closed, with rationale, such as not a problem, duplicate,
obsolete change, resolved by another SCO

® Archived: accepted but postponed until a later release

e In progress: assigned and actively being resolved by the development
organization

178 PROCESS AUTOMATION

¢ In assessment: resolved by the development organization; being
assessed by a test organization

* Closed: completely resolved, with the concurrence of all CCB members

A priority and release identifier can also be assigned by the CCB to guide the
prioritization and organization of concurrent development activities.

Configuration Baseline

A configuration baseline is a named collection of software components and support-
ing documentation that is subject to change management and is upgraded, main-
tained, tested, statused, and obsolesced as a unit. With complex configuration
management systems, there are many desirable project-specific and domain-specific
standards.

There are generally two classes of baselines: external product releases and inter-
nal testing releases. A configuration baseline is a named collection of components that
is treated as a unit. It is controlled formally because it is a packaged exchange between
groups. For example, the development organization may release a configuration base-
line to the test organization or even to itself. A project may release a configuration
baseline to the user community for beta testing.

Generally, three levels of baseline releases are required for most systems: major,
minor, and interim. Each level corresponds to a numbered identifier such as N.M.X,
where N is the major release number, M is the minor release number, and X is the
interim release identifier. A major release represents a new generation of the product
or project, while a minor release represents the same basic product but with enhanced
features, performance, or quality. Major and minor releases are intended to be exter-
nal product releases that are persistent and supported for a period of time. An interim
release corresponds to a developmental configuration that is intended to be transient.
The shorter its life cycle, the better. Figure 12-4 shows examples of some release name
histories for two different situations.

Once software is placed in a controlled baseline, all changes are tracked. A distinc-
tion must be made for the cause of a change. Change categories are as follows:

e Type 0: critical failures, which are defects that are nearly always fixed
before any external release. In general, these sorts of changes represent
showstoppers that have an impact on the usability of the software in its
critical use cases.

* Type 1: a bug or defect that either does not impair the usefulness of the sys-
tem or can be worked around. Such errors tend to correlate to nuisances in
critical use cases or to serious defects in secondary use cases that have a low
probability of occurrence.

12.2 THE PROJECT ENVIRONMENT 179

Typical project release sequence for a large-scale, one-of-a-kind project

Inception Elaboration Construction Transition
‘ ‘ T f ‘ T T T T ?
Prototype 0.1 -
Architecture 0.2 0.3.1 0.3.2 1.01 2.0.1 2.02 3.1.1 4.04
Architecture 0.3 Beta release 3.1
Product release 4.0

Internal test release 1.0 ——

Alpha test rel 2.0

I0C: beta release 3.0

Upgrade release 4.1

Typical project release sequence for a small commercial product

Inception | Elaboration { Construction

Transition

Prototype 0.1 —
Architecture 0.2
Architecture 0.3

Internal test release 1.0
Alpha test release 2.0 ——
10C: beta release 3.0

Bj

Tt

311 3

Beta release 3.1

Product

1.2

release 4.0

T

4.0.1 4.12

Upgrade release 4.1

Upgrade release 4.2

FIGURE 12-4. Example release histories for a typical project and a typical product

* Type 2: a change that is an enhancement rather than a response to a defect.
Its purpose is typically to improve performance, testability, usability, or
some other aspect of quality that represents good value engineering.

* Type 3: a change that is necessitated by an update to the requirements. This
could be new features or capabilities that are outside the scope of the cur-
rent vision and business case.

e Type 4: changes that are not accommodated by the other categories. Exam-
ples include documentation only or a version upgrade to commercial
components.

Table 12-1 provides examples of these changes in the context of two different
project domains: a large-scale, reliable air traffic control system and a packaged soft-
ware development tool.

Configuration Control Board

A CCB is a team of people that functions as the decision authority on the content of
configuration baselines. A CCB usually includes the software manager, software
architecture manager, software development manager, software assessment manager,
and other stakeholders (customer, software project manager, systems engineer, user)

180 PROCESS AUTOMATION

TABLE 12-1. Representative examples of changes at opposite ends of the project spectrum

CHANGE

TYPE AIR TRAFFIC CONTROL PROJECT PACKAGED VISUAL MODELING TOOL

Type O Control deadlock and loss of flight Loss of user data
data

Type 1 Display response time that exceeds Browser expands but does not collapse
the requirement by 0.5 second displayed entries

Type 2 Add internal message field for Use of color to differentiate updates from
response time instrumentation previous version of visual model

Type 3 Increase air traffic management Port to new platform such as WinNT
capacity from 1,200 to 2,400
simultaneous flights

Type 4 Upgrade from Oracle 7 to Oracle 8 Exception raised when interfacing to

to improve query performance MSExcel 5.0 due to Windows resource
management bug

who are integral to the maintenance of a controlled software delivery system. While
CCBs typically take action through board meetings, on-line distribution, concurrence,
and approval of CCB actions may make sense under many project circumstances.

The operational concept of an iterative development process must include com-
prehensive and rigorous change management of the evolving software baselines. The
fundamental process for controlling the software development and maintenance
activities is described through the sequence of states traversed by an SCO. The [brack-
eted] words constitute the state of an SCO transitioning through the process.

¢ [Proposed]. A proposed change is drafted and submitted to the CCB. The
proposed change must include a technical description of the problem and
an estimate of the resolution effort.

* [Accepted, archived, or rejected]. The CCB assigns a unique identifier and
accepts, archives, or rejects each proposed change. Acceptance includes the
change for resolution in the next release; archiving accepts the change but
postpones it for resolution in a future release; and rejection judges the
change to be without merit, redundant with other proposed changes, or
out of scope. The CCB verifies that all SCO fields are appropriate and accu-
rate before accepting the SCO, then assigns the SCO to a responsible per-
son in the development organization for resolution.

e [In progress]. The responsible person analyzes, implements, and tests a
solution to satisfy the SCO. This task includes updating documentation,
release notes, and SCO metrics actuals, and submitting new SCOs, if neces-

12.2 THE PROJECT ENVIRONMENT 181

sary. Upon achieving a complete solution, the responsible person completes
the resolution section of the SCO and submits it to the independent test
team for assessment.

¢ [In assessment]. The independent test team assesses whether the SCO is
completely resolved. When the independent test team deems the change to
be satisfactorily resolved, the SCO is submitted to the CCB for final dispo-
sition and closure.

* [Closed]. When the development organization, independent test organiza-
tion, and CCB concur that the SCO is resolved, it is transitioned to a closed
status.

12.2.3 INFRASTRUCTURES

From a process automation perspective, the organization’s infrastructure provides the
organization’s capital assets, including two key artifacts: a policy that captures the
standards for project software development processes, and an environment that cap-
tures an inventory of tools. These tools are the automation building blocks from
which project environments can be configured efficiently and economically.

Organization Policy

The organization policy is usually packaged as a handbook that defines the life cycle
and the process primitives (major milestones, intermediate artifacts, engineering
repositories, metrics, roles and responsibilities). The handbook provides a general
framework for answering the following questions:

.

What gets done? (activities and artifacts)

When does it get done? (mapping to the life-cycle phases and milestones)

Who does it? (team roles and responsibilities)

How do we know that it is adequate? (checkpoints, metrics, and standards
of performance)

The need for balance is an important consideration in defining organizational
policy. Too often, organizations end up at one of two extremes: no institutionalized
process, or too much standardization and bureaucracy. Effective organizational poli-
~ cies have several recurring themes:

® They are concise and avoid policy statements that fill 6~inch-thick docu-
ments.

* They confine the policies to the real shalls, then enforce them.

182 PROCESS AUTOMATION

® They avoid using the word should in policy statements. Rather than a
menu of options (shoulds), policies need a concise set of mandatory stan-
dards (shalls).

* Waivers are the exception, not the rule.

e Appropriate policy is written at the appropriate level.

The last point deserves further discussion. There are many different organiza-
tional structures throughout the software development industry. Most software-inten-
sive companies have three distinct levels of organization, with a different policy focus
at each level:

* Highest organization level: standards that promote (1) strategic and long-
term process improvements, (2) general technology insertion and educa-
tion, (3) comparability of project and business unit performance, and (4)
mandatory quality control

¢ Intermediate line-of-business level: standards that promote (1) tactical and
short-term process improvement, (2) domain-specific technology insertion
and training, (3) reuse of components, processes, training, tools, and per-
sonnel experience, and (4) compliance with organizational standards

* Lowest project level: standards that promote (1) efficiency in achieving
quality, schedule, and cost targets, (2) project-specific training, (3} compli-
ance with customer requirements, and (4) compliance with organizational/
business unit standards

Standardization should generally focus on line-of-business units, not on the top-
level organization or the projects. Leverage from standardization is generally most
effective at the business unit level, where there is the most commonality and reuse
across projects, processes, and tools. Standardization of software development tech-
niques and tools across lines of business has proven to be difficult, because the process
priorities, tools, techniques, methods, and stakeholder cultures can be very different.
Attempting to standardize across domains that have little commonality results in
either a highly diluted policy statement or a waiver process that is used too frequently.
Standardizing at too high a level is problematic; so is standardizing at too low a level.
If all project teams are left to their own devices, every project process and environ-
ment will be locally optimized. Over time, the organization’s infrastructure for pro-
cess improvement and growth will erode.

The organization policy is the defining document for the organization’s software
policies. In any process assessment, this is the tangible artifact that says what you do.
From this document, reviewers should be able to question and review projects and

12.2 THE PROJECT ENVIRONMENT 183

I. Process-primitive definitions
A. Life-cycle phases (inception, elaboration, construction, transition)
B. Checkpoints (major milestones, minor milestones, status assessments)
C. Artifacts (requirements, design, implementation, deployment, management
sets)
D. Roles and responsibilities (PRA, SEPA, SEEA, project teams)
. Organizational software policies '
Work breakdown structure
Software development plan
Baseline change management
Software metrics
Development environment
Evaluation criteria and acceptance criteria
Risk management
. Testing and assessment
. Waiver policy
IV. Appendixes
A. Current process assessment
B. Software process improvement plan

IOMMOOm>

FIGURE 12-5. Organization policy outline

personnel and determine whether the organization does what it says. Figure 12-5
shows a general outline for an organizational policy. \

Organization Environment

The organization environment for automating the default process will provide many
of the answers to how things get done as well as the tools and techniques to automate
the process as much as practical. Some of the typical components of an organization’s
automation building blocks are as follows:

e Standardized tool selections (through investment by the organization in a
site license or negotiation of a favorable discount with a tool vendor so that
project teams are motivated economically to use that tool), which promote
common workflows and a higher ROI on training

¢ Standard notations for artifacts, such as UML for all design models, or Ada
95 for all custom-developed, reliability-critical implementation artifacts

.* Tool adjuncts such as existing artifact templates (architecture description,
evaluation criteria, release descriptions, status assessments) or customi-
zations

* Activity templates (iteration planning, major milestone activities, configu-
ration control boards)

184 PROCESS AUTOMATION

e Other indirectly useful components of an organization’s infrastructure

* A reference library of precedent experience for planning, assessing,
and improving process performance parameters; answers for How
well? How much? Why?

¢ Existing case studies, including objective benchmarks of performance
for successful projects that followed the organizational process

® A library of project artifact examples such as software development
plans, architecture descriptions, and status assessment histories

* Mock audits and compliance traceability for external process assess-
ment frameworks such as the Software Engineering Institute’s Capa-
bility Maturity Model (SEI CMM)

12.2.4 STAKEHOLDER ENVIRONMENTS

The transition to a modern iterative development process with supporting automa-
tion should not be restricted to the development team. Many large-scale contractual
projects include people in external organizations that represent other stakeholders
participating in the development process. They might include procurement agency
contract monitors, end-user engineering support personnel, third-party maintenance
contractors, independent verification and validation contractors, representatives of
regulatory agencies, and others.

These stakeholder representatives also need access to development environment
resources so that they can contribute value to the overall effort. If an external stake-
holder team has no environment resources for accepting on-line products and arti-
facts, the only vehicle for information exchange is paper. This situation will result in
the problems described in Chapter 6 as inherent in the conventional process.

An on-line environment accessible by the external stakeholders allows them to
participate in the process as follows:

¢ Accept and use executable increments for hands-on evaluation

¢ Use the same on-line tools, data, and reports that the software develop-
ment organization uses to manage and monitor the project

e Avoid excessive travel, paper interchange delays, format translations,
paper and shipping costs, and other overhead costs

Figure 12-6 illustrates some of the new opportunities for value-added activities by
external stakeholders in large contractual efforts. There are several important reasons
for extending development environment resources into certain stakeholder domains.

12.2 THE PROJECT ENVIRONMENT

185

Stakeholder Environment

Development Environment

|

l gnagement l

Elactronic
Exchange

L

Artifact Releases

—

 en————
[ao———
I —————

Tool Subset

Artifact Baselines

Workflow automation, metrics automation

Change management, document automation

Requirements management |

Stakeholder Activities
» Configuration control board participation
» Test scenario development
* Risk management analysis
* Metrics trend analysis
* Artifact reviews, analyses, audits
¢ independent alpha and beta testing

{ Visual modeling 1
[Editor-compiler-debugger |
[Test automation, defect tracking |

| Detect tracking

Environment Tools and Process
Automation

FIGURE 12-6. Extending environments into stakeholder domains

¢ Technical artifacts are not just paper. Electronic artifacts in rigorous nota-
tions such as visual models and source code are viewed far more efficiently
by using tools with smart browsers.

e Independent assessments of the evolving artifacts are encouraged by elec-
tronic read-only access to on-line data such as configuration baseline
libraries and the change management database. Reviews and inspections,
breakage/rework assessments, metrics analyses, and even beta testing can
be performed independently of the development team.

® Even paper documents should be delivered electronically to reduce produc-

tion costs and turnaround time.

Once environment resources are electronically accessible by stakeholders, con-
tinuous and expedient feedback is much more efficient, tangible, and useful. In imple-
menting such a shared environment, it is important for development teams to create
an open environment and provide adequate resources that accommodate customer
access. It is also important for stakeholders to avoid abusing this access, to participate
by adding value, and to avoid interrupting development. Internet and intranet tech-
nology is making paperless environments economical.

Extending environment resources into stakeholder domains brings up several
issues. How much access freedom is supported? Who funds the environment and tool
investments? How secure is the information exchange? How is change management
synchronized? Some of these cultural changes are discussed in Chapter 17.

he primary themes of a modern software
development process tackle the central man-
agement issues of complex software:

1. Getting the design right by focusing on
the architecture first

2. Managing risk through iterative develop-
ment

3. Reducing the complexity with component-
based techniques

4. Making software progress and quality
tangible through instrumented change
management

CHAPTER 13

Project Control
and Process
Instrumentation

Key Points

A The progress toward project goals
and the quality of software products
must be measurable throughout the
software development cycle.

A Metrics values provide an important

. perspective for managing the process.

Metrics trends provide another.

A The most useful metrics are extracted
directly from the evolving artifacts.

A Objective analysis and automated
data collection are crucial to the success
of any metrics program. Subjective
assessments and manual collection tech-
niques are likely to fail.

5. Automating the overhead and bookkeeping activities through the use of
round-trip engineering and integrated environments

The fourth item is the subject of this chapter. It is inherently difficult to manage
what cannot be measured objectively. This was one of the major issues with the con-
ventional software process, where the intermediate products were predominantly
paper documents. Software metrics instrument the activities and products of the soft-
ware development/integration process. Any software process whose metrics are dom-
inated by manual procedures and human-intensive activities will have limited success.
In a modern development process, the most important software metrics are simple,
objective measures of how various perspectives of the product and project are

changing.

187

188 PROJECT CONTROL AND PROCESS INSTRUMENTATION

The quality of software products and the progress made toward project goals
must be measurable throughout the software development cycle. The goals of soft-
ware metrics are to provide the development team and the management team with the
following:

e An accurate assessment of progress to date
¢ Insight into the quality of the evolving software product

® A basis for estimating the cost and schedule for completing the product
with increasing accuracy over time

13.1 THE SEVEN CORE METRICS

Many different metrics may be of value in managing a modern process. I have settled
on seven core metrics that should be used on all software projects. Three are manage-
ment indicators and four are quality indicators.

MANAGEMENT INDICATORS

® Work and progress (work performed over time)
* Budgeted cost and expenditures (cost incurred over time)

e Staffing and team dynamics (personnel changes over time)

QUALITY INDICATORS

Change traffic and stability (change traffic over time)

Breakage and modularity (average breakage per change over time)

Rework and adaptability (average rework per change over time)

Mean time between failures (MTBF) and maturity (defect rate over time)

Table 13-1 describes the core software metrics. Each metric has two dimensions:
a static value used as an objective, and the dynamic trend used to manage the achieve-
ment of that objective. While metrics values provide one dimension of insight, metrics
trends provide a more important perspective for managing the process. Metrics trends
with respect to time provide insight into how the process and product are evolving.
Iterative development is about managing change, and measuring change is the most
important aspect of the metrics program. Absolute values of productivity and quality
improvement are secondary issues until the fundamental goal of management has
been achieved: predictable cost and schedule performance for a given level of quality.

13.1 THE SEVEN CORE METRICS 189

TABLE 13-1.

Overview of the seven core metrics

METRIC

PURPOSE

PERSPECTIVES

Work and progress

Iteration planning, plan vs.
actuals, management
indicator

SLOC, function points, object
points, scenarios, test cases, SCOs

Budgeted cost and
expenditures

Financial insight, plan vs.
actuals, management
indicator

Cost per month, full-time staff per
month, percentage of budget
expended

Staffing and team

Resource plan vs. actuals,

People per month added, people per

dynamics hiring rate, attrition rate month leaving

Change traffic and Iteration planning, manage- SCOs opened vs. SCOs closed, by type

stability ment indicator of schedule (0,1,2,3,4), by release/component/

convergence subsystem

Breakage and Convergence, software scrap, Reworked SLOC per change, by

modularity quality indicator type (0,1,2,3,4), by release/compo-
nent/subsystem

Rework and Convergence, software Average hours per change, by type

adaptability rework, quality indicator (0,1,2,3,4), by release/component/
subsystem

MTBF and maturity Test coverage/adequacy, Failure counts, test hours until

robustness for use, quality
indicator

failure, by release/component/
subsystem

Appendix C provides a brief derivation and detailed description of these metrics.

They have been proven in practice on projects using iterative development. The case
study in Appendix D presents a very detailed description of how such metrics can
work on a real project.

The seven core metrics can be used in numerous ways to help manage projects
and organizations. In an iterative development project or an organization structured
around a software line of business, the historical values of previous iterations and
projects provide precedent data for planning subsequent iterations and projects. Con-
sequently, once metrics collection is ingrained, a project or organization can improve
its ability to predict the cost, schedule, or quality performance of future work
activities. ,

The seven core metrics are based on common sense and field experience with
both successful and unsuccessful metrics programs. Their attributes include the
following:

* They are simple, objective, easy to collect, easy to interpret, and hard to
misinterpret.

190 PROJECT CONTROL AND PROCESS INSTRUMENTATION

¢ Collection can be automated and nonintrusive.

® They provide for consistent assessments throughout the life cycle and are
derived from the evolving product baselines rather than from a subjective
assessment.

® They are useful to both management and engineering personnel for com-
municating progress and quality in a consistent format.

o Their fidelity improves across the life cycle.

The last attribute is important and deserves further discussion. Metrics applied
to the engineering stage (dominated by intellectual freedom and risk resolution) will
be far less accurate than those applied to the production stage (dominated by imple-
mentation activities and change management). Therefore, the prescribed metrics are
tailored to the production stage, when the cost risk is high and management value is
leveraged. Metrics activity during the engineering stage is geared mostly toward
establishing initial baselines and expectations in the production stage plan.

13.2 MANAGEMENT INDICATORS

There are three fundamental sets of management metrics: technical progress, financial
status, and staffing progress. By examining these perspectives, management can gen-
erally assess whether a project is on budget and on schedule. Financial status is very
well understood; it always has been. Most managers know their resource expendi-
tures in terms of costs and schedule. The problem is to assess how much technical
progress has been made. Conventional projects whose intermediate products were all
paper documents relied on subjective assessments of technical progress or measured
the number of documents completed. While these documents did reflect progress in
expending energy, they were not very indicative of useful work being accomplished.

The management indicators recommended here include standard financial status
based on an earned value system, objective technical progress metrics tailored to the
primary measurement criteria for each major team of the organization, and staffing
metrics that provide insight into team dynamics.

13.2.1 WORK AND PROGRESS

The various activities of an iterative development project can be measured by defining
a planned estimate of the work in an objective measure, then tracking progress (work
completed over time) against that plan (Figure 13-1). Each major organizational team
should have at least one primary progress perspective that it is measured against. For

13.2 MANAGEMENT INDICATORS 191

Release 3

100%

Release 2

Work

Project Schedule

FIGURE 13-1. Expected progress for a typical project with three major releases

the standard teams discussed in Chapter 11, the default perspectives of this metric
would be as follows:

e Software architecture team: use cases demonstrated

* Software development team: SLOC under baseline change management, .
SCOs closed

* Software assessment team: SCOs opened, test hours executed, evaluation
criteria met

® Software management team: milestones completed

13.2.2 BUDGETED COST AND EXPENDITURES

To maintain management control, measuring cost expenditures over the project life
cycle is always necessary. Through the judicial use of the metrics for work and
progress, a much more objective assessment of technical progress can be performed to
compare with cost expenditures. With an iterative development process, it is impor-
tant to plan the near-term activities (usually a window of time less than six months) in
detail and leave the far-term activities as rough estimates to be refined as the current
iteration is winding down and planning for the next iteration becomes crucial.
Tracking financial progress usually takes on an organization-specific format.
One common approach to financial performance measurement is use of an earned
value system, which provides highly detailed cost and schedule insight. Its major
weakness for software projects has traditionally been the inability to assess the techni-
cal progress (% complete) objectively and accurately. While this will always be the
. case in the engineering stage of a project, earned value systems have. proved to be
effective for the production stage, where there is high-fidelity tracking of actuals ver-
sus plans and predictable results. The other core metrics provide a framework for

192 PROJECT CONTROL AND PROCESS INSTRUMENTATION

detailed and realistic quantifiable backup data to plan and track against, especially in
the production stage of a software project, when the cost and schedule expenditures
are highest.

Modern software processes are amenable to financial performance measurement
through an earned value approach. The basic parameters of an earned value system,
usually expressed in units of dollars, are as follows:

¢ Expenditure plan: the planned spending profile for a project over its
planned schedule. For most software projects (and other labor-intensive
projects), this profile generally tracks the staffing profile.

® Actual progress: the technical accomplishment relative to the planned
progress underlying the spending profile. In a healthy project, the actual
progress tracks planned progress closely.

¢ Actual cost: the actual spending profile for a project over its actual sched-
ule. In a healthy project, this profile tracks the planned profile closely.

e Earned value: the value that represents the planned cost of the actual
progress.

¢ Cost variance: the difference between the actual cost and the earned value.
Positive values correspond to over-budget situations; negative values corre-
spond to under-budget situations.

¢ Schedule variance: the difference between the planned cost and the earned
value. Positive values correspond to behind-schedule situations; negative
values correspond to ahead-of-schedule situations.

Figure 13-2 provides a graphical perspective of these parameters and shows a
simple example of a project situation.

The main purpose of the other core metrics is to provide management and engi-
neering teams with a more objective approach for assessing actual progress with
greater accuracy. Of all the parameters in an earned value system, actual progress is
by far the most subjective assessment. Because most managers know exactly how
much cost they have incurred and how much schedule they have used, the variability
in making accurate assessments of financial health is therefore centered in the fidelity
of the actual progress assessment.

To better understand some of the strengths and weaknesses of an earned value
system, consider the development of this book, which was similar in many ways to the
development of software. Actual progress could easily be tracked by the current state
of each chapter, weight-averaged by the number of pages planned for that chapter.

13.2 MANAGEMENT INDICATORS 193

100%
Planned progress
(currently 35%) Expenditure
Actual progress: e Plan
earned value { :
@ (currently 25%), \ T
§ Actual cost
b4 expenditures
a (currently 15%)

| v

\ A
Time 100%

FIGURE 13-2. The basic parameters of an earned value system

I tracked the status of each part (a sequence of related chapters) using the following
states and earned values (the percent complete earned):

¢ 0 to 50%: content incomplete

50%: draft content; author has completed first draft text and art

65 %: initial text baseline; initial text editing complete

75%: reviewable baseline; text and art editing complete

80%: updated baseline; cross-chapter consistency checked

90%: reviewed baseline; author has incorporated external reviewer
comments

100%: final edit; editor has completed a final cleanup pass

The “percent complete” assessments were'assigned subjectively based on my
experience writing complex documents. I planned to work for 10 months and spend
$10,000 for supporting labor. Table 13-2 illustrates my progress and associated
earned value at month 4 of this effort. Although I had drafted about 400 pages of the
total 425, 1 assessed my progress at only 60% complete, taking a weighted average.

If I had plotted a plan for my expenditure profile over time as in Figure 13-2, I
could easily have assessed whether I was on schedule and on budget. Figure 13-3 illus-

194 PROJECT CONTROL AND PROCESS INSTRUMENTATION

TABLE 13-2. Measurement of actual progress of book development (example)

COMPONENT PAGES % STATUS

Part1 60 75% Reviewable baseline
Part I 75 75% Reviewable baseline
Part I 90 65% Initial text baseline
Part IV 30 65% Initial text baseline
Part V 130 50% Draft content

Other (preface, glossary, index) 40 25% Content incomplete

trates my plan and assessment at month 4, when I was 20% ahead of schedule and
30% under budget.

This example provides a good framework for discussing key attributes of plan-
ning and actual progress assessment: establishing an objective basis, developing a suit-
able work breakdown structure, and planning with appropriate fidelity.

I established objective criteria for percent complete of a given component. While
these criteria could be suboptimal for another author, they were accurate for this
book. They were based on my experience as an author, my own personal development
style, and a well-understood relationship with my technical editor. Similarly, for soft-
ware projects, the culture of the team, the experience of the team, and the style of the

100% T
Planned
progress
(currently 40%)
§ Actual cost
S expenditures
E (currently 30%)

Actual progress:
earned value

tly 609
(currently 60%) Expenditure

Plan

Current time

Time . 100%

FIGURE 13-3. Assessment of book progress (example)

13.2 MANAGEMENT INDICATORS 195

development (the process, its rigor, and its maturity) should drive the criteria used to
assess the progress objectively.

I developed a work breakdown structure by breaking down my work by parts
(groupings of chapters), which was the easiest approach for tracking progress. Just as
with software, this was a natural thing to do once there was a well-established archi-
tecture for the book. However, I changed the architecture (the outline and the flow)
several times during the first few months. Detailed tracking by component early in the
book’s development life cycle would have introduced unattractive rework that would
have disincentivized me from making architectural improvements. A better work
breakdown structure for tracking the entire project’s progress (including the contribu-
tions of the author, the editor, the artists, the reviewers, the compositors, and the pub-
lisher) would be organized by the process, with only the construction progress tracked
explicitly by component.

I planned the work with the fidelity appropriate for a single-person project. 1
chose not to do detailed progress tracking until I had established a full draft content
for a given component. I tracked earlier progress through a simple subjective assess-
ment of the level of completeness of first-draft material. The same spirit should be
applied to larger projects, using the level of planning fidelity commensurate with the
current state of the project and the likelihood of replanning.

13.2.3 STAFFING AND TEAM DYNAMICS

An iterative development should start with a small team until the risks in the require-
ments and architecture have been suitably resolved. Depending on the overlap of
iterations and other project-specific circumstances, staffing can vary. For discrete, one-
of-a-kind development efforts (such as building a corporate information system), the
staffing profile in Figure 13-4 would be typical. It is reasonable to expect the mainte-
nance team to be smaller than the development team for these sorts of developments.
For a commercial product development, the sizes of the maintenance and development
teams may be the same. When long-lived, continuously improved products are involved,
maintenance is just continuous construction of new and better releases.

Tracking actual versus planned staffing is a necessary and well-understood man-
agement metric. There is one other important management indicator of changes in
project momentum: the relationship between attrition and additions. Increases in staff
can slow overall project progress as new people consume the productive time of exist-
ing people in coming up to speed. Low attrition of good people is a sign of success.
Engineers are highly motivated by making progress in getting something to work; this
is the recurring theme underlying an efficient iterative development process. If this
motivation is not there, good engineers will migrate elsewhere. An increase in
unplanned attrition—namely, people leaving a project prematurely—is one of the

196 PROJECT CONTROL AND PROCESS INSTRUMENTATION

Inception Elaboration Construction Transition
Effort: 5% Effort: 20% Effort: 65% Effort: 10%
Schedule: 10% Schedule: 30% Schedule: 50% Schedule: 10%

Staffing

Project Schedule
FIGURE 13-4. Typical staffing profile

most glaring indicators that a project is destined for trouble. The causes of such attri-
tion can vary, but they are usually personnel dissatisfaction with management meth-
ods, lack of teamwork, or probability of failure in meeting the planned objectives.

13.3 QUALITY INDICATORS

The four quality indicators are based primarily on the measurement of software
change across evolving baselines of engineering data (such as design models and
source code). These metrics are developed more fully in Appendix C.

13.3.1 CHANGE TRAFFIC AND STABILITY

Overall change traffic is one specific indicator of progress and quality. Change traffic
is defined as the number of software change orders opened and closed over the life
cycle (Figure 13-5). This metric can be collected by change type, by release, across all
releases, by team, by components, by subsystem, and so forth. Coupled with the work
and progress metrics, it provides insight into the stability of the software and its con-
vergence toward stability (or divergence toward instability). Stability is defined as the
relationship between opened versus closed SCOs. The change traffic relative to the
release schedule provides insight into schedule predictability, which is the primary
value of this metric and an indicator of how well the process is performing. The next
three quality metrics focus more on the quality of the product.

13.3 QUALITY INDICATORS 197

Closed

Released Baselines

Change Traffic

Project Schedule

FIGURE 13-5. Stability expectation over a bealthy project’s life cycle

13.3.2 BREAKAGE AND MODULARITY

Breakage is defined as the average extent of change, which is the amount of software
baseline that needs rework (in SLOC, function points, components, subsystems, files,
etc.). Modularity is the average breakage trend over time. For a healthy project, the
trend expectation is decreasing or stable (Figure 13-6).

This indicator provides insight into the benign or malignant character of soft-
ware change. In a mature iterative development process, earlier changes are expected
to result in more scrap than later changes. Breakage trends that are increasing with
time clearly indicate that product maintainability is suspect.

13.3.3 REWORK AND ADAPTABILITY

Rework is defined as the average cost of change, which is the effort to analyze,
resolve, and retest all changes to software baselines. Adaptability is defined as the
rework trend over time. For a healthy project, the trend expectation is decreasing or
stable (Figure 13-7).

Released Baselines

Breakage

Project Schedule

FIGURE 13-6. Modularity expectation over a healthy project’s life cycle

o

198 PROJECT CONTROL AND PROCESS INSTRUMENTATION

- Released Baselines

(Design .
Changes ..|.......! '

Implementation
\ Changes

Project Schedule

Rework

FIGURE 13-7. Adaptability expectation over a healthy project’s life cycle

Not all changes are created equal. Some changes can be made in a staff-hour,
while others take staff-weeks. This metric provides insight into rework measurement.
In a mature iterative development process, earlier changes (architectural changes,
which affect multiple components and people) are expected to require more rework
than later changes (implementation changes, which tend to be confined to a single
component or person). Rework trends that are increasing with time clearly indicate
that product maintainability is suspect.

13.3.4 MTBF AND MATURITY

MTRBEF is the average usage time between software faults. In rough terms, MTBF is
computed by dividing the test hours by the number of type 0 and type 1 SCOs. Matu-
rity is defined as the MTBF trend over time (Figure 13-8).

Early insight into maturity requires that an effective test infrastructure be estab-
lished. Conventional testing approaches for monolithic software programs focused on
achieving complete test coverage of every line of code, every branch, and so forth. In

MTBF

Released Baselines

Project Schedule
FIGURE 13-8. Maturity expectation over a bealthy project’s life cycle

o

13.4 LIFE-CYCLE EXPECTATIONS 199

today’s distributed and componentized software systems, such complete test coverage
is achievable only for discrete components. Systems of components are more effi-
ciently tested by using statistical techniques. Consequently, the maturity metrics mea-
sure statistics over usage time rather than product coverage.

Software errors can be categorized into two types: deterministic and nondeter-
ministic. Physicists would characterize these as Bohr-bugs and Heisen-bugs, respec-
tively. Bohr-bugs represent a class of errors that always result when the software is
stimulated in a certain way. These errors are predominantly caused by coding errors,
and changes are typically isolated to a single component. Heisen-bugs are software
faults that are coincidental with a certain probabilistic occurrence of a given situation.
These errors are almost always design errors (frequently requiring changes in multiple
components) and typically are not repeatable even when the software is stimulated in
the same apparent way. To provide adequate test coverage and resolve the statistically
significant Heisen-bugs, extensive statistical testing under realistic and randomized
usage scenarios is hecessary.

Conventional software programs executing a single program on a single proces-
sor typically contained only Bohr-bugs. Modern, distributed systems with numerous
interoperating components executing across a network of processors are vulnerable
to Heisen-bugs, which are far more complicated to detect, analyze, and resolve. The
best way to mature a software product is to establish an initial test infrastructure that
allows execution of randomized usage scenarios early in the life cycle and continu-
ously evolves the breadth and depth of usage scenarios to optimize coverage across
the reliability-critical components.

As baselines are established, they should be continuously subjected to test sce-
narios. From this base of testing, reliability metrics can be extracted. Meaningful

“insight into product maturity can be gained by maximizing test time (through inde-
pendent test environments, automated regression tests, randomized statistical testing,
after-hours stress testing, etc.). This testing approach provides a powerful mechanism
for encouraging automation in the test activities as early in the life cycle as practical.
This technique could also be used for monitoring performance improvements and
measuring reliability.

13.4 LIFE-CYCLE EXPECTATIONS

There is no mathematical or formal derivation for using the seven core metrics. How-
ever, there were specific reasons for selecting them:

* The quality indicators are derived from the evolving product rather than
from the artifacts.

200 PROJECT CONTROL AND PROCESS INSTRUMENTATION

¢ They provide insight into the waste generated by the process. Scrap and
rework metrics are a standard measurement perspective of most manufac-
turing processes.

* They recognize the inherently dynamic nature of an iterative development
process. Rather than focus on the value, they explicitly concentrate on the
trends or changes with respect to time.

¢ The combination of insight from the current value and the current trend
provides tangible indicators for management action.

The actual values of these metrics can vary widely across projects, organizations,
and domains. The relative trends across the project phases, however, should follow
the general pattern shown in Table 13-3. A mature development organization should
be able to describe metrics targets that are much more definitive and precise for its line
of business and specific processes.

TABLE 13-3. The default pattern of life-cycle metrics evolution

METRIC INCEPTION ELABORATION CONSTRUCTION TRANSITION
Progress 5% 25% 90% 100%
Architecture 30% 90% 100% 160%
Applications <5% 20% 85% 100%
Expenditures Low Moderate High High
Effort 5% 25% 90% 100%
Schedule 10% 40% 90% 100%
Staffing Small team Ramp up Steady Varying
Stability Volatile Moderate Moderate Stable
Architecture Volatile Moderate Stable Stable
Applications Volatile Volatile Moderate Stable
Modularity 50%-100% 25%-50% <25% 5%-10%
Architecture >50% >50% <15% <5%
Applications >80% >80% <25% <10%
Adaptability Varying Varying Benign Benign
Architecture Varying Moderate Benign Benign
Applications Varying Varying Moderate Benign
Maturity Prototype Fragile Usable Robust
Architecture Prototype Usable Robust Robust

Applications Prototype Fragile Usable Robust

13.5 PRAGMATIC SOFTWARE METRICS 201

13.5 PRAGMATIC SOFTWARE METRICS

Measuring is useful, but it doesn’t do any thinking for the decision makers. It only
provides data to help them a«sk—tlge right questions, understand the context, and make
objective decisions. Because of the highly dynamic nature of software projects, these
measures must be available at any time, tailorable to various subsets of the evolving
product (release, version, component, class), and maintained so that trends can be
assessed (first and second derivatives with respect to time). This situation has been
achieved in practice only in projects where the metrics were maintained on-line as an
automated by-product of the development/integration environment.
The basic characteristics of a good metric are as follows:

1. It is considered meaningful by the customer, manager, and performer. If
any one of these stakeholders does not see the metric as meaningful, it will
not be used. “The customer is always right” is a sales motto, not an engi-
neering tenet. Customers come to software engineering providers because
the providers are more expert than they are at developing and managing
software. Customers will accept metrics that are demonstrated to be mean-
ingful to the developer.

2. It demonstrates quantifiable correlation between process perturbations
and business performance. The only real organizational goals and objec-
tives are financial: cost reduction, revenue increase, and margin increase.

3. It is objective and unambiguously defined. Objectivity should translate into
some form of numeric representation (such as numbers, percentages,
ratios) as opposed to textual representations (such as excellent, good, fair,
poor). Ambiguity is minimized through well-understood units of measure-
ment (such as staff-month, SLOC, change, function point, class, scenario,
requirement), which are surprisingly hard to define precisely in the soft-
ware engineering world.

4. It displays trends. This is an important characteristic. Understanding the
change in a metric’s value with respect to time, subsequent projects, subse-
quent releases, and so forth is an extremely important perspective, espe-
cially for today’s iterative development models. It is very rare that a given
metric drives the appropriate action directly. More typically, a metric pre-
sents a perspective. It is up to the decision authority (manager, team, or
other information processing entity) to interpret the metric and decide
what action is necessary.

-5. It is a natural by-product of the process. The metric does not introduce
new artifacts or overhead activities; it is derived directly from the main-
stream engineering and management workflows.

202 PROJECT CONTROL AND PROCESS INSTRUMENTATION

6. It is supported by automation. Experience has demonstrated that the most
successful metrics are those that are collected and reported by automated
tools, in part because software tools require rigorous definitions of the data
they process.

When metrics expose a problem, it is important to get underneath all the symp-
toms and diagnose it. Metrics usually display effects; the causes require synthesis of
multiple perspectives and reasoning. For example, reasoning is still required to inter-
pret the following situations correctly:

* A low number of change requests to a software baseline may mean that the
software is mature and error-free, or it may mean that the test team is on
vacation.

* A software change order that has been open for a long time may mean that
the problem was simple to diagnose and the solution required substantial
rework, or it may mean that a problem was very time-consuming to diag-
nose and the solution required a simple change to a single line of code.

* A large increase in personnel in a given month may cause progress to
increase proportionally if they are trained people who are productive from
the outset. It may cause progress to decelerate if they are untrained new
hires who demand extensive support from productive people to get up to
speed.

Value judgments cannot be made by metrics; they must be left to smarter entities
such as software project managers.

13.6 METRICS AUTOMATION

There are many opportunities to automate the project control activities of a software
project. For managing against a plan, a software project control panel (SPCP) that
maintains an on-line version of the status of evolving artifacts provides a key advan-
tage. This concept was first recommended by the Airlie Software Council [Brown,
1996], using the metaphor of a project “dashboard.” The idea is to provide a display
panel that integrates data from multiple sources to show the current status of some
aspect of the project. For example, the software project manager would want to see a
display with overall project values, a test manager may want to see a display focused
on metrics specific to an upcoming beta release, and development managers may be
interested only in data concerning the subsystems and components for which they are
responsible. The panel can support standard features such as warning lights, thresh-
olds, variable scales, digital formats, and analog formats to present an overview of the

13.6 METRICS AUTOMATION 203

current situation. It can also provide extensive capability for detailed situation analy-
sis. This automation support can improve management insight into progress and
quality trends and improve the acceptance of metrics by the engineering team.

To implement a complete SPCP, it is necessary to define and develop the following;:

e Metrics primitives: indicators, trends, comparisons, and progressions

e A graphical user interface: GUI support for a software project manager
role and flexibility to support other roles

® Metrics collection agents: data extraction from the environment tools that
maintain the engineering notations for the various artifact sets

® Metrics data management server: data management support for populating
the metric displays of the GUI and storing the data extracted by the agents

*(Metrics definitions: actual metrics presentations for requirements progress
(extracted from requirements set artifacts), design progress (extracted from
design set artifacts), implementation progress (extracted from implementa-
tion set artifacts), assessment progress (extracted from deployment set arti-
facts), and other progress dimensions (extracted from manual sources,
financial management systems, management artifacts, etc.)

¢ Actors: typically, the monitor and the administrator

Specific monitors (called roles) include software project managers, software
development team leads, software architects, and customers. For every role, there is a
specific panel configuration and scope of data presented. Each role performs the same
general use cases, but with a different focus.

® Monitor: defines panel layouts from existing mechanisms, graphical
objects, and linkages to project data; queries data to be displayed at differ-
ent levels of abstraction

® Administrator: installs the system; defines new mechanisms, graphical
objects, and linkages; handles archiving functions; defines composition and
decomposition structures for displaying multiple levels of abstraction

The whole display is called a panel. Within a panel are graphical objects, which
are types of layouts (such as dials and bar charts) for information. Each graphical
object displays a metric. A panel typically contains a number of graphical objects
positioned in a particular geometric layout. A metric shown in a graphical object is
labeled with the metric type, the summary level, and the instance name (such as lines
of code, subsystem, server1). Metrics can be displayed in two modes: value, referring

204 PROJECT CONTROL AND PROCESS INSTRUMENTATION

to a given point in time, or graph, referring to multiple and consecutive points in time.
Only some of the display types are applicable to graph metrics.

Metrics can be displayed with or without control values. A control value is an
existing expectation, either absolute or relative, that is used for comparison with a
dynamically changing metric. For example, the plan for a given progress metric is a
control value for comparing the actuals of that metric. Thresholds are another exam-
ple of control values. Crossing a threshold may result in a state change that needs to
be obvious to a user. Control values can be shown in the same graphical object as the
corresponding metric, for visual comparison by the user.

Indicators may display data in formats that are binary (such as black and white),
tertiary (such as red, yellow, and green), digital (integer or float), or some other enu-
merated type (a sequence of possible discrete values such as sun..sat, ready-aim-fire,
jan..dec). Indicators also provide a mechanism that can be used to summarize a condi-
tion or circumstance associated with another metric, or relationships between metrics
and their associated control values.

A trend graph presents values over time and permits upper and lower thresholds
to be defined. Crossing a threshold could be linked to an associated indicator to depict
a noticeable state change from green to red or vice versa. Trends support user-selected
time increments (such as day, week; month, quarter, year). A comparison graph pre-
sents multiple values together, over time. Convergence or divergence among values
may be linked to an indicator. A progression graph presents percent complete, where
elements of progress are shown as transitions between states and an earned value is
associated with each state. Trends, comparisons, and progressions are illustrated in
Figure 13-9.

Metric information can be summarized following a user-defined, linear struc-
ture. (For example, lines of code can be summarized by unit, subsystem, and project.)
The project is the top-level qualifier for all data belonging to a set (top-level context).
Users can define summary structures for lower levels, select the display level based on
previously defined structures, and drill down on a summarized number by seeing the
lower level details.

Figure 13-10 illustrates a simple example of an SPCP for a project. In this case,
the software project manager role has defined a top-level display with four graphical
objects.

1. Project activity status. The graphical object in the upper left provides an
overview of the status of the top-level WBS elements. The seven elements
could be coded red, yellow, and green to reflect the current earned value
status. (In Figure 13-10, they are coded with white and shades of gray.) For
example, green would represent abead of plan, yellow would indicate
within 10% of plan, and red would identify elements that have a greater

13.6 METRICS AUTOMATION 205

Trend: Comparison of a value over tlme' against Actual Value
known thresholds. Example: design model ‘
change traffic f
k- Upper Threshold |
s ‘i
R Y 2 .
] Lower Threshold t
= i
|
i
|
!
Time
Comparison: Comparison of N values with the .~ Metric Value 1 ,
same units over time. Example: - :
open action items vs. closed |
action items
[
=2
£ _ - Metric Value 2
B -
QO L -
= 7
_ . -
-
.-
. .-
T ;
i - H
et
Time :
100% 7 Progress: Plan vs. actuals over time Expected Value
Actual Value
)
(1) :
2 |
£ ‘
Q
© |
2 ‘

Time
FIGURE 13-9. Examples of the fundamental metrics classes

N
B
'
i

206 PROJECT CONTROL AND PROCESS INSTRUMENTATION

Top-Level WBS Activities Technical Artifacts

Management - 4%* / \/ \/ / \
Environment +1% * ><>—< >_<
Requirements +6% *
Design — 5% +
Implementation —D5% + >‘<>‘< >—<

Assessment - Z%f K /\ \/K/
R D

Deployment - 2%4 eq es Imp Dep
Milestone Progress Action Item Progress
Actuals (32) .
Open (12) .- '
A Closed
Plan (27)

FIGURE 13-10. Example SPCP display for a top-level project situation

than 10% cost or schedule variance. This graphical object provides several
examples of indicators: tertiary colors, the actual percentage, and the cur-
rent first derivative (up arrow means getting better, down arrow means get-
ting worse).

2. Technical artifact status. The graphical object in the upper right provides
an overview of the status of the evolving technical artifacts. The Req light
would display an assessment of the current state of the use case models and
requirements specifications. The Des light would do the same for the design
models, the Imp light for the source code baseline, and the Dep light for the
test program.

3. Milestone progress. The graphical object in the lower left provides a pro-
gress assessment of the achievement of milestones against plan and provides
indicators of the current values.

4. Action item progress. The graphical object in the lower right provides a dif-
ferent perspective of progress, showing the current number of open and
closed issues.

Figure 13-10 is one example of a progress metric implementation. Although the
example is trivial, it provides a view into the basic capability of an SPCP display. The

13.6 METRICS AUTOMATION 207

format and content of any project panel are configurable to the software project
manager’s preference for tracking metrics of top-level interest. Some managers will
want only summary data and a few key trends in their top-level display. Others will want
many trends and specific details. An SPCP should support tailoring and provide the
capability to drill down into the details for any given metric. For example, querying a
red light for deployment artifacts would yield the next level of detail in time (a trend
chart) or in abstraction (detailed test status for each release, each subsystem, etc.).

The following top-level use case, which describes the basic operational concept
for an SPCP, corresponds to a monitor interacting with the control panel:

e Start the SPCP. The SPCP starts and shows the most current information
that was saved when the user last used the SPCP.

e Select a panel preference. The user selects from a list of previously defined
default panel preferences. The SPCP displays the preference selected.

e Select a value or graph metric. The user selects whether the metric should
be displayed for a given point in time or in a graph, as a trend. The default
for values is the most recent measurement available. The default for trends
is monthly.

¢ Select to superimpose controls. The user points to a graphical object and
requests that the control values for that metric and point in time be dis-
played. In the case of trends, the controls are shown superimposed with the
metric.

* Drill down to trend. The user points to a graphical object displaying a
point in time and drills down to view the trend for the metric.

e Drill down to point in time. The user points to a graphical object display-
ing a trend and drills down to view the values for the metric.

e Drill down to lower levels of information. The user points to a graphical
object displaying a point in time and drills down to view the next level of
information.

* Drill down to lower level of indicators. The user points to a graphical
object displaying an indicator and drills down to view the breakdown of
the next level of indicators.

The SPCP is one example of a metrics automation approach that collects, orga-
nizes, and reports values and trends extracted directly from the evolving engineering
artifacts. Software engineers will accept metrics only if metrics are automated by the
environment.

CHAPTER 14

Tailoring the
Process

Key Points

Sofrware management efforts span a broad
. A The process framework must be

range of domains. While there are some uni-
versal themes and techniques, it is always nec- | configured to the specific characteristics
essary to tailor the process to the specific needs ' of the project.
of the project at hand. A commercial software | a The scale of the project—in particular, |
tool developer with complete control of its ~ t€am size—drives the process configura-
. . . tion more than any other factor.
investment profile will use a very different pro- ,

f h ¢ f . A Other key factors include stakeholder
cess from that ot a software ":Itegrator on con- relationships, process flexibility, process
tract to automate the security system for a maturity, architectural risk, and domain
nuclear power plant. There is no doubt that a . experience.
mature process and effective software manage- 4 While specific process implementa-
ment roach ffer much sreat lue to tions will vary, the spirit underlying the

app e o ‘uc & er valu . process is the same.
the large-scale software integrator than they
do to the small-scale tool developer. Neverthe-
less, relative to their business goals, the return on investment realized by better soft-
ware management approaches is worthwhile for any software organization.

14.1 PROCESS DISCRIMINANTS

In tailoring the management process to a specific domain or project, there are two
dimensions of discriminating factors: technical complexity and management com-
plexity. Figure 14-1 illustrates these two dimensions of process variability and shows
some example project applications. The formality of reviews, the quality control of
artifacts, the priorities of concerns, and numerous other process instantiation parame-
ters are governed by the point a project occupies in these two dimensions. Figure 14-2
summarizes the different priorities along the two dimensions.

209

210 TAILORING THE PROCESS

Higher Technical Complexity

* Embedded, real-time, distributed, fault-tolerant
* High-performance, portable
* Unprecedented, architecture re-engineering

Average software project: Q
5 to 10 people DOD
10 to 12 months Weapon
3to 5 extemal interfaces O O O systepm O)
Some unknowns, risks Embedded Telecom switch Nathnal Air
. — automotive Commercial Tratfic Conirol

application compiler System

Lower Higher
Management <4— Management
Complexity O Large-scale Complexity
simulation
* Smaller scale Small scientific EO EO * Large scale
simutation nterprise nierprise
+ Informal appiication ook tion O * Contractual
* Few stakeholders Q (Stéch as systems DOD » Many stakeholders
. “Products” Busmess A order emry) ir:g:fngaetg:m » “Projects”
spreadsheet system

Lower Technical Complexity

* Straightforward automation, single thread
* Interactive performance, single platform
* Many precedent systems, application re-engineering

FIGURE 14-1. The two primary dimensions of process variability

A process framework is not a project-specific process implementation with a
well-defined recipe for success. Judgment must be injected, and the methods, tech-
niques, culture, formality, and organization must be tailored to the specific domain to
achieve a process implementation that can succeed. The following discussion about
the major differences among project processes is organized around six process param-
eters: the size of the project and the five parameters that affect the process exponent,
and hence economies of scale, in COCOMO II. These are some of the critical dimen-
sions that a software project manager must consider when tailoring a process frame-
work to create a practical process implementation.

14.1.1 SCALE

Perhaps the single most important factor in tailoring a software process framework to
the specific needs of a project is the total scale of the software application. There are
many ways to measure scale, including number of source lines of code, number of
function points, number of use cases, and number of dollars. From a process tailoring
perspective, the primary measure of scale is the size of the team. As the headcount
increases, the importance of consistent interpersonal communications becomes para-
mount. Otherwise, the diseconomies of scale can have a serious impact on achieve-
ment of the project objectives.

14.1 PROCESS DISCRIMINANTS 211

Higher Technical Complexity 0 5 T R p T m/éj(fqo .
* More domain experience required - SPL
* Longer inception and elaboration phases

* More iterations for risk management tel. /fax(01) 312 98 26
* Less-predictable costs and schedules N

str. Miaguricea nr, 20

| 71504 BUCURESTI

Lower Higher
Management < —» Management
Complexity Complexity

* Less emphasis on risk management * More emphasis on risk management

* Less process formality * More process formality

* More emphasis on individual skills * More emphasis on teamwork

* Longer production and transition phases * Longer inception and elaboration phases

Lower Technical Complexity

* More emphasis on existing assets

* Shorter inception and elaboration phases
* Fewer iterations

* More-predictable costs and schedules

FIGURE 14-2. Priorities for tailoring the process framework

My project experience has demonstrated that five people is an optimal size for
an engineering team. Many studies indicate that most people can best manage four to
seven things at a time. A simple extrapolation of these results suggests that there are
fundamentally different management approaches needed to manage a team of 1 (triv-
ial), a team of § (small), a team of 25 (moderate), a team of 125 (large), a team of 625
(huge), and so on. As team size grows, a new level of personnel management is intro-
duced at roughly each factor of 5. This model can be used to describe some of the pro-
cess differences among projects of different sizes.

Trivial-sized projects require almost no management overhead (planning, com-
munication, coordination, progress assessment, review, administration). There is little
need to document the intermediate artifacts. Workflow is single-threaded. Perfor-
mance is highly dependent on personnel skills.

Small projects (5 people) require very little management overhead, but team
leadership toward a common objective is crucial. There is some need to communicate
the intermediate artifacts among team members. Project milestones are easily
planned, informally conducted, and easily changed. There is a small number of indi-
vidual workflows. Performance depends primarily on personnel skills. Process matu-
rity is relatively unimportant. Individual tools can have a considerable impact on
performance.

212 TAILORING THE PROCESS

Moderate-sized projects (25 people) require moderate management overhead,
including a dedicated software project manager to synchronize team workflows and
balance resources. Overhead workflows across all team leads are necessary for review,
coordination, and assessment. There is a definite need to communicate the intermedi-
ate artifacts among teams. Project milestones are formally planned and conducted,
and the impacts of changes are typically benign. There is a small number of concur-
rent team workflows, each with multiple individual workflows. Performance is highly
dependent on the skills of key personnel, especially team leads. Process maturity is
valuable. An environment can have a considerable impact on performance, but suc-
cess can be achieved with certain key tools in place.

Large projects (125 people) require substantial management overhead, including
a dedicated software project manager and several subproject managers to synchronize
project-level and subproject-level workflows and to balance resources. There is signif-
icant expenditure in overhead workflows across all team leads for dissemination,
review, coordination, and assessment. Intermediate artifacts are explicitly emphasized
to communicate engineering results across many diverse teams. Project milestones are
formally planned and conducted, and changes to milestone plans are expensive. Large
numbers of concurrent team workflows are necessary, each with multiple individual
workflows. Performance is highly dependent on the skills of key personnel, especially
subproject managers and team leads. Project performance is dependent on average
people, for two reasons:

1. There are numerous mundane jobs in any large project, especially in the
overhead workflows.

2. The probability of recruiting, maintaining, and retaining a large number of
exceptional people is small.

Process maturity is necessary, particularly the planning and control aspects of manag-
ing project commitments, progress, and stakeholder expectations. An integrated envi-
ronment is required to manage change, automate artifact production, and maintain
consistency among the evolving artifacts.

Huge projects (625 people) require substantial management overhead, including
multiple software project managers and many subproject managers to synchronize
project-level and subproject-level workflows and to balance resources. There is signif-
icant expenditure in overhead workflows across all team leads for dissemination,
review, coordination, and assessment. Intermediate artifacts are explicitly emphasized
to communicate engineering results across many diverse teams. Project milestones are
very formally planned and conducted, and changes to milestone plans typically cause

14.1 PROCESS DISCRIMINANTS 213

malignant replanning. There are very large numbers of concurrent team workflows,
each with multiple individual workflows. Performance is highly dependent on the
skills of key personnel, especially subproject managers and team leads. Project perfor-
mance is still dependent on average people.

Software process maturity and domain experience are mandatory to avoid risks
and ensure synchronization of expectations across numerous stakeholders. A mature,
highly integrated, common environment across the development teams is necessary to
manage change, automate artifact production, maintain consistency among the evolv-
ing artifacts, and improve the return on investment of common processes, common
tools, common notations, and common metrics.

Table 14-1 summarizes some key differences in the process primitives for small
and large projects.

TaABLE 14-1. Process discriminators that result from differences in project size

PROCESS PRIMITIVE SMALLER TEAM LARGER TEAM

Weak boundaries between Well-defined phase transitions to
phases synchronize progress among
concurrent activities

Life-cycle phases

Artifacts Focus on technical artifacts Change management of technical
Few discrete baselines artifacts, whlch.may result in
numerous baselines
Very few management M £)
artifacts required anagement artifacts important
Workflow effort More need for generalists, Higher percentage of specialists
allocations peolp.lelwho plffxl'form roles in More people and teams focused on
multiple workflows a specific workflow
Checkpoints Many informal events for A few formal events
maintaining technical Synchronization among teams,
consistency which can take days
No schedule disruption
Management Informal planning, project Formal planning, project control,
discipline control, and organization and organization
Automation More ad hoc environments, Infrastructure to ensure a consis-
discipline managed by individuals tent, up-to-date environment

available across all teams

Additional tool integration to
support project control and change
control

214 TAILORING THE PROCESS

14.1.2 STAKEHOLDER COHESION OR CONTENTION

The degree of cooperation and coordination among stakeholders (buyers, developers,
users, subcontractors, and maintainers, among others) can significantly drive the spe-
cifics of how a process is defined. This process parameter can range from cohesive to
adversarial. Cohesive teams have common goals, complementary skills, and close
communications. Adversarial teams have conflicting goals, competing or incomplete
skills, and less-than-open communications.

A product that is funded, developed, marketed, and sold by the same organization
can be set up with a common goal (for example, profitability). A small, collocated
organization can be established that has a cohesive skill base and excellent day-to-day
communications among team members.

It is much more difficult to set up a large contractual effort without some con-
tention across teams. A development contractor rarely has all the necessary software
or domain expertise and frequently must team with multiple subcontractors, who
have competing profit goals. Funding authorities and users want to minimize cost,
maximize the feature set, and accelerate time to market, while development contrac-
tors want to maximize profitability. Large teams are almost impossible to collocate,
and synchronizing stakeholder expectations is challenging. All these factors tend to
degrade team cohesion and must be managed continuously. Table 14-2 summarizes
key differences in the process primitives for varying levels of stakeholder cohesion.

TABLE 14-2. Process discriminators that result from differences in stakeholder cobesion

PROCESS FEW STAKEHOLDERS, MULTIPLE STAKEHOLDERS,

PRIMITIVE COHESIVE TEAMS ADVERSARIAL RELATIONSHIPS

Life-cycle Weak boundaries Well-defined phase transitions to synchronize

phases between phases progress among concurrent activities

Artifacts Fewer and less detailed Management artifacts paramount, especially
management artifacts the business case, vision, and status assessment
required

Workflow effort Less overhead in High assessment overhead to ensure

allocations assessment stakeholder concurrence

Checkpoints Many informal events 3 or 4 formal events

Many informal technical walkthroughs
necessary to synchronize technical decisions

Synchronization among stakeholder teams,
which can impede progress for weeks

Management Informal planning, Formal planning, project control, and
discipline project control, and organization
organization

Automation (insignificant) On-line stakeholder environments necessary
discipline

14.1 PROCESS DISCRIMINANTS 215

14.1.3 PROCESS FLEXIBILITY OR RIGOR

The degree of rigor, formality, and change freedom inherent in a specific project’s
“contract” (vision document, business case, and development plan) will have a sub-
stantial impact on the implementation of the project’s process. For very loose con-
tracts such as building a commercial product within a business unit of a software
company (such as a Microsoft application or a Rational Software Corporation devel-
opment tool), management complexity is minimal. In these sorts of development pro-
cesses, feature set, time to market, budget, and quality can all be freely traded off and
changed with very little overhead. For example, if a company wanted to eliminate a
few features in a product under development to capture market share from the com-
petition by accelerating the product release, it would be feasible to make this decision
in less than a week. The entire coordination effort might involve only the develop-
ment manager, marketing manager, and business unit manager coordinating some key
commitments.

On the other hand, for a very rigorous contract, it could take many months to
authorize a change in a release schedule. For example, to avoid a large custom devel-
opment effort, it might be desirable to incorporate a new commercial product into the
overall design of a next-generation air traffic control system. This sort of change
would require coordination among the development contractor, funding agency, users
(perhaps the air traffic controllers’ union and major airlines), certification agencies
(such as the Federal Aviation Administration), associate contractors for interfacing
systems, and others. Large-scale, catastrophic cost-of-failure systems have extensive
contractual rigor and require significantly different management approaches.
Table 14-3 summarizes key differences in the process prlmmves for varying levels of
process flexibility.

14.1.4 PROCESS MATURITY

The process maturity level of the development organization, as defined by the Soft-
ware Engineering Institute’s Capability Maturity Model [SEL, 1993; 1993b; 1995], is
another key driver of management complexity. Managing a mature process (level 3 or
higher) is far simpler than managing an immature process (levels 1 and 2). Organiza-
tions with a mature process typically have a high level of precedent experience in
developing software and a high level of existing process collateral that enables pre-
dictable planning and execution of the process. This sort of collateral includes well-
defined methods, process automation tools, trained personnel, planning metrics,
artifact templates, and workflow templates. Tailoring a mature organization’s process
for a specific project is generally a straightforward task. Table 14-4 summarizes key
differences in the process primitives for varying levels of process maturity.

216 TAILORING THE PROCESS

TABLE 14-3. Process discriminators that result from differences in process flexibility

PROCESS
PRIMITIVE

FLEXIBLE PROCESS

INFLEXIBLE PROCESS

Life-cycle phases

Tolerant of cavalier phase
commitments

More credible basis required for
inception phase commitments

Artifacts Changeable business case and Carefully controlled changes to
vision business case and vision
Workflow effort (insignificant) Increased levels of management and
allocations assessment workflows
Checkpoints Many informal events for main- 3 or 4 formal events
taining technical consistency Synchronization among stakeholder
teams, which can impede progress for
days or weeks
Management (insignificant) More fidelity required for planning
discipline and project control
Automation (insignificant) (insignificant)
discipline

TABLE 14-4. Process discriminators that result from differences in process maturity

PROCESS MATURE, LEVEL 3 OR 4
PRIMITIVE ORGANIZATION LEVEL 1 ORGANIZATION
Life-cycle phases Well-established criteria for {insignificant)
phase transitions
Artifacts Well-established format, con- Free-form
tent, and production methods
Workflow effort Well-established basis No basis
allocations
Checkpoints Well-defined combination of (insignificant)
formal and informal events
Management Predictable planning Informal planning and project control
discipline Objective status assessments
Automation Requires high levels of automa- Little automation or disconnected
discipline tion for round-trip engineering, islands of automation

change management, and pro-
cess instrumentation

14.1 PROCESS DISCRIMINANTS 217

TABLE 14-5. Process discriminators that result from differences in architectural risk

COMPLETE ARCHITECTURE
PROCESS FEASIBBILITY NO ARCHITECTURE FEASIBILITY
PRIMITIVE DEMONSTRATION DEMONSTRATION

Life-cycle phases

More inception and elabora-
tion phase iterations

Fewer early iterations

More construction iterations

Artifacts

Earlier breadth and depth
across technical artifacts /

(insignificant)

T
Workflow effort Higher level of design effort Higher levels of implementation and
allocations Lower levels of implementa- ass§ssmen;<to deal with increased scrap
tion and assessment and rewor
Checkpoints More emphasis on executable More emphasis on briefings, docu-
demonstrations ments, and simulations
Management (insignificant) (insignificant)
discipline
Automation More environment resources Less environment demand early in the
discipline required eatlier in the life cycle life cycle

14.1.5 ARCHITECTURAL RisK

The degree of technical feasibility demonstrated before commitment to full-scale pro-
duction is an important dimension of defining a specific project’s process. There are
many sources of architectural risk. Some of the most important and recurring sources
are system performance (resource utilization, response time, throughput, accuracy),
robustness to change (addition of new features, incorporation of new technology,
adaptation to dynamic operational conditions), and system reliability (predictable
behavior, fault tolerance). The degree to which these risks can be eliminated be-
fore construction begins can have dramatic ramifications in the process tailoring;
Table 14-5 summarizes key differences in the process primitives for varying levels of
architectural risk.

14.1.6 DOMAIN EXPERIENCE

The development organization’s domain experience governs its ability to converge on
an acceptable architecture in a minimum number of iterations. An organization that
has built five generations of radar control switches may be able to converge on an ade-
quate baseline architecture for a new radar application in two or three prototype
release iterations. A skilled software organization building its first radar application
may require four or five prototype releases before converging on an adequate base-
line. Table 14-6 summarizes key differences in the process primitives for varying levels
of domain experience.

218 TAILORING THE PROCESS

TABLE 14-6. Process discriminators that result from differences in domain experience

PROCESS
PRIMITIVE

EXPERIENCED TEAM

INEXPERIENCED TEAM

Life-cycle phases

Shorter engineering stage

Longer engineering stage

Artifacts Less scrap and rework in More scrap and rework in require-
requirements and design sets ments and design sets
Workflow effort Lower levels of requirements Higher levels of requirements and
allocations and design design
Checkpoints (insignificant) (insignificant)
Management Less emphasis on risk More-frequent status assessments
discipline management required
Less-frequent status assess-
ments needed
Automation (insignificant) (insignificant)
discipline

14.2 EXAMPLE: SMALL-SCALE PROJECT VERSUS
LARGE-SCALE PROJECT

An analysis of the differences between the phases, workflows, and artifacts of two
projects on opposite ends of the management complexity spectrum shows how differ-
ent two software project processes can be. The following gross generalizations are
intended to point out some of the dimensions of flexibility, priority, and fidelity that
can change when a process framework is applied to different applications, projects,
and domains.

Table 14-7 illustrates the differences in schedule distribution for large and small
projects across the life-cycle phases. A small commercial project (for example, a
50,000 source-line Visual Basic Windows application, built by a team of five) may
require only 1 month of inception, 2 months of elaboration, 5 months of construc-
tion, and 2 months of transition. A large, complex project (for example, a 300,000
source-line embedded avionics program, built by a team of 40) could require 8 months

TABLE 14-7. Schedule distribution across phases for small and large projects

ENGINEERING PRODUCTION
DOMAIN INCEPTION ELABORATION CONSTRUCTION TRANSITION
Small 10% 20% 50% 20%
commercial
project
Large, complex 15% 30% 40% 15%

project

14.2 EXAMPLE: SMALL-SCALE PROJECT VERSUS LARGE-SCALE PROJECT 219

of inception, 14 months of elaboration, 20 months of construction, and 8 months of
transition. Comparing the ratios of the life cycle spent in each phase highlights the
obvious differences.

The biggest difference is the relative time at which the life-cycle architecture
milestone occurs. This corresponds to the amount of time spent in the engineering
stage compared to the production stage. For a small project, the split is about 30/70;
for a large project, it is more like 45/55.

One key aspect of the differences between the two projects is the leverage of the
various process components in the success or failure of the project. This reflects the
importance of staffing or the level of associated risk management. Table 14-8 lists
the workflows in order of their importance.

The following list elaborates some of the key differences in discriminators of
success. None of these process components is unimportant, although some of them
are more important than others.

* Design is key in both domains. Good design of a commercial product is a

key differentiator in the marketplace and is the foundation for efficient new

" product releases. Good design of a large, complex project is the foundation
for predictable, cost-efficient construction.

* Management is paramount in large projects, where the consequences of
planning errors, resource allocation errors, inconsistent stakeholder expec-
tations, and other out-of-balance factors can have catastrophic conse-
quences for the overall team dynamics. Management is far less important
in a small team, where opportunities for miscommunications are fewer and
their consequences less significant.

e Deployment plays a far greater role for a small commercial product
because there is a broad user base of diverse individuals and environments.

TABLE 14-8. Differences in workflow priorities between small and large projects

RANK SMALL COMMERCIAL PROJECT LARGE, COMPLEX PROJECT
1 Design Management
2 Implementation Design -
3 Deployment Requirements E
4 Requirements Assessment
S Assessment Environment
6 M t Impl tati 25 e
anagemen mplementatign Maguricea nr, o,
7 Environment Deployment é 71504 BUcy REST]

A e et €om g,

e aes e,

220 TAILORING THE PROCESS

A large, one-of-a kind, complex project typically has a single deployment
site. Legacy systems and continuous operations may pose several risks, but
in general these problems are well understood and have a fairly static set of

objectives.

Another key set of differences is inherent in the implementation of the various
artifacts of the process. Table 14-9 provides a conceptual example of these differences.

TaBLE 14-9. Differences in artifacts between small and large projects

SMALL COMMERCIAL
ARTIFACT PROJECT LARGE, COMPLEX PROJECT
Work breakdown 1-page spreadsheet with 2 Financial management system with
structure levels of WBS elements 5 or 6 levels of WBS elements

Business case

Spreadsheet and short memo

3-volume proposal including
technical volume, cost volume,
and related experience

Vision statement

10-page concept paper

200-page subsystem specification

Development plan

10-page plan

200-page development plan

Release specifications

3 interim release

8 to 10 interim release

and number of specifications specifications

releases

Architecture S critical use cases, S0 UML 25 critical use cases, 200 UML dia-

description diagrams, 20 pages of text, grams, 100 pages of text, other
other graphics graphics

Software 50,000 lines of Visual Basic 300,000 lines of C++ code

code

Release description

10-page release notes

100-page summary

Deployment

User training course

Sales rollou kit

Transition plan

Installation plan

User manual

On-line help and 100-page
user manual

200-page user manual

Status assessment

Quarterly project reviews

Monthly project management
reviews

PART IV

LOOKING
FORWARD

cHapTER 15 MODERN PROJECT PROFILES

cHAPTER 16 NEXT-GENERATION SOFTWARE

ECONOMICS

cHapTER 17 MODERN PROCESS TRANSITIONS

Part | presented several perspectives on conventional software management. It
objectively described a conventional project profile, conventional software
economics, and conventional principles of software management. Parts Il and lil
described a process framework and the management disciplines necessary to
make a state change to a modern software process. Part IV completes the presen-
tation of a modern software management framework. It revisits three of the Part |
descriptions of conventional results and describes the performance of the mod-
ern software management process.

The material in Part IV is mostly conjecture, including an expectation
(Chapter 15), some hypotheses (Chapter 16), and some heuristics (Chapter 17).

Chapter 15 sets forth the expected profile of a well-managed iterative develop-

ment project and describes how it would differ from conventional project experi-
ence. Chapter 16 presents some hypothetical observations about next-generation
software economics. Chapter 17 highlights some of the cultural changes neces-
sary in transitioning to modern software management techniques. These presen-
tations follow the same format as Part | so that the discriminating differences are
clear.

CHAPTER 15

Modern Project
Profiles

hapter 1 presented five recurring issues of Key Pointsv
conventional projects. A modern process . , o
. .. A In modern project profiles, positive
framework exploits several critical approaches ' and negative trends will be more
for resolving these issues: tangible early in the life cycle.

A Integration that occurs early and
continuously serves as the verification
activity of the design artifacts.

A Most of the critical risks will be

1. Protracted integration and late design
breakage are resolved by forcing integra-

tlon. into the englneer}ng stage. Thls. 18 resolved by the end of the elaboration
achieved through continuous integration | phase. The construction and transition
of an architecture baseline supported | Pphases, during which there is generally

. . th isk, shoul fi f
by executable demonstrations of the pri- | :ufp':;:’:: cost risk, should be free o

1 i
mary SCenarios. . A Major milestones focus on demon-

. strated results.

2. Late risk resolution is resolved by empha-
sizing an architecture-first approach, in e
which the high-leverage elements of the system are elaborated early in the life
cycle.

3. The analysis paralysis of a requirements-driven functional decomposition
is avoided by organizing lower level specifications along the content of
releases rather than along the product decomposition (by subsystem, by
component, etc.).

4. Adversarial stakebolder relationships are avoided by providing much more
tangible and objective results throughout the life cycle.

5. The conventional focus on documents and review meetings is replaced by
a focus on demonstrable results and well-defined sets of artifacts, with
more-rigorous notations and extensive automation supporting a paperless

environment.
225

226 MODERN PROJECT PROFILES

The ways in which healthy modern projects resolve these five issues are dis-
cussed in more detail next. Because the resolutions of issues 4 and § are tightly cou-
pled, they are discussed together in Section 15.4. Sections 15.5 and 15.6 discuss
modern projects in the context of my top 10 software management principles and an
alternative set of software best practices.

15.1 CONTINUOUS INTEGRATION

Iterative development produces the architecture first, allowing integration to occur as
the verification activity of the design phase and enabling design flaws to be detected
and resolved earlier in the life cycle. This approach avoids the big-bang integration at
the end of a project by stressing continuous integration throughout the project.
Figure 15-1 illustrates the differences between the progress profile of a healthy mod-
ern project and that of a typical conventional project, which was introduced in
Figure 1-2. The architecture-first approach forces integration into the design phase
through the construction of demonstrations. The demonstrations do not eliminate the
design breakage; instead, they make it happen in the engineering stage, when it can be
resolved efficiently in the context of life-cycle goals. The downstream integration
nightmare, late patches, and shoe-horned software fixes are avoided. The result is a
more robust and maintainable design.

Format Evolving management and engineering artifacts iterative development
projects can avoid late,
Activity Inception Elaboration Construction Transition large-scale design
breakage through
- continuous integration.
Product | Prototypes Architecture Usabte Releases Product Releases

[Rerative activities >
100% —

Modern -
Project Profile .-

" Conventional
Project Profile

Development Progress
{% coded)

A A A

Project Schedule

FIGURE 15-1. Progress profile of a modern project

15.2 EARLY RISK RESOLUTION 227

TaBLE 15-1. Differences in workflow cost allocations between a conventional
process and a modern process

SOFTWARE CONVENTIONAL MODERN
ENGINEERING PROCESS PROCESS
WORKFLOWS EXPENDITURES EXPENDITURES
Management 5% 10%
Environment 5% 10%
Requirements 5% 10%
Design 10% 15%
Implementation 30% 25%
Assessment 40% 25%
Deployment 5% 5%
Total 100% 100%

The continuous integration inherent in an iterative development process also
enables better insight into quality trade-offs. System characteristics that are largely
inherent in the architecture (performance, fault tolerance, maintainability) are tangi-
ble earlier in the process, when issues are still correctable without jeopardizing target
costs and schedules. A recurring theme of successful iterative development projects is
a cost profile very different from that experienced by conventional processes.

Table 15-1 identifies the differences in a modern process profile from the per-
spective of the cost distribution among the various project workflows. This table is a
simple combination of Table 1-1 (a typical conventional allocation) and Table 10-1 (a
default modern allocation). In my experience, the primary discriminator of a success-
ful modern process is inherent in the overall life-cycle expenditures for assessment and
testing. Conventional projects, mired in inefficient integration and late discovery of
substantial design issues, expend roughly 40% or more of their total resources in inte-
gration and test activities. Modern projects with a mature, iterative process deliver a
product with only about 25% of the total budget consumed by these activities.

15.2 EARLY RISK RESOLUTION

The engineering stage of the life cycle (inception and elaboration phases) focuses on
confronting the risks and resolving them before the big resource commitments of the
production stage. Conventional projects usually do the easy stuff first, thereby dem-
onstrating early progress. A modern process attacks the important 20% of the
requirements, use cases, components, and risks. This is the essence of my most impor-
tant principle: architecture first. Defining the architecture rarely includes simple steps

228 MODERN PROJECT PROFILES

for which visible progress can be achieved easily. The effect of the overall life-cycle
philosophy on the 80/20 lessons learned over the past 30 years of software manage-
ment experience provides a useful risk management perspective.

* 80% of the engineering is consumed by 20% of the requirements. Strive to
understand the driving requirements completely before committing re-
sources to full-scale development. Do not strive prematurely for high fidelity
and full traceability of the requirements.

¢ 80% of the software cost is consumed by 20% of the components. Elabo-
rate the cost-critical components first so that planning and control of cost
drivers are well understood early in the life cycle.

® 80% of the errors are caused by 20% of the components. Elaborate the
reliability-critical components first so that assessment activities have
enough time to achieve the necessary level of maturity.

* 80% of software scrap and rework is caused by 20% of the changes. Elab-
orate the change-critical components first so that broad-impact changes
occur when the project is nimble.

¢ 80% of the resource consumption (execution time, disk space, memory) is
consumed by 20% of the components. Elaborate the performance-critical
components first so that engineering trade-offs with reliability, changeability,
and cost-effectiveness can be resolved as early in the life cycle as possible.

* 80% of the progress is made by 20% of the people. Make sure that the ini-
tial team for planning the project and designing the architecture is of the
highest quality. An adequate plan and adequate architecture can then suc-
ceed with an average construction team. An inadequate plan or inadequate
architecture will probably not succeed, even with an expert construction
team.
Figure 15-2 compares the risk management profile of a modern project with the

profile for a typical conventional project presented in Figure 1-3.

15.3 EVOLUTIONARY REQUIREMENTS

Conventional approaches decomposed system requirements into subsystem require-
ments, subsystem requirements into component requirements, and component
requirements into unit requirements. The organization of requirements was struc-
tured so that traceability was simple. With an early life-cycle emphasis on require-
ments first, design second, then complete traceability between requirements and design

15.4 TEAMWORK AMONG STAKEHOLDERS 229

Inception . Elaboration Construction — Transition >
High
Controlled Risk
______ Management Period
g
=1
0
Q
Q.
x
]
x
)
% Conventional
S .. Project Risk Profile
9 Modern Project "
a . . Risk Profile
Risk Exploration - Risk Resolution - e
Period * Period - ’
Low

Project Life Cycle
FIGURE 15-2. Risk profile of a typical modern project across its life cycle

components, the natural tendency was for the design structure to evolve into an orga-
nization that closely paralleled the structure of the requirements organization. It was
no surprise that functional decomposition of the problem space led to a functional
decomposition of the solution space.

Most modern architectures that use commercial components, legacy compo-
nents, distributed resources, and object-oriented methods are not trivially traced
to the requirements they satisfy. There are now complex relationships between require-
ments statements and design elements, including 1 to 1, many to 1, 1 to many, condi-
ttonal, time-based, and state-based. '

Top-level system requirements are retained as the vision, but lower level require-
ments are captured in evaluation criteria attached to each intermediate release. These
artifacts, illustrated in Figure 15-3, are intended to evolve along with the process,
with more and more fidelity as the life cycle progresses and requirements understand-
ing matures. This is a fundamental difference from conventional requirements man-
agement approaches, in which this fidelity was pursued far too early in the life cycle.

15.4 TEAMWORK AMONG STAKEHOLDERS

Many aspects of the classic development process cause stakeholder relationships to
degenerate into mutual distrust, making it difficult to balance requirements, product
features, and plans. A more iterative process, with more-effective working relationships

230 MODERN PROJECT PROFILES

Software Architecture Requirements Set Artifacts
CAPABILITY CAPABILITV CAPABILITY 2; Software
Fa Fb Fc Fi Fx Fz .
c N . Vision
E——— = E = . Document
AN

MECHANISMS (MECHANISMS ¢
«—> Use Case Model

COMMON MECHANISMS ¢

L MECHANISMS

Ra
COMMON MECHANISMS Rb Release
> |. Specifications

= _ Re

FIGURE 15-3. Organization of software components resulting from a modern process

between stakeholders, allows trade-offs to be based on a more objective understand-
ing by everyone. This process requires that customers, users, and monitors have both
applications and software expertise, remain focused on the delivery of a usable system
(rather than on blindly enforcing standards and contract terms), and be willing to
allow the contractor to make a profit with good performance. It also requires a devel-
opment organization that is focused on achieving customer satisfaction and high
product quality in a profitable manner.

The-transition from the exchange of mostly paper artifacts to demonstration of
intermediate results is one of the crucial mechanisms for promoting teamwork among
stakeholders. Major milestones provide tangible results and feedback from a usage
point of view. As Table 15-2 shows, designs are now guilty until proven innocent: The
project does not move forward until the objectives of the demonstration have been
achieved. This prerequisite does not preclude the renegotiation of objectives once the
demonstration and major milestone results permit further understanding of the trade-
offs inherent in the requirements, design, plans, and technology.

In Table 15-2, the apparent results may still have a negative connotation. A
modern iterative process that focuses on demonstrable results (rather than just brief-
ings and paper) requires all stakeholders to be educated in the important distinction
between apparently negative results and evidence of real progress. For example, a
design flaw discovered early, when the cost to resolve it is tenable, can often be viewed
as positive progress rather than as a major issue.

15.5 TOP 10 SOFTWARE MANAGEMENT PRINCIPLES 231

TABLE 15-2. Results of major milestones in a modern process

APPARENT RESULT" REAL RESULT
Early demonstrations expose design issues Demonstrations expose the important assets and
and ambiguities in a tangible form. risks of complex software systems early, when

they can be resolved within the context of life-
cycle goals.

The design is noncompliant (so far). Understanding of compliance matures from
important perspectives (architecturally significant
requirements and use cases).

Driving requirements issues are exposed, Requirements changes are considered in balance
but detailed requirements traceability is with design trade-offs.

lacking.

The design is considered “guilty until Engineering progress and issues are tangible, for
proven innocent.” incorporation into the next iteration’s plans.

15.5 TOP 10 SOFTWARE MANAGEMENT PRINCIPLES

My top 10 software management principles were introduced in Chapter 4 as a back-
drop to the software process framework and its underlying tenets. To summarize a
modern project profile, the following paragraphs revisit each of these principles and
describe the project expectation associated with the successful application of each
principle. In essence, the list provides a concise, top-level description of the features
and benefits of a modern process as viewed by a software project manager.

1. Base the process on an architecture-first approach. An early focus on the
architecture results in a solid foundation for the 20% of the stuff (require-
ments, components, use cases, risks, errors) that drives the overall success
of the project. Getting the architecturally important components to be well
understood and stable before worrying about the complete breadth and
depth of the artifacts should result in scrap and rework rates that decrease
or remain stable over the project life cycle.

2. Establish an iterative life-cycle process that confronts risk early. A more
dynamic planning framework supported by an iterative process results in
better risk management and more predictable performance. Resolving the
critical issues first results in a predictable construction phase with no
surprises, as well as minimal exposure to sources of cost and schedule
unpredictability.

3. Transition design methods to emphasize component-based development.
The complexity of a software effort is mostly a function of the number of
human-generated artifacts. Making the solution smaller reduces manage-
ment complexity.

232 MODERN PROJECT PROFILES

4. Establish a change management environment. The dynamics of iterative
development, including concurrent workflows by different teams working
on shared artifacts, necessitate highly controlled baselines.

5. Enhance change freedom through tools that support round-trip engineer-
ing. Automation enables teams to spend more time on engineering and less
time on overhead tasks.

6. Capture design artifacts in rigorous, model-based notation. An engineer-
ing notation for design enables complexity control, objective assessment,
and automated analyses.

7. Instrument the process for objective quality control and progress assess-
ment. Progress and quality indicators are derived directly from the evolving
artifacts, providing more-meaningful insight into trends and correlation
with requirements.

8. Use a demonstration-based approach to assess intermediate artifacts.
Integration occurs early and continuously throughout the life cycle. Inter-
mediate results are objective and tangible.

9. Plan intermediate releases in groups of usage scenarios with evolving
levels of detail. Requirements, designs, and plans evolve in balance. Useful
software releases are available early in the life cycle.

10. Establish a configurable process that is economically scalable. Methods,
techniques, tools, and experience can be applied straightforwardly to a
broad domain, providing improved return on investment across a line of
business.

Throughout this book I have emphasized the importance of balance. From
numerous perspectives, the software project manager’s paramount objective is to
maintain the proper balance of emphasis across the 10 principles. Figure 15-4 sum-
marizes this balance theme in the context of the fundamental software economics
equation.

15.6 SOFTWARE MANAGEMENT BEST PRACTICES

Many software management best practices have been captured by various authors
and industry organizations. One of the most visible efforts has been the Software
Acquisition Best Practices Initiative, sponsored by the U.S. Department of Defense to
“improve and restructure our software acquisition management process.” Brown
summarized the initiative [Brown, 1996], which has three components: the Airlie
Software Council (composed of software industry gurus), seven different issue panels

15.6 SOFTWARE MANAGEMENT BEST PRACTICES 233

Round-trip engineering Tackling the architecture Iterative and configurable

and process instrumentation first and change processes improve risk
improve the level of automation management early management and process
and insight into objective improves the achievable reuse across multiple

quality control. xamy, \ projects.
. N N

‘ :,,..ﬁ(,F?jerS?nnelﬁ)(,Eny, kon.ment)(Qluailgi?ty);(s,ilze) Procees.

) .

Evolving levels of detail Component-based

and a demonstration- development and model-
based approach improve based notation help reduce
communications among the overall size and
stakeholders. compexity of the solution.

FIGURE 15-4. Balanced application of modern principles to achieve economic results

(composed of industry and government practitioners), and a program manager’s
panel (composed of experienced industry project managers). Each component pro-
duced recommendations and results, and reviewed the work of the other components.

The Airlie Software Council was “purposely structured to include highly suc-
cessful managers of large-scale software projects, internationally recognized authors,
prominent consultants, and executives responsible for software development at major
companies.” One of the Council’s products was a set of nine best practices. The Coun-
cil attempted to focus on the practices that would have the greatest effect in improving
the software management discipline for large-scale software projects and controlling
the complexities therein.

The nine best practices are described next, with my commentary on how they
resonate with the process framework, management disciplines, and top 10 principles
that I have recommended. (Quotations are presented in #talics.)

1. Formal risk management.
A Using an iterative process that confronts risk is more or less what this is saying.

2. Agreement on interfaces.

A While we may use different words, this is exactly the same intent as my architec-
ture-first principle. Getting the architecture baselined forces the project to gain
agreement on the various external interfaces and the important internal interfaces,
all of which are inherent in the architecture.

234

MODERN PROJECT PROFILES

Formal inspections.

A The assessment workflow Vthro‘ughout the life cycle, along with the other engi-
neering workflows, must balance several different defect removal strategies. The
least important strategy, in terms of breadth, should be formal inspection, because
of its high costs in human resources and its low defect discovery rate for the critical
architectural defects that span multiple components and temporal complexity.

Metric-based scheduling and management.

A This important principle is directly related to my model-based notation and
objective quality control principles. Without rigorous notations for artifacts, the
measurement of progress and quality degenerates into subjective estimates.

Binary quality gates at the inch-pebble level.

A This practice is easy to misinterpret. Too many projects have taken exactly this
approach early in the life cycle and have laid out a highly detailed plan at great
expense. Three months later, when some of the requirements change or the archi-
tecture changes, a large percentage of the detailed planning must be rebaselined. A
better approach would be to maintain fidelity of the plan commensurate with an
understanding of the requirements and the architecture. Rather than inch pebbles, |
recommend establishing milestones in the engineering stage followed by inch pebbiles
in the production stage. This is the primary message behind my evolving levels of

" detail principle.

Programwide visibility of progress versus plan.

A This practice—namely, open communications among project team members—is
obviously necessary. None of my principles traces directly to this practice. It seems so
obvious, | let it go without saying.

Defect tracking against quality targets.

A This important principle is directly related to my architecture-first and objec-
tive quality control principles. The make-or-break defects and quality targets are
architectural. Getting a handle on these qualities early and tracking their trends are
requirements for success.

Configuration management.

A The Airlie Software Council emphasized configuration management as key to
controlling complexity and tracking changes to all artifacts. It also recognized that
automation is important because of the volume and dynamics of modern; large-
scale projects, which make manual methods cost-prohibitive and error-prone. The
same reasoning is behind my change management principle.

15.6 SOFTWARE MANAGEMENT BEST PRACTICES 235

9. People-aware management accountability.

A This is another management principle that seems so obvious, | let it go without
saying.

There is significant overlap and commonality of spirit between my top principles
and the Airlie Software Council’s best practices. However, I think the Council omitted
some important principles: configurability and component-based, model-based, dem-
onstration-based development. This omission is surprising, because my rationale for
including component-based and model-based principles was to reduce the complexity
of development. This is exactly the stated purpose of the Airlie Software Council. The
demonstration-based principle is in my top 10 primarily to force integration to occur
continuously throughout the life cycle and to promote better stakeholder relation-
ships through a more meaningful medium of communications. Because the Airlie Soft-
ware Council was focused on a particular domain—namely, large-scale, nationally
important systems—configurability was less important.

The two Airlie Software Council practices I would not have included are inspec-
tions and binary quality gates at the inch-pebble level. Although they are useful, they
are overemphasized in practice, and there are other important principles that should
have been included.

CHAPTER 16

Next-Generation
Software
Economics

ext-generation software economics is |
. . ; Key Points
being practiced by some advanced soft- . ,
o . A Next-generation software economics
ware organizations. Many of the techniques, ; should reflect better economies of scale
processes, and methods described in this ' andimproved return on investment
book’s process framework have been practiced | Profiles. These are the real indicators of
' a mature industry. !
for several years. However, a mature, modern
process is nowhere near the state of the prac-

A Further technology advances in
round-trip engineering are critical to

tice for the average software organization. ‘ making the next quantum leap in J‘
This chapter introduces several provocative software economics. T
hypotheses about the future of software eco- 4 Future cost estimation models need

nomics. A general structure is proposed for a | L0 D¢ based on better primitive units
- A8 € 1S prop defined from well-understood software |

cost estimation model that would be better | engineering notations such as the
suited to the process framework in this book.1 Unified Modeling Language.

think this new approach would improve the ! '
accuracy and precision of software cost estimates, and would accornmodate dramatic
improvements in software economies of scale. Such improvements will be enabled by
advances in software development environments. Finally, I look again at Boehm’s
benchmarks of conventional software project performance and describe, in objective
terms, how the process framework should improve the overall software economics

achieved by a project or organization.

16.1 NEXT-GENERATION COST MODELS

Software experts hold widely varying opinions about software economics and its
manifestation in software cost estimation models: Source lines of code versus function
points. Economy of scale versus diseconomy of scale. Productivity measures versus

237

238 NEXT-GENERATION SOFTWARE ECONOMICS

quality measures. Java versus C++. Object-oriented versus functionally oriented.
Commercial components versus custom development. All these topics represent
industry debates surrounded by high levels of rhetoric. The passionate overhype or
underhype, depending on your perspective, makes it difficult to separate facts from
exaggeration. Energetic disagreement is an indicator of an industry in flux, in which
many competing technologies and techniques are maturing rapidly. One of the results,
however, is a continuing inability to predict with precision the resources required for a
given software endeavor. Accurate estimates are possible today, although honest esti-
mates are imprecise. It will be difficult to improve empirical estimation models while
the project data going into these models are noisy and highly uncorrelated, and are
based on differing process and technology foundations.

Some of today’s popular software cost models are not well matched to an itera-
tive software process focused on an architecture-first approach. Despite many
advances by some vendors of software cost estimation tools in expanding their reper-
toire of up-to-date project experience data, many cost estimators are still using a con-
ventional process experience base to estimate a modern project profile. This section
provides my perspective on how a software cost model should be structured to best
support the estimation of a modern software process. There are cost models and tech-
niques in the industry that can support subsets of this approach. My software cost
model is all theory; I have no empirical evidence to demonstrate that this approach will
be more accurate than today’s cost models. Even though most of the methods and tech-
nology necessary for a modern management process are available today, there are not
enough relevant, completed projects to back up my assertions with objective evidence.

A next-generation software cost model should explicitly separate architectural
engineering from application production, just as an architecture-first process does.
The cost of designing, producing, testing, and maintaining the architecture baseline is
a function of scale, quality, technology, process, and team skill. There should still be
some diseconomy of scale (exponent greater than 1.0) in the architecture cost model
because it is inherently driven by research and development-oriented concerns. When
an organization achieves a stable architecture, the production costs should be an
exponential function of size, quality, and complexity, with a much more stable range
of process and personnel influence. The production stage cost model should reflect an
economy of scale (exponent less than 1.0) similar to that of conventional economic
models for bulk production of commodities. Figure 16-1 summarizes an hypothesized
cost model for an architecture-first development process.

Next-generation software cost models should estimate large-scale architectures
with economy of scale. This implies that the process exponent during the production
stage will be less than 1.0. My reasoning is that the larger the system, the more oppor-
tunity there is to exploit automation and to reuse common processes, components,
and architectures.

16.1 NEXT-GENERATION COST MODELS 239

Effort = F(TArch’ sArch’ QArch' PArch) + F(TApp’ sApp’ QApp’ PApp)

Time = F(P

Arch?

where:

Effort,) + F(P

App? Effort AW)

T = technology parameter (environment automation support)

S = scale parameter (such as use cases, function points, source lines of code)
Q= quality parameter (such as portability, reliability, performance)

P = process parameter (such as maturity, domain experience)

Engineering Stage

Production Stage

Risk resolution, low-fidelity pian
Schedule/technology-driven
Risk sharing contracts/funding

Low-risk, high-fidelity plan
Cost-driven
Fixed-price contracts/funding

l N-month design phase ’

|

Effort

Arch

Paen > 1.0

Size/Complexity

Team Size
Architecture: small team of software engineers
Applications: small team of domain engineers
Small and expert as possible

Product
Executable architecture
Production plans
Requirements

Focus
Design and integration
Host development environment

Phases
Inception and elaboration
FIGURE 16-1. Next-generation cost models

I

M-month production increments ’_’—]
I

Effort

App

P 1.0

<
App

Size/Complexity

Team Size
Architecture: small team of software engineers
Applications: as many as needed
Large and diverse as needed

Product
Deliverable, useful function
Tested baselines
Warranted quality

Focus
Implement, test, and maintain
Target technology

Phases
Construction and transition

In the conventional process, the minimal level of automation that supported the
overhead activities of planning, project control, and change management led to labor-
intensive workflows and a diseconomy of scale. This lack of management automation
was as true for multiple-project, line-of-business organizations as it was for individual
projects. Next-generation environments and infrastructures are moving to automate

240 NEXT-GENERATION SOFTWARE ECONOMICS

and standardize many of these management activities, thereby requiring a lower per-
centage of effort for overhead activities as scale increases.

Reusing common processes across multiple iterations of a single project, multi-
ple releases of a single product, or multiple projects in an organization also relieves
many of the sources of diseconomy of scale. Critical sources of scrap and rework are
eliminated by applying precedent experience and mature processes. Establishing trust-
worthy plans based on credible project performance norms and using reliable compo-
nents reduce other sources of scrap and rework. While most reuse of components
results in reducing the size of the production effort, the reuse of processes, tools, and
experience has a direct impact on the economies of scale.

Another important difference in this cost model is that architectures and appli-
cations have different units of mass (scale versus size) and are representations of the
solution space. Scale might be measured in terms of architecturally significant ele-
ments (classes, components, processes, nodes), and size might be measured in SLOC
or megabytes of executable code. These measures differ from measures of the problem
space such as discrete requirements or use cases. The problem space description cer-
tainly drives the definition of the solution space. However, there are many solutions to
any given problem, as illustrated in Figure 16-2, each with a different value proposi-
tion. Cost is a key discriminator among potential solutions. Cost estimates that are
more accurate and more precise can be derived from specific solutions to problems.
Therefore, the cost estimation model must be governed by the basic parameters of a

The value proposition of a
given solution comprises
several competing
dimensions.

Solution Space

Solution N

Solution 2

Solution 1 Dimensions:
s Features, F

Problem ¢ Qualities, Q
Space * Life-cycle savings, L
* Risk, R
Units: ¢ Schedule, S
*Cost,C

* Number of requirements
* Complexity of requirements
* Number of use cases

* Complexity of use cases

F+Q+L
*Value = m —

FIGURE 16-2. Differentiating potential solutions through cost estimation

16.1 NEXT-GENERATION COST MODELS 241

candidate solution. If none of the value propositions is an acceptable solution to the
problem, further candidate solutions need to be pursued or the problem statement
needs to change.

The debate between function point zealots and source line zealots is a good indi-
cator of the need for measures of both scale and size. I think function points are more
accurate at quantifying the scale of the architecture required, while SLOC more accu-
rately depicts the size of the components that make up the total implementation. The
beauty of using SLOC is that collection can be easily automated and precision can be
easily achieved. However, the accuracy of SLOC as a measure of size is ambiguous
and can lead to misinterpretation when SLOC is used in absolute comparisons among
different projects and organizations. This is particularly true in the early phases of
projects if SLOC is used to represent scale. Many projects have used SLOC as a suc-
cessful measure of size in the later phases of the life cycle, when the most important
measures are the relative changes from month to month as the project converges on
releasable versions.

The value of function points is that they are better at depicting the overall scale
of the solution, independently of the actual size and implementation language of the
final realization. Function points are not easily extracted from any rigorous represen-
tation format, however, so automation and change tracking are difficult or ambiguous.

A rigorous notation for design artifacts is a necessary prerequisite to improve-
ments in the fidelity with which the scale of a design can be estimated. In the future, |
expect there will be an opportunity to automate a new measure of scale derived
directly from design representations in UML. .

I expect two major improvements in next-generation software cost estimation
models:

1. Separation of the engineering stage from the production stage will force
estimators to differentiate between architectural scale and implementation
size. This will permit greater accuracy and more-honest precision in life-
cycle estimates.

2. Rigorous design notations such as UML will offer an opportunity to define
units of measure for scale that are more standardized and therefore can be
automated and tracked. These measures can also be traced more straight-
forwardly into the costs of production.

Quantifying the scale of the software architecture in the engineering stage is an
area ripe for research. Over the next decade, two breakthroughs in the software pro-
cess seem possible, both of them realized through technology advances in the support-
ing environment. The first breakthrough would be the availability of integrated tools
that automate the transition of information between requirements, design, implemen-
tation, and deployment elements. These tools would allow more comprehensive

242 NEXT-GENERATION SOFTWARE ECONOMICS

i)
|

1 I I 1 II O?f-llnte Round-trip engineering
artifacts

2155 |e 2|sls e a E
tl218 (8 e |28 |8 < &
HHHE HEME ; g

5 gl 5 Ela 5 s

g 2o 4 2io g =

< g o 5 c

Management Management { Management

Conventional Next-Generation
Experience Software Environment
Engineering Expectation

Experience

All Engineering Engineering Separate Engineering with
from Production Automated Production

FIGURE 16-3. Automation of the construction process in next-generation environments

round-trip engineering among the engineering artifacts. The second breakthrough
would focus on collapsing today’s four sets of fundamental technical artifacts into
three sets by automating the activities associated with human-generated source code,
thereby eliminating the need for a separate implementation set. This technology
advance, illustrated in Figure 16-3, would allow executable programs to be produced
directly from UML representations without human intervention. Visual modeling
tools can already produce code subsets from UML models, but producing complete
subsets is still in the future.

While the first breakthrough would be risky but straightforward, the second one
would be a major paradigm shift. When a software engineering team can produce
implementation and deployment artifacts in an error-free, automated environment,
the software development process can change dramatically, as it did when chip pro-
duction transitioned to an automated “printing” process.

16.2 MODERN SOFTWARE ECONOMICS

Chapter 1 introduced Boehm’s top 10 software metrics [Boehm, 1987] as an objective
presentation of the current state of the software management practice. That frame-
work can be used to summarize some of the important themes in an economic context
and speculate on how a modern software management framework should perform.

16.2 MODERN SOFTWARE ECONOMICS 243

There are not enough project data to prove my assertions, but I believe that these
expected changes provide a good description of what an organizational manager
should strive for in making the transition to a modern process. (Quotations are pre-
sented in italics.)

1. Finding and fixing a software problem after delivery costs 100 times more
than finding and fixing the problem in early design phases.

A Modern processes, component-based development technologies, and architec-
ture frameworks are explicitly targeted at improving this relationship. In many
domains, and for software problems local to an individual component, advances in
encapsulation techniques should reduce the impact on resources significantly, per-
haps by an order of magnitude. Nevertheless, an architecture-first approach will
likely yield tenfold to hundredfold improvements in the resolution of architectural
errors. Consequently, the iterative process places a huge premium on early architec-
ture insight and risk-confronting activities.

2. You can compress software development schedules 25% of nominal, but
no more.

A This metric should remain valid for the engineering stage of the life cycle, when
the intellectual content of the system is evolved. However, if the engineering stage is
successful at achieving a consistent baseline—including architecture, construction
plans, and requirements—schedule compression in the production stage should
be more flexible. Whether a line-of-business organization is amortizing the engi-
neering stage across multiple projects or a project organization is amortizing the
engineering stage across multiple increments, there should be much more opportu-
nity for concurrent development.

3. For every $1 you spend on development, you will spend $2 on maintenance.

A |t is difficult to generalize about this metric, because there are many different
maintenance models. The comparison of absolute numbers makes little sense
except for one-of-a-kind projects. A better way to measure this ratio would be the
productivity rates between development and maintenance. (Appendix C describes
this maintainability measurement.) One interesting aspect of iterative development
is that the line between development and maintenance has become much fuzzier. A
mature iterative process and a good architecture can reduce scrap and rework levels
considerably. Given the overall homogenization of development and maintenance
activities, my gut tells me that this metric should change to a one-for-one relation-
ship, where development productivity will be similar to maintenance productivity.

244 NEXT-GENERATION SOFTWARE ECONOMICS

4. Software development and maintenance costs are primarily a function of
the number of source lines of code.

A This metric says that the size of the product is the primary cost driver, and the
fundamental unit of size is a line of code. While this was obvious in previous gener-
ations of software technology, it is becoming much less obvious in today’s compo-
nent-based technologies. Commercial components, reuse, and automatic code
generators can seriously pollute the meaning of a source line of code. Construction
costs will still be driven by the complexity of the bill of materials. The use of more
components, more types of components, more sources of components, and more
custom components will necessitate more integration labor and will drive up costs.
The use of fewer components, fewer types, fewer sources, and more industrial-
strength tooling will drive down costs. Unfortunately, the component industry is still
too immature to agree on standards for a bill of materials that could improve the
fidelity of its cost estimations. Therefore, the next-generation cost models should
become less sensitive to the number of source tines and more sensitive to the dis-
crete numbers of components and their ease of integration.

S. Variations among people account for the biggest differences in software
productivity.

A For any engineering venture in which intellectual property is the real product, the
dominant productivity factors will be personnel skills, teamwork, and motivations.
To the extent possible, a modern process encapsulates the requirements for high-
leverage people in the engineering stage, when the team is relatively small. The pro-
duction stage, when teams typically are much larger, should then operate with far
less dependency on scarce expertise.

6. The overall ratio of software to hardware costs is still growing. In 1955, it
was 15:85;in 1985, 85:15.

A |'m not sure what this metric looks like today. The popularity of the personal com-
puter and the differences in post-1985 versus pre-1985 software costs, particularly
personal computer software tools, have undoubtedly changed the relationship. The
main impact of this metric on software economics is that hardware continues to get
cheaper. Processing cycles, storage, and network bandwidth continue to offer new
opportunities for automation. Consequently, software environments are playing a
much more important role. From a modern process perspective, | can see the envi-
ronment doing much more of the bookkeeping and analysis activities that were pre-
viously done by humans. Configuration control and quality assurance analyses are
already largely automated, and the next frontier is automated production and auto-
mated testing.

16.2 MODERN SOFTWARE ECONOMICS 245

7. Only about 15% of software development effort is devoted to programming.

10.

A In the past 10 years there has been a noticeable shift away from investments in
languages and compilers, Java and Ada 95 notwithstanding. Modern technology
investments have transitioned into process maturity (for example, the SEI CMM),
visual modeling (such as UML), automated software quality (such as test automa-
tion), components (such as ActiveX, Java, and CORBA), configuration management,
metrics, and other aspects of software engineering. The amount of programming
that goes on in a software development project is still roughly 15%. The difference
is that modern projects are programming at a much higher level of abstraction. An
average staff-month of programming produced perhaps 200 machine instructions
in the 1960s and 1,000 machine instructions in the 1970s and 1980s. Programmer
productivity in the 1990s can produce tens of thousands of machine instructions in a
single month, even though only a few hundred human-generated source lines may
be produced.

Software systems and products typically cost 3 times as much per SLOC as
individual software programs. Software-system products (i.e., system of
systems) cost 9 times as much.

A This diseconomy of scale should be greatly relieved with a modern process and
modern technologies. Under certain circumstances—such as a software line of busi-
ness producing discrete, customer-specific software systems with a common archi-
tecture, common environment, and common process—an economy of scale is
achievable.

Walkthroughs catch 60% of the errors.

A | have emphasized the need for this metric to be banished from the top 10.
Human inspections and walkthroughs will not expose the critical issues; they will
only help resolve them. This metric should be replaced by the following: While the
environment catches most of the first-level inconsistencies and errors, the really
important architectural issues can be exposed only through demonstration and early
testing and resolved through human scrutiny.

80% of the contribution comes from 20% of the contributors.

A This relationship is timeless and constitutes the background philosophy to be
applied throughout the planning and conduct of a modern software management
process.

uccessful software management is hard

work. Technical breakthroughs, process
breakthroughs, and new tools will make it eas-
ier, but management discipline will continue to
be the crux of software project success. New
technological advances will be accompanied
by new opportunities for software applica-
tions, new dimensions of complexity, new ave-
nues of automation, and new customers with
different priorities. Accommodating these
changes will perturb many of our ingrained
software management values and priorities.
However, striking a balance among require-
ments, designs, and plans will remain the

CHAPTER 1

7

Modern Process

Transitions

Key Points
A The transition to modern software

" processes and technologies necessitates
i several culture shifts that will not
. always be easy to achieve.

. A Lessons learned in transitioning orga-

nizations to a modern process have
exposed several recurring themes of
success that represent important cuiture
shifts from conventional practice.

A A significant transition should be

attempted on a significant project. Pilot
projects do not generally attract top tal-

; ent, and top talent is crucial to the suc-

!

cess of any significant transition.

underlying objective of future software management endeavors,)ust asitis today

The software management framework I have presented in this book is not revo-
lutionary; numerous projects have been practicing some of these disciplines for years.
However, many of the techniques and disciplines suggested herein will necessitate a
significant paradigm shift. Some of these changes will be resisted by certain stakehold-
ers or by certain factions within a project or organization. It is not always easy to sep-
arate cultural resistance from objective resistance. This chapter summarizes some of
the important culture shifts to be prepared for in order to avoid as many sources of
friction as possible in transitioning successfully to a modern process.

247

L

248 MODERN PROCESS TRANSITIONS

17.1 CULTURE SHIFTS

Several culture shifts must be overcome to transition successfully to a modern soft-
ware management process. For some of these adjustments, it will be difficult to distin-
guish between objective opposition and stubborn resistance. Nevertheless, there are
general indications of a successful transition to a modern culture. This section dis-
cusses several of the rough indicators to look for in order to differentiate projects that
have made a genuine cultural transition from projects that have only put up a facade.
Many of these indicators are derived directly from the process framework described
in earlier chapters; others are second-order effects.

* Lower level and mid-level managers are performers. There should be no
“pure managers” in an organization or suborganization with 25 or fewer
people. The need for pure managers arises only when personnel resources
exceed this level. Hands-on management skills vary, but competent manag-
ers typically spend much of their time performing, especially with regard to
understanding the status of the project firsthand and developing plans and
estimates. Above all, the person managing an effort should plan it. This
does not mean the manager should approve the plan; it means the manager
should participate in developing it. In independent project assessments |
have performed, a good indicator of trouble ahead is a manager who did
not author the plan nor take ownership of it. The stakeholders affected by
this transition are software project managers.

¢ Requirements and designs are fluid and tangible. The conventional process
focused too much on producing documents that attempted to describe the
software product and focused too little on producing tangible increments
of the products themselves. Major milestones were defined solely in terms
of specific documents. Development organizations for large contractual
projects were driven to produce tons of paper in order to meet milestones
and receive progress payments, rather than spend their energy on tasks that
would have reduced risk and produced quality software. An iterative pro-
cess requires actual construction of a sequence of progressively more com-
prehensive systems that demonstrate the architecture, enable objective
requirements negotiations, validate the technical approach, and address
resolution of key risks. Ideally, all stakeholders would be focused on these
“real” milestones, with incremental deliveries of useful functionality rather
than speculative paper descriptions of the end-item vision. The transition
to a less document-driven environment will be embraced by the engineer-
ing teams; it will probably be resisted by traditional contract monitors.

¢ Ambitious demonstrations are encouraged. The purpose of early life-cycle
i demonstrations is to expose design flaws, not to put up a facade. Stake-

[T R

17.1 CULTURE SHIFTS 249

holders must not overreact to early mistakes, digressions, or immature
designs. Evaluation criteria in early release plans are goals, not require-
ments. If early engineering obstacles are overemphasized, development
organizations will set up future iterations to be less ambitious. On the
other hand, stakeholders should not tolerate lack of follow-through in
resolving issues. If negative trends are not addressed with vigor, they can
cause serious downstream perturbations. Open and attentive follow-through
is necessary to resolve issues. The management team is most likely to resist
this transition (especially if the project was oversold), because it will
expose any engineering or process issues that were easy to hide using the
conventional process. Customers, users, and the engineering team will
embrace this transition for exactly the same reason.

Good and bad project performance is much more obvious earlier in the life
cycle. In an iterative development, success breeds success, and early failures
are extremely risky to turn around. Real-world project experience has
shown time and again that it is the early phases that make or break a
project. It is therefore of paramount importance to ensure that the very
best team possible performs the planning and architecture phases. If these
phases are done right and with good teams, projects can be completed suc-
cessfully by average teams evolving the applications into the final product.
If the planning and architecture phases are not performed adequately, all
the expert programmers and testers in the world probably will not achieve
success. No one should resist early staffing with the right team. However,
most organizations have scarce resources for these sorts of early life-cycle
roles and are hesitant to make the necessary staff allocations.

Early increments will be immature. External stakeholders, such as custom-
ers and users, cannot expect initial deliveries to perform up to specification,
to be complete, to be fully reliable, or to have end-target levels of quality or
performance. On the other hand, development organizations must be held
accountable for, and demonstrate, tangible improvements in successive
increments. The trends will indicate convergence toward specification. Ob-
jectively quantifying changes, fixes, and upgrades will indicate the quality
of the process and environment for future activities. Customers and users
will have difficulty accepting the flaws of early releases, although they
should be impressed by later increments. Management and the develop-
ment team will accept immaturity as a natural part of the process.

Artifacts are less important early, more important later. It is a waste of time
to worry about the details (traceability, thoroughness, and completeness)
of the artifact sets until a baseline is achieved that is useful enough and sta-
ble enough to warrant time-consuming analyses of these quality factors.

250 MODERN PROCESS TRANSITIONS

Otherwise, a project will squander early engineering cycles and precious
resources adding content and quality to artifacts that may quickly become
obsolete. While the development team will embrace this transition whole-
heartedly, traditional contract monitors will resist the early de-emphasis on
completeness. '

® Real issues are surfaced and resolved systematically. Successful projects
recognize that requirements and designs evolve together, with continuous
negotiation, trade-off, and bartering toward best value, rather than blindly
adhering to an ambiguous contract statement. On a healthy project that is
making progress, it should be easy to differentiate between real and appar-
ent issues. Depending on the situation, this culture shift could affect almost
any team.

* Quality assurance is everyone’s job, not a separate discipline. Many organi-
zations have a separate group called quality assurance. I am generally
against the concept of separate quality assurance activities, teams, or arti-
facts. Quality assurance should be woven into every role, every activity,
every artifact. True quality assurance is measured by tangible progress and
objective data, not by checklists, meetings, and human inspections. The
software project manager or designee should assume the role of ensuring
that quality assurance is properly integrated into the process. The traditional
policing by a separate team of inspectors is replaced by the self-policing
teamwork of an organization with a mature process, common objectives,
and common incentives. Traditional managers and quality assurance person-
nel will resist this transition. Engineering teams will embrace it.

e Performance issues arise early in the life cycle. Early performance issues
have surfaced on almost every successful project I know of. These issues
are a sign of an immature design but a mature design process. Stakeholders
will usually be concerned over early performance issues. Development
engineers will embrace the emphasis on early demonstrations and the abil-
ity to assess and evaluate performance trade-offs in subsequent releases.

¢ Investments in automation are necessary. Because iterative development
projects require extensive automation, it is important not to underinvest in
the capital environment. It is also important for stakeholders to acquire an
integrated environment that permits efficient participation in an iterative
development. Otherwise, interactions with the development organization
will degenerate to paper exchange and many of the issues of the conven-
tional process. These investments may be opposed by organization manag-
ers overly focused on near-term financial results or by project personnel

17.2 DENOUEMENT 251

who favor the preference of the individual project over the global solution
that serves both the project and the organization goals.

* Good software organizations should be more profitable. In the commercial
software domain, this is not an issue. In most of the software contracting
domain, especially government contracts, it is definitely an issue. As part of
the adversarial nature of the acquisition and contracting process, there is
considerable focus on ensuring that contractor profits are within a certain
acceptable range (typically 5% to 15%). Occasionally, excellent contractor
performance, good value engineering, or significant reuse results in poten-
tial contractor profit margins in excess of the acceptable initial bid. As soon
as customers (or their users or engineering monitors) become aware of such
a trend, it is inevitable that substantial pressure will be exerted to apply
these “excess” resources to out-of-scope changes until the margin is back
in the acceptable range.

As a consequence, the simple profit motive that underlies commercial
transactions and incentivizes efficiency is replaced by complex contractual
incentives (and producer-consumer conflicts) that are usually suboptimal.
Very frequently, contractors see no economic incentive to implement major
cost savings, and certainly there is little incentive to take risks that may
have a large return. On the other hand, contractors can easily consume
large amounts of money (usually at a small profit margin) without produc-
ing results and with little accountability for poor performance.

For the software industry to prosper, good contractors should be
rewarded (more profit) and bad contractors should be punished (less
profit). A customer who gets a good product at a reasonable price should
be happy that the contractor also made a good profit. Allowing contractors
who perform poorly to continue doing so is not good for anyone. This is
one area in which the commercial domain is far more effective than the
government contracting domain.

17.2 DENOUEMENT

In summary, the conventional software process was characterized by the following:

* Sequentially transitioning from requirements to design to code to test

Achieving 100% completeness of each artifact at each life-cycle stage

Treating all requirements, artifacts, components, and so forth, as equals

Achieving high-fidelity traceability among all artifacts at each stage in the
life cycle

252 MODERN PROCESS TRANSITIONS

A modern iterative development process framework is characterized by the
following;:

e Continuous round-trip engineering from requirements to test at evolving
levels of abstraction

Achieving high-fidelity understanding of the drivers (the 20%) as early as
practical

LJ

Evolving the artifacts in breadth and depth based on risk management
priorities '

® Postponing completeness and consistency analyses until later in the life
cycle

A modern process framework attacks the primary sources of the diseconomy of
scale inherent in the conventional software process. Figure 17-1 illustrates the next
generation of software project performance by depicting the development progress
versus time, where progress is defined as percent coded (demonstrable in its target
form). (The figure follows the same presentation format as Figures 1-2 and 15-1.)

My goal in this book has been to explain how to move onto the upper, shaded
region, with a modern process supported by an advanced, fully integrated environ-
ment and a component-based architecture. Organizations that succeed should be
capable of deploying software products that are constructed largely from existing
components in 50% less time, with 50% fewer development resources, and main-
tained by teams 50% the size of those required by today’s systems.

Target
Project Profile

_‘
)
Q
™~

Modern .
. fi -
Range of Project Profile
domain- .
reusable
assets

«' Conventional
Project Profile

Development Progress
(% coded)

A A A A

Project Schedule

FIGURE 17-1. Next-generation project performance

17.2 DENOUEMENT 253

As an organization transitions to new techniques and technologies, there is
always apprehension and concern about failing. Maintaining the status quo and rely-
ing on existing methods is usually considered the safest path. In the software industry,
where most organizations succeed on only a small percentage of their projects, main-
taining the status quo is not always safe. When an organization decides to make a
transition, these two pieces of conventional wisdom are usually offered by internal
champions as well as external change agents: (1) Pioneer any new techniques on a
small pilot program. (2) Be prepared to spend more resources—money and time—on
your first project that makes the transition. I see both recommendations as counter-
productive.

Small pilot programs outside the mainstream have their place, but they rarely
achieve any paradigm shift of consequence. Trying a new little technique, tool, or
method on a very rapid, small-scale effort—Iless than 3 months, say, and only a few
people—can frequently show good results, initial momentum, or proof of concept.
The problem with pilot programs is that they are almost never on the critical path of
the organization. Consequently, they do not merit “A” players, adequate resources, or
management attention,

The most successful organizational paradigm shifts I have seen resulted from
sets of circumstances similar to these: The organizations took their most critical
project and highest caliber personnel, gave them adequate resources, and demanded
better results. If, on the other hand, an organization expects a new method, tool, or
technology to have an adverse impact on the results of the trailblazing project, that
expectation is almost certain to come true. Why? Because no organization manager
would knowingly cause an adverse impact on the most important projects in the orga-
nization, and that is where the organization’s best people will be assigned. Therefore,
the trailblazing project will be a noncritical project staffed with noncritical personnel
of whom less is expected. This low expectation is often a self-fulfilling prophecy.

A better way to transition to a more mature iterative development process that
supports automation technologies and modern architectures is to take the following
shot:

® Ready. Do your homework. Analyze modern approaches and technologies.
Define (or improve, or optimize) your process. Support it with mature envi-
ronments, tools, and components. Plan thoroughly.

® Aim. Select a critical project. Staff it with the right team of complementary
resources and demand improved results.

e Fire. Execute the organizational and project-level plans with vigor and
follow-through.

PART V

CASE STUDIES
AND BACKUP
MATERIAL

appENDIX A THE STATE OF THE PRACTICE IN
SOFTWARE MANAGEMENT

appENDIX B THE COCOMO COST ESTIMATION
MODEL

aprpeNDIX ¢ CHANGE METRICS

arprENDIX D CCPDS-R CASE STUDY

apPENDIX E PROCESS IMPROVEMENT AND
MAPPING TO THE CMM

he foundations of the material presented in the first four parts of this book

span numerous efforts by many people, projects, and organizations. Most of
my opinions and recommendations are based on lessons learned from project
applications. This part contains detailed appendixes that provide some historical
perspectives and some detailed explanations of relevant practices.

* Appendix A summarizes three different perspectives of the state of
software management practice in the mid-1990s. '

* Appendix B summarizes the evolution of the COCOMO model from its
inception through the current version, COCOMO Il. This topic provides
a context for my views on the evolution of software economics.

* Appendix C provides further detail on the derivation of and rationale
behind the change metrics recommended in Chapter 13.

e Appendix D is a thorough case study of a successful large-scale, com-
plex software project. It is a rich source of real-world examples that
can serve as performance benchmarks for other projects. While any

. project case study will present some topics that interest only a narrow
community, many topics provide universally interesting results. This
project’s culture, approach, and results are a model of a well-
managed, mature software process.

e Appendix E assesses the process presented in this book using the
Software Engineering Institute’s Maturity Questionnaire. It provides
a rough description of the maturity, consistency, and completeness of
the process framework against a well-accepted benchmark of process
assessment.

hree important analyses performed in the

mid-1990s yielded similar insights into the
state of the software engineering industry.
They concluded that the success rate for soft-
ware projects is very low. This appendix sum-
marizes the results of those analyses.

Patterns of Software Systems Failure and
Success

This book [Jones, 1996] is a thorough presen-
tation of the state of the software industry.
Jones analyzed the results of thousands of

APPENDIX

A

The State

of the Practice
in Software
Management

Key Points

practices in the 1990s still reflect an
immature process characterized by
excessive scrap and rework.

succeed, where success is defined as

| and making a profit.

and failure.

A Many software industry management .

A About 10% of conventional projects

meeting the customer’s expectations in
cost, schedule, quality, and feature set

projects grouped into six subindustries: systems software, information systems, com-
mercial software, outsource software, military software, and end-user software.
Table A-1 summarizes his overall assessment of the root causes of software project

success and failure.

Jones makes an interesting observation about this table:

It is both interesting and significant that the first six out of sixteen [sic] technol-
ogy factors associated with software disasters are specific failures in the
domain of project management, and three of the other technology deficiencies
can be indirectly assigned to poor management practices.

Jones also identifies the cultural and people factors that discriminate successful
projects from failures. These are presented in Table A-2.

259

A Software management factors are the |
primary discriminators of project success |

260 THE STATE OF THE PRACTICE IN SOFTWARE MANAGEMENT

TABLE A-1. Technologies used on software projects
TECHNOLOGIES ON UNSUCCESSFUL PROJECTS TECHNOLOGIES ON SUCCESSFUL PROJECTS

*

No historical software measurement data Accurate software measurement*

Failure to use automated estimating tools* Early use of estimating tools*

Failure to use automated planning tools* Continuous use of planning tools*

*

Failure to monitor progress or milestones Formal progress reporting®

Failure to use effective architecture* Formal architecture planning*

Failure to use effective development methods* Formal development methods*

Failure to use design reviews Formal design reviews

Failure to use code inspections Formal code inspections

Failure to include formal risk management* Formal risk management®

Informal, inadequate testing Formal testing methods

Manual design and specification Automated design and specifications
fFailure to use formal configuration control® Automated configuration control* |
Nore than 30% creep in user requirements* Less than 10% creep in user requirements*
Inappropriate use of 4GLs Use of suitable languages

Excessive and unmeasured complexity Controlled and measured complexity
Little or no reuse of certified materials Significant reuse of certified materials
Failure to define database elements Formal database planning

T
1

! *Project management factors
|] i

The patterns of success and failure are evaluated from many different perspec-
tives. The differences among the six subindustries and among projects of different
scale are described in detail by Jones. One striking message is the commonality of
these factors across all domains.

While I agree with most of the overall message summarized in the two tables, my
opinion differs somewhat on the relative importance of the various factors and the
implementation details associated with applying some technologies successfully. For
example, the top three factors in Table A-1 may be the most common characteristics,
but I do not think they are the most important discriminators of success and failure.
My views are presented in Chapter 4.

THE STATE OF THE PRACTICE IN SOFTWARE MANAGEMENT 261

TABLE A-2. Social factors observed on software projects

UNSUCCESSFUL PROJECTS SUCCESSFUL PROJECTS

Excessive schedule pressure Realistic schedule expectation
Executive rejection of estimates Executive understanding of estimates
Severe friction with clients Cooperation with clients

Divisive corporate politics Congruent management goals

Poor team communications Excellent team communications

Naive senior executives Experienced senior executives

Project management malpractice Capable project management
Unqualified technical staff Capable technical staff

Generalists used for critical tasks: quality Specialists used for critical tasks: quality
assurance, testing, planning, estimating assurance, testing, planning, estimating
“Chaos”

This report [Standish Group, 1995] focuses on the commercial software industry and
reaches these conclusions:

e U.S. companies would spend $81 billion on canceled software projects in
1995.

* 31% of software projects studied were canceled before they were completed.
® 53% of software projects overran by more than 50%.

® Only 9% of software projects for large companies were delivered on time
and within budget. For medium-sized and small companies, the numbers
improved to 16 % and 28%, respectively.

The report characterizes the top 10 reasons for success and the top 10 reasons
that projects are risky. (It calls risky projects “challenged.”) These factors are summa-
rized in Table A-3. Most of the “Chaos” report deals with the issues and obstacles
perceived by managers of corporate information systems. Although there is only a
minor treatment of possible solutions, the report recommends curing the disease,
which is a highly process-oriented approach, rather than just resolving the symptoms.

The report states:

Research at The Standish Group also indicates that smaller time frames, with
delivery of software components early and often, will increase the success rate.

262 THE STATE OF THE PRACTICE IN SOFTWARE MANAGEMENT

TABLE A-3. Factors that affect the success of software projects

o 9
SUCCESSFUL PROJECTS l(t.)Eg)IfONSES CHALLENGED PROJECTS le(S)lfONSES
User involvement 15.9 Lack of user input 12.8
Executive management 13.9 Incomplete requirements 12.3
support

Clear statement of 13.0 Changing requirements 11.8
requirements

Proper planning 9.6 Lack of executive support 7.5
Realistic expectations 8.2 Technology incompetence 7.0
Smaller project milestones 7.7 Lack of resources 6.4
Competent staff 7.2 Unrealistic expectations 5.9
Ownership ‘ 5.3 Unclear objectives 53

Clear vision and objectives 2.9 Unrealistic time frames 4.3
Hard-working, focused staff 2.4 New technology 3.7

Other 13.9 Other 23.0

Shorter time frames result in an iterative process of design, prototype, develop,
test, and deploy small elements. This process is known as growing software, as
opposed to the old concept of developing software. Growing software engages
the user earlier, each component has an owner or a small set of owners, and
expectations are realistically set. In addition, each software component has a
clear and precise statement and set of objectives. Software components and
small projects tend to be less complex. Making the projects simpler is a worth-
while endeavor because complexity causes only confusion and increased cost.

The “Chaos” report reflects the predominant beliefs among software managers,
namely that the primary reasons for success and failure center on the requirements
management process. The data imply that if organizations understand what they are
building (the requirements), then how it gets built (the process) is not a big issue. But
that is far from true: Requirements management activities typically consume only
about 10% of life-cycle resources; the other 90% must also be performed successfully.
Because requirements management activities dominate the early life cycle, they are an
easy scapegoat. In contrast to what the data imply, the recommendations in the report
for making the problem smaller are quite insightful and are consistent with the spirit
of a modern iterative process.

THE STATE OF THE PRACTICE IN SOFTWARE MANAGEMENT 263

Report of the Defense Science Board Task Force on Acquiring Defense
Software Commercially

This report [Defense Science Board, 1994] presents the following conclusions:

e Current Department of Defense practice was not compatible with commer-
cial business practices.

* DOD program management approaches discouraged the use of commercial
practices.

® There was a shortfall of sufficiently qualified software personnel at all levels
of DOD.

* DOD had not fully identified the pros and cons of using commercial
components.

* DOD did not emphasize architecture.

* DOD did not adequately promote technology transfer with the commercial
market.

The report states that although DOD had performed numerous studies of soft-
ware projects (18 were enumerated), the majority of the recommendations from these
studies had not been implemented.

The principal reasons that DOD software projects get into trouble are identified
as follows:

* Poor requirements definition

e Inadequate software process management

® Lack of integrated product teams

e Ineffective subcontractor management

e Lack of consistent attention to process

¢ Too little attention to software architecture

e Poorly defined, inadequately controlled interfaces
» Software upgrades to fix hardware deficiencies

¢ Focus on innovation rather than cost and risk

e Limited or no tailoring of military standards

264 THE STATE OF THE PRACTICE IN SOFTWARE MANAGEMENT

These primary recommendations are made:

¢ Exploit commercial practices (such as iterative development and architecture-
first processes).

¢ Exploit commercial components and technologies.

e Invest more in software education for DOD people.

The report discusses ways to resolve the risks it identifies. It does not overhype
the need to do a better job of defining and controlling requirements, as many previous
DOD studies had done. This topic is mentioned and then discussed with appropriate
emphasis, balanced with many other equally important factors. The “Chaos” report
pins most of the blame for unsuccessful projects on requirements management defi-
ciencies. The Department of Defense would have agreed in the late 1980s, but seems
to have matured to a more balanced self-assessment and understanding of both the
symptoms and the disease.

Several software cost models are in use |
today. One popular, open, and well-docu-
mented software cost model is the COnstruc- | provides insight into the evolution of
tive COst MOdel (COCOMO) developed by software economics priorities.
Barry Boehm.
provides an interesting window for observing
the evolution of software engineering econom-
ics over the past 20 years.

The COCOMO estimating equations fol- | parameterized exponent that reflected
low this simple form:

Effort
Time

where:

Effort =
C1
EAF =

Size =

APPENDTIX B

The COCOMO
Cost Estimation
Model

Key Points _
A The history of the COCOMO model

The evolution of COCOMO | a The original COCOMO model was \'
well suited for conventional software
project cost estimation in the 1980s.

A Ada COCOMO improved on the origi-
nal version, particularly through a

modern process improvements and their
impact on economies of scale.

A COCOMO I is better suited for esti-
mating modern software development
projects. It provides more natural sup-
port to modern processes and technolo-
gies and a more up-to-date basis of
project experience.

C1 EAF (Size)P!
C2 (Effort)P?

number of staff-months
a constant scaling coefficient for effort

an effort adjustment factor that characterizes the domain, per-
sonnel, environment, and tools used to produce the artifacts of
the process

size of the end product (in human-generated source code), mea-
sured by the number of delivered source instructions (DSI)
required to develop the required functionality

o 265

266 THE COCOMO COST ESTIMATION MODEL

P1 = an exponent that characterizes the economies of scale inherent in
the process used to produce the end product, in particular the
ability of the process to avoid non-value-adding activities
(rework, bureaucratic delays, communications overhead)

Time = total number of months
C2 = a constant scaling coefficient for schedule

P2 = an exponent that characterizes the inherent inertia and parallel-
ism in managing a software development effort

B.1 COCOMO

The original COCOMO model [Boehm, 1981] was one of the minor breakthroughs
in software engineering during the early 1980s. It was a breakthrough partly because
of its inherent technology contribution but primarily because it provided a well-
defined framework for communication of trade-offs and priorities associated with
software cost and schedule management. As a naive graduate student at UCLA in
1980, I first encountered the COCOMO model as the subject of a new graduate-level
course taught by Boehm. At the same time, I was working at TRW as a lead designer
on a software-intensive proposal for which we needed to plan and defend the soft-
ware cost and schedule estimates. A huge benefit offered by the COCOMO model
was the ability to make an estimate, reference a credible basis for it, reason about its
strengths and weaknesses, and negotiate with stakeholders. Since then, I have used
COCOMO to rationalize technology insertions, process improvements, project archi-
tecture changes, and new management approaches. In these activities, I became expe-
rienced with its strengths and weaknesses, as well as its use and misuse.

The original COCOMO model was based on a database of 56 projects. Its three
modes reflected the differences in process across a range of software domains. These
modes were identified as organic, semidetached, and embedded. Organic mode
projects were characterized by in-house, less-complex developments that had flexible
processes. Features, qualities, cost, and schedule could be freely changed with mini-
mal overhead. Embedded mode systems represented typical defense community
projects: Complexity, reliability, and real-time issues were dominant, and the contrac-
tual nature of the business resulted in a highly rigorous process. Features, qualities,
costs, and schedules were tightly controlled, and changes required approvals by many
stakeholders. Semidetached mode projects represented something in between.

Basic Effort and Schedule Estimating Formulas

These were the original COCOMO cost estimation relationships:

Organic mode Effort = 3.2 EAF (Size)l%3
Time (in months) = 2.5 (Effort)?-38

B.1 cocoMmo 267

Semidetached mode

Effort = 3.0 EAF (Size)l12
Time (in months)

Effort = 2.8 EAF (Size)l*?
Time (in months) = 2.5 (Effort)%-32

= 2.5 (Effort)%-33

Embedded mode
where:
Effort = number of staff-months
EAF = product of 15 effort adjustment factors (Table B-1)
Size =

number of delivered source instructions (in units of thousands
of lines of code)

The effort adjustment factor (EAF) multiplier represents the combined effects of
multiple parameters. These parameters allow the project to be characterized and nor-
malized against the projects in the COCOMO database. Each parameter is assessed as
very low, low, nominal, high, or very high. The effect of each parameter setting is a
multiplier that typically ranges from 0.5 to 1.5. The product of these 15 effects is used
as the coefficient in the cost equation.

TABLE B-1. COCOMO project characterization parameters
EFFORT ADJUSTMENT PARAMETER POTENTIAL

IDENTIFIER FACTOR RANGE IMPACT
RELY Required reliability 0.75-1.40 1.87
DATA Database size 0.94 - 1.16 1.23
CPLX Product complexity 0.70 - 1.65 2.36
TIME Execution time constraint 1.00-1.66 1.66
STOR Main storage constraint 1.00-1.56 1.56
VIRT Virtual machine volatility 0.87-1.30 1.49
TURN Computer turnaround time 0.87-1.15 1.32
ACAP Analyst capability 1.46-0.71 2.06
AEXP Applications experience 1.29-0.82 1.57
PCAP Programmer capability 1.42-0.70 2.03
VEXP Virtual machine experience 1.21-0.90 1.34
LEXP Language experience 1.14-0.95 1.20
MODP Use of modern practices 1.24 -0.82 1.51
TOOL Use of software tools 1.24-0.83 1.49
SCED Required development schedule 1.23-1.10 . 1.23

268 THE COCOMO COST ESTIMATION MODEL

Assumptions

Several assumptions are inherent in the COCOMO formulas. Delivered source
instructions include all (noncomment) lines of computer-processed code. The devel-
opment life cycle starts at the beginning of product design and ends with acceptance
test at the conclusion of the integration and test phase. (The requirements analysis
effort and schedule are estimated separately as an additional percentage of the devel-
opment estimate.) The activities include only direct-charged project efforts and
exclude typical overhead activities such as administrative support, facilities, and capi-
tal equipment. A staff-month consists of 152 hours. The project will be well managed.
The project will experience stable requirements.

Life-Cycle Description

The COCOMO life cycle includes five basic phases: plans and requirements, product
design, detailed design, code and unit test, and integration and test. COCOMO pro-
vides recommendations for distributing the effort and schedule across the basic
phases of the conventional waterfall model. These recommendations vary somewhat
with mode and scale; Table B-2 provides a typical profile for a large, embedded mode
project. COCOMO estimates the effort and schedule to develop the solution (product
design through integration and test). Formulating the problem (plans and require-
ments) is estimated as an additional percentage over and above the development
effort and schedule.

Software Work Breakdown Structure

Most conventional work breakdown structures are organized around the product
subsystems at the higher levels and around the detailed activities at the lower levels.
The standard activities estimated by COCOMO and included in the software WBS
are requirements analysis, product design, programming, test planning, verification
and validation, project office functions (management and administration), configura-
tion management and quality assurance, and manuals. COCOMO also recommends

TaBLE B-2. Effort and schedule partition across conventional
life-cycle phases

ACTIVITY EFFORT (%) SCHEDULE (%)
Plans and requirements (+8) (+36)

Product design 18 36

Detailed design 25 18

Code and unit test 26 18

Integration and test 31 28

B.2 Ada COCOMO 269

TaBLE B-3. Default effort allocations across COCOMO WBS activities

ACTIVITY BUDGET (%)
Requirements analysis 4
Product design 12
Programming 44
Test planning 6
Verification and validation 14

Project office

Configuration management and quality assurance 7

Manuals

a top-level distribution of effort across the activities of the WBS. Again, these profiles
are dependent on mode and scale. Table B-3 identifies the expected expenditure pro-
file among the activities in the WBS for a large, embedded mode project. An important
caveat is that in COCOMO, the “programming” activity includes detailed design,
coding, unit testing, and integration.

A Typical COCOMO Project Profile

The following discussion focuses on a specific example project in order to illuminate
some of the project planning implications. Assume a large, 100,000 source-line
(100-KDSI) mission-critical system (for example, control of a power plant) built
under contract for a government agency. Figure B-1 illustrates the COCOMO-
estimated profile for this project. COCOMO would estimate 900 staff-months for
development plus 72 staff-months for requirements specification for this project. The
schedule required would be 22 months from initiation of design through test, plus 8
months for requirements.

B.2 Ada COCOMO

In the mid-1980s, TRW confronted the challenge of transitioning several projects to
Ada. In some cases, a government mandate was the forcing function. (These projects
tended to struggle.) In other cases, the project engineers believed that Ada technology
was critical to a competitive bid and successful performance. (These projects tended
to succeed.) I developed the first prototype of Ada COCOMO on an internal research
and development project in 1985. The purpose of this effort was to provide a frame-
work for convincing TRW management and a government customer that the cost ben-
efits of using Ada on a specific large-scale project were significant, and that proposing

270

THE COCOMO COST ESTIMATION MODEL

Example: 100,000-SLOC project that requires 972 staff-months of
effort and 30 months of schedule
Effort Cost Driver Setting Effect
=28 EAF (KDS|)1.2 Language experience Nominal 1.0
o = 28 (1 .28) (100)1.2 Schedule constraint Nominal 1.0
=900 staff-months of development effort Database size Nominal | 19
+ _72 staff-months for plans, requirements Turnaround time Nominal | 10
=972 staff-months of total effort Virtual machine experience Nominal 1.0
Virtual machine volatility Nominal 1.0
. Use of software tools High 0.88
The total EAF (1.28 in - - -
this example) is the product Modern programming practices Nominal 1.0
of all the individual cost- Storage constraint Nominal 1.0
Time driver effects. Applications experience Low 1.10
=25 (EﬁOl’t)o'a2 Timing constraint Nominal 1.0
= 2.5 (900)°-32 Required reliability High 115
=22 months of development schedule Product complexity High 115
+ _8 months for plans, requirements Personnel/team capability Nominal 1.0
= 30 months Effort adjustment factor = 1.28

Staffing Profile and Activity Mix

[9]9]9] 9[9[9[9]9]20/20/20|20/20|20/20|20

52

56/56|56/58/58/58|58|43]43(43|43|43(43

—» 8 months ——p 8 months ——p

4 months —» 4 months —p 6 months

Plans and
requirements

Product design

Detailed | Code and
design unit test

Integration and
test

Staff-
The COCOMO life-cycle Months
schedule distributions and Requirements analysis 36
activity distributions vary Product design 108
depending on the scale,
domain, and business Programming 398
context. The sche_dule. Tost planning 54
phases and activity mix
illustrated here are typical. Verification and validation 126
Project office 63

FIGURE B-1.

Configuration management
and quality assurance

Manuals

54
54

Profile of a conventional project

4%

12%

44%

Includes detailed design,
coding, and unit testing

7%
7%
6%

B.2 Ada cCOcoMO 271

Ada on this project was a winning competitive strategy. It was also the lowest risk
software approach for delivering the system on budget and on schedule with the
required quality. (The project was CCPDS-R, the next-generation missile warning sys-
tem presented as a case study in Appendix D.)

This initial development of Ada COCOMO was just one of the activities in a
three-pronged approach:

1. Develop a set of architectural foundation components in Ada to measure
compiler performance and provide a reusable set of foundation compo-
nents for command and control systems such as CCPDS-R.

2. Develop a next-generation process description to exploit iterative develop-
ment techniques and an architecture-first, demonstration-based approach.
This Ada process model [Royce, Walker, 1990b] was a major step toward a
modern process for use in defense domain projects.

3. Develop an Ada version of COCOMO to describe the cost and schedule
benefits of this new technology and process.

The results of this effort were critical to TRW’s approach to CCPDS-R, and the
development of Ada COCOMO was key to selling the whole approach both to man-
agement and to the government customer. This initial version was then formalized
within TRW under Boehm’s leadership [Boehm and Royce, Walker, 1988]. Several
other project experiences were incorporated, the parameters were tuned, and the pro-
cess focus was expanded by introducing the concept of a parameterized exponent.

The primary improvement in Ada COCOMO was to eliminate the three modes
of COCOMO (organic, semidetached, and embedded) and allow the exponent to be
parameterized to reflect the economy of scale contributions inherent in a modern iter-
ative development process. Several minor modifications tailored the other parameters
to the technology advances inherent in the Ada environment.

The Ada COCOMO cost estimation relationship was as follows:

Effort = 2.8 EAF (Size)’
Time = 2.5 (Effort)?-32

where:

Effort = number of staff-months

EAF = product of 19 effort adjustment factors (Table B-4)
Size = number of delivered source instructions (in units of thousands of lines
of code)
P = process exponent

Time = total number of months

272 THE COCOMO COST ESTIMATION MODEL

TABLE B-4. Ada COCOMO improvements to the effort adjustment factors

EFFORT ADJUSTMENT
IDENTIFIER FACTOR Ada COCOMO PERTURBATIONS
RELY Required reliability Changes to underlying effects (positive impact)
DATA Database size No change
CPLX Product complexity Changes to underlying effects (positive impact)
RUSE Required level of reuse New effect for complexity of reusable components
SECU Security constraints New effect for classified projects
TIME Execution time No change
constraint
STOR Main storage No change
constraint
VIRT Virtual machine Deleted (split into two new factors)
volatility
VMVH Host VM volatility New effect accommodating host aspects of VIRT
VMVT Target VM volatility New effect accommodating target aspects of VIRT
TURN Computer turnaround New level of interactive response (positive impact)
time
ACAP Analyst capability Changes to underlying effects (more impact)
AEXP Applications No change
experience
PCAP Programmer capability Changes to underlying effects (less impact)
VEXP Virtual machine No change
experience
LEXP Language experience Changes to underlying effects (more impact)
MODP Use of modern Changes to underlying effects (more impact)
practices)
TOOL Use of software tools New levels of automation support
SCED Required development Changes to underlying effects (less impact)

schedule

The EAF multiplier again represents the combined effects of multiple parame-
ters. In Ada COCOMO, however, there were several changes to reflect general
improvements to COCOMO, Ada-specific effects, and the effects of a more iterative
process. This adjustment resulted in two new cost drivers (RUSE and SECU), one split
cost driver (VIRT was split into host and target components: VMVH and VMVT),
and several new ratings or changes to the underlying effects of a cost driver.

B.2 Ada cOcOMO 273

One of the foundations of Ada COCOMO was the use of the Ada process
model. It was not necessary to use the Ada language in order to use the primary tech-
niques of this process model. However, at the time it was developed, there was so
much Ada underhype and overhype within the defense software market that the pro-
cess description was coupled to the use of Ada. This approach had its pros and cons.
In retrospect, the Ada process model can be viewed as an intermediate state between
the conventional process and the modern process framework described in this book.
Ada process model strategies are summarized here to provide an understanding of the
process parameterization of the Ada COCOMO exponent.

One critical strategy of the Ada process model was to emphasize the preliminary
design review (PDR) milestone, which was required by the applicable military stan-
dard, as an architecture review supported by an executable demonstration of capabil-
ities. This overarching goal led to several substrategies that exploited the techniques,
tools, and technologies of the Ada environment:

¢ A small core design team with expertise in software architecture and the
applications domain

* An early focus on executable architecture skeletons for demonstrating crit-
ical components and system-level threads and for exposing risk

e Incremental and separate detailed design walkthroughs for components
and builds rather than a monolithic critical design review (CDR) across the
whole system

* Continuous integration via Ada compilation and architecture-first
development

¢ Test program and requirements verification focused on engineering string
tests (now called use cases) and component stand-alone tests

e Self-documenting Ada code and big-picture descriptions instead of mas-
sive, detailed design documents that describe the as-built design

¢ Automated metrics derived from the evolving code baselines

The Ada COCOMO process exponent ranged from 1.04 to 1.24 and was
defined from the combined effects of the following four parameters:

1. Ada process model experience. This process maturity rating ranged from
“no familiarity” with the process to “successfully employed on multiple
projects.”

2. Design thoroughness at PDR. This parameter characterized the level of
design detail inherent in the design baseline demonstrated at PDR. It ranged
from “little thoroughness (20%)” to “complete thoroughness (100%).”

274 THE COCOMO COST ESTIMATION MODEL

3. Risks eliminated at PDR. This parameter assessed the level of uncertainty
inherent in the project at PDR, after which full-scale development is initi-
ated. It ranged from “little risk resolution (20%)” to “complete resolution
(100%).” :

4. Requirements volatility during development. This parameter ranged from
“many large changes” to “no changes,” characterizing the amount of pro-
cess turbulence confronted by the project.

The actual exponent for Ada COCOMO was determined by summing the ratings
for each parameter across a scale from 0.00 to 0.05. The embedded mode exponent
(1.20) from the original COCOMO would relate to an Ada COCOMO process with
a 0.04 rating on each of the process parameters [1.04 + (4 x 0.04)]. In terms of the
process parameters just described, this would correspond to (1) little familiarity with
the Ada process model, (2) some design thoroughness at PDR (40%), (3) some risks
eliminated by PDR (40%), and (4) frequent but moderate requirements changes.

These four parameters were aimed primarily at characterizing the process and its
ability to relieve the diseconomies of scale inherent in the conventional process. By
keeping the design team smaller and establishing a more tangible architecture descrip-
tion by PDR, the process attempted to optimize interpersonal communications, avoid
late downstream rework, and encourage earlier requirements convergence.

B.3 cocoMo 11

The COCOMO 1I project [Boehm et al., 1995; Horowitz, 1997] is an effort being per-
formed by the USC Center for Software Engineering, with the financial and technical
support of numerous industry affiliates. (They include AT&T Bell Labs, Bellcore,
DISA, EDS, E-Systems, Hewlett-Packard, Hughes, IDA, IDE, JPL, Litton Data Sys-
tems, Lockheed Martin, Loral, MDAC, Motorola, Northrop-Grumman, Rational,
Rockwell, SAIC, SEI, SPC, TASC, Teledyne, Texas Instruments, TRW, USAF Rome
Labs, US Army Research Lab, and Xerox.) The objectives of this project are threefold:

1. To develop a software cost and schedule estimation model for the life-cycle
practices of the 1990s and 2000s

2. To develop a software cost database and tool support for improvement of
the cost model

3. To provide a quantitative analytic framework for evaluating software tech-
nologies and their economic impact

B.3 cocoMon 275

USC speculates that the post-2000 software marketplace will include five dis-
tinct populations:

1. End-user programmers (55 million) generating spreadsheets or database
queries

2. Component developers (600,000) generating end-user applications and
composition aids

3. Component integrators (700,000) building applications rapidly from existing
GUI builders, database/object managers, middleware, and domain-specific
components

4. System integrators (700,000) dealing with larger scale systems, unprece-
dented systems, few-of-a-kind applications, embedded systems requiring
up-front engineering, and other substantial custom software development

5. Infrastructure developers (750,000) developing domain-independent com-
ponents such as operating systems, database management systems, net-
works, and user interface frameworks

End users are not targeted by COCOMO II because they tend to do very rapid,
small-scale efforts for which simple activity-based estimation is adequate. Projects
that require teams of people working over months or years are the primary target
market for software cost estimation models.

The COCOMO II strategy is to preserve the openness of the original COCOMO
model, tailor it to the marketplace just described, key the inputs and outputs to the
level of information available, and enable the model to be tailored to various project
process strategies. In particular, this generation of COCOMO provides range estimates
rather than point estimates. These vary over the life cycle from early, coarse-grained
inputs and wide-ranging estimates to later, fine-grained inputs and more-precise esti-
mates. Figure B-2 illustrates the estimation accuracy over the life cycle.

To support this strategy, COCOMO 1I defines three different models for cost
estimation. Figure B-3 maps these models to the phases of an iterative life cycle. The
models correspond to the level of fidelity and uncertainty appropriate for the current
phase of the life cycle. The post-architecture model corresponds closely to the tradi-
tional COCOMO model, where it was assumed that the project had stable require-
ments, plans, and candidate architecture at the outset. Projects then followed a
waterfall process through delivery with little requirements volatility. The post-
architecture model provides for fine-grained estimates of the project once it has a
requirements baseline, an architecture baseline, and a plan for the construction phase.
The early design model provides for coarser grained estimates in the elaboration

276 THE COCOMO COST ESTIMATION MODEL

ax |
Overestimated

\\

Inception Elaboration Construction Transition

Error in Target Estimate
o

Underestimated
X/4 -

FIGURE B-2. Software estimation over a project life cycle

phase of the life cycle, and the applications composition model allows for very rough
order-of-magnitude estimates during the inception phase of a project.

The applications composition model corresponds to exploratory work typically
done during prototyping efforts and feasibility analyses. The estimating equation is a
simple linear relationship of object points and domain complexity.

Inception Elaboration Construction Transition

4

COCOMO Il Cost Models

Prototyping Model Early Design Model Post-Architecture Model
Coarse inputs Well-understood project Detailed project characterization
Low-fidelity estimates | Moderate fidelity estimates High-fidelity estimates
Rough requirements | Well-understood requirements Stable requirements baseline
Architecture concept | Well-understood architecture Stable architecture baseline

FiGURE B-3. COCOMO II estimation over a project life cycle

B.3 cocomon 277

~ The early design model corresponds to the level of detail available in the engi-
neering stage of a project, during which the architecture, requirements, and plans are
being synthesized. The overall cost estimate equation is as follows:
Effort = 2.45 Ep., (Size)P

where:

Effort = number of staff-months

Eareh = product of seven early design effort adjustment factors (Table B-5)
Size = number of function points (preferred) or KSLOC
P = process exponent

The early design phase parameters are composites of the post-architecture parame-
ters. They provide a simpler estimating method for the early life cycle when there are
substantially more unknowns.

The post-architecture cost estimating equation is as follows:

Effort = 2.45 Ey,, (Size) "

where:
Effort = number of staff-months
Eppp = product of 17 post-architecture effort adjustment factors (Table B-6)
Size = number of KSLOC (preferred) or function points

P

Ll

process exponent

TABLE B-5. Early design model effort adjustment factors

COMPOSITE EFFORT
IDENTIFIER ADJUSTMENT FACTORS
Product complexity RELY-DATA-CPLX-DOCU
Required reuse RUSE
Platform difficulty TIME-STOR-PVOL
Personnel experience AEXP-PEXP-LTEX
Personnel capability ACAP-PCAP-PCON
Facilities TOOL-SITE
Schedule SCED

278 THE COCOMO COST ESTIMATION MODEL

TABLE B-6. COCOMO II post-architecture model updates to Ada COCOMO and

COCOMO
EFFORT ADJUSTMENT

IDENTIFIER FACTOR COCOMO I PERTURBATIONS

RELY Required reliability No change from COCOMO

DATA Database size No change from COCOMO

CPLX Product complexity No change from COCOMO

RUSE Required reuse No change from Ada COCOMO

DOCU Documentation Added; suitability of documentation to the life-
cycle needs

TIME Execution time constraint No change from COCOMO

STOR Main storage constraint No change from COCOMO

PVOL Platform volatility Combined VMVH and VMVT parameters of Ada

~ COCOMO into platform volatility

ACAP Analyst capability No change from COCOMO

AEXP Applications experience No change from COCOMO

PCAP Programmer capability No change from COCOMO

PEXP Platform experience Expanded platform experience from virtual
machine experience

PCON Personnel continuity New parameter

LTEX Language/tool experience Changed to include both tool and language
experience

SITE Multiple-site development ~ New parameter for degree of collocation and

Team communications degree of automation among teams
TOOL Use of software tools No change from COCOMO
SCED Required development No change from COCOMO

schedule

The E coefficients represent the combined effects of multiple parameters. The
post-architecture model uses parameters similar to those used by the conventional
COCOMO model. These parameters allow the development environment to be char-
acterized and normalized with the parameters in the COCOMO 1I project database
(currently 83 projects). The effect of each parameter setting (very low, low, nominal,

B.3 cocomon 279

high, very high) is a multiplier that typically ranges from 0.5 to 1.5. The product of
these 17 effects is used to compute the effort in the cost equation.

The name of the post-architecture model describes the product of the early
design phase—namely, the architecture. The use of function points is recommended to
quantify size for the early design phase, because function points are better suited to
early phases when the structure (and hence the SLOC estimates) for the software solu-
tion is relatively unknown. The use of SLOC is recommended to quantify size for the
post-architecture model. This approach seems to be a good technical compromise
between the SLOC zealots and the function point zealots.

COCOMO II uses the same exponent for the early design and the post-architec-
ture models. The process exponent can range from (1.01..1.26) and is defined as the
combined effects of the following five parameters:

1. Application precedentedness: the degree of domain experience of the devel-
opment organization

2. Process flexibility: the degree of contractual rigor, ceremony, and change
freedom inherent in the project contract, life-cycle activities, and stake-
holder communications

3. Architecture risk resolution: the degree of technical feasibility demon-
strated before commitment to full-scale production

4. Team cohesion: the degree of cooperation and shared vision among stake-
holders (buyers, developers, users, and maintainers, among others)

5. Process maturity: the maturity level of the development organization, as
defined by the Software Engineering Institute’s Capability Maturity Model

The COCOMO II exponent parameterization is an evolutionary upgrade of the
Ada COCOMO approach with a more solid basis. Table B-7 summarizes the parame-
ter ratings. The actual exponent for COCOMO 1I is determined by summing the
effects for each parameter. The combined impact of these process parameters can be
very high. The COCOMO 1I team has yet to permit an actual economy of scale to be
achieved (that is, the value of P is never less than 1.0). They believe that economy of
scale is achievable through corresponding reductions in size resulting from use of
commercial components, reusable components, CASE tools, and object-oriented
technologies.

Another interesting upgrade in COCOMO 1I is the schedule estimating equa-
tion, which is now a function of both the effort estimate and the process parameters.
The resulting impact of a better process is a reduction in both effort and schedule.

280 THE COCOMO COST ESTIMATION MODEL

Overall, COCOMO 11 is a good improvement over conventional cost models,
many of which are grossly out of date. It is a good match for iterative development,
modern technology, and the management process described in this book. However, it
is also immature, and its project database still comprises diverse projects from numer-
ous organizations. It is hard to believe that it will be any more reliable than the origi-
nal COCOMO model.

281

B.3 COCOMOII

S [9AY] y [oaa] € [oAY] +7 [0A] T1PAYT 1 [PAY1 AnImiews $s35014
SuoIoeINUI aaneradood aaneradood aaneradood SUOTIOEBIAIUI suonoeINUl
SSa[WEeds AyStH Aja8re] Ajeoiseq I[NOYJIp SWOS JnoYJIp AI9A UOISaYO0d Wed],
%001 %06 %S L %09 % 0% %0T uonnjosai
md ApsoN A[re1auan uwYO awog apry SUI 310103NYITY
Aruojuod fyruizojuod uonexe[as UOTIEXE[3] Ajiqrxay
s[eog [e13udn) auog [eIdUD) awog [euOISEQ sno1odry juswidojeasg
Terjruie} Telfiuiey TeI[TIUE) paiuapadazdun poruapadardun paiuapadardun
Ajy8noioy], Aja8re] AJjeIauan JBYMIWOS A[981e Ay8nozoy], SSaUPAIUIPIIRIJ
{(s0°0) (¥0'0) {€0°0) (z0'0) {10°0) {00°0) ALLANVIVd
HOIH Vi1Xd HDIH X¥3A HOIH TVYNIWON AOT AOTAYIA

s4a7awpivd uauodxa ssavoud [OWODOQD “L-d318v]

APPENDIX C

Change Metrics

easurement of software progress and .
lity is an extremely complex under- Key Points
ua -

. 9 Y y p A One of the most important character-
taking because of the large number of product, istics of good software is its ease of
project, and personnel parameters that have an . change.
impact on software development efforts. It is A Measuring and assessing the scrap

robably impossible to specify a set of abso- and rework effort in a succession of
P Y P P fy software baselines provides useful

luFe deﬁ'nmons of softyvare measurement that insight into the convergence toward, or
will satisfy most projects. However, several divergence from, acceptable quality and
aspects of software measurement are generally = Pprogress.

applicable to almost all software projects. . A Metrics extracted directly from the

.. . - . . evolving technical artifacts provide a
This is the basic hypothesis of this met- foundation for process instrumentation

rics approach: that enables consistent, accurate, and
precise project control.

The most important characteristic of soft-
ware is that it is “soft”: The easier the software is to change, the easier it is to
achieve any of its other required characteristics.

The core metrics are therefore centered on measurements of software change
trends (scrap and rework) in the software artifacts throughout the life cycle. To
manage most serious software efforts, the software project manager needs several
context-independent metrics (for comparison with general expectations) and several con-
text-dependent metrics.

Ideveloped much of this material in 1987 to rationalize the metrics program
used for the CCPDS-R project, which is presented as a case study in Appendix D. The
material was published [Royce, Walker, 1990] after three years of field experience had
demonstrated its usefulness and resulted in several refinements. There have been

283

284 CHANGE METRICS

many other attempts over the past 20 years to define measures of software quality. For
several reasons, none has really caught on in practice, although there are some recur-
ring themes that overlap my recommendations fairly well. Some recurring obstacles
are the need for subjectivity and the cost of human resources required to collect and
interpret metrics.

C.1 OVERVIEW

My approach to metrics is similar to that of DeMarco, who proposes to measure soft-
ware quality through the absence of spoilage [DeMarco, 1982]. To remain technol-
ogy- and project-independent, his definitions are purposely vague; mine are quite
explicit. Consistency of application is important for accurate interpretation, just as it
is with cost estimation techniques. Software cost estimation has subjective inputs and
objective outputs. My approach will define objective inputs, which may require sub-
jective interpretation within the context of a specific project.

One effective way to assess software quality over a life cycle is by measuring
rework in the configured baselines. The unit of measurement can be source lines of
code, function points, object points, files, components, or some other measure of the
software size. This discussion uses SLOC as the primitive size metric because it is used
predominantly by the industry, is the easiest measure to understand, and best matches
the case study data in Appendix D.

In some cases, the software quality assessment derived from an objective collec-
tion of change metrics will require context-dependent assessment. Judgment is needed
to assess quality using any metric. The same metrics should be used to assess quality
during development (trend-oriented) and following development (value-oriented).
For example, the volume of rework following product delivery is an objective mea-
sure of quality or lack of quality. The amount of rework following the first configura-
tion baseline during development is ambiguous without further context. Zero rework
might be interpreted as a perfect baseline (which is unlikely), an inadequate test pro-
gram, or an unambitious first build.

Software Quality

It is extremely difficult to make this concept objective. Only two mechanisms are
available for defining customer expectations of quality: software requirements specifi-
cations for function and performance, and an approved expenditure plan that quanti-
fies cost and schedule goals. These artifacts, which basically correspond to the
contract, are traditionally the lowest quality products produced by a project because
they must be agreed upon early in the life cycle, when there are still too many
unknowns. A modern, iterative process and objective software metrics should provide

C.1 OVERVIEW 285

better insight into the extent to which function, performance, cost, and schedule com-
ply with customer expectations.

Software Change Orders

SCOs, discussed at length in Chapter 12, constitute direction to proceed with chang-
ing a configured software component. (SCOs are often called software problem
reports, but problem has a negative connotation, and not all changes are motivated by
problems.) The change may be needed to rework a poor-quality component (type O or
1, a fix), to rework a component to achieve better quality (type 2, an enhancement),
or to accommodate a customer-directed change in requirements {type 3, a scope
change). The difference between a fix and an enhancement is inherent in the reason
for the change. Assuming that the unchanged component is compliant, if the reason
for the change is to improve cost-effectiveness, increase testability, increase usability,
or improve efficiency in some other way, the rework is type 2. Both type 0 or 1 and
type 2 rework should increase the quality of the end product. However, type 0 or 1
also indicates inadequate quality in a current baseline. In practice, differentiating
between type 0 or 1 and type 2 may be quite subjective. As discussed later, most of the
metrics are insensitive to the categorization, but if the differentiation is consistently
applied, it can provide useful insight. Collection and analysis of change metrics focus
on type 0, 1, and 2 SCOs, which are collected and analyzed together.

Type 3 SCOs typically reflect a requirements change that redefines the customer
expectations. Such changes have a broader impact and therefore require various levels
of software and systems engineering as well as highly varying levels of regression test-
ing. Because of this wide range of variability, type 3 SCOs are analyzed separately in
these metrics. The data derived from type 0, 1, and 2 SCOs should provide a solid
basis for estimating maintainability and the effort required for type 3 SCOs.

Source Lines of Code

Whether SLOC provides a good metric for measuring software volume has always
been controversial. (DeMarco calls this bang.) Jones identifies some of the precau-
tions necessary when dealing with SLOC [Jones, 1994]. He goes so far as to say that
“using lines of code for normalization of data involving multiple or different lan-
guages should be considered an example of professional malpractice.” One point
everyone agrees on is that whatever is used must be defined objectively and consis-
tently to be of value for comparison. How the absolute unit of SLOC is defined is not
as important as defining it consistently across all projects and all areas of a specific
project. Requiring the use of a common counting tool forces standardization on a
given definition.

286 CHANGE METRICS

Configuration Control Board

The CCB is the governing body responsible for authorizing changes to a configured
baseline product. At a minimum, members include the software development man-
ager, the software assessment manager, and, for a contractual effort, a customer repre-
sentative. The CCB decides on all proposed changes to configured products and
approves all SCOs. The CCB is responsible for collecting the software quality metrics,
analyzing trends objectively and subjectively, and proposing changes to the develop-
ment process, tools, products, or personnel to improve future quality.

Configured Baseline

A configured baseline is a set of products that are subjected to change control through
the CCB. Configured baselines may represent intermediate products that have com-
pleted design, development, and informal test, or final products that have completed
formal test.

Cz2 METRICS DERIVATION

This section defines and describes in detail the necessary statistics to be collected, the
metrics derived from these statistics, and some general guidelines for their interpreta-
tion. Appendix D provides detailed examples of a real-world application to illustrate
further how such metrics can be used to manage and control a project. The deriva-
tions are not an obvious top-down progression; rather, they resulted from substantial
trial and error, numerous empirical analyses, intuition, and heuristics.

The raw statistics to be collected include numbers and types of software
changes, SLOC damaged, and SLOC fixed. The challenges are to find the right filter-
ing techniques for the raw rework statistics that identify useful trends, and to uncover
objective measures to quantify progress (intermediate attributes during development)
and quality (attributes of the end product). The final objective is to quantify the prod-
uct’s modularity, adaptability, maturity, and maintainability. Modularity and adapt-
ability are intuitively easy to define as a function of rework; maturity and
maintainability are more subtle.

® Modularity. This metric measures the average extent of breakage or scrap.
[t identifies the need to quantify the scrap (volume of SLOC damaged) and
the number of instances of rework (number of SCOs). In effect, modularity
is defined as a measure of breakage localization, with a lower value being
better.

e Adaptability. This metric measures the average complexity of breakage as
measured in rework. It identifies the need to quantify the rework (effort
required for resolution) and the number of instances of rework (number of

C.2 METRICS DERIVATION 287

SCOs). Adaptability quantifies the ease of change, with a lower value being
better.

® Maturity. Intuitively, maturity corresponds to the level of trustworthiness
of the product. Objectively, this metric measures the defect rate. The goal is
to be defect-free—namely, to achieve infinite maturity. The trust increases
primarily through extended usage. Because software is intellectual prop-
erty, not comprised of physical matter, it does not wear out. Software
should mature over time, meaning that its users (test team, beta users, users
of a released product) should experience defects less frequently with each
subsequent release of the product. This statement assumes constant func-
tionality and performance in new releases. The expectation of increasing
maturity in new releases is valid even when functionality and performance
change. Similarly, there should be noticeable trends in release maturity
across the development life cycle of a healthy iterative development effort.
A simple indicator of the defect rate would require measuring the number
of defects (type 0 and 1 SCOs) and the amount of usage time. From these
parameters, the mean time between failures (MTBF) can be derived for a
given release. Higher vales of maturity are better, reflecting the average
time between defects perceived by a user.

* Maintainability. Theoretically, the maintainability of a product is related to
the productivity with which the maintenance team can operate. Productiv-
ity is so difficult to compare among projects, however, that this definition is
intuitively unsatisfying. The ratio of the productivity of rework to the pro-
ductivity of development provides a value that is independent of productiv-
ity yet reflects the development complexity. The ratio normalizes the
project productivity differences and provides a relatively comparable met-
ric. Consequently, maintainability is defined as the ratio of rework produc-
tivity to development productivity. Intuitively, this value identifies a
product that can be changed three times as efficiently as it was developed
(maintainability = 0.33) as having better (lower) maintainability than a
product that can be changed twice as efficiently (maintainability = 0.5) as it
was developed, independent of the absolute maintenance productivity real-
ized. The statistics needed to compute these values are the total develop-
ment effort, total SLOC, total rework effort, and total reworked SLOC.

While these values provide useful objective measures of end products, their
intermediate values as a function of time also provide insight during development into
the expected end-product values. Once a project has gained some experience with
maintenance of early increments, this experience should be useful for predicting the
rework inherent in remaining increments.

288 CHANGE METRICS

This brief derivation was relatively simple. It is not necessary to deal with these
metrics as a complete set, although multiple perspectives are needed by project man-
agement to achieve accuracy. Subsets, or different sets, are also useful. Most of the
analysis, mathematics, and data collection inherent in these metrics should be auto-
mated so that practitioners need only interpret the results and understand their basis.

C.2.1 COLLECTED STATISTICS

Some specific statistics must be collected over the software project life cycle to imple-
ment the proposed metrics. These statistics, identified in Table C-1, include the
following;:

e Total SLOC (SLOCr). This statistic tracks the estimated total size of the
product under development. This value may change significantly over the
life of the development as early requirements unknowns are resolved and
design solutions mature. This total should also include reused software,
which is part of the delivered product and subject to change by the devel-
opment team.

* Configured SLOC (SLOC). This statistic tracks the transition of software
components from a maturing design state into a controlled configuration.
For any given project, this statistic will provide insight into progress and

TaBLE C-1. Definitions of collected statistics

COLLECTED STATISTICS DEFINITION

Total SLOC SLOCt = total size in SLOC

Configured SLOC SLOC(= current baseline SLOC

Critical defects SCOy = number of type 0 SCOs

Normal defects SCO; = number of type 1 SCOs

Improvements SCO;, = number of type 2 SCOs

New features SCO3; = number of type 3 SCOs

Number of SCOs N = SCOqy + SCO; + SCO,

Open rework (breakage) B = cumulative broken SLOC due to SCOq, SCO4, and SCO,
Closed rework (fixes) F = cumulative fixed SLOC

Rework effort E = cumulative effort expended fixing SCOy, SCO{, and SCO,
Usage time UT = hours that a given baseline has been operating under realistic

usage scenarios

C.2 METRICS DERIVATION 289

stability of the development team. For projects with reused software, there
will be an early contribution to SLOC¢ and thus immediate progress and
quality metrics.

Defects (SCOq and SCO,). Changes to resolve software errors constitute
an important statistic from which the reliability and maturity of a baseline
can be derived. The expectation is that the highest incidence of uncovering
errors occurs immediately after a release and decreases with time as the
software matures.

Improvements (SCO,). Another stimulus for changing a baseline, improve-
ments are also key to assessment of the quality and the progress toward
producing quality. The expectation for improvements is inversely propor-
tional to defects. Because the defect rate starts high and damps out, improve-
ments start low (the focus is on defects) and increase. This phenomenon is
loosely based on the assumption that a fixed team is working the test and
maintenance activities. It is captured by the following relationship:

Effort (defects) + Effort (improvements) = Constant

Differentiation between defects and improvements is somewhat subjective.
The change metrics defined herein are not particularly sensitive to either
type because they rely on the sum of the impacts from both types. How-
ever, the difference between defects and improvements can have a signifi-
cant impact on the maturity measures described in Section C.2.2.

New features (SCO3). Type 3 changes reflect an update to the stakeholder
expectations for new features or capabilities outside the scope of the cur-
rent contract. The statistics for type 3 changes are analyzed separately
because they reflect new work rather than rework.

Number of SCOs (N). Because an SCO is a discrete unit of change, it is
important for its definition to be consistent throughout all domains where
the metrics will be compared. What is the level at which changes are docu-
mented and tracked? Most projects converge on a fairly loose definition of
an SCO based on size, breadth of impact on individuals and teams, and
CCB culture. This loose approach will work for the individual project, but
if every project uses a different definition, comparability across projects is
compromised. In general, SCOs should affect a single component and
should be allocated to a single individual or team leader. With this simple
standard, more-precise definitions of these primitives are unnecessary.
Imprecise primitives work fine, and greater precision adds little value. As
more and more metrics collection is supported by automated tools, there
will be further homogenization of the overall measurement techniques and
primitive units.

290

CHANGE METRICS

* Open rework (B). Theoretically, all rework corresponds to an increase in

quality. The rework is necessary either to remove an instance of “bad”
quality (SCOq and SCOy) or to enhance a component to improve life-cycle
cost effectiveness (SCO,). To assess quality trends accurately, the dynamics
of the rework must be evaluated in the context of the life-cycle phase. A
certain amount of rework is necessary on a large software engineering
effort; early rework is considered a sign of healthy progress in a modern
process model. Continuous rework, late rework, or zero rework due to the
absence of a configured baseline are generally indicators of negative quality.
Interpretation of this statistic requires project context. In general, however,
rework should ultimately approach zero at product delivery. To provide a
consistent collection process that can be automated, rework can be defined
as the number of SLOC estimated to change due to an SCO. The absolute
accuracy of the estimates is generally unimportant. Because open rework is
tracked with an estimate and closed rework is tracked separately with actu-
als, the values continually correct themselves and remain consistent.

Closed rework (F). Whereas the breakage statistics estimate the damage
done, the repair statistics identify the actual damage that was fixed. Upon
resolution, the corresponding breakage estimate is updated to reflect the
actual required repair that remains in the baseline. Although the actual
SLOC fixed (F) will never be absolutely accurate, it will be relatively accurate
for assessing trends. Because “fixed” can take on several different meanings
depending on what is added, deleted, or changed, a consistent set of guide-
lines is necessary. Changed SLOC will increase B and F without a change to
SLOC. Added code will increase B, F, and SLOC, although not in the same
proportions. Deleted code (an infrequent occurrence) with no corresponding
addition could increase B and reduce SLOC¢. Given the volume of changes
and the need for only roughly accurate data for identifying trends, the accu-
racy and precision of the raw data are relatively unimportant.

Rework effort (E). The total effort expended in resolving SCOs is another
necessary perspective for tracking the complexity of rework. Activities
should be limited to technical requirements, software engineering, design,
development, and functional test. Higher level systems engineering, man-
agement, configuration control, verification testing, and system testing
should be excluded, because these activities tend to be more a function of
company, customer, or project attributes, independent of quality. The goal
here is to normalize the widely varying bureaucratic activities out of the
metrics.

Usage time (UT). This important statistic corresponds to the number of hours
that a given baseline has been operating under realistic usage scenarios. For

C.2 METRICS DERIVATION 291

some systems, this statistic corresponds to straight time measurements; for
many others, automated tests can simulate one day of usage in a one-hour
test. For example, most transaction processing systems have an expected
average load that they process daily. If this average load can be packaged in
a test scenario and executed against the product baseline in one hour, it
counts as 24 hours of usage time. As another example, consider a develop-
ment tool that is used by humans operating at human speeds of several key-
strokes per second. If automated GUI test tools can support scripts of
interactions that can be tested against the product at a tenfold higher rate,
then every hour of test time counts as 10 hours of usage time. Defining the
mapping of test time to usage time is generally straightforward. This is also
a great requirements analysis exercise that frequently uncovers ambiguities
in the understanding of usage scenarios among different stakeholders.

C.2.2 END-PrRODUCT QUALITY METRICS

The end-product quality metrics (Table C-2) provide insight into the maintainability
of the software products with respect to type 0, 1, and 2 SCOs. Type 3 SCOs are
explicitly not included, because they redefine the inherent target quality of the system
and tend to require more global system and software engineering as well as some
major reverification of system-level requirements. Because these types of changes are
dealt with in extremely diverse ways by different customers and projects, they would
tend to cloud the meanings and comparability of the data.

The following metrics data should be very helpful in determining and planning
the amount of effort necessary to implement type 3 SCOs. They are also useful when
applied against subsets of the product such as components or releases. The word
product is used as the basis of what is being measured.

TasBLE C-2. End-product quality metrics

METRIC DEFINITION

Scrap ratio B/SLOC, percentage of product scrapped
Rework ratio E/Effortpeyelopment> percentage of rework effort
Modularity B/N, average breakage per SCO

Adaptability E/N, average effort per SCO

Maturity UT/(SCOy + SCO;), mean time between defects

Maintainability (scrap ratio)/(rework ratio), maintenance productivity

292 CHANGE METRICS

e Scrap ratio. This metric provides a value for comparison with historical
projects, future increments, or future projects. It defines the percentage of
the product that had to be reworked during its life cycle. :

* Rework ratio. This value identifies the percentage of effort spent in rework
compared to the total effort. It probably provides the best indicator of
rework (or maintenance) productivity.

* Modularity. This value identifies the average amount of SLOC broken per
SCO, which reflects the inherent ability of the integrated product to local-
ize the impact of change. To the maximum extent possible, CCBs should
ensure that SCOs are written for single source changes and applied consis-
tently across the project.

¢ Adaptability. This value provides insight into the ease with which the prod-
uct can be changed. While a low number of changes is generally a good
indicator of a quality process, the magnitude of effort per change is usually
more important.

® Maturity. This value provides an indicator of the current mean time
between failures (MTBF) for the product. While the ultimate goal for ~
maturity is always infinity (namely, zero defects), every project must settle
for less. Once a product has been released to its user community, the MTBF
is generally fixed and stable. Throughout the development life cycle, how-
ever, maintenance actions are expected to improve the maturity over the
life of a single release, and the trends across multiple releases should show
improvement toward the project’s end goals for maturity.

® Maintainability. This value identifies the relationship of maintenance cost
to development cost. It provides a fair normalization for comparisons
among different projects. Because the maintainability numerator is in
terms of effort and its denominator is in terms of SLOC, it is a ratio of pro-
ductivities (effort per SLOC). A simple mathematical rearrangement will
show that maintainability (or the quality of maintenance, Q) is equiva-
lent to the following;:

QM = PrOductiVityMaimenance/PIOdUCtiVityDevelopment

For example, if the (scrap ratio) = (rework ratio), the productivity of modifica-
tion is equivalent to the productivity of development and Q)4 = 1. Intuitively, a
value of 1 represents a “poor” level of maintainability because it should be eas-
ier to change existing software than to develop an alternative from scratch. The

C.2 METRICS DERIVATION 293

fact that conventional projects tended to spend $2 on maintenance for every $1 of
development [Boehm, 1987] can serve as a benchmark of what would constitute a
“good” level of maintainability. Consider a software line of business with an
average product life span of 16 years and an average yearly breakage rate of
12%. If Q) = 1, there would be about a 1:2 ratio between development expen-
ditures and maintenance expenditures, or a maintainability that is roughly the
norm for the software industry. A maintainability value much less than 1 would,
in most cases, indicate a highly maintainable product, at least with respect to
development cost and conventional experience.

These descriptions identify idealized trends for these metrics. Real project situa-
tions will never be ideal. It is important, however, for stakeholders to understand the
extent to which the metrics vary from the ideal. The application of these metrics
across project increments should be useful for the project as a whole and for compari-
sons with other projects.

C.2.3 IN-PROGRESS INDICATORS

The in-progress indicators are defined in Table C-3. Relative expectations are described
next and illustrated in Figures C-1 and C-2.

® Rework stability. This metric quantifies the difference between total
rework and closed rework. Its importance is to indicate whether the resolu-
tion rate is keeping up with the breakage rate. Figure C-1 shows an exam-
ple of a healthy project in which the resolution rate does not diverge
(except for short periods of time) from the breakage rate. The breakage
rate should also be tracked relative to the SLOC delivery rate, because the
level of effort devoted to testing and maintenance varies over the life cycle.
This is the purpose of the next metric.

TAaBLE C-3. Definitions of in-progress indicators

INDICATOR DEFINITION

Rework stability B-F, breakaée minus fixes plotted over time
Rework backlog (B-F)/SLOCc, currently open rework.
Modularity trend Modularity plotted over time

Adaptability trend Adaptability plotted over time

Maturity trend Maturity plotted over time

294 CHANGE METRICS

Inception Elaboration Construction Transition
100% 1 : ,
Architecture . . . \
Baseline \ . Beta Release
\} : . Alpha
(Plotted as a . . Release
percentage : -Development :
of SLOC;) ‘Release :
: —
Cumulative .
breakage @ ———-
O Repaired
S breakage :
« :
Current '
breakage - - - - - - : : :
. — 3 - L. . Rework
‘. Stability
/ R
50% < cumutative
breakage @— — — -
Open
backlog - ----- : : : ‘
o | . . : —t— ——— —
25% (Plotted as a : : - — :
percentage of SLOC,) . e ™ . :
: - : © Rework
.,'/~/.--:- ------ :.-_____;__Backlog

FiGure C-1. Expected trends for in-progress indicators

C.2 METRICS DERIVATION 295

Inception Elaboration Construction Transition
100% — : ,
Architecture \
Baseline '\ . Beta Release
‘Alpha Release:
(Plotted as a : C :
gfe rScLegtélg? - Development .
T - Release .
Modularity :
(rework/SCO)— —— — .
Adaptability
(effort/SCO)
2
[
o
[+
Q
m
£
= .
e Maturity
4]
w
=2

FIGURE C-2. Expectations for quality trends

296 CHANGE METRICS

® Rework backlog. The rework backlog is the percentage of the existing
product baseline, SLOCg, that is currently in need of repair. In general, the
backlog should rise to some manageable level following establishment of
the first baseline, as testing uncovers necessary changes. Rework backlog
should remain relatively stable throughout the test program until it drops
to zero. Large changes or sustained growth in backlog from month to
month should be scrutinized. Sustained increases may indicate instability
and divergence from plan.

® Modularity trend. Changes in this value show how the extent of change is
evolving over a project’s life cycle. The general trend provides insight into
quality (how well the architecture accommodates change localization) and
management (schedule convergence and downstream change risks). Most
trivial changes get caught and implemented in stand-alone test activities.
This value addresses the nontrivial changes that creep into configuration
baselines. While it is difficult to quantify what constitutes a good trend, the
following rule of thumb is typical on successful projects: The average SCO
should affect the equivalent of a single program unit (the lowest level of
separately compilable code elements). For example, the average breakage
per SCO for software written in C++ (in which the average program unit is
about 50 lines of code) should be about 50 at project completion. In a
mature iterative development process, the earlier changes (design changes
that affect multiple components and people) are expected to require more
rework than later changes (implementation changes, which tend to be con-
fined to a single component or person). Modularity trends that are increas-
ing with time clearly indicate that the product architecture is degrading.

* Adaptability trend. This value provides a mechanism for assessing trends in
the complexity of change, as opposed to the extent of change. When
changes are easy to implement, a project is more likely to increase the num-
ber of changes, thereby increasing quality. With the conventional process,
it was more expensive to incorporate changes later in the life cycle. In a
modern iterative process, the objective is to establish a robust process and
architecture so that making changes is easier, and the results are more pre-
dictable, later in the life cycle. Rework trends may only stabilize rather
than continue to get simpler over time. Nevertheless, this is a critical differ-
ence from the conventional process. A good trend is difficult to quantify in
absolute terms. In practice, successful projects tend to experience an aver-
age cost of change of less than one staff-week.

* Maturity trend. It is easy to explain the expectation for this value for a single
release. However, most modern software projects consist of several

C.3 PRAGMATIC CHANGE METRICS 297

iterations and increments with overlapping activities and release schedules.
Assessing the maturity of a whole system is far more complex than assess-
ing the maturity of a given release. The expectation for an individual
release would be a relatively immature product (frequently experienced
defects) that shows rapidly improving maturity as fixes are incorporated in
maintenance updates. The expectation for the simple project example illus-
trated in Figure C-2 is that with each subsequent release, the whole base-
line encounters fewer defects and more usage time. Consequently, the
reliability growth should be getting better and better. Exponential growth,
shown in the figure, may be unrealistic for most systems. Linear growth
may be more realistic. “Your mileage may vary,” but a healthy process and
architecture should not experience a sustained decrease in maturity, and
short-term decreases should have an obvious cause.

C3 PRAGMATIC CHANGE METRICS

Section 13.1 describes some goals of a successful metrics program. These goals are
reiterated next and discussed in terms of whether the metrics described here meet
these goals. '

® Metrics must be simple, objective, easy to collect, easy to interpret, and
hard to misinterpret. The number of statistics to be maintained in an SCO
database to implement this metrics approach is small: fewer than 10. They
are simple counts and can have simple definitions, although in practice
many of the units of these counts are ambiguous. Depending on the disci-
pline, consistency, and level of automation inherent in an organization’s
process, the definition and collection of these metrics may be relatively easy.
On the other hand, an ad hoc organization with diverse software projects
may find it very difficult to converge on acceptable practices. The various
perspectives provided by these metrics have a straightforward interpreta-
tion in most cases. Most trends are obviously good or bad. Most values are
context-dependent, but with data from multiple projects in a common con-
text, it should be easy to reason about similarities and differences.

* Metrics collection must be automated and nonintrusive, that is, not inter-
fere with the activities of developers. All the collected data and analysis
required in this metrics approach can be, and have been, automated. While
engineers simply follow their normal workflows for generating artifacts,
the configuration control system can be instrumented to collect and process
all the data required to extract the metrics and trends.

298

CHANGE METRICS

e Metrics must provide consistent assessments throughout the life cycle,

especially in early phases, when efforts to improve quality have a high pay-
off. The approach described here is derived from a software maintenance
perspective. However, an iterative development process can be viewed as a
merging of the development and maintenance activities into a more com-
mon set of life-cycle activities that use the same techniques and tools. From
this perspective, an iterative approach can be seen as simply accelerating
the establishment of baselines so that baseline changes, and their inherent
progress and insight into quality, can be used to better instrument the pro-
cess. With conventional technologies, this would have been a manual, error-
prone activity. With today’s advanced change management automation and
round-trip engineering support among various engineering artifacts, change
freedom is improved and the transition to an iterative process is technically
feasible and economically advantageous.

Metrics, both values and trends, must be used actively by management and
engineering personnel for communicating progress and quality in a consis-
tent format. These metrics deal with tangible measurements of evolving
software artifacts. They are derived directly from the evolving baselines of
the product, not from separate documentation or subjective judgments.
Software engineers will accept and use these objective metrics to avoid bad
technical and management decisions. As far as managers are concerned,
they will acclimate to any objective measures. The metrics presented are
straightforward: Most stakeholders can understand them, they can be
automated, and they can be compared with the metrics from other projects
if used judiciously.

his appendix presents a detailed case study
. of a successful software project that fol-
lowed many of the techniques presented in this
book. Successful here means on budget, on
schedule, and satisfactory to the customer. The
Command Center Processing and Display Sys-
tem-Replacement (CCPDS-R) project was per-
formed for the U.S. Air Force by TRW Space
and Defense in Redondo Beach, California.
The entire project included systems engineering,
hardware procurement, and software develop-
ment, with each of these three major activities
consuming about one-third of the total cost.
The schedule spanned 1987 through 1994.
The software effort included the develop-
ment of three distinct software systems total-
ing more than one million source lines of code.

APPENDIX D

CCPDS-R
Case Study

Key Points

A An objective case study is a true indi-
cator of a mature organization and a
mature project process. The software
industry needs more case studies like
CCPDS-R.

- A The metrics histories were all derived

directly from the artifacts of the
project’s process. These data were used
to manage the project and were
embraced by practitioners, managers,
and stakeholders.

A CCPDS-R was one of the pioneering
projects that practiced many modern
management approaches.

A This appendix provides a practical
context that is relevant to the tech-
niques, disciplines, and opinions pro-
vided throughout this book.

This case study focuses on the initial software development called the Common
Subsystem, for which about 355,000 source lines were developed. The Common Sub-
system effort also produced a reusable architecture, a mature process, and an integrated
environment for efficient development of the two software subsystems of roughly sim-
ilar size that followed. This case study therefore represents about one-sixth of the

overall CCPDS-R project effort.

Although this case study does not coincide exactly with the management process
presented in this book nor with all of today’s modern technologies, it used most of the
same techniques and was managed to the same spirit and priorities. TRW delivered

299

[

300 CCPDS-R CASE STUDY

the system on budget and on schedule, and the users got more than they expected.
TRW was awarded the Space and Missile Warning Systems Award for Excellence in
1991 for “continued, sustained performance in overall systems engineering and
project execution.” A project like CCPDS-R could be developed far more efficiently
today. By incorporating current technologies and improved processes, environments,
and levels of automation, this project could probably be built today with equal qual-
ity in half the time and at a quarter of the cost.

D.1 CONTEXT FOR THE CASE STUDY

I worked full time on the CCPDS-R project for 6 years, so this appendix is written
from firsthand experience. My responsibilities included managing the development of
the foundation technologies, developing the technical and cost proposals, conducting
the software engineering exercise, and managing the software engineering activities
through the early operational capability milestone.

I have tried to provide an accurate portrayal of the CCPDS-R project. While the
data presented are mostly historical fact, all the subjective comments and value judg-
ments are mine. The data were derived from published papers, internal TRW guide-
books, contract deliverable documents—all available from the actual artifacts of the
CCPDS-R project—and my own personal experience. In a few minor cases, I have
edited the data to remove unnecessary precision and eliminate inconsistencies within
source documents produced at different points in the life cycle. My goal was to pro-
duce a relatively consistent description while excluding some of the minutia that
would require detailed and irrelevant explanation.

Although the software industry can claim many successful projects (not enough,
but many), good case studies are lacking. There are very few well-documented
projects with objective descriptions of what worked, what didn’t, and why. This was
one of my primary motivations for providing the level of detail contained in this
appendix. It is heavy in project-specific details, approaches, and results, for three
reasons:

1. Generating the case study wasn’t much work. CCPDS-R is unique in its
detailed and automated metrics approach. All the data were derived
directly from the historical artifacts of the project’s process.

2. This sort of objective case study is a true indicator of a mature organization
and a mature project process. The absolute values of this historical per-
spective are only marginally useful. However, the trends, lessons learned,
and relative priorities are distinguishing characteristics of successful soft-
ware development.

D.2 COMMON SUBSYSTEM OVERVIEW 301

3.

Throughout previous chapters, many management and technical approaches
are discussed generically. This appendix provides in a real-world example at
least one relevant benchmark of performance.

i
|

My comments on relevance with the techniques, disciplines, and opinions discussed in

{ previous chapters are provided in shaded boxes.

S

D.2

COMMON SUBSYSTEM OVERVIEW

|

The CCPDS-R project produced a large-scale, highly reliable command and control
system that provides missile warning information used by the National Command
Authority. The procurement agency was Air Force Systems Command Headquarters,
Electronic Systems Division, at Hanscom Air Force Base, Massachusetts. The primary
user was US Space Command, and the full-scale development contract was awarded
to TRW’s Systems Integration Group in 1987. The CCPDS-R contract called for the
development of three subsystems:

1.

The Common Subsystem was the primary missile warning system within
the Cheyenne Mountain Upgrade program. It required about 355,000
source lines of code, had a 48-month software development schedule, and
laid the foundations for the subsystems that followed (reusable compo-
nents, tools, environment, process, procedures). The Common Subsystem
included a primary installation in Cheyenne Mountain, with a backup sys-
tem deployed at Offutt Air Force Base, Nebraska.

The Processing and Display Subsystem (PDS) was a scaled-down missile
warning display system for all nuclear-capable commanders-in-chief. The
PDS software (about 250,000 SLOC) was fielded on remote, read-only
workstations that were distributed worldwide.

. The STRATCOM Subsystem (about 450,000 SLOC) provided both missile

warning and force management capability for the backup missile warning
center at the command center of the Strategic Command.

Overall Software Acquisition Process

The CCPDS-R acquisition included two distinct phases: a concept definition (CD)
phase and a full-scale development (FSD) phase. The CD phase proposal was com-
peted for by five major bidders, and two firm-fixed-price contracts of about $2 million
each were awarded. The winning contractors also invested their own discretionary
resources to discriminate themselves with the best-value FSD phase proposal. Figure D-1

summarizes the overall acquisition process and the products of each phase.

302 CCPDS-R CASE STUDY

CD Phase

Schedule:
12 months

Products:
Vision
Business case
Software development plan
Software engineering exercise

Contract:

FSD Phase

Schedule:
48 months

Products:
2167A software documentation
Six software configuration items
Major milestones
Beta delivery (EOC)

Contract:

Firm fixed price Fixed price award fee

Competitive Design Phase Full-Scale Development Phase
(Inception) (Elaboration — Construction — Transition)
ISRR ISDR SRR IPDR PDR CDR EOC FQT

_A Al L A A A A A &

ISRR Initial system requirements review
ISDR Initial system design review

SRR Software requirements review
IPDR Interim preliminary design review
PDR Preliminary design review

CDR Critical design review
EOC Early operational capability
FQT Final qualification test

FIGURE D-1. CCPDS-R life-cycle overview

The CD phase was very similar in intent to the inception phase. The primary
products were a system specification (a vision document), an FSD phase proposal (a
business case, including the technical approach and a fixed-price-incentive and
award-fee cost proposal), and a software development plan. The CD phase also
included a system design review, technical interchange meetings with the government
stakeholders (customer and user), and several contract-deliverable documents. These
events and products enabled the FSD source selection to be based on demonstrated
performance of the contractor-proposed team as well as the FSD proposal.

From a software perspective, there was one additional source selection criterion
included in the FSD proposal activities: a software engineering exercise. This was a
unique but very effective approach for assessing the abilities of the two competing
contractors to perform software development. The Air Force was extremely con-
cerned with the overall software risk of this project: Recent projects had demon-
strated dismal software development performance. The Air Force acquisition
authorities had also been frustrated with previous situations in which a contractor’s
crack proposal team was not the team committed to perform after contract award,
and contractor proposals exaggerated their approaches or capabilities beyond what
they could deliver.

CCPDS-R was also a very large software development activity and was one of
the first projects to use the Ada programming language. There was serious concern

D.2 COMMON SUBSYSTEM OVERVIEW 303

that the Ada development environments, contractor processes, and contractor train-
ing programs might not be mature enough to use on a full-scale development effort.
The purpose of the software engineering exercise was to demonstrate that the con-
tractor’s proposed software process, Ada environment, and software team were in
place, were mature, and were demonstrable.

The software engineering exercise occurred immediately after the FSD proposals
were submitted. The customer provided both bidders with a simple two-page specifi-
cation of a “missile warning simulator.” This simulator had some of the same funda-
mental requirements as the CCPDS-R full-scale system, including a distributed
architecture, a flexible user interface, and the basic processing scenarios of a simple
CCPDS-R missile warning thread. The exercise requirements included the following:

® Use the proposed software team.
* Use the proposed software development techniques and tools.
¢ Use the FSD-proposed software development plan.

® Conduct a mock design review with the customer 23 days after receipt of
the specification.

The software engineering exercise would provide objective evidence of the
credibility of each contractor’s proposed software development approach.

The results produced by TRW’s CCPDS-R team were impressive. They demon-
strated to the customer that the team was prepared, credible, and competent at
conducting the proposed software approach. Approximately 12 staff-months were
expended in the effort (12 people full-time for 23 days).

A detailed plan was established that included an activity network, responsibility
assignments, and expected results for tracking progress. The plan included two archi-
tecture iterations and all the milestones and artifacts proposed in the software devel-
opment plan. The exercise produced the following results:

® Four primary use cases were elaborated and demonstrated.

® A software architecture skeleton was designed, prototyped, and docu-
mented, including two executable, distributed processes; five concurrent
tasks (separate threads of control); eight components; and 72 component-
to-component interfaces.

* A total of 4,163 source lines of prototype components were developed and
executed. Several thousand lines of reusable components were also inte-
grated into the demonstration. -

o Three milestones were conducted and more than 30 action items resolved.

304 CCPDS-R CASE STUDY

¢ Production of 11 documents (corresponding to the proposed artifacts)
‘demonstrated the automation inherent in the documentation tools.

* The Digital Equipment Corporation VAX/VMS tools, Rational R1000
environment, LaTeX documentation templates, and several custom-
developed tools were used.

» Several needed improvements to the process and the tools were identified.
The concept of evolving the plan, requirements, process, design, and envi-
ronment at each major milestone was considered potentially risky but was
implemented with rigorous change management.

This exercise proved to be a discriminating factor in the CCPDS-R contract
award. TRW had proposed an architecture-first, demonstration-based approach and
had demonstrated its operational concept successfuily under realistic, albeit small-
scale and accelerated, conditions. Despite submitting a bid that was more than 20%
higher than that of their competitor, TRW’s approach was selected as the best value
and lowest risk. Award of the contract to TRW was due, in large part, to successful
performance on the software engineering exercise and TRW’s ability to demonstrate a
much more credible, lower risk process under realistic conditions.

The software engineering exercise served the same purpose as an SE! Software Capa-
bility Evaluation (Appendix E). Each bidder’s proposal provided a software develop-
ment plan—the “say what you do” part of an organizational process. The exercise \
demonstrated that the proposing organization could perform as advertised.

D.3 PROJECT ORGANIZATION

In preparing for the CCPDS-R project, TRW placed a strong emphasis on evolving the
right team. The CD phase team represented the essence of the architecture team
(Section 11.2), which is responsible for an efficient engineering stage. This team had
the following primary responsibilities:

® Analyze and specify the project requirements

 Define and develop the top-level architecture

Plan the FSD phase software development activities

» Configure the process and development environment

Establish trust and win-win relationships among the stakeholders .

D.4 COMMON SUBSYSTEM PRODUCT OVERVIEW 305

The CD phase team was small and expert, with little, if any, organizational hier-
archy. One of its exceptional attributes was its complement of talent. All necessary
skills were covered, and there was very little competition among personnel.

The FSD phase team was formed by transitioning many of the CD phase team
members into leadership positions and expanding the number of personnel to the nec-
essary levels for full-scale development. Figure D-2 illustrates the software organiza-
tion evolution and FSD software responsibilities.

The organizational structure and responsibilities for CCPDS-R were very similar to those
recommended in Figure 11-2. The staffing levels evoived as prescribed in Table 10-2.

D.4 COMMON SUBSYSTEM PRODUCT OVERVIEW

The Common Subsystem software comprised six computer software configuration
items (CSClIs). (CSCI is government jargon for a set of components that is managed,
configured, and documented as a unit and allocated to a single team for develop-
ment.) CSCIs are defined and described in DOD-STD-2167A [DOD, 1988]. The
CSCIs were identified as follows:

1. Network Architecture Services (NAS). This foundation middleware pro-
vided reusable components for network management, interprocess com-
munications, Initialization, reconfiguration, anomaly management, and
instrumentation of software health, performance, and state. This CSCI was
designed to be reused across all three CCPDS-R subsystems.

2. System Services (SSV). This CSCI comprised the software architecture skel-
eton, real-time data distribution, global data types, and the computer sys-
tem operator interface.

3. Display Coordination (DCO). This CSCI comprised user interface control,
display formats, and display population.

4. Test and Simulation (TAS). This CSCI comprised test scenario generation,
test message injection, data recording, and scenario playback.

5. Common Mission Processing (CMP). This CSCI comprised the missile
warning algorithms for radar, nuclear detonation, and satellite early warn-
ing messages.

6. Common Communications (CCO). This CSCI comprised external interfaces
with other systems and message input, output, and protocol management.

Table D-1 summarizes the distinguishing characteristics of each CSCI.

306 CCPDS-R CASE STUDY

Personnel o
o

(=

Common Subsystem Staffing Profile

Schedule

Inception Elaboration Construction
CD phase: Start of FSD: .
20 people 23 people :;%kegg’lgi"g'

3

|I7'|[4 3 |

I 1
| Le | [e] [2]
FSD Project Organization and Responsibilities
Project
Management
Chief Engineer Administration
Software specifications Work breakdown structure
Systems engineering coordination Cost and schedule statusing
Stakeholder interface Quality assurance
i 1
Software Software Software
Engineering Development Test

I~ Software process definition

I Software too! development

I~ Metrics definition and analysis

I Architecture maintenance

L Design walkthroughs

[~ NAS component development

- Demonstration plan and integration
 Technical status assessments

— SSV component development
I~ DCO component development
~ TAS component development
CMP component development
CCO component development
— Component stand-alone testing
Component maintenance

- CSCl specification maintenance

I Build integration testing

— Engineering siring testing

- Formal qualification testing
Configuration baseline controt
Reliability testing

[~ Environment maintenance

I— Test software development

— Requirements verification

T 1

FIGURE D-2. Full-scale development phase project organization

D.4 COMMON SUBSYSTEM PRODUCT OVERVIEW 307

TasLe D-1. CSCI summary
CSCI SIZE (SLOC) COMPLEXITY ASSETS (+) AND CHALLENGES (-}

NAS 20,000 Very high + Experienced, superior team; second-generation
product

- Reusable across subsystems; high performance,
reliability

N\ 160,000 High + Some tool-produced code; stable NAS
primitives

- Numerous global interfaces, types, components

DCO 70,000 Moderate + Flexible display design; tool-produced formats
- Tough performance requirement; continuous
change
TAS 10,000 Low + Simple application; some off-line processing

- Offsite team; limited environment resources

CMP 15,000 Moderate + Domain experience; straightforward processing

- Offsite team,; stringent performance require-
ments; numerous stakeholders involved in
approving algorithm design

CCO 80,000 High + Skilled people; precedent domain experience

- Stringent performance requirements; unstable
external interface

Total 355,000 High Large scale, high performance, high reliability

The Software Architecture Skeleton

The CCPDS-R software process was tailored to exploit Ada and reusable middleware
components in order to construct a distributed architecture rapidly. The NAS CSCI
provided these primitive components and was initially developed on independent
research and development funding before the CCPDS-R contract was awarded. These
components were a first-generation middleware solution that enabled a true compo-
nent-based development approach to distributed architectures. The instantiation of
the NAS generic tasks, processes, sockets, and circuits into a run-time infrastructure
was called a software architecture skeleton (SAS). The software engineering associ-
ated with the Common Subsystem SAS was the focus of the early builds and demon-
strations. This is an excellent example of an architecture-first process.

T

308 CCPDS-R CASE STUDY

The SAS encompasses the declarative view of the solution, including all the top-
level control structures, interfaces, and data types passed across these interfaces. In
the CCPDS-R definition of an architecture, this view included the following:

¢ All Ada main programs

All Ada tasks and task attributes

All sockets (asynchronous task-to-task communications), socket attributes,
and connections to other sockets

Data types for objects passed across sockets

NAS components for initialization, state management of processes and
tasks, interprocess communications, fault handling, health and perfor-
mance monitoring, instrumentation, network management, logging, and
network control

Even though a SAS will compile, it will not really execute many scenarios
(except to come up and idle) unless software is added that reads messages, processes
them, and writes them within application tasks. The purpose of a SAS is to provide
the structure and interface network for integrating components into threads of capa-
bility. There are two important aspects of SAS verification and assessment: compila-
tion and execution. Merely constructing and compiling all the SAS objects together is .
an important and nontrivial assessment that will provide substantial feedback about
the consistency and quality of the SAS. Constructing components and executing stim-
uli and response threads within the SAS provide further feedback about structural
integrity and run-time semantics.

The SAS, then, provides the forum for integration and architecture evolution. It
is important to construct the SAS early and to evolve it into a stable baseline in which
change is managed and measured for feedback about architecture stability. CCPDS-R
installed its first SAS baseline (after three informal iterations) around month 13, just
before the preliminary design review (PDR) milestone; all subsequent change was per-
formed via rigorous configuration control. The SAS underwent numerous changes
after its first baseline. These changes were scrutinized closely as the project pro-
gressed, but the SAS dynamics converged on an acceptable architecture with solid
substantiation early in the life cycle. The SAS was useful in assessing the volatility in
the overall software interfaces and captured the conceptual architecture of the Com-
mon Subsystem.

Figure D-3 provides a perspective of the software architecture stability. The
graphs show that there was significant architectural change over the first 20 months
of the project, after which the architecture remained pretty stable. The large spike in
processes and tasks around month 5 corresponded to an attempt at a much more

D.4 COMMON SUBSYSTEM PRODUCT OVERVIEW 309

~ 200 ~ 500
(7]
o @
& 100 % | 250
o [©
<] = 251
o \PDR PDR 65 IPDR PDR
Months Months
~ 1500 — 500
o
" #ﬂ_ g
ks 1,148 =
% |- 750 N
[o]]
*]
IPDR PDR §
Months Months

FIGURE D-3. Common Subsystem SAS evolution

distributed approach. As this architecture experimentation exposed the design trade-
offs in distribution strategies, the SAS process design was changed back to the original
number of processes, but the SAS task-level design converged on an increased number
of tasks. The basic problems being examined by the architecture team were the trade-
offs in concurrency, operating system process overhead, run-time library tasking over-
head, paging, context switching, and the mix of interprocess, intertask, and internode
message exchange. The complexity of such run-time interactions made modeling and
simulation ineffective. Only the early run-time demonstrations of multiple distribu-
tion configurations allowed the architecture team to achieve the understanding of
technical trade-offs necessary to select an adequate solution. If the change in the dis-
tribution design had occurred very late in the project, the impact could have been
immense. Because sockets and messages were fairly simple to change and corre-
sponded to lower level application interfaces, changes to these numbers continued at
a low level through the critical design review (CDR) milestone.

The freedom to experiment with an architecture proved to be very valuable to
the achievement of an adequate architecture baseline early in the life cycle. This was
enabled primarily by the flexibility of the NAS CSCI.

CCPDS-R was seriously committed to an architecture-first approach. The “architecture” |
description of CCPDS-R was centered on the process view, as described in Chapter 7.
This was due primarily to the stringent run-time performance requirements and the
risks associated with a first-generation distributed architecture.

310 CCPDS-R CASE STUDY

D.5 PROCESS OVERVIEW

CCPDS-R software development followed a standard Department of Defense life
cycle after contract award, with a software requirements review, preliminary design
review, critical design review, and final qualification test. The life cycles of the 12-
month competitive design phase and full-scale development phase are easily mapped
to the phases of the iterative process framework presented in Chapter 5. Figure D-4
illustrates this mapping.

To manage this large software effort, six incremental builds were defined.
Figure D-4 summarizes the build content and overlap, and the individual build met-
rics and microprocess are further described in Section D.5.1. The conclusion of each
build corresponded to a new baseline of the overall Common Subsystem. From a mac-
roprocess view, the initial milestones focused on achieving a baseline architecture. The
PDR baseline required three major architecture iterations, the conclusions of which
coincided with the milestones for the software requirements review (SRR), interim
PDR (IPDR), and PDR:

1. The SRR demonstration: initial feasibility of the foundation components,
and basic use cases of initialization and interprocess communications

2. The IPDR demonstration: the feasibility of the architectural infrastructure
under the riskiest use cases, including the following;:

* A peak data load missile warning scenario of a mass raid from the
Soviet Union

* A peak control load scenario of a system failover and recovery from
the primary thread of processing to a backup thread of processing
with no loss of data

3. The PDR demonstration: adequate achievement of the peak load scenarios
and the other primary use cases within a full-scale architectural infrastruc-
ture, including the other critical-thread components

The CDR demonstration updated the architecture baseline to represent the
equivalent of an alpha test capability for the complete architectural infrastructure and
the critical-thread scenarios. This was a usable system in that it provided a set of com-
plete use cases sufficient for the user to perform a subset of the mission.

D.5 PROCESS OVERVIEW 311

Building > Infra- - > Critical > Noncritical p Completeness:
blocks structure threads threads maturation, tuning

Requirements analysis
Architecture analysis

Architecture synthesis
Critical-thread demonstration

Architecture maintenance

SRR inati .
Domo Applications construction
A i :)
| o ° Architecture maintenance
IPDR Build 1 Applications maintenance
{ Demo ?’Bdn ‘
| 4 Demo
| | A)
|] ! Build 2
I | I Build 3.1 Build3-2 '
| | | A Build 4
. CDR ' A
! ! ! . Demo ' " Build 5
| | ! R : LA
A | . N T
Inception Elaboration Construction
T

T X 1
f Lo Lo
: R fff
—oormae—Mh A A A A A
PDR : . CDR . Lo

Contract SRR |an Fat
Award K ' ,
Months after
contract award: 0 5 9 14 24 ‘ 45

. Primitives and

: Architecture, test
Build 1 scenarios, models

Critical thread aigorithms,
applications, displays

Build 2

. Nongritical thread algorithms,
Build 3 applications, displays

f Communications interfaces,
Build 4 final test scanarios

. Associate contractor
Build 5 interface

FIGURE D-4. OQuerview of the CCPDS-R macroprocess, milestones, and schedule

312 CCPDS-R CASE STUDY

The overall CCPDS-R software process had a well-defined macroprocess similar to the
life-cycle phases described in Figure 5-1. Each major milestone was accompanied by a
major demonstration of capability and typically included contributions from several of
the on-going builds. It would be more accurate to call the design process used on the
project incremental rather than iterative, although, as with any large-scale system, it
was clearly both.

D.5.1 Risk MANAGEMENT: BUILD CONTENT

Planning the content and schedule of the Common Subsystem builds resulted in a use-
ful and accurate representation of the overall risk management plan. The importance
of a sound build plan was well understood by the management team, and it was care-
fully thought out early in the inception phase. The management team set the expecta-
tion for reallocating build content as the life cycle progressed and more-accurate
assessments of complexity, risk, personnel, and engineering trade-offs were achieved.
This evolutionary plan was important, and there were several adjustments in build
content and schedule as early conjecture evolved into objective fact. '

Figure D-§ illustrates the detailed schedule and CSCI content of the Common
Subsystem. The details of its build content are as follows:

e Build 0. This build comprised the foundation components necessary to
build a software architecture skeleton. The intertask/interprocess communi-
cations, generic task and process executives, and common error reporting
components were included. This build was also the conclusion of the
research and development project executed in parallel with the CD (inception)
phase. These NAS components were the cornerstone of the architectural
framework and were built to be reusable across all three CCPDS-R sub-
systems. They represented very complex, high-risk components with stringent
performance, reliability, and reusability demands.

 Build 1. This build was essentially the “architecture.” It included a com-
plete set of instantiated tasks (300), processes (70), interconnections
(1,000), states, and state transitions for the structural solution of the
CCPDS-R software architecture. To achieve a cycling architecture, this
build also added all the NAS components for initialization, state manage-
ment (reconfiguration), and instrumentation. A trivial user interface and
the capability to inject test scenarios into the architecture were added to
support the initial demonstration. Upon completion of build 1, only a few
critical use cases were demonstrable: initializing the architecture, injecting

D.5 PROCESS OVERVIEW 313

Build
CSsCl 0 1 2 3 4 5 Total
NAS 8 8 2 2 20
Ssv 33 25 102 160
DCO 23 27 20 70
TAS 2 3 5 10
CMP 3 6 6 15
CCO 5 31 37 7 80
Totals 8 43 61 173 63 7 355
: iminar ign W h
ksLoc COW: rtical Dodign Walvough
8 l “Buia0 [I TOR: Turnover Review .
APDWACDW A ATOH A Origina) Milestone
43 [Build 1 [] veionmort | SendAloreTest
Arow Acon /A AroR [Devetopment | Stand Algnefsl]
61 . Build 2 I | Tumover for
APDW ACDW‘ A ATOR configuration control
173 | Build 3 |
Arow Acow Arori A Arore
63 [. Build 4 [o D
Arow Acow /\ AToR
7 [Build 5 N
255 . Arow Acow /\ AATOR
SRR AIPDR APDR CDR
0 5 0 8 T2 25 30 a4

JIGURE D-5.

Months After Contract Award

Common Subsystem builds

314 CCPDS-R CASE STUDY

a scenario to drive the data flow through the system, and orchestrating
reconfigurations such as primary thread switchover to backup thread.

e Build 2. This was the first build of mission-critical components and
achieved the initial capability to execute real mission scenarios. The three
primary risks inherent in the mission scenarios were the timeliness of the
display database distribution, the performance (resource consumption and
accuracy) of the missile warning radar algorithms, and the performance of
the user interface for several complex displays. Upon completion of
build 2, several mission-oriented use cases could be executed, including the
worst-case data processing thread and the worst-case control processing
thread (primary-to-backup switchover).

® Build 3. This build contained the largest volume of code, including display
format definitions, global type definitions, and representation specifica-
tions needed for validation of external interface transactions. Although the
code was voluminous, much of it was produced automatically in a cook-
book manner by constructing code generation tools. The remaining
components allocated to build 3 included the external communications
interface protocol handling, the completed user-system interface for the
mission operators, the user-system interface for the computer support
positions, the system services for mission reconfigurations, database resets,
off-line data reduction, and the nuclear detonation algorithms. Although
initially planned as one large build, this increment was later split into two
more manageable releases, builds 3-1 and 3-2.

e Build 4. This build provided the final installment of missile warning algo-
rithms for satellite early warning systems, the final installment of mission
management and mission status displays, and the final installment of exter-
nal communications interface processing.

e Build 5. In the middle of the Common Subsystem schedule, build 5 was
added to coincide with a particular external interface (being built on a sep-
arate contract), the schedule for which had slipped so that it was not going
to be available during its originally planned build (build 4). Consequently,
the external interface was scheduled into an entirely new build.

The build sequence defined on CCPDS-R is a good example of the typical build
sequence recommended in Section 10.4.

D.5 PROCESS OVERVIEW 315

D.5.2 THE INCREMENTAL DESIGN PROCESS

The individual milestones within a build included a preliminary design walkthrough
(PDW), a critical design walkthrough (CDW), and a turnover review (TOR). The
schedules for these milestones were flowed down from, and integrated with, the
higher level project milestones (SRR, IPDR, PDR, and CDR). Figure D-6 provides an
overview of a build’s life cycle and the focus of activities.

Within a build, a well-defined sequence of design walkthroughs took place.
These walkthroughs were informal, detailed, technical peer reviews of intermediate
design products. They were attended by interested reviewers, including other design-
ers, testers, and even stakeholders outside the software organization (customer,. user,
project systems engineering personnel). Attendance was usually kept to a small num-
ber of knowledgeable people, typically 10 to 20. The explicit focus of these reviews
was the important components, the architectural interfaces, and the driving issues—
namely, the 20% of the stuff that deserved scrutiny. Coverage across all requirements
and components was not required.

The design walkthroughs were informal and highly interactive, and there was
plenty of open critique. No dry runs were necessary. Technical issues were noted as
action items and tracked to closure. PDWs and CDWs usually lasted one or two days,
with each of the participating CSCI managers responsible for presenting appropriate
material.

Integrated Integrated Baseline
Structural Performance Turnover
Demonstration Demonstration Assessment
PDW CDW TOR
. Completeness)
Structure Behavior and accuracy Maintenance
—_—> B s —» A
Prototypes and Informal Formal Test and
refinements baseline Enhancements baseline maintenance
Component design and integration Combonent evolution and maintenance

FIGURE D-6. Basic activities sequence for an individual build

316 CCPDS-R CASE STUDY

Preliminary Design Walkthroughs

Initial prototyping and design work was concluded with a PDW and a basic capability
demonstration. The walkthrough focused on the structural attributes of the compo-
nents within the build. The basic agenda was tailored for each build, but it generally
included the following topics for each CSCI:

* Overview: CSCI overview, interfaces, components, and metrics

e Components: walkthrough of each major component, showing its source
code interface, allocated system requirements specification (SRS) require-
ments, current metrics, operational concept for key usage scenarios, stand-
alone test plan, and erroneous conditions and responses

¢ Demonstration: focused on exercising the control interfaces across the
components within the integrated architecture

Critical Design Walkthroughs

A build’s design work was concluded with a CDW and a capability demonstration
that exposed the key performance parameters of components within the build. While
the PDW focused on the declarative view of the design, the CDW focused on the com-
pleteness of the components and the behavioral perspective of operating within the
allocated performance requirements. The basic agenda was tailored for each build,
but it generally included the following topics for each CSCI:

® CSCI overview: interfaces, components, and metrics; summary of changes
since PDW,; disposition of all PDW action items; build integration test
scenarios

e Components: walkthrough of each major component, showing its source
code interface, allocated SRS requirements, current metrics, operational
concept for key usage scenarios, stand-alone test plan, and erroneous con-
ditions and responses

* Demonstration: focused on exercising the critical performance threads

Code Walkthroughs

Detailed code walkthroughs were also used to disseminate projectwide expertise and
ensure the development of self-documenting source code. Some authors generated
source code that demonstrated excellent levels of readability worthy of being assessed
as self-documenting. The CSCI managers and the software chief engineer coordinated
the need for code walkthroughs and their allocation among various authors to meet
the following objectives:

D.5 PROCESS OVERVIEW 317

¢ Better dissemination of self-documenting source code style

e Identification of coding issues not easily caught by compilers and source
code analysis tools

® Object naming, coding style, and commenting style: Does it promote
readability?

* Unnecessarily complex objects or methods: Are there simpler
approaches?

e Reuse: Is custom software being built where reusable components
exist?

* Potential performance issues: Are there potentially inefficient imple-
mentations?

* Reduction of the amount of source code needed for review in the larger
design walkthroughs

e Exposure of inexperienced personnel to the products of experts and vice
versa

The typical code review involved a single reviewer limited to two hours of
detailed analysis using on-line source code browsing tools. The result of the review
was confined to a one-page description of relevant comments to the author, the CSCI
manager, and the software chief engineer. The software chief engineer was responsible
for noting global trends, identifying improvements needed in code analysis tools, and
raising lessons learned to the appropriate walkthrough or other technical exchange
forum.

Turnover Reviews

Turnover reviews were not really reviews; they were typically a one-month activity
during which components were completed with stand-alone testing and turned over
for configuration control, build integration testing, and engineering string testing.

The checkpoints used on CCPDS-R for the incremental design process are good exam-
ples of the minor milestones described in Section 9.2. The mixture of walkthroughs and |
inspections was focused on the 20% of components that had a potential high return l
on human resource investment. In general, the real value of design walkthroughs and |
inspections was communications among project subteams and methodical coordina-
tion of processes. Very few serious quality flaws were uncovered in these meetings (as
opposed to the demonstration activities), but the technical interchange was well
mechanized by these checkpoints. '

318 CCPDS-R CASE STUDY

D.5.3 CoOMPONENT EVOLUTION

CCPDS-R used Ada as a uniform life-cycle format for design evolution. This unifor-
mity allowed for software development progress metrics to be extracted directly from
the evolving source files. The use of Ada as a design language was based on a special
design package containing objects that had names prefixed by the string TBD (to be
defined). This package of TBD objects included predefined TBD types, TBD con-
stants, TBD values, and a TBD procedure for depicting source lines of code associated
with comments that together would act as placeholders for as-yet undefined code seg-
ments. In particular, there was the following procedure declaration:

TBD_Statements (Number_Of_Statements: In Integer);

This declaration required that a parameter depict the number of statements esti-
mated for a given code segment described with proper comments. Source lines with
calls to a TBD object were counted as ADL (Ada design language) lines; source lines
with no TBD references were counted as Ada source lines. Table D-2 provides an
example of a typical component evolution.

The basic component evolution would look like this:

e At creation, only the interface (the specification part) would be defined
with Ada source lines and corresponding comments. The estimated SLOC
count for the component would typically be specified by a single
TBD_Statements line. .

e At PDW, the substructure of the component would be fleshed out along
with most component declarations and estimates of the subordinate pro-

gram units using multiple calls to TBD_Statements. At this time, there
would generally be about 30% of the SLOC in Ada and 70% in ADL.

* By CDW, most of the program unit interfaces and declarations would be
fully fleshed out in Ada, with some detailed processing still using
TBD_Statements as placeholders. In general, CDW-level components
would be about 70% Ada and 30% ADL. A guideline also stated that by
CDW, there would be no calls to TBD_Statements with values greater
than 25.

* By turnover, the string TBD would not appear anywhere in the source files.
This would correspond to a complete implementation.

D.5 PROCESS OVERVIEW 319

TABLE D-2. A typical component evolution from creation through turnover
VIEW PROGRAM UNIT TYPE Ada ADL TOTAL %
Creation Total péckage 6 122 128 5
view Inm_Erm_Procedures Package 2 122 124 2
PDW Total package 47 101 148 32
view Inm_Erm_Procedures Package 24 19 43 56
All_Node_Connections Procedure 3 19 22 14
Create_Inm_Erm Circuits Procedure 4 12 33
On_Node_Connections Procedure 3 7 10 30
Perform_Reconfiguration Procedure 6 8 75
Per form_Shutdown Procedure 4 3 7 57
Process_Error_Messages Procedure 3 43 46 7
CDW Total package 87 48 135 65
view Inm_Erm_Procedures Package 30 11 41 73
All_Node_Connections Procedure 16 0 16 100
Create_Inm_Erm_Circuits Procedure 8 4 12 67
On_Node_Connections Procedure 9 0 100
pPerform_Reconfiguration Procedure 2 75
pPerform_Shutdown Procedure 1 7 86
Process_Error_Messages Procedure 12 30 42 29
Turnover Total package 137 0 137 100
view Inm_Erm_Procedures Package 42 0 42 100
All_Node_Connections Procedure 16 0 16 100
Create_Inm_Erm_Circuits Procedure 12 0 12 100
On_Node_Connections Procedure 9 0 100
Perform_Reconfiguration Procedure 8 0 8 100
Perform_Shutdown Procedure 7 0 7 100
Process_Error_Messages Procedure 43 0 43 100

These guidelines were violated occasionally, but the evolution of most compo-
nents followed this pattern pretty well. There were also detailed style standards that
formed the basis of early code walkthroughs and the requirements for an automated
code auditor that checked for numerous standards violations before turnover. ‘

320 CCPDS-R CASE STUDY

One of the by-products of the use of Ada as a design language for CCPDS-R was
that the evolving source files were always in a uniform representation format from
which the current work accomplished (source lines of Ada) and the current work
pending (TBD_Statements) could be easily extracted. Although the Ada source lines
were not necessarily complete—inasmuch as further design evolution might cause
change—they represented a relatively accurate assessment of work accomplished. The
complete set of design files across the development teams could be processed at any
time to gain insight into development progress. A metrics tool was developed that
scanned Ada source files and compiled statistics on the amount of completed Ada and
TBD_Statements. It produced outputs such as those listed in Table D-3.

This metrics tool and the CCPDS-R coding standards allowed collection of met-
rics by CSCI and by build so that progress could be monitored from several perspec-
tives. The development progress metrics described in Section D.7.1 were derived
monthly from the outputs of this tool and were presented at the various design walk-
throughs by each component designer to display the summary metrics and hierarchy
of the component being discussed.

This metrics tool allowed management to extract some key measures of progress
directly from the evolving source baselines. The software engineers simply adhered to
the software standards in fleshing out their source files and maintaining them in com-
pilable formats. Once a month, all source code was processed by the tools and inte-
grated into various perspectives for communicating progress. The resulting metrics
were useful not only to the managers but also to the engineers for communicating
why they needed more resources or why they needed to reprioritize certain activities.
As described in Chapter 13, acceptance by both manager and practitioner, and extrac-
tion directly from the evolving artifacts, were crucial to the success of this metrics
approach. ’

TaBLE D-3. NAS CSCI metrics summary at month 10

ELEMENTS TOTAL DESIGNED CODED
Top-level components 40 39 33
Lower level components 13 13 10
Total program units 494 484 459
Source lines: 18,494 ADL: 1,858 Ada: 16,636

10% TBD 90% complete

D.5 PROCESS OVERVIEW 321

D.5.4 THE INCREMENTAL TEST PROCESS

Although the overall test requirements were extremely complex, the CCPDS-R build
structure accommodated a manageable and straightforward test program. Substantial
informal testing occurred as a natural by-product of the early architecture demonstra-
tions and the requirement that all components be maintained in a compilable format.

Because compilable Ada was used as the primary format throughout the life
cycle, most conventional integration issues—such as data type consistency, program
unit obsolescence, and program unit dependencies—were caught and resolved in
compilation.

The informal testing inherent in the demonstration activities was far from suffi-
cient to verify that requirements were satisfied and reliability expectations were met
for this mission-critical, nationally important system. A highly rigorous test sequence
was devised with five different test activities: stand-alone test, build integration test,
reliability test, engineering string test, and final qualification test.

1. Stand-Alone Test (SAT). The development teams were responsible for stand-
alone testing of components before delivery into a formal, configuration-
controlled test baseline used for all other test activities. SAT typically tested
a single component (which may comprise several lower level components)
in a stand-alone environment. This level of testing corresponds to com-
pleteness and boundary condition tests to the extent possible in a stand-
alone context.

2. Build Integration Test (BIT). This was mostly a smoke test to ensure that
previously demonstrated capabilities still operated as expected. A BIT
sequence is the primary quality assessment vehicle for closing out a turn-
over review. A given build turnover may take days or weeks, depending on
its size or the percentage of new componentry. The purpose of BIT is not to
verify requirements but to establish a stable, reliable baseline. It is very
informal, dynamic, and focused on exposing errors and inconsistencies.
BITs validate the following:

® Previously demonstrated threads can be repeated successfully.
¢ Previously defined deficiencies have been resolved.
e Interfaces across components are completely tested.

® The baseline is stable enough for efficient requirements verification
testing.

3. Reliability Test. One of the outputs of the BIT process and a turnover
review was a stable test baseline that was subjected to extensive after-hours
stress testing for long periods of time under randomized but realistic test
scenarios. This sort of testing was designed to help uncover potentially

322 CCPDS-R CASE STUDY

insipid, transient errors of major design consequence. Reliability testing
logged as much test time as possible while resources were otherwise mostly
idle (on nights and weekends).

4. Engineering String Test (EST). These tests focused on verifying specific sub-
sets of requirements across multiple CSCIs through demonstration and test
of use case realizations (called capability threads).

5. Final Qualification Test (FQT). These tests were equivalent to ESTs except
that they represented the set of requirements that could not be verified
unless the whole system was present. For example, a 50% reserve capacity
requirement could not be verified until FQT, when the whole system was
operational.

The overall subsystem build plan was driven by allocating all reliability-critical
components (components that could cause type 0 errors) to build 0, 1, or 2.
Figure D-7 illustrates the overall flow of test activities and test baselines supporting
this build plan. The sequence of baselines allowed maximum time for the early-build,
critical-thread components to mature. These components were also subjected to much
more extensive testing, increasing trustworthiness in their readiness for operational
use. Sufficient test time was logged to derive an empirical software mean time between

Dev/SAT: Development and Stand-Alone Test
Component-level testing

Build 0 Build 0 BIT: Build Integration Test
Dev/SAT Baseline \ Informal smoke testing in the integrated

architecture

Build 1 Build 1 EST: Engineering String Test

Dev/SAT Baseline Formal scenario test demonstrating

requirements compliance

Build 0 Build 2 Build 2

BIT Dev/SAT Baseline

Build 1 Build 3 Build 3
BIT Dev/SAT Baseline }\
Build 2 Build 4 Buiid 4
BIT Dev/SAT Baseline \

Build 2 Build 3 Build 5 Build. 5
Each subsequent build baseline EST BIT Dev/SAT Baseline
provides a controlled configuration for:
Build 3 Build 4
EST BIT

* Maintenance of stand-alone tested components
« Testing of additional capabilities

* Regression testing of previous capabilities

* After-hours reliability stress testing

Build 4
EST

FIGURE D-7. Incremental baseline evolution and test activity flow

D.5 PROCESS OVERVIEW 323

failures (MTBF) that was demonstrable and acceptable to the customer. For example,
early builds of the Common Subsystem contained all the components for processing
thread state management, fault isolation, fault recovery, operating system interfaces,
and real-time data distribution. Roughly 90% of the components that could expose
the system to critical failures, causing mission degradation, were encapsulated.

The CCPDS-R build sequence and test program are good examples of confronting the
most important risks first. A stable architecture was also achieved early in the life cycle
so that substantial reliability testing could be performed. This strategy allowed useful
maturity metrics, such as those presented in Section 13.3, to be established to demon-
strate a realistic software MTBF to the customer.

D.5.5 DOD-STD-2167A ARTIFACTS

CCPDS-R software development was required to comply with DOD-STD-2167A,
which is now obsolete. Without going into detail about the documentation required,
this section summarizes the basic documentation approach used on the project. Data
item descriptions in 2167A specified document format and content. Substantial tailor-
ing was allowed to match the development approach and to accommodate the use of
Ada both as a design language and the implementation language. Prlmary tailoring
included the following:

1. Use of the evolving Ada source files as the single homogeneous life-cycle
design format and evolution of these files in a self-documenting manner.
This technique exploited Ada’s readability features and avoided the extra
effort involved in preparing separate, detailed design descriptions that
inevitably diverge from the implementation.

2. Organization of the tést sequences and deliverable documents around the
build content driven by subsets of use cases (referred to as engineering
strings and scenarios) rather than by CSCIL This string-based testing
spanned components in multiple CSCIs. It was organized by build and
mechanized via a software test plan, software test procedure, and software
test report documentation sequence. These document sequences were pro-
vided for each BIT (one for each build), each EST (for builds 2, 3, and 4),
and FQT (one final all-encompassing test sequence). Each test sequence
involved components from several (incomplete) CSCls because integration
was proceeding continuously.

3. Building of separate unit test documentation as self-documented, repeat-
able software. This was treated like other operational source code so that it

324 CCPDS-R CASE STUDY

was maintained homogeneously and up-to-date for automated regression
testing. The same concept was used for the BIT and EST scenario testing:
Rather than develop test procedure documents, the CCPDS-R process gen-
erated self-documenting test scenarios that were software programs in their
own right. Because they were subjected to change management just like
other software, they were always maintained up-to-date for automated
regression testing.

Table D-4 summarizes the software documentation that resulted from 2167A
tailoring and the corresponding artifacts recommended in Chapter 6. The 2167A
approach was tremendously inefficient, even with tailoring (although it was far more
efficient than the approach used for most conventional projects). It was clear from the
outset that the documentation burden was tremendous, but straying from convention
was considered too risky. Table D-4 focuses only on software documentation, exclud-
ing documents that supported the systems engineering concerns (safety, human fac-
tors engineering, reliability) and the operational community (cutover plan, logistical
support, training). Those documents also required input and support from the soft-
ware organization, even though the primary responsibility for them resided elsewhere
within the CCPDS-R project.

One of the key artifacts in Table D-4 is the software development file (SDF). For
CCPDS-R, this was an organized directory of on-line information, rather than a docu-
ment, most of which was maintained as compilable, self-documenting Ada source code.
The SDF had several sections of content that evolved as described in Table D-5.

CCPDS-R evolved an approach to artifacts that is very similar to the approach presented
in Chapter 6. Initially, most artifacts were paper-based. After the customer showed far
more interest in the demonstration artifacts and the configuration baselines of the
product components and test components, the demand for paper documents sub-
sided—not enough, but somewhat. One big improvement was the transition to a
completely electronic SDF, in which the design and coding standards promoted self-
documenting artifacts. Separate artifacts to document the design and code were no
longer necessary. One long-standing issue for CCPDS-R was the need for a higher level,
graphical design description. This was provided in the system design document and in
i software top-level design documents using ad hoc text and graphics to represent the
design. These representations were ambiguous, frequently out of date, and difficult to
| understand. The use of Unified Modeling Language notation, an architecture
' approach such as that presented in Chapter 7, visual modeling tools, and support for
round-trip engineering would have improved the design representation approach con-
siderably and would have eliminated a lot of wasted effort.

D.5 PROCESS OVERVIEW 325

TaBLE D-4. CCPDS-R software artifacts

CONTRACT-DELIVERABLE ARTIFACT COUNTERPART
NO. DOCUMENT {CHAPTER 6)
1 System specification Vision statement
6 Software requirements specification End-item release specifications
(SRS) 1 for each CSCI
System design document {(SDD) Architecture description
6 Software top-level design document UML design models
(STLDD) 1 for each CSCI
42 Software development file (SDF) Implementation set artifacts
1 per component
6 Software product specification (SPS) Final implementation set artifacts
Deployment set artifacts
1 for each CSCI
4 Demonstration plan (not required by Major milestone release specifications
2167A) 1 for each major demonstration
4 Demonstration report (not required by Major milestone release description
2167A) 1 for each major demonstration
9 Test data file (TDF) Release descriptions
1 for each build’s BIT, EST, and FQT test
sequences
4 Software test plan (STP) Release specifications
Design set artifacts, test models
4 Software test procedure (STPR) Implementation set artifacts
4 Software test report (STR) Release descriptions
1 Software development plan (SDP) Software development plan
1 Software standards and procedures Software development plan
manual (SSPM)
48 Project management review (PMR) Status assessments
3 Software user manual (SUM) User manual

1 for each operational role

326 CCPDS-R CASE STUDY

TaBLE D-5. Software development file evolution

SECTION PDW STATUS CDW STATUS TOR STATUS
Requirements Summarized Allocated Traced
Component overview Complete Complete Complete
Top-level program unit Ada Ada Ada baselines
Subordinate units Ada/ADL Ada/ADL Ada baselines
SAT plan Draft Complete Complete
SAT test code Some demonstration Draft Ada baselines
SAT test results Some demonstration Some demonstration Ada baselines
SCO log None None Initial
Metrics Initial metrics Updated metrics Updated metrics
Code auditor results None Initial Complete
Notes/waivers None None As needed

D.6 DEMONSTRATION-BASED ASSESSMENT

Conventional design reviews define standards for review topics that result in tremen-
dously broad reviews, only a small portion of which is really important or understood
by a diverse audience. For example, reviewing all requirements in equal detail is ineffi-
cient and unproductive. All requirements are not created equal; some are critical to
design evolution of the architecture, while others are critical only to a few compo-
nents. The CCPDS-R software review process improved the efficiency of design evolu-
tion, review, and stakeholder concurrence in two ways: by allocating the technical
breadth and depth of review to smaller scale design walkthroughs, and by focusing the
major milestone reviews on the important design trade-offs. Moreover, focusing the
design review on an executable demonstration provided a more understandable and
concrete review vehicle for a diverse set of stakeholders.

Many conventional projects built demonstrations or benchmarks of stand-alone
design issues (for example, a user-system interface mockup or a critical algorithm).
However, the “design baseline” was usually represented on paper in design review
presentations and design documents. Although it was easy for stakeholders to accept
these artifacts as valid, they were ambiguous and not amenable to straightforward
change management. Given the typical design review attitude that the design was
“innocent until proven guilty,” these representational formats made it easy to put up a
credible facade and assert that the design was not guilty. In contrast, the CCPDS-R
software design review process was demonstration-based, requiring tangible evidence
that the architecture and design progress were leading to an acceptable quality prod-
uct. The design review demonstrations provided such evidence by demonstrating an
executable version of the current architecture under the critical scenarios of usage.

D.6 DEMONSTRATION-BASED ASSESSMENT 327

Numerous qualities of the evolving architecture baseline should be made visible
at any given design review. At a minimum, these demonstrations provide acute insight
into the integrity of the architecture and its subordinate components, the run-time
performance risks, and the understanding of the system’s operational concept and key
use cases.

On the CCPDS-R project, lessons learned from informal design walkthroughs
(and their informal demonstrations) were tracked via action items. Major milestone
design reviews provided both a briefing and a demonstration. The briefing summa-
rized the overall design and the important results of the design walkthroughs, and
presented an overview of the demonstration goals, scenarios, and expectations. The
demonstration at the design review was a culmination of the real design review pro-
cess conducted by the software development team. The sequence of demonstration
activities included the development of a plan, definition of a set of evaluation criteria,
integration of components into an executable capability, and generation of test driv-
ers, scenarios, and throw-away components. Although the demonstration plans were
not elaborate (typically 15 to 35 pages), they captured the purpose of the demonstra-
tion, the actual evaluation criteria for assessing the results, the scenarios of execution,
and the overall hardware and software configuration that would be demonstrated.

There is an interesting difference in the evolving insight into run-time perfor-
mance when using a demonstration-based approach for design review. While the con-
ventional approach almost always started with an optimistic assessment and then got
worse, a modern demonstration-based approach frequently starts with a pessimistic
assessment and then gets better.

The following key lessons were learned in the CCPDS-R demonstration activities:

e Early construction of test scenarios has a high ROI. The early investment in
building some of the critical test scenarios served two invaluable purposes.
First, it forced a certain important subset of the requirements to be “imple-
mented” in very tangible form. These test scenarios caused several interac-
tions and negotiations with the users that increased the understanding of
requirements early in the life cycle. Second, these implementation activities
got the test team involved early in building an environment for demonstra-
tion and testing that was highly mature by the time the project reached
full-scale testing.

* Demonstration planning and execution expose the important risks. Nego-
tiating the content of each demonstration and the associated evaluation
criteria served to focus the architecture team, management team, and
external stakeholders on the critical priorities of the early requirements and
architecture activities. Rather than deal with the full elaboration and trace-
ability of all 2,000 requirements, the team focused on understanding the 20
or so design drivers. '

328 CCPDS-R CASE STUDY

* Demonstration infrastructure, instrumentation, and scaffolding have a
high ROL At the outset of the project, there was a concern that these dem-
onstrations would require a significant investment in throw-away compo-
nents that were needed only for the purpose of the demonstration. In most
cases, very little of this work ended up being thrown away. Most efforts
resulted in components that were reused in later stand-alone tests, build
integration tests, or engineering string tests. As one benchmark of the level
of throw-away components, the IPDR demonstration amounted to 72,000
SLOC. Of this, only about 2,000 SLOC (smart stubs and dummy mes-
sages) were thrown away.

* Demonstration activities expose the crucial design trade-offs. The integra-
tion of the demonstration provided timely feedback on the important
design attributes and the level of design maturity. The demonstration
efforts typically involved 10 to 12 designers integrating components into
the architecture. They ran into numerous obstacles, built numerous
workarounds, and performed several component redesigns and a few
architecture redesigns. Most of this work occurred over the period of a
month, much of it late at night. What was really going on in these all-night
integration-debug-rebuild-redesign efforts was very detailed, very effective
design review. I coordinated these activities, gaining a first-hand under-
standing of what the architectural strengths and weaknesses were, which
components were mature, which components were fragile, and what the
priorities must be in post-demonstration improvements.

* Early performance issues drive early architecture improvements. The first
two demonstrations contained extensive functionality and demonstrated
run-time performance that was significantly less than required. The dem-
onstration evaluation criteria were close to the end-item performance
requirements. In retrospect, this was counterproductive because it led to an
early expectation on the part of contract monitors that demonstration eval-
uation criteria and requirements would be too closely aligned. Although
the customer and TRW management were initially quite anxious about this
situation, the straightforward resolutions and substantial progress made in
subsequent demonstrations ameliorated their concerns.

The implementation of demonstrations as the predominant intermediate product of
an organic development effort is well understood. Section 9.1 describes demonstra-
tions with little discussion of multiple-stakeholder coordination. In the context of mul-
tiple stakeholders in a contractual situation, however, the implementation of a
demonstration-based assessment can be subtly difficult. The next few sections provide
detailed perspectives to illuminate some of the CCPDS-R experience.

D.6 DEMONSTRATION-BASED ASSESSMENT 329

The IPDR Demonstration

The interim PDR major milestone demonstration of the Common Subsystem had
three critical objectives:

1. Tangible assessment of the software architecture design integrity through
construction of a prototype SAS

2. Tangible assessment of the critical requirements understanding through
construction of the worst-case missile warning scenario :

3. Exposure of the architectural risks associated with the peak missile warn-
ing scenario (the worst-case data processing performance corresponding to
a mass missile raid from the Soviet Union) and the fault detection and
recovery scenario (the worst-case control processing associated with a fail-
ure in the primary processing thread and a real-time switchover to a hot
backup processing thread)

The CCPDS-R software culture is evident in these objectives. The demonstra-
tions were not set up to be cakewalks that would impress the customer with perfect
results and minimal open issues. (Neither were the walkthroughs, project manage-
ment reviews, nor major milestones.) These demonstrations were always honest engi-
neering activities with ambitious goals, open discussion of trade-offs, and a show-me
approach to substantiating assertions about progress and quality. The results of a
demonstration were apt to change requirements, plans, and designs equally; all three
of these dimensions evolved during the life cycle.

Demonstration activities generally spanned a six-month period, with the first
three months focused on planning. Only a few people across the stakeholder teams
participated in specifying the formal evaluation criteria. Figure D-8 summarizes the
schedule for the IPDR demonstration; it includes details of the intense integration
period in the two months before the demonstration.

The first three months of planning, which encompassed a draft plan, govern-
ment review and comment, and final plan production, could have been achieved in
one week with a collocated team of all interested stakeholders. The review sequence
that occurred was a requirement of the contract. Because this was the first time that
TRW or the customer had used a demonstration-based approach, both were unsure of
the best process and agreed on an overly conservative approach. This demonstration
was the first attempt at constructing a full-scale SAS. Consequently, this was the first
(and worst-case) major integration effort for the Common Subsystem. The subse-
quent demonstrations tended to have shorter, but equally intense, integration activi-
ties lasting 4 or 5 weeks.

330 CCPDS-R CASE STUDY

Months After Contract Award
Demonstration Milestone 5 6 7 8 9 10 11 12

Preliminary demonstration plan

Government feedback on plan H
Final demonstration plan H

Demonstration preparation

Re-demonstration and report

Weeks After Activity Initiation

NAS, demo testbed installation
Scenario/message definition
SAS construction

Demo driver, stub construction
Demonstration integration

Dry run, demonstration tuning
Demonstration

FIGURE D-8. CCPDS-R first demonstration activities and schedule

IPDR Demonstration Scope

The basic scope of the IPDR demonstration was defined in the CCPDS-R statement of
work:

The contractor shall demonstrate the following capabilities at the NORAD
Demo 1: system services, system initialization, system failover and recovery,
system reconfiguration, test message infection, and data logging.

These capabilities were fairly well understood by the customer and TRW. They
represented the key components and use cases necessary to meet the objectives.

1. System services were the NAS software components of general utility to be
reused across all three subsystems. These components were the foundation
of the architectural infrastructure. They included the interprocess commu-
nications services, generic applications control (generic task and process
executives), NAS utilities (list routines, name services, string services), and
common error reporting and monitoring services. These components were
all building blocks needed to demonstrate any executable thread.

D.6 DEMONSTRATION-BASED ASSESSMENT

331

. Data logging (SSV CSCI) was a capability needed to instrument some of
the results of the demonstration and was a performance concern.

. Test message injection (TAS CSCI) components permitted messages to be
injected into any object in the system so that there was a general test driver
capability.

. System Iinitialization was the fundamental use case (called phase 1 in
Figure D-8) that would illustrate the existence of a consistent software
architecture skeleton and error-free operation of a substantial set of the
system services. One of the perceived performance risks was the require-
ment to initialize a large distributed software architecture, including both
custom and commercial components, within a given time.

. The second scenario (phase 2) was to inject the peak message traffic load
into the architecture and cause all the internal message traffic to cascade
through the system in a realistic way. Executing this scenario required all
the software objects to have smart, but simple, message processing stubs to
be “modeled.” These simple Ada programs completed the thread with
dummy message traffic by reading and writing messages as expected under
a peak load. Prototype message processing software was constructed to
accept incoming messages and forward them through the strings of compo-
nents that made up the SAS. This included all significant expected traffic,
from receipt of external sensor messages through missile warning display
updates, across both primary and backup threads. It also included all over-
head traffic associated with status monitoring, error reporting, perfor-
mance monitoring, and data logging.

. System failover and recovery (phase 3) was one of the riskiest scenarios,
because it required a very sophisticated set of state management and state
transition control interfaces to be executed across a logical network of
hundreds of software objects. The basic operation of this use case was to
inject a simulated fault into a primary thread operational object to exercise
the following sequence of events: fault detection, fault notification, orches-
trated state transition from primary thread to backup thread, shutdown of
primary thread. All these network state transitions needed to occur with-
out interruption of service to the missile warning operators. Reconfigura-
tion, in this specific case, meant recovering from a degraded mode.
Following the system failover defined above, a new backup thread would
be initialized so that there was minimum exposure to single-point failures.
In the delivered system, repair immediately followed failover.

332 CCPDS-R CASE STUDY

IPDR Demonstration Evaluation Criteria

The essential IPDR evaluation criteria were derived from the requirements, the risk
assessments, and the evolving design trade-offs:

e All phases:
¢ No critical errors shall occur.

* Phase 1:
¢ The system shall initialize itself in less than 10 minutes.
* The system shall be initialized from a single terminal.

¢ After initialization is complete, the number of processes, tasks, and
sockets shall match exactly the expected numbers in the then-current
SAS baseline.

¢ Phase 2:

* Averaged over the worst-case minute of the 20-minute peak scenario,
the total processor utilization for each node shall be less than 30%.

* There shall be no error reports of duplicate or lost messages.

e All displayed data shall be received within 1 second from its injection
time.

¢ The message injection process shall maintain an injection rate match-
ing the intended scenario rate.

® The data logs shall show no unexpected state transitions or error
reports and shall log all injected messages.

¢ Phase 3:
® The operator shall be capable of injecting a fault into any object.

® An error report shall be received within 2 seconds of the injection of a
fault.

® The switchover from the primary to backup thread shall be completed
within 2 seconds of the fault injection with no loss of data.

® The shutdown of the failed primary thread and reinitialization as a
new backup thread shall be completed in less than § minutes from
failure.

* The data logs shall match the expected state transitions with no fatal
errors reported other than the injected fault.

D.6 DEMONSTRATION-BASED ASSESSMENT 333

There were 23 other evaluation criteria for less important visibility into detailed
capabilities and intermediate results. They are not listed because they require much
more explanation.

IPDR Demonstration Results

The results of the IPDR demonstration were fruitful. Of the 37 evaluation criteria, 31
were considered satisfactory. Six criteria were not met, including three of the essential
criteria just discussed. These were considered very serious issues that required imme-
diate redesign and re-demonstration. Of most concern was excessive processor utili-
zation during the peak load scenario. While the threshold was 30%, actual utilization
was 54%. This corresponded to the essential overhead of the architectural infrastruc-
ture, operating system, and networking software. Because this was always a perceived
risk of the CCPDS-R reusable middleware design, it received extensive attention. Five
distinct action items for performance analysis were created, as well as an action item
to demonstrate the performance improvement at the next project management review
after the five action items were resolved.
Greatly simplified, the five action items were as follows:

1. Update the scenario. The actual test scenario used as the peak load was in
fact about 33% worse than the real peak load. The internal message traffic
threads were worse than the true worst case (for example, each message
caused an “alarm” that resulted in redundant and unnecessary message
traffic). The IPDR demonstration forced TRW, the customer, and the user
to converge on a better understanding of the real worst-case mission sce-
nario in tangible and objective terms. It also forced the architecture team to
understand better the message traffic patterns and the optimization trade-
offs. The return on investment realized from this activity was never quanti-
fied, but it was certainly enormous.

2. Tune the interprocess communications (IPC) buffering parameters. The
NAS components had many options for optimizing performance. Even
though numerous local optimizations were made over the final month of
integration activities, there was a definite need for a more global analysis to
take advantage of lessons learned in exploiting the patterns of message
traffic.

3. Enhance network transactions. The node-to-node message traffic was an
obvious bottleneck because the current version of the operating system
(DEC VMS 4.7) did not exploit the symmetric multiprocessing capability
of the VAX processors. The pending upgrade to VMS 5.0 would provide a
substantial increase to this component of the overall performance.

334 CCPDS-R CASE STUDY

4. Improve performance of the I[IPC component. An obvious bottleneck in the
NAS interprocess communications component had an impact on one of the
performance optimization features. The demonstration team identified this
as a design flaw that needed resolution. (A prototype solution was already
n progress.)

5. Improve reliability in the IPC component. The IPDR demonstration
exposed another serious design flaw: Erroneous behavior could occur
under a very intense burst of messages. The overly stressful scenario made
this flaw obvious. In a system with the stringent reliability requirements of
CCPDS-R, it had to be fixed, even though it might never occur in opera-
tion. Although fixing this sort of problem was mildly painful at the time, it
could have caused malignant breakage and immense scrap and rework if
the flaw had gone undetected until late in the project.

The five action items accurately represented the critical issues that were still
unresolved at the time of the demonstration. There was tremendous anxiety on the
part of TRW management and the customer; both had expected the demonstration to
conclude with no open issues. Nevertheless, both parties were pleased with the dem-
onstration process and the unprecedented insight they had achieved into the true
design progress, design trade-offs, requirements understanding, and risk assessment.
The overall anxiety of the stakeholders was significantly relieved after the closure of
the action items and the re-demonstration that occurred about one month after the
IPDR demonstration. While the original objective of 30% processor utilization still
had not been achieved, the team had demonstrated the flexibility of the architecture
and the opportunities for optimization, and succeeded in reducing the overall utilization
from 54% to 35%. This positive trend was sufficient for everyone to feel comfortable
that the performance requirement would ultimately be met through straightforward
engineering optimizations and operating system upgrades.

These were the visible and formal results of the IPDR demonstration. As the
responsible manager for the process, the architecture, and this demonstration, I also
observed many intangible results. Over a period of 8 weeks of late-night integration
and debug sessions—during which priorities were coordinated, design issues were
resolved, workarounds were brainstormed, stakeholders were placated with on-going
status reports, and the engineering teams were motivated toward an ambitious objec-
tive—many lessons were learned:

1. Very effective design review was occurring throughout the period. The
demonstration was the result of the engineering team’s review, presented to
the stakeholders as tangible evidence of progress. Although we ended up
with only five open issues, SO or more design issues had been opened,
resolved, and closed during the 8-week integration activity. This early reso-
lution of defects—in the requirements specification, the process, the tools,

D.6 DEMONSTRATION-BASED ASSESSMENT 335

and the design—had undocumented but extensive return on investment by
avoiding a tremendous amount of late downstream breakage that could
have occurred had we not resolved these issues in this early demonstration.

2. Through day-to-day participation in this activity, I gained detailed insight
into where the design was weak, where it was robust, and why. For exam-
ple, when we uncovered issues in some components, the responsible
designer delivered a resolution within hours. In other components, there
was recurring resistance and resolutions frequently took days. By the time
the demonstration activity concluded, I knew very well where change was
easy (usually indicating well-designed components) and where it was diffi-
cult (for numerous reasons). These lessons helped in structuring the risk
profile for future planning, personnel allocation, and test priorities.

3. The demonstration served as a strong team-building exercise in which
there was a very tangible goal and the engineers were working in the forum
they preferred: getting stuff to work.

4. The detailed technical understanding and objective discussions of design
trade-offs proved invaluable to developing a trustworthy relationship with
all stakeholders, including the customer, the user, and TRW management.
We were armed with facts and figures, not subjective speculation.

Government Response to the IPDR Demonstration

The formal IPDR demonstration represented a major paradigm shift from conven-
tional design reviews. Consequently, there was a fair amount of tension and anxiety
between TRW and the Air Force in converging on detailed evaluation criteria for the
demonstration. The following paragraphs, with quotations presented in italics, were
extracted verbatim from the final plan TRW submitted. This is a good summary of
some of the concerns likely to show up when an organization takes on this process for
the first time. It also provides insight into the spirit of the demonstration.

After careful evaluation of the Government’s Preliminary Demo 1 Plan
comments, the following observations summarize this submittal of the
Demo 1 Plan and the modifications that have been made from the previous
version:

1. This submittal has eliminated all requirements references to avoid making
any allusion to an intent of satisfying, proving, or demonstrating any
requirements. These requirements verification activities are performed by
the test organization in a very rigorous and traceable fashion. The demon-
stration activity is intended to be an engineering-intensive activity, stream-
lined through minimal documentation, to provide early insight into the

R |

336

CCPDS-R CASE STUDY

design feasibility and progress. TRW intends to maximize the usefulness of
the demonstration as an engineering activity and to avoid turning it into a
less useful documentation-intensive effort.

Several government comments requested further details on requirements,
designs, etc. This information is not necessary in the Demo Plan. It is
redundant with other documents (SRS, SDD, design walkthrough pack-
ages) or it is provided in the informal test procedures delivered 2 weeks
prior to the demonstration. Providing more information in a single docu-
ment (and in every document) may make the reviewer’s job easier but it
would also be excessive, more time-consuming, and counterproductive to
produce, thereby reducing the technical content of the engineering product
being reviewed.

. In light of the government’s concern over the relationship of the demon-

stration to the requirements, the evaluation criteria provided in this plan
should be carefully scrutinized. We feel that the evaluation criteria are
explicit, observable, and insightful with respect to determining design fea-
sibility, especially at such an early point in the life cycle. Although we are
open to constructive modification of these evaluation criteria, we feel that
modifying them to relate more closely to the System Specification or SRS
requirements would be inappropriate. The requirements perspective and
our demonstration perspective are different and difficult to relate.

The source code for the components being demonstrated has not been
delivered with the plan as required in the statement of work. The total vol-
ume for the demonstrated components is roughly 1 to 2 feet thick, and it is
still changing at a rapid rate. Instead of delivering all the source code, inter-
ested reviewers may request specific components for review. All source code
will be browseable at the contractor facility during the demonstration.

As mentioned before, the government’s overall response to the IPDR demonstra-
tion was very positive, although the five critical action items were an unexpected out-
come and initially caused intense concern. After TRW demonstrated resolution of
these action items one month later, the government response was overwhelmingly
positive. The objective insight, open discussion of trade-offs, and understandability of
the design issues, requirements issues, and performance issues resulted in exceptional
relationships among the stakeholders. The customer and the user representatives
requested encore demonstrations to their upper management, and there was a sense of
success among stakeholders in which they could all take ownership. This event
proved to be very important: From this point on, everyone wanted to maintain the

project’s reputation as a flagship example of how to do software right.

D.7 CORE METRICS 337

D.7 CORE METRICS

The CCPDS-R metrics approach was first developed solely to manage the project and
meet the needs of the contract. While it achieved these goals, it also resulted in a great
case study. CCPDS-R was nowhere near perfect; numerous mistakes were made all
along the way. This was true of the metrics program, too: It measured some of the
wrong things, measured some things in the wrong way, struggled with early interpre-
tations, and used some manual methods where automation was needed. Nevertheless,
these metrics activities led to more teamwork, better processes, better understanding
of risks, and, ultimately, better products produced with more efficiency. Early in the
project, there was resistance from management, from practitioners, and even from
contract monitors. After the first year, following several improvements in interpreta-
tion, automation, presentation, and definition, there was nearly universal support. All
parties used the objective data from the metrics program to substantiate their plans,
their risks, their design directions, and their results.

All the Common Subsystem metrics presented here were extracted directly from
the monthly project management reviews. None of these data were created after the
fact. Although the CCPDSR-R metrics program was a contractual requirement, the
government did not define the actual metrics to be used. This was left up to the con-
tractor so that the project team would take ownership of the metrics program
selected.

TRW formulated a metrics program with four objectives:

1. Provide data for assessing current project trends and identifying the need
for management attention

2. Provide data for planning future builds and subsystems

3. Provide data for assessing the relative complexity of meeting the software
end-item quality requirements

4. Provide data for identifying where process improvements are needed and
substantiating the need

‘ The following sections contain explicit examples of the metrics recommended in Chap- |
'i ter 13. There are several instances of progress metrics as well as the quality indicators
of scrap, rework, and maturity. The basis for automation, which required some inter- "
esting technical approaches embedded directly in the evolving design and code arti-

facts, is also described.

338 CCPDS-R CASE STUDY

D.7.1 DEVELOPMENT PROGRESS

Measuring development progress accurately with several concurrent builds in various
states was a complex undertaking for the Common Subsystem management team. Sig-
nificant effort went into devising a consistent approach that would provide accurate
insight into subsystem-level status and build status. The goal was a balanced assess-
ment that included the following:

® The Ada/ADL metrics. These data provided good insight into the direct
indicators of technical progress. By themselves, these metrics were fairly
accurate at depicting the true progress in design and implementation. They
were generally weak at depicting the completed contract deliverables and
financial status.

¢ Earned value metrics. These data provided good insight into the financial
status and contract deliverables. They were generally weak indicators of
true technical progress.

As with most software metrics, both of these perspectives initially were some-
what inaccurate assessments of absolute progress. They were, however, excellent
assessments of relative progress when tracked periodically (in this case, monthly). As
experience was gained with these metrics, the absolute assessments became well-tuned
predictors of success or risk. The overall assessment was crammed into one chart; as
illustrated in Figure D-9. The figure depicts the top-level progress summary for each
build and for the Common Subsystem as a whole. The length of shading within each
build relative to the dashed line (corresponding to the current month) identifies
whether progress was ahead of or behind schedule. For example, Figure D-9 displays
month 17 status: Build 2 SAT testing is one month behind schedule, build 3 design
work is one month ahead of schedule, the Common Subsystem design effort is on
schedule, and Common Subsystem SAT testing is one month behind schedule. The
shading was a judgment by the software chief engineer, who combined the monthly
progress metrics and the monthly financial metrics into a consolidated (and somewhat
subjective) assessment.

Monthly collection of metrics provided detailed management insight into build
progress, code growth, and other indicators. The metrics were collected by build and
by CSCI to provide multiple perspectives. Individual CSCI managers collected and
assessed their metrics before the metrics were incorporated into a project-level sum-
mary. This process was objective, efficient, and meaningful. Although the lowest level
estimates of TBD_Statements were certainly subjective, they were being determined
by the most knowledgeable people: the actual designers. They were being maintained
in the evolving source code format because this was the format in which the designers

D.7 CORE METRICS 339

Time = Month
KSLOC A nth 17 PDW: Preliminary Design Walkthrough

CDW: Critical Design

8 L Buitd 0 l il . TOR: Turnover
ArPowAcow /\ AToR /\ Original Milestone
43 [Build 1 I 1 [Development | Stand-Alone Test |
Arow AcoW /\ AToR A
61 [Build 2 1T] Turnover for
. figuration control
APow AcCOw . ATOR cen
173 [Build 3 []
Arow . Acow A Tomi AToR2
63 C Build 4 [] |
Arow : Acow ATor
- (Build 5 [|
Arow Acow ATor
155 { Common Subsystem Design |
[[Common Subsystem SAT]
IPDR PDR : CDR
: : — A — : .
0 5 10 15 20 25 30 34

Months After Contract Award
FIGURE D-9. Development progress summary

preferred to work, increasing the likelihood that the artifact would be kept up-to-
date. This process also assured consistent and uniform communication of progress
across the project.

Figure D-10 illustrates the monthly progress assessments for the Common Sub-
system and each build. The planned evolution was based roughly on weight-averaging
the SLOC counts for each build with the guidelines described in Section D.5.3: 30%
done by PDW and 70% done by CDW. Overall, the Common Subsystem performed
very close to its plan, with one exception. The progress achieved at IPDR (signifi-
cantly ahead of plan) reflected the unexpected positive impact of the source code gen-
eration tools, particularly for the SAS generation of 50,000+ SLOC.

Performance against plans varied for the individual builds. In general, each build
tracked its plan fairly well. The progress of the subsystem and each build was assessed
monthly with internal management and the customer in the project management
reviews. The progress metrics provided an objective mechanism and consistent lan-
guage for explaining perturbations to the plan, perturbations to the architecture,
issues in requirements, issues in design, scheduling risks, and other management top-
ics. The objectivity of the approach was a key contributor to the nonadversarial rela-
tionships that evolved among all stakeholders.

Everyone understood that although the metrics were not very precise early in the
life cycle, they were accurate. The absolute values were rarely important. The relative

340 CCPDS-R CASE STUDY

100% Common Subsystem Progress B

4 Actuals
4 Plan -———=

Subsystem Progress
(% coded)

. e (PDR PDR COR

3 6 9 12 15 18 21 24 27 30
Contract Month

Individual Build Progress

Build0 Build 1 Build 2 Build 3 Build 4 Build 5

100%]

Build Progress
(% coded)

15 18
Contract Month

FIGURE D-10. Common Subsystem development progress

trends were most important, and, as the process evolved, the precision of all metrics
improved over time. By PDR, the metrics data had become a cornerstone of project
communications.

D.7.2 TEST PROGRESS

The test organization was responsible for build integration tests and requirements
verification testing (some SATs, ESTs, and FQT). Build integration testing proved to

D.7 CORE METRICS 341

TABLE D-6. SCO characteristics for build 2 BIT testing

. MINOR MODERATE MAJOR .
PROBLEM SOURCE (<1 HOUR} (<1 DAY) {>1 DAY) TOTAL
Requirement interpretation S 5
Inadequate stand-alone test 3 4 2 9
Interface problem 9 2 1 12
Inadequate performance 1 1
Desired enhancement 3 3
(not a problem)

Inconsistent configuration 3 2 -5

Tortals 24 8 3 35

be less effective than expected for uncovering problems. BITs were intended to carry
out a complete set of integration test procedures from the most basic capability to off-
nominal boundary conditions. Much of this work, particularly the basic threads, was
redundant with demonstration integration efforts. Consequently, the BITs were fre-
quently redundant with demonstration preparation and were less cost-effective than if
the demonstration preparation activities had been combined with BIT and made a
responsibility of the test organization. Table D-6 summarizes the build 2 BIT resulits,
which reflect a highly integrated product state. Nevertheless, more effort had been
allocated to BIT planning, preparation, and conduct than was necessary. The merging
of the demonstration preparation and BIT activities would have enabled fewer people
to do a better job. This approach would have enabled more integration (as part of
demonstration activities) before turnover and more efficient regression testing after
turnover to ensure that all previous issues were resolved.

Table D-7 and Figure D-11 provide perspectives on the progress metrics used to
plan and track the CCPDS-R test program. The figure plots the progress against the
plan for requirements verification tests. SATs, ESTs, and FQTs were sources of test
cases used by the software organization. SATs were the responsibility of the develop-
ment teams but had to be executed in the formal configuration management envi-
ronment and witnessed (peer-reviewed) by the test personnel. ESTs consisted of
functionally related groups of scenarios that demonstrated requirements spanning
multiple components. FQTs were tests for requirements compliance that could not be
demonstrated until a complete system existed. Quantitative performance require-
ments (QPRs) spanned all CSCls.

Formal SAT testing (requirements verification done in stand-alone tests) was
more difficult than planned. This was primarily due to excessive design detail in the
software requirements specifications and in the project review and signoff procedures.

342 CCPDS-R CASE STUDY

TABLE D-7. Requirements verification work by test type and CSCI

TEST TYPE NAS Ssv DCO TAS CMP CCo QPR TOTAL
Build 0/1 SAT 42 S 47
Build 2 SAT 11 52 63 15 12 153
Build 3/4/5 SAT 65 62 18 198 46 389
EST 172 131 39 77 94 341
EST 3 32 49 117 42 240
EST 4 16 172 219) 4 6 422
ESTS/FQT S 105 84 42 54 207 46 543
Totals 2:’.37 482 622 221 268 259 46 2,135

Formal SAT testing was scrutinized by the government and required fairly long lead
times for review. The government required overly detailed test procedures for numer-
ous design details that should not have been treated as requirements. In the heat of
development, the SAT procedures were rarely available 30 to 60 days before turnover,
as required by the contract for any requirements verification test. The formal SAT
process was one of the main reasons that the turnover reviews were consistently com-
pleted later than planned.

Test progress at month 41, for example:

523 of 589 SAT verifications
1,003 of 1,003 EST verifications
0 of 543 ESTS/FQT verifications
1,526 of 2,135 requirements verified (72% complete)

pory
o
2
BN

e}

2

S : Actuals

i

S A Plan -------

E B

o

5

o

Q@ -

o

.

T T T T T 1 T T T 1
32 34 36 38 40 42 44 46 48

Contract Month
FIGURE D-11. Common Subsystem test progress

D.7 CORE METRICS 343

D.7.3 STABILITY

Figure D-12 illustrates the overall rate of configuration baseline changes. It shows the
cumulative number of SLOC that were broken (checked out of the baseline for
rework because of an identified defect, enhancement, or other change) and the num-
ber of SLOC repaired (checked back into the baseline with fixes, enhancements, or
other changes). Breakage rates that diverged from repair rates resulted in management
attention, reprioritization of resources, and corrective actions taken to ensure that the
test organization (driving the breakage) and development organization (driving the
repair) remained in relative equilibrium. Overall, the situation shown depicts a very
healthy project.

e
D.7.4 MODULARITY ’
Figure D-13 identifies the total breakage as a ratio of the entire software subsystem.
This metric identifies the total scrap generated by the Common Subsystem software
development process as about 25% of the whole product. Industry averages for soft-
ware scrap run in the 40% to 60% range. The initial configuration management base-
line was established around the time of PDR, at month 14. There were 1,600 discrete
changes processed against configuration baselines thereafter.

100,000

80,000

Repaired
60,000 —

40,000

Cumulative SLOC

20,000

5 10 15 20 25 30 35 40 45
Contract Month
FIGURE D-12. Common Subsystem stability

344 CCPDS-R CASE STUDY

25%]
n Closed rework
Currently open rework -------

20%

15%—

About 25% of all SLOC
were scrapped and
10%— reworked after their
initial baseline.

Cumulative SLOC
|

5%

Contract Month

FIGURE D-13. Common Subsystem modularity

D.7.5 ADAPTABILITY

Over the entire Common Subsystem, about 5% of the total effort was expended in
rework activities against software baselines. The average cost of change was about 24
hours per SCO. These values provide some insight into the ease with which the soft-
ware baselines could be changed. The level of adaptability achieved by CCPDS-R was
roughly four times better than the typical project, in which rework costs over the
development life cycle usually exceed 20% of the total cost.

Figure D-14 plots the average cost of change across the Common Subsystem
schedule. The 1,600+ SCOs processed against the evolving configuration baseline by
FQT resulted in a fairly stable cost of change. CCPDS-R is one of the few counterex-
amples of “the later you are in the life cycle, the more expensive things are to fix.”

Most of the early SCO trends (shown in the box labeled “Design Changes” in
Figure D-14) were changes that affected multiple people and multiple components
(that is, interface or architectural changes). The later SCO trends (shown in “Imple-
mentation Changes”) were usually localized to a single person and a single compo-
nent. The final phase of SCOs reflected an uncharacteristic increase in breakage, the
result of a large engineering change proposal that completely changed the input mes-
sage set to the Common Subsystem. This was one area of the software design that was
not as easy to change as we might have hoped. Although the design was very robust
and adaptable for numerous premeditated change scenarios, an overhaul of the mes-
sage set was never foreseen nor accommodated in the design.

D.7 CORE METRICS 345

p Dasign changes:
50 — typically span muliy

changes that
nents and teams

érlmblerrﬁen’tatidr; Ehéﬁges: Prre;FQkT
. changes that are typically isolated to a

40 — 7 | single component and team
8 Design Maintenance changes: Include some
D 4 Changes out-of-scope changes performed
@) under separate contract
3
I
e Implementation T
g 20 Changes
L Maintenance
10 Changes
qu (ZR FQT
14 24 48

Common Subsystem Schedule (months)
FiGURE D-14. Common Subsystem adaptability

D.7.6 MATURITY

CCPDS-R had a specific reliability requirement, for which the software had a specific
allocation. The independent test team constructed an after-hours, automated test suite
that exercised the evolving software baselines with randomized message scenarios.
This strategy resulted in extensive test time being logged under realistic conditions
from which a credible software MTBF could be substantiated. The reliability-critical
components, forced by the iteration plan into the earliest baselines, were subjected to
the most reliability stress testing. This plan ensured early insight into maturity and
software reliability issues. Figure D-15 illustrates the resuits.

With modern distributed architectures, this sort of statistical testing is both nec-
essary for ensuring maximum coverage and useful for uncovering significant issues of
races, deadlocks, resource overruns, memory leakage, and other Heisen-bugs. Execut-
ing randomized and accelerated scenarios for long periods of time (running all night
or over a long weekend) enables early insight into overall system resource integrity.

D.7.7 CoST/EFFORT EXPENDITURES BY ACTIVITY

Table D-8 provides the overall cost breakdown for the CCPDS-R Common Sub-
system. These data were extracted from the final WBS cost collection runs and were

structured as recommended in Section 10.1. The next-leve!l elements are described in
Table D-9.

346 CCPDS-R CASE STUDY

Test Software Test Critical Cumulative
Suite Builds Hours Failures Failures
30,000 — 4 0,1,2,3,4,5 19,400 2 17
3 0,1,2,3,4 23,068 2 17
2 0,1,2,3,4 20,600 2 18
1 0,12 108,528 4 26
®
3
o
£
b (108,528)/4 = 27,132 hours
g Build 0, 1, 2 mean time
between critical failures
(reliability-critical components)
T —T
10,000 50,000 100,000

FIGURE D-15. Common Subsystem maturity

Test (hours)

TaBLE D-8. Common Subsystem cost expenditures by top-level WBS element

WBS ELEMENT COST (%) ACTIVITIES AND ARTIFACTS
Management and 9 Deliverable plans, administrative support,
administration financial administration, customer interface,
contracts, overall control and leadership
Process/product specification 7 Technical requirements, demonstration plans
' and evaluation criteria, iteration plans, software
process, metrics analysis
Software engineering 11 Architecture engineering, design walkthrough
coordination, NAS CSCI development, metrics
definition and assessment, demonstration
planning and integration
Development 38 Development, testing, documentation, and
maintenance of application components
Testing, assessment, and 24 Release management; formal test preparation,
deployment conduct, and reporting; test scenario develop-
ment; change management; deployment
Infrastructure 11 System administration, hardware and software
resousces, toolsmithing, tool integration
Total software activities 100 Cost expenditures, including hardware and

software tools (in the infrastructure element),
travel, and other direct costs

D.7 CORE METRICS 347

TABLE D-9. Common Subsystem lower level WBS elements

WBS ELEMENT COST (%) ACTIVITIES AND ARTIFACTS
Software project management 6 Customer interface, contracts,
administration

Software engineering 5 Requirements coordination, chief engineer

Specifications 4 CSCI SRS development

Demonstrations 3 Plans, integration, reports

Tools/metrics 3 Tools, metrics collection

NAS CSCI 3 Middleware, 20 KSLOC

Integration and test 4 Test coordination, management

management

BIT testing 3 Integration smoke testing

EST testing 9 Formal test plans, testing, reports

FQT testing 6 Formal test plans, testing, reports

Configuration management and 3 Release management, integration

testbed control

Environment 11 Hardware, software, system administration

Development management 5 CSCI applications management

SSV CSCI 11 Architecture, system software, 160 KSLOC

DCO CSCI Display interface applications, 70 KSLOC

CCO CSCI Communications applications, 80 KSLOC

TAS CSCI Test and exercise applications, 10 KSLOC

CMP CSCl1 4 Mission algorithm applications, 15§ KSLOC
Total software activities 100 All software-related expenses

These are some noteworthy data points:

» The percentages in Table D-8 are roughly traceable to the percentages in
Chapter 10. However, some of the management elements in Table D-9
were split across elements in Table D-8 to extract the activities at the
project management level.

® The overall test team effort is relatively low compared with the effort typi-
cally expended on projects that used the conventional process. The main
reason is that the architecture team delivered an integrated software prod-
uct to the test and assessment team, which was responsible primarily for
testing the integrated quality of the evolving product.

348 CCPDS-R CASE STUDY

e CCPDS-R used an efficient environment that represented 11% of the total
cost of the effort.

e Overall maintenance (total rework effort expended) was only 5% of the
total cost. Although this is not shown explicitly in the tables, it was tracked
in the individual CSCI WBS elements.

To compare varying levels of productivity in a fairly normalized manner, individ-
ual CSCI costs can be compared with each other as well as with the other metrics.
These comparisons need to be tempered by management understanding of subjective
attributes such as team competence, requirements volatility, CSCI complexity, and
other noncomparable factors.

The top-level WBS tracks pretty closely with the process workflows of Section 8.1 and
the effort allocations recommended in Table 10-2.

D.8 OTHER METRICS

Preceding sections of this case study have described specific approaches and metrics.
This section summarizes some other, more global perspectives of CCPDS-R project
performance: software size evolution, subsystem process improvements, SCO resolu-
tion profile, and CSCI productivities and quality factors.

D.8.1 SOFTWARE SIZE EVOLUTION

The software sizes of the Common Subsystem and the individual CSCIs were tracked
monthly and were derived directly from the evolving metrics files. There was a large
amount of code growth from the original contract bid (150,000 SLOC) to the deliv-
ered product (355,000 SLOC), with no substantial increase in the software develop-
ment budget. There were two reasons for this level of code growth:

1. The method for counting source lines was changed around month 8 to pro-
vide a better balance in estimating the engineering effort and to be consis-
tent with the counting method embraced by Ada COCOMO.

2. Several automatic code generation tools were developed that output ver-
bose source code with fewer human-generated input lines. These tools were
used for the straightforward generation of display formats, message valida-
tion processing, and socket/circuit bookkeeping functions. They repre-
sented about 14,000 SLOC of tools, which required another 20,000 lines

D.8 OTHER METRICS 349

of input data files. The output of these tools was about 200,000 SLOC of
operational software. In gross terms, these code generation tools resulted
in about a fivefold return on investment.

The total code growth is summarized in Table D-10.

The primary reason for the increase in SLOC was the change in the counting
rules. At contract award, a simple semicolon count was being used. This approach
transitioned to the following counting procedure, which was implemented with a sim-
ple tool used by all personnel on the project:

e Within an Ada specification part, each carriage return counted as one
SLOC. Four coding standards allowed the SLOC counting to be consistent:

1. Each parameter of a subprogram declaration is listed on a separate
line. The effort associated with design of a subprogram interface is
generally proportional to the number of parameters.

2. For custom enumeration types (such as socket names and system
states) and record types, each enumeration or field is listed on a sepa-
rate line. Custom types usually involve custom design and engineer-
ing, resulting in an increased number of SLOC.

3. For predefined enumeration types (such as keyboard keys and com-
pass directions), enumerations are listed on the fewest number of lines
possible without loss of readability. These types generally require no
custom engineering.

4. Initialization of composite objects (such as records and arrays) is
listed with one component per line. Each of these assignments repre-
sents a custom statement; an “others” clause is typically used for non-
custom assignments.

TABLE D-10. Common Subsystem CSCI sizes

CONTRACT AUTOMATICALLY

CSCI AWARD DELIVERED PRODUCED

NAS 20,000 20,000

SSV 18,000 160,000 140,000

DCO 48,000 70,000 18,000

TAS 17,000 10,000 4,000

CMP 23,000 15,000

CCO 24,000 80,000 40,000

Totals 150,000 355,000 202,000

350 CCPDS-R CASE STUDY

e Within Ada bodies, each semicolon counts as one SLOC. Generic instantia-
tions count one line for each generic parameter.

This definition treats declarative (specification) design much more sensitively
than it does executable (body) design. Although this definition caused many heated
debates, within the project and externally, it served as quite good enough. It was not
important to have the perfect definition; it was very important to have a consistent
and adequate definition.

Two components drove the change in the definition of SLOC. First, the SAS
packages in SSV contained a network definition that consisted of all the process defi-
nitions, task definitions, socket definitions, and socket connections. These packages
contained numerous record definitions, custom-enumerated types, and record and
array field initializations in specification parts. The source code for these elements
consisted of more than 50,000 carriage returns but only a few hundred semicolons.
Because the engineering effort involved with these packages was much more like the
effort associated with 50,000 SLOC, there was a need to change. The second compo-
nent, with similar rationale, was the system global message types. These packages
numbered some 300 different record types that represented the majority of data
exchanged across SAS objects.

Because of the variety of different categories of SLOC developed on CCPDS-R, a
method was devised for normalizing the different categories so that budgets could be
properly allocated and productivities compared. The result was an extension of the
COCOMO technique for incorporating reuse, called equivalent source lines of code
(ESLOC). In essence, ESLOC converts the standard COCOMO measure of SLOC
into a normalized measure that is comparable on an effort-per-line basis. The need for
this new measure arises in budget allocation and productivity analysis for mixtures of
newly developed, reused, and tool-produced source code. For example, a 10,000-SLOC
display component that is automatically produced from a tool by specifying 1,000
lines of display formatting script should not be allocated the same budget as a newly
developed 10,000-SLOC component. Table D-11 defines the conversion of SLOC to
ESLOC on CCPDS-R.

TasLe D-11. SLOC-to-ESLOC conversion factors

DESIGN IMPLEMENT TEST
SLOC FORMAT NEW = 40% NEW = 20% NEW = 40% ESLOC
Commercial 0% 0% 0% 0%
New 40% 20% 40% 100%
Reused 20% 5% 30% 55%
Automated 0% 0% 40% 40%

Tool input 30% 10% 10% 50%

D.8 OTHER METRICS 351

The rationale for these conversion factors included many factors:

* Commercial off-the-shelf components do not result in any contribution to
the ESLOC count. The integration of these components scales up with the
amount of newly developed interfacing software.

* New software must be developed from scratch. It requires complete design,
implementation, and test efforts, and has an ESLOC multiplier of 100%
{one-for-one conversion).

* Reused components represent code that was previously developed for a dif-
ferent application but is applicable to the component with some modifica-
tion. While there are many ways to assess the relative cost of reuse, and
each instance is best handled individually, this conversion provides a simple
rule of thumb as a default. In general, reused software requires 50% of the
design effort, 25% of the implementation effort, and 75% of the test effort.
Normalized across the 40/20/40 allocations of new software, this results in
a total of 55%.

e Automated components usually require a separate source notation (the
tool input format below) as input to a tool that then automatically pro-
duces the resulting SLOC. Because automated source code becomes part of
the end product, it needs to be fully tested. However, the design and imple-
mentation effort is set to zero. If the tool that automates the source code
production must be developed, its SLOC count should be included in the
new category. The resulting conversion factor is a 40% SLOC-to-ESLOC
ratio.

e Tool input can take on many diverse forms. CCPDS-R had input files for
the architecture definition (a long but straightforward table of names,
attributes, and relationships), display definitions (display object types,
locations, and attributes), and message validation. These higher level
abstraction formats were converted using 75% of the design effort (simple,
high-level notations), 50% of the implementation effort (repetitive, high-
level syntax and semantics), and 25% of the test effort (which focused on
the generated code, not this code). The resulting conversion factor is a 50%
SLOC-to-ESLOC ratio.

All in all, the development of a few code production tools reduced the total
ESLOC of the Common Subsystem by 78,000 lines, as summarized in Table D-12.
ESLOC was analyzed solely to ensure that the overall staffing and budget allocations,
negotiated with each CSCI lead, were relatively fair. These ESLOC estimates were
input to cost modeling analyses that incorporated the relative complexity of each
CSCI and the other COCOMO effort adjustment factors.

352 CCPDS-R CASE STUDY

TaBLE D-12. Common Subsystem CSCI sizes in ESLOC

DELIVERED TOOL- TOOL DEVELOPED . SIZE

CsCL SLOC PRODUCED INPUTS TOOLS (ESLOC)
NAS 20,000 . 20,000
SSv 160,000 140,000 20,000 15,000 101,000
DCO 70,000 18,000 6,000 6,000 68,800
TAS 10,000 4,000 7,600
CMP 15,000 15,000
CCO 80,000 40,000 12,000 3,000 65,000

Totals 355,000 202,000 38,000 24,000 277,400

All this code counting stuff may appear confusing when summarized in a couple
of pages. However, over the first year of the project, these analyses and definitions
were highly scrutinized and well understood. They provided a useful perspective for
discussing several of the engineering trade-offs being evaluated. After the first year,
the SLOC counts were very stable and well correlated to the schedule estimating anal-
yses performed throughout the project life cycle. On one hand, the CCPDS-R code
counting process is a good example of why SLOC is a problematic metric for measur-
ing software size. On the other hand, CCPDS-R is an example of a complex system in
which SLOC metrics worked very effectively.

This section on software size is a good example of the issues associated with transition- |
ing to component-based development. While projects can and must deal with hetero- !
geneous measurements of size, there is no industry-accepted approach. Consequently, |

|

project managers need to analyze carefully such important metrics definitions.
|

D.8.2 SUBSYSTEM PROCESS IMPROVEMENTS

One of my main themes in this book is that real process improvements should be evi-
dent in subsequent project performance. Because it comprised three separate projects,
CCPDS-R provides a perfect case study for illustrating this trend. Overall, the Com-
mon Subsystem subsidized much of the groundwork for the PDS and STRATCOM
subsystems—namely, the process definition, the tools, and the reusable architecture
primitives. With each successive subsystem, productivity and quality improved signif-
icantly. This is the expectation for a mature software process such as the one devel-

D.8 OTHER METRICS 353

oped and evolved on CCPDS-R. It is always difficult to compare productivities across
projects, but CCPDS-R subsystems had consistent measures of human-generated
SLOC and homogeneous processes, teams, and techniques. The consistent metrics
approach produced a comparable set of measures. The normalized unit of measure
chosen to compare productivities was the cost per SLOC. The absolute costs are irrel-
evant; the relative costs among subsystems are not. The PDS Subsystem was delivered
at 40% of the cost per SLOC of the Common Subsystem, and the STRATCOM Sub-
system at 33%. This is one of the real indicators of a level 3 or level 4 process.

Table D-13 summarizes the SCO traffic across all CSCIs at month 58. By this
time, the Common Subsystem was well beyond its FQT and had processed quite a few
SCOs in a maintenance mode to accommodate engineering change proposals. The
PDS and STRATCOM subsystems were well into their test phases. For completeness,
the table provides entries for support, test, and operating system/vendor. (Tracking of
commercial product change orders was similar to SCO tracking.) Support included
code generation tools, configuration management tools, metrics tools, and stand-
alone test drivers; test included software drivers used for requirements verification. -

Table D-13 shows that the values of the modularity metric (average scrap per
change) and the adaptability metric (average rework per change) were generally much
better in the subsequent subsystems (PDS and STRATCOM) than they were in the
Common Subsystem. The one exception was the SCG CSCI, a special communica-
tions capability needed in the STRATCOM Subsystem that did not have a counterpart
in the other subsystems and was uniquely complex.

CCPDS-R demonstrated the true indicator of a mature process, as described in Section
E.2. With each subsequent subsystem, performance—as measured by quality, produc-
tivity, or time to market—improved. CCPDS-R was subjected to numerous SEl software
capability evaluations over its lifetime, and the project’s process maturity contributed
to a level 3 or higher assessment. These performance improvements were not due
solely to a mature process. Stakeholder teamwork and project investments in architec-
ture middleware and process automation were probably equally important to overall
project success.

D.8.3. SCO RESOLUTION PROFILE

The average change costs evolved over time into a fairly constant value of 16 hours
per change. This effort included analysis time, redesign, recode, and retest of the reso-
lution. The profile of changes shown in Figure D-16 provides another interesting
perspective,

354 CCPDS-R CASE STUDY

TaBLE D-13. CCPDS-R subsystem changes by CSCI
AVERAGE AVERAGE
TOTAL OPENED CLOSED REJECTED SCRAP REWORK
CSCI SCOs SCO$ SCOs SCOs {SLOC/SCO) {HOURS/SCO)
Common Subsystem
NAS 236 1 197 38 30 15
SSV 1,200 16 1,004 180 24 16
DCO 526 10 434 82 30 15
TAS 255 0 217 38 40 11
CMP 123 2 105 16 24 35
CCO 435 1 406 28 64 22
‘ PDS Subsystem
PSSV 297 11 231 55 25 ' 8
PDCO 167 10 126 31 25 21
PCO 73 0 72 1 20 10
STRATCOM Subsystem
Y ©531 30 401 100 18 10
SDCO 339 11 286 42 16 14
STAS 60 0 50 10 20 9
SMP 326 17 299 10 30
SCO 180 1 160 19 40
SCG 61 6 51 4 85 27
Other

Support 648 2 546 100 Not tracked Not tracked
Test 376 1 356 19 Not tracked Not tracked
Operating 223 13 161 49 Not tracked Not tracked
system/vendor

Totals 6,056 132 5,102 822 32 13

D.8.4 CSCI PRODUCTIVITIES AND QUALITY FACTORS

Table D-14 summarizes some of the CCPDS-R CSCI quality and productivity data.
Productivities for the CSCls are not absolute; for comparison purposes, they are nor-
malized relative to the overall subsystem productivity. The subsystem productivity is
based on a total effort of approximately 1,800 staff-months. This includes all man-
agement, development, and test resources. The individual productivities of each CSCI

D.8 OTHER METRICS 355

43% 18% 16% 12% 9% 2% <1%
E—
<4 hours 4t08 8to 16 16 to 40 40 to 80 80to 160 >160 hours

FIGURE D-16. Common Subsystem SCO change profile

were normalized. Productivities are described from two perspectives: SLOC per staff-
month and ESLOC per staff-month. These data and my own experience lead me to
the following conclusions:

® NAS was an extremely complex software engineering problem, requiring

and achieving both high performance and reusability. It had an exceptional
team, was based on an existing prototype, and had adequate schedule.

TasLE D-14. Common Subsystems CSCI summary

PRODUCTIVITY
(STAFF-MONTHS) SCRAP REWORK
CSCI COMPLEXITY SLOC SLOC ESLOC (SLOC/SCO) (HOURS/SCO)
NAS: complex Very high 20,000 260 260 30 15
middleware
SSV: architecture, High 160,000 320 200 24 16
systems software
DCO: display, Moderate 70,000 170 160 30 15
user interface
TAS: test and Low 10,000 110 75 40 11
simulation
CMP: mission Moderate 15,000 100 100 24 35
algorithms
CCO: external High 80,000 170 140 64 22
communications :
Total: missile High 355,000 200 160 24" 16
warning

subsystem

356 CCPDS-R CASE STUDY

e SSV had very high absolute productivity because the automatically gener-
ated code, from custom CASE tools, was contained mostly within this CSCI.
The above-average team on SSV also contributed to the high productivity.

e DCO was fairly average on all counts but accommodated substantial
requirements volatility in the display interface without a contract amend-
ment. The design of this CSCI and the performance of the team were far
better than these numbers would indicate.

e TAS had a very low productivity despite being the simplest and most well-
understood software. The main reason was that the plan for task resources
was far less ambitious than the plans for other teams. Another reason was
that the TAS team was located off-site, with highly constrained develop-
ment environment resources. :

e CMP had a very high cost of change and low productivity for no obvious
technical reason. To ensure technical integrity, the inherent missile warning
algorithm changes were closely scrutinized by many stakeholders. The
coordination of this process resulted in very high overhead in CMP pro-
ductivity and changes.

* CCO had the worst quality metrics. This was due primarily to a design that
did not foresee a major message set change and therefore resulted in fairly
broad and hard-to-resolve breakage. The CCO team was also perhaps the
most difficult to transition (culturally) to the process, metrics, and demon-
stration approach used on CCPDS-R.

Overall, this level of productivity and quality was approximately double TRW’s
standard for previous command center software projects.

D.9 PEOPLE FACTORS

CCPDS-R used two unique approaches to managing its people. The first was the core
team concept, which focused on leveraging the skills of a few experts across the entire
team. The second was targeted at actively avoiding attrition. CCPDS-R was TRW’s
first large Ada project, and management was concerned that personnel trained by the
project would become attractive targets for opportunities elsewhere inside and out-
side the company. To incentivize people to remain on the project for a long time, the
CCPDS-R project instituted an award fee flowdown program.

As a result of the overall management approach to CCPDS-R, there was very lit-
tle attrition of people across the Common Subsystem, with most of the engineering
team transitioning to new assignments at planned points in the life cycle. Contrary to
initial expectations, the PDS and STRATCOM subsystems were overlapped enough

D.9 PEOPLE FACTORS 357

with the Common Subsystem that most of the peoplé employed were new to the
project. The one instance of attrition was the transition of the core architecture team
(five NAS experts) back to internally funded research and development projects to
productize the NAS CSCI into a commercially available middleware product. This
occurred around the time of the CDR milestone.

D.9.1 CORe TEAM

The core team of the CCPDS-R software organization was established early in the
concept definition phase to deal explicitly with the important 20% of the software
engineering activities that had a high return on investment. In particular, this team of
fewer than 10 individuals was responsible for the following;:

1. Developing the highest leverage components (mostly within the NAS
CSCI). These components resolved many of the difficult computer science
issues such as real-time scheduling, interprocess communications, run-time
configuration management, error processing, and distributed systems pro-
gramming. As a result of encapsulating these complex issues in a small
number of high-leverage components, the mainstream components were
simpler and far less dependent on expert personnel.

2. Setting the standards and procedures for design walkthroughs and soft-
ware artifacts. In general, the core team represented the frontline pioneers
for most of the software activities. This team was generally the first team to
conduct any given project workflow and built the first version of most arti-
facts. Consequently, the core team was intimately involved with setting
precedent, whether it was the standards for a given activity or the format/
content of a given artifact.

3. Disseminating the culture throughout the software organization. The core
team was truly a single, tight-knit team during the inception phase and for
most of the elaboration phase. As the process and architecture stabilized,
the team started to migrate, with several of its members taking on technical
leadership roles on the various development and assessment teams. During
construction and transition, a few members of the core team still main-
tained the architecture integrity across the entire project. However, there
was also a set of globally minded individuals with strong relationships to
the architecture team who became immersed in other areas of development
and assessment. These team and personnel transitions proved to be an
invaluable mechanism for maintaining a common culture.

358 CCPDS-R CASE STUDY

This core team concept is similar in purpose to the architecture team described in
Section 11.2.

D.9.2 AwARD FEE FLOWDOWN PLAN

During the mid-1980s, software expertise was at a premium. TRW software integra-
tion business and the general software industry were growing rapidly. Both TRW
management and the government customer were acutely concerned about recruiting
and retaining a stable, quality software team for the CCPDS-R project. The project
also needed to obtain and develop as much Ada experience as possible, and Ada expe-
rience was a scarce resource during the early stages of CCPDS-R. TRW proposed an
innovative profit sharing approach to enhance the project’s ability to attract and
retain a complementary team.

The basic premise of the CCPDS-R award fee flowdown plan was that employ-
ees would share in the profitability of the project. (Award fees are contract payments
over and above the cost basis. They are tied to project performance against predefined
criteria.) TRW management agreed to allocate a substantial portion of the award fee
pool at each major milestone to be given directly to project employees. This addi-
tional compensation was to be distributed to the individuals based on their relative
contribution and their longevity on the project. The implementation of the award fee
flowdown plan was intended to achieve the following objectives:

* Reward the entire team for excellent project performance
¢ Reward different peer groups relative to their overall contribution
e Substantially reward the top performers in every peer group

* Minimize attrition of good people

The resulting plan was fairly complex but straightforward to implement. In the
end, this plan achieved its goals in minimizing attrition, especially in the early phases
of the life cycle, when the loss of key people could have been devastating. In retro-
spect, the one flaw in the plan was that the early award fees (at PDR and CDR) were
far less substantial than the later award fees. As a result, the teams responsible for the
construction and transition phases received more award fee flowdown than did the
teams working on the inception and elaboration phases.

This was the basic operational concept of the plan:

* Management defined the various peer groups (systems engineering, soft-
ware engineering, business administration, and administration).

D.10 CONCLUSIONS 359

* Every 6 months, the people within each peer group ranked one another
with respect to their contribution to the project. The manager of each peer
group also ranked the entire team. The manager compiled the results into a
global performance ranking of the peer group.

¢ Each award fee was determined by the customer at certain major mile-
stones. Half of each award fee pool was distributed to project employees.

* The algorithm for distributions to project employees was fairly simple. The
general range of additional compensation relative to each employee’s salary
was about 2% to 10% each year.

¢ The distribution to each peer group was made relative to the average
salary and total number of people within the group. The differences in
employees’ salaries within each group defined the relative differences
in what was expected of the employees in terms of contributions
toward overall project success.

® The distribution within a peer group had two parts. Half of the total
peer group pool was distributed equally among all members. The
other half was distributed to the top performers within the peer group
as defined by the group’s self-ranking. Management had some discre-
tion in the amounts and ranges.

The true impact of this award fee flowdown plan is hard to determine. I think it
made a difference in the overall teamwork and in retaining the critical people. The
peer rankings worked well in discriminating the top performers. While there were
always a few surprises, the peer rankings matched management perceptions pretty
closely. The end results of CCPDS-R speak for themselves. Overall, TRW shared a lit-
tle less than 10% of its overall profit with project employees. CCPDS-R was a very
profitable project for TRW and a good value for the Air Force customer. The return
on this investment would be considered very high by all stakeholders.

D.10 CONCLUSIONS

TRW and the Air Force have extensively documented the successes of architecture-
first development on CCPDS-R. This project achieved twofold increases in productivity
and quality along with on-budget, on-schedule deliveries of large mission-critical
systems. The success of CCPDS-R is due, in large part, to the balanced use of modern
technologies, modern tools, and an iterative development process that is substantially
similar to the process described in this book. Table D-15 summarizes the numerous
dimensions of improvement incorporated into the CCPDS-R project. The resulting
efficiencies were largely attributable to a major reduction in the software scrap and

360 CCPDS-R CASE STUDY

TaBLE D-15. CCPDS-R technology improvements
PARAMETER MODERN SOFTWARE PROCESS CCPDS-R APPROACH
Environment Integrated tools DEC/Rational/custom tools
Open systems VAX/DEC-dependent
Hardware performance Several VAX family upgrades
Automation Custom-developed change management
system, metrics tools, code auditors
Size Reuse, commercial components Common architecture primitives, tools,
processes across all subsystems
Object oriented Message-based, object-oriented
architecture
Higher level languages 100% Ada
CASE tools Custom automatic code generators for
architecture, message input/output, dis-
play format source code
Distributed middleware Early investment in NAS development for
reuse across multiple subsystems
Process Iterative development Demonstration, multiple builds, early

Process maturity models

Architecture first

Acquisition reform

Training

delivery

Level 3 process before SE1 CMM
definition

Executable architecture baseline at PDR

Excellent customer/contractor/user team-
work; highly tailored 2167A for iterative
development

Mostly on-the-job training and internal
mentoring

rework (less than 25%) enabled by an architecture-first focus, an iterative develop-
ment process, an enlightened and open-minded customer, and the use of modern envi-
ronments, languages, and tools.

Overall, the Common Subsystem subsidized much of the groundwork for the
PDS and STRATCOM subsystems—namely, the process definition, the tools, and the
reusable architecture primitives. This investment paid significant returns on the subse-
quent subsystems, in which productivity and quality improved. This is the economic
expectation of a mature software process such as that developed and evolved on
CCPDS-R.

CCPDS-R adhered to DOD-STD-2167A and delivered all the required contract
deliverable documents in the Common Subsystem. As the stakeholders gained experi-
ence in the new iterative process and demonstration-based reviews, the pressure to

D.10 CONCLUSIONS 361

deliver ineffective documentation was reduced. The customer and user were far more
concerned with the evolving capability than they were with delivered paper.

One of the primary (and subtle) improvements that was enabled by the CCPDS-
R software approach was the teamwork between the customer, user, and contractor.
Continuous bartering, negotiation, and interpretation of the contract deliverables
were productive in making real progress and ensuring that each phase of the life cycle
resulted in a win-win situation for all stakeholders.

The level of requirements volatility was moderate, with numerous user interface
changes, missile warning algorithm changes, and other requirements changes accom-
modated throughout the project. On the design side, TRW also incorporated numer-
ous architectural changes, technology insertions, and other design changes from the
original technical proposal. Requirements were continuously evolved with designs
and were stabilized after CDR as test-to baselines. There was one late, major contract
scope change, which was normalized out of most of the data in this case study to pro-
vide a more readable presentation. This change occurred around month 35 and
involved a complete overhaul of the input message formats into the system. With the
intense focus on performance, many components were built with some tight depen-
dencies on the input message formats. Unlike many of the architectural changes, algo-
rithm changes, and display changes, this sort of change was simply not foreseen.
Consequently, performance optimizations during design sacrificed some ease of
changeability in the message formats. The breakage caused by this change was not as
localized as it could have been but was straightforwardly absorbed with predictable
performance. The late uptick in rework trends (maintenance changes depicted in
Figure D-14) was a result of incorporating this major change. All stakeholders were
pleased with the resulting solution.

The requirements volatility described above would have killed most projects
using a conventional management approach. CCPDS-R maintained good project per-
formance and nonadversarial relationships among stakeholders throughout the life
cycle while continuously absorbing a moderate level of requirements volatility. While
this is very difficult to quantify and qualify, I think it was the most significant accom-
plishment of the entire project.

As discussed in Chapter 15, successful projects tend to provide a balance across the |
breadth of technologies required. Too great a focus on any technology will not result

in success. A balanced effort across the majority of the technologies is necessary to suc-
ceed on a large project. CCPDS-R is a perfect example. There was a heavy investment in
developing the right process, integrating tools into an effective environment, and
developing the architecture components necessary to implement a demonstration-
based approach. All stakeholders (developers, managers, customers, and users) were
engaged in nonadversarial relationships and working toward a common set of goals.

362 CCPDS-R CASE STUDY

The CCPDS-R team was successful all along the way. While many people and
organizations contributed to the project, the following individuals had a major
impact on the overall management approach: Tom Bostelaar, Charles Grauling, Tom
Herman, Terry Krupp, Steve Patay, Patti Shishido, and Mike Springman (all from
TRW); Gerry LaCroix (Mitre); Paul Heartquist and Bill Wenninger (U.S. Air Force).
The project management skill of Don Andres, at TRW, was critical to executing a new
software process with a lot of good ideas and to achieving success under the game
conditions of -a large-scale, nationally important project with tremendous scrutiny
from multiple government organizations.

he Software Engineering Institute’s Capa-

bility Maturity Model (SEI CMM) provides
a well-known benchmark of software process
maturity [SEL, 1993; 1993b; 1995]. The CMM
has become a popular vehicle in many
domains for assessing the maturity of an orga-
nization’s software process. This appendix
assumes a basic understanding of the CMM
and discusses the current state of the CMM as
it is generally practiced in the industry. Back-
ground on the underlying software process
maturity framework is given in Managing the
Software Process [Humphrey, 1989].

E.1 CMM OVERVIEW
The CMM defines five levels of software pro-

APPENDIX

E

Process
Improvement
and Mapping

to the CMM

" Key Points

A The Capability Maturity Model! is a
good perspective from which to assess

. the process framework presented in this
" book. Appropriately implemented and

adopted with conviction, the process
framework should achieve a level 3 or 4
maturity.

A The real indicators of a mature pro-
cess are predictable results and project
performance that demonstrates
improvement on subsequent activities.

. A Having a mature process in place is

far more important than merely passing
an audit.

A A mature process would pass a sur-

" prise audit. If an organization says what

it does and does what it says, there is no
need to prepare for an audit.

cess maturity based on an organization’s support for certain “key” process areas
(KPAs). A level 1 (initial) process describes an organization with an immature or
undefined process. Level 2 (repeatable), level 3 (defined), level 4 (managed), and level
S (optimizing) maturities describe organizations with higher levels of software process
maturity. The associated KPAs for these levels are summarized as follows:

* Level 2 KPAs: requirements management, software project planning, soft-

ware project tracking and oversight, software subcontract management,
software quality assurance, software configuration management

‘ 363

364 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

¢ Level 3 KPAs: organizational process focus, organizational process defini-
tion, training program, integrated software management, software product
engineering, intergroup coordination, peer reviews

® Level 4 KPAs: process measurement and analysis, quality management,
defect prevention

¢ Level 5§ KPAs: technology innovation, process change management

The goal for most organizations is to achieve a level 3 process. A software capa-
bility evaluation (SCE) is commonly used to assess an organization’s maturity. An
SCE determines whether the organization “says what it does and does what it says”
by evaluating the organization’s software process (usually in the form of policy state-
ments) and project practices. The organization policy—capturing the “say what you
do”—and project implementations—demonstrating the “do what you say”—are
evaluated under the KPA framework. The evaluation process is not perfect, but it is a
good relative indicator of software process maturity.

A typical SCE uses the SEI Maturity Questionnaire [SEL, 1998] as part of a thor-
ough audit. The evaluation includes detailed analyses, interviews, and other forms of
assessment. The questionnaire is generally used as an entry point to provide context
for initiating the evaluation.

There have been many different assessments of the distribution of software orga-
nizations across the five levels. Table E-1 approximates this distribution for the soft-
ware industry around 1995.

One of the key drawbacks of the SEI CMM is that the KPAs focus primarily on
the document artifacts of the conventional process, such as design, requirements, and
traceability documents, as well as subcontracts, contracts, plans, and reports. Very
few of the KPAs actually address the evolving engineering artifacts (requirements
models, design models, source code, or executable code), the level of process automa-
tion in the environment, or the software architecture process. In other words, many of

TABLE E-1. Industry distribution across maturity levels

CMM MATURITY LEVEL FREQUENCY BASIC PERFORMANCE LEVEL
1 Initial 70% Unpredictable, high risk

2 Repeatable 15% Treading water, but surviving

3 Defined <10% Stable, predictable, progressing
4 Managed <5% Very predictable, trustworthy

5 Optimizing <1% Continuously improving

E.1 CMM OVERVIEW 365

my top 10 principles for a modern process are not addressed at the levels they deserve.
Another drawback is the inherent depiction of configuration management and quality
assurance as disciplines that are separate from, rather than integral to, all activities of
the process.

In practice, the real indicator of process maturity is the level of predictability in
project performance. Correlating project performance to the five levels of CMM
maturity should demonstrate the following trends:

¢ Level 1 has random (unpredictable) performance.
e Level 2 achieves repeatable performance from project to project.

e Level 3 shows better performance on successive projects in terms of cost,
schedule, or quality.

® Level 4 demonstrates project performance that improves on subsequent
projects either substantially in one dimension of performance or signifi-
cantly across multiple dimensions (for example, cost and quality).

e Level S corresponds to off-scale performance on subsequent projects or
substantial improvement across all dimensions. Level 5 organizations
almost always occupy a very narrow niche.

Figure E-1 summarizes the project performance expected for successive projects
of an organization at a given maturity level.

Level 5

Level 4 ——-—/
’ /

Level 3
—
Level 2 l
Level 1
Performance
\/\/\/\/\/\? * Cost Expected Trend
¢ Schedule
* Quality
Successive Projects

FiGURE E-1. Project performance expectations for CMM maturity levels

366 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

Many organizations can put up the facade necessary to be assessed at level 3.
Consequently, a level 3 process is not necessarily a good process. On the other hand, a
really good process should easily achieve a level 3 rating. From my field experience
with dozens of software process assessments and software capability evaluations, I
have learned some other indicators of a truly mature process:

¢ Objective understanding of current maturity

® Objective understanding of project performance in quantifiable terms of
cost and quality

® Real project performance improvement

* Minimal time needed to prepare for an evaluation

A mature organization and mature projects know the process and follow it.
They do not need to spend time preparing for an audit. If you think your organization
is a level 3, answer this: Could it withstand a surprise audit?

E.2 PRAGMATIC PROCESS IMPROVEMENT

This section contains some descriptive and prescriptive thoughts about the general
themes of process improvement. My goal is to instill a proper balance of hope and
fear about the promises of process improvement.

® Process maturity. Compliance with quality process frameworks such as the
SEI CMM does not necessarily result in the development of quality prod-
ucts. However, a truly high-quality process that produces quality products
will be assessed as mature. One drawback of most process frameworks is
that they specify a statically defined quality assurance program as some-
one’s separate job rather than integrate quality assurance dynamically into
all jobs.

e Cost of a mature process. A mature process does 7ot cost more money. On
the contrary, it always saves money in the long run. Because improving an
immature process changes their spending profiles, organizations usually
perceive a near-term cost for process improvement. The important point
here is that selling process improvement to in-process projects, which are
dominated by near-term cost concerns, is very difficult. Process improve-
ment is sellable, however, to organizations that are more concerned with
long-term business pursuits, and to long-term projects still in the planning
stage.

E.3 MATURITY QUESTIONNAIRE 367

» Software metrics. Objective measures are required for assessing the quality
of a software product and the progress of the work—two different perspec-
tives of a software effort. Architects are more concerned with quality
indicators, while managers are usually more concerned with progress indi-
cators. The success of any software process whose metrics are collected
manually will be limited. The most important software metrics are simple,
objective measures of how various perspectives of the product/project are
changing. Absolute measures are usually much less important than relative
changes with respect to time. Because of the dynamic nature of software
projects, these measures must be available at any time, be tailorable to var-
ious subsets of the evolving product (subsystem, release, version, compo-
nent, team), and be maintained so that trends can be assessed (first and
second derivatives). Such continuous availability has been achieved in
practice only when the metrics were maintained on-line as an antomated
by-product of the development environment.

e Process tailoring. Different software efforts require different processes.
While there are some universal themes and techniques, there are also situa-
tion-dependent differences in techniques, priorities, ceremony, and empha-
sis. Different software development situations have different needs that
span a range of good processes. An organization’s internal process for
product development will not be exactly the same as the process used by
projects developing large operational systems on contract with an external
customer.

o Process versus method. A project management process deals with different
concerns than a technical method does. The former is characterized by iter-
ative development, demonstration-based evaluation, and risk manage-
ment, the latter by object-oriented techniques, architectural approaches,
and UML representations. Although a bad management process will prob-
ably never be saved by a good method, a good management process can
succeed with most technical methods. Clearly, some methods are better
than others. The result of a good design method coupled with a good man-
agement process is profound. This is the goal.

E.3 MATURITY QUESTIONNAIRE

The remainder of this section provides an SEI CMM perspective of the process frame-
work presented in this book. I have used the SEI Maturity Questionnaire [SEI, 1998]
as a scenario for evaluating the completeness of the process framework from a well-
accepted benchmark of process maturity. In the pages that follow, each quoted question
is presented in italics, followed by my generic response with references to the artifacts,
activities, and checkpoints of the process framework.

368 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

In some responses, such as those associated with training, the process frame-
work does not prescribe a specific approach. These responses are organization-
specific, which means that an organization would need a mechanism specific to its
internal practices and culture.

Requirements Management, Level 2

1. Are system requirements allocated to software used to establish a baseline
for software engineering and management uses

A Software requirements are captured in the vision statement and in the use case
model. Each iteration is accompanied by a release specification that captures the
objectives for intermediate milestones. All these artifacts are baselined and are sub-
jected to change management discipline.

2. As the systems requirements are allocated to software change, are the nec-
essary adjustments to software plans, work products, and activities made?

A In an iterative development, each new iteration is accompanied by new release
specifications and updates to the technical artifacts. The purpose of type 3 software
change orders (SCOs) is to address changes caused by changes in requirements.

3. Does the project follow a written organizational policy for managing the
system requirements allocated to software?

A An organizational policy should include an explicit approach for defining and
managing all the project artifacts, including the requirements set artifacts.

4. Are the people in the project who are charged with managing the allocated
requirements trained in the procedures for managing allocated requirements?

A Training is an organization-specific issue.

S. Are measurements used to determine the status of the activities performed
for managing the allocated requirements (e.g., total number of require-
ments changes that are proposed, open, approved, and incorporated into
the baseline)? '

A Type 3 SCOs should be tracked and reported in periodic status assessments.

6. Are the activities for managing allocated requirements on the project sub-
jected to SQA review?

A Quality assurance is the responsibility of all teams. The independent test organi-
zation, which has primary responsibility for software quality assurance, does not
merely review the management of allocated requirements; it actively participates in

E.3 MATURITY QUESTIONNAIRE 369

generating the release specifications, release description, and traceability to the
requirements set. The Configuration Control Board (CCB) also reviews change require-
ments captured in the SCOs. Requirements set artifacts are also “reviewed” through
the engineering activities associated with evolving use case models, design set arti-
facts, implementation set artifacts, and demonstrations of deployment set artifacts.

Software Project Planning, Level 2

1. Are estimates (e.g., size, cost, and schedule) documented for use in plan-
ning and tracking the software project?

A The WBS defines the cost baseline and plan. The business case and software
development plan define the schedule baseline and iteration content, as well as the
size baseline, from several perspectives. The status assessments provide the tracking
mechanism for comparing progress and quality against the baseline plans and
adjustments to plans. At lower levels, SCOs document detailed estimates, plans, and
actuals.

2. Do the software plans document the activities to be performed and the
commitments made for the software project?

A The business case and software development plan describe the high-level activi-
ties to be performed and are signed off by the software project manager as a com-
mitment. The WBS documents the cost baselines and commitments for all levels of
management. SCOs also document lower level activities and commitments.

3. Do all affected groups and individuals agree to their commitments related
to the software project?

A The work breakdown structure (WBS) provides the mechanism for negotiating
commitments between the software project manager and subordinate managers.
SCOs and the CCB provide a mechanism for negotiating lower level commitments.

4. Does the project follow a written organizational policy for planning a soft-
ware project?

A Organizational policy should provide the organizational baseline from which
projects are planned. The organization’s infrastructure should also provide access to
precedent experience and default planning benchmarks.

S. Are adequate resources provided for planning the software project (e.g.,
funding and experienced individuals)?

A The software project manager, who is accountable for the plan, should create it
and take ownership in its success. The business case contains the expectations and
commitments necessary for the organization to determine the return on investment

370

PROCESS IMPROVEMENT AND MAPPING TO THE CMM

(ROI) for the effort. The adequacy of planning resources is not specified by policy. A
good target benchmark is that about 10% of a project’s effort should be allocated
to planning and management activities. While the determination of adequate
resources is project-specific, these assessments would come under the scrutiny of
the organization’s Project Review Authority (PRA) and would be reviewed at each
major milestone.

. Are measurements used to determine the status of the activities for plan-

ning the software project (e.g., completion of milestones for the project
planning activities as compared to the plan)?

A The progress metrics are specifically designed to provide insight into the critical
perspectives of plan versus actuals (development progress, test progress, evaluation
criteria passed, scenarios executed, SLOC developed, SCOs closed versus opened,
etc.).

Does the project manager review the activities for planning the software
profect on both a periodical and an event-driven basis?

A The status assessments ensure that 'the software project manager is held
accountable for addressing the necessary management indicators and assessing risk
periodically. Major milestones and release descriptions provide a similar forcing func-
tion for event-driven assessments.

Software Project Tracking and Oversight, Level 2

1.

Are the project’s actual results (e.g.; schedule, size, and cost) compared
with estimates in the software plans?

A Status assessments compare planned results with actual results for progress indi-
cators. The release descriptions compare planned quality indicators (evaluation crite-
ria) with actual results. SCOs also document planned versus actual results for
detailed change management.

Is corrective action taken when actual results differ significantly from the
project’s software plans?

A Failed evaluation criteria should be addressed in release descriptions and subse-
quent iterations. Other deviations from plan are addressed in status assessments,
where follow-through is required and tracked.

Are changes in the software commitments agreed to by all affected groups
and individuals?

A Changes in commitment are negotiated through the evolving WBS, software
development plans, and status assessments. Low-level commitments are also
addressed by CCBs, tracked on SCOs, and accounted for in release descriptions.

E.3 MATURITY QUESTIONNAIRE 371

4. Does the project follow a written organizational policy for both tracking
and controlling its software development activities?

A Organizational policy should define the standard status assessment format for a
certain set of topics so that cross-project comparisons are possible.

5. Is someone on the project assigned specific responsibilities for tracking
software work products and activities (e.g., effort, schedule, and budget)?

A The software project manager is the responsible individual. Status assessments
provide the mechanism for ensuring periodic review and accountability in conjunc-
tion with a WBS baseline. ‘

6. Are measurements used to determine the status of the activities for soft-
ware tracking and oversight (e.g., total effort expended in performing
tracking and oversight activities)?

A WBS expenditures and progress metrics provide the mechanism for tracking the
status of activities and enable instrumentation and oversight of the entire software
effort.

7. Are the activities for software project tracking and oversight reviewed with
senior management on a periodic basis (e.g., project performance, open
issues, risks, and action items)?

A This is exactly the purpose of the business case (which is updated at life-cycle
phase transitions), status assessments, and major milestone reviews.

Software Subcontract Management, Level 2

While subcontracting is not specifically addressed by the process framework, all the
techniques, tools, and mechanisms are assumed to be flowed down to subcontractors
so that the process remains homogeneous. If this cannot be done, or if the prime con-
tractor cannot define a well-partitioned piece of work to be performed by a mature
subcontractor, subcontracting should be avoided. To manage risks effectively, the
number and complexity of organizational interfaces must be managed. All subcon-
tracting decisions should be documented in the business case.

1. Is a documented procedure used for selecting subcontractors based on their
ability to perform the work?

A Organizational policy should require all personnel on a project, inciuding soft-
ware subcontractors, to follow a single development plan. Projects should employ
subcontractors that have been assessed as having a process that is at least as mature
as that of the project’s parent organization. {In other words, a level 3 organization
should not employ a level 2 subcontractor.)

372 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

2. Are changes to subcontracts made with the agreement of both the prime
contractor and the subcontractor?

A Common sense suggests this would always be the case.

3. Are periodic technical interchanges held with subcontractors?

A Subcontractors following the same development plan would participate in the
same technical interchanges, major milestones, and status assessments.

4. Are the results and performance of the software subcontractor tracked
against their commitments?

A Subcontractors following the same development plan would be tracked against
their commitments in the same way that the prime contractor is tracked.

S. Does the project follow a written organizational policy for managing soft-
ware subcontracts?

A Policy documents require that subcontractors follow the process that the prime
contractor follows.

6. Are the people responsible for managing software subcontracts trained in
managing software subcontracts?

A Training is an organization-specific issue.

7. Are measurements used to determine the status of the activities for manag-
ing software subcontracts (e.g., schedule status with respect to planned
delivery dates and effort expended for managing the subcontract)?

A Subcontractors should be managed in the same homogeneous way as the prime
contractor.

8. Are the software subcontract activities reviewed with the profect manager
on both a periodic and event-driven basis?

A Subcontractors should be managed by the software project manager in the same
way as the rest of the project team. All subcontractor commitment decisions are
documented in the business case, which is updated at life-cycle phase transitions.

Software Quality Assurance, Level 2

All activities and all people are involved in SQA. The use of an independent assess-
ment team is recommended to enable quality assessment activities, such as testing and
metrics analysis, to be performed concurrently (for schedule efficiency) and indepen-
dently (for diversity of technical perspective). Accountability for quality resides in
the various teams within an organization. For the purpose of answering this question-

E.3 MATURITY QUESTIONNAIRE 373

naire, however, the activities of the independent assessment team correlate most
closely to the CMM definition of SQA.

1. Are SQA activities planned?

A The software development plan describes the test activities, metrics, and quality
control activities. The WBS captures many of the details of the plan. Release specifi-
cations are also mechanisms for planning the SQA activities.

2. Do SQA activities provide objective verification that software products
and activities adbere to applicable standards, procedures, and require-
ments?

A Release specifications identify the objectives of an iteration. Software develop-
ment plans identify the project standards and procedures. Release specifications also
describe the quality of intermediate products from the perspective of objective pass/
fail criteria. CCBs and SCOs verify that low-level standards and procedures are
checked and tracked. Automated tools within the environment (compilers, docu-
mentation production, change management) should be burdened with assuring
that products adhere to applicable standards.

3. Are the results of SQA reviews and audits provided to affected groups and
individuals (e.g., those who performed the work and those who are respon-
sible for the work)?¢

A All the process checkpoints and CCB activities are SQA reviews. Intermediate
results are documented periodically in release descriptions. All SCOs are addressed
by the CCB with participation by affected groups.

4. Are issues of noncompliance that are not resolved within the project
addressed by senior management (e.g., deviations from applicable stan-
dards)?

A This is one of the explicit purposes of PRA approval of the development plans and
status assessments. Periodic PRA reviews address any proposed deviations from
organizational policy as the project progresses.

5. Does the project follow a written organizational policy for implementing
SQA?

A Organizational policy and software development plans should provide the writ-
ten SQA policies for the organization and projects, respectively.

6. Are adequate resources provided for performing SQA activities (e.g., fund-
ing and a designated manager who will receive and act on software non-
compliance items)?

374 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

A The adequacy of SQA resources is not specified by policy. A good target bench-
mark is that about 25% of a project’s effort should be allocated to assessment team
activities (testing, assessment, metrics, CCB). While the determination of adequate
resources and individuals is project-specific, these assessments would clearly come
under the scrutiny of the PRA.

7. Are measurements used to determine the cost and schedule status of the
activities performed for SQA (e.g., work completed, effort, and funds
expended compared to the plan)?

A The WBS provides the baseline, and the periodic status assessments track actuals
versus plan for all activities.

8. Are activities for SQA reviewed with senior management on a periodic
basis?

A This is one of the explicit purposes of PRA reviews and PRA approval of the soft-
ware development plan.

Software Configuration Management, Level 2

All activities and all people are involved with SCM, just as they are with SQA. An
independent assessment team assumes primary responsibility for configuration con-
trol activities, including SCO database maintenance, CCB administration, and base-
line management. These activities should be performed concurrently (for schedule
efficiency) and independently (for diversity of technical perspective). In general, SCM
activities are practiced by all software engineers and are supported primarily by the
software engineering environment. For the purpose of answering this questionnaire,
the activities of the assessment team correlate most closely to the CMM definition of
SCM.

1. Are software configuration management activities planned for the project?

A The software development plan should document the SCM activities and support
them with automation.

2. Has the project identified, controlled, and made available the software
work products through the use of configuration management?

A SCOs and all artifacts are configuration-controlled.

3. Does the project follow a documented procedure to control changes to
configuration items/units?

A SCOs provide the on-line mechanism for change control as documented in the
organizational policy and software development plan.

E.3 MATURITY QUESTIONNAIRE 375

4. Are standard reports on software baselines (e.g., software configuration
control board minutes and change request summary and status reports)
distributed to affected groups and individuals?

A Status assessments, which contain the CCB results in the form of standard met-
rics, should be available to all stakeholders and project teams.

5. Does the project follow a written organizational policy for implementing
software configuration management activities?

A This is provided by the organizational policy and software development plans.

6. Are project personnel trained to perform the software configuration man-
agement activities for which they are responsible?

A Training is an organization-specific issue. In general, everyone in the software
organization practices configuration management as enforced by the environment.
The formal configuration management activities of the independent test group are
primarily administrative control and reporting.

7. Are measurements used to determine the status of activities for software
configuration management (e.g., effort and funds expended for software
configuration management activities)?

A The WBS provides the baseline, and the periodic status assessments track actuals
versus plan for all activities.

8. Are periodic audits performed to verify that software baselines conform to
the documentation that defines them (e.g., by the SCM group)?

A CCBs are the most frequent audits that verify consistency on an SCO-by-SCO
basis. Release descriptions provide an integrated quality, completeness, and consis-
tency audit of the interim baselines created for major milestones.

Organization Process Focus, Level 3

1. Are the activities for developing and improving the organization’s and
project’s software processes coordinated across the organization (e.g., via a
software engineering process group)?

A All development plans and status assessments are reviewed and approved by the
Software Engineering Process Authority (SEPA). These mechanisms provide for coor-
dination and consistency across the organization.

2. Is your organization’s software process assessed periodically?

376

PROCESS IMPROVEMENT AND MAPPING TO THE CMM

A The SEPA is responsible for periodic assessments such as trend analyses. These
assessments should be planned and quantified in an appendix to the organizational

policy.

. Does your organization follow a documented plan for developing and

improving its software process?
A The SEPA should document this plan as an appendix to the organizational policy.

Does senior management sponsor the organization’s activities for software
process development and improvements (e.g., by establishing long-term
plans, and by committing resources and funding)?

A The extent to which senior management sponsors these activities should be easy
to evaluate from the composition of the SEPA and details of the organizational pol-
icy. Another indicator of management sponsorship is the extent to which the orga-
nization's process is backed up with capital investments in automation.

Do one or more individuals have full-time or part-time responsibility for
the organization’s software process activities (e.g., a software engineering
process group)?

A The SEPA has this responsibility. Whether this is a single person part-time or a
team of people full-time depends on the specific organization.

Are measurements used to determine the status of the activities performed
to develop and improve the organization’s software process (e.g., effort
expended for software process assessment and improvement)?

A The organizational policy should address the ROI of the SEPA activities and should
be updated periodically.

Are the activities performed for developing and improving software pro-
cesses reviewed periodically with senior management?

A The organization general manager should be required to approve all periodic
updates to the organizational policy.

Organization Process Definition, Level 3

1.

Has your organization developed, and does it maintain, a standard soft-
ware process?

A The organizational policy defines the standard software process and is updated
periodically.

E.3 MATURITY QUESTIONNAIRE 377

2. Does the organization collect, review, and make available information
related to the use of the organization’s standard software process (e.g., esti-
mates and actual data on software size, effort, and cost; productivity data;
and quality measurements)?

A The SEPA attends all status assessments and maintains a library of organizational
assets, including status assessment results, software development plans, past project
perfomance data, and other standard organizational tools and components.

3. Does the organization follow a written policy for both developing and
maintaining its standard software process?

A Organizational policy defines the standard process and its maintenance.

4. Do individuals who develop and maintain the organization’s standard soft-
ware process receive the required training to perform these activities?

A Training is an organization-specific issue.

5. Are measurements used to determine the status of the activities performed
to define and maintain the organization’s standard software process (e.g.,
status of schedule milestones and the cost of process definition activities)?

A An appendix to the organizational policy should address the ROI of the SEPA
activities.

6. Are the activities and work products for developing and maintaining the
organization’s standard software process subject to SQA review and audit?

A The activities and work products are continuously reviewed by practitioners. The
organization general manager should convene the appropriate review authority as
necessary to ensure that the organizational process collateral is adequate. The SEPA
is the chief organizational SQA authority. The buck stops there unless the general
manager intervenes.

Training Program, Level 3

1. Are training activities planned?
A Training is an organization-specific issue.

2. Is training provided for developing the skills and knowledge needed to per-
form software managerial and technical roles?

A Training is an organization-specific issue.

3. Do members of the software engineering group and other software-related
groups receive the training necessary to perform their rolesé

378

PROCESS IMPROVEMENT AND MAPPING TO THE CMM

A Training is an organization-specific issue.

Does your organization follow a written organizational policy to meet its
training needs?

A Training is an organization-specific issue.

Are adequate resources provided to implement the organization’s training
program (e.g., funding, software tools, appropriate training facilities)?

A Training is an organization-specific issue.
Are measurements used to determine the quality of the training program?
A Training is an organization-specific issue.

Are training program activities reviewed with senior management on a
periodic basis?

A Training is an organization-specific issue.

Integrated Software Management, Level 3

1.

Was the project’s defined software process developed by tailoring the orga-
nization’s standard software process?

A The organizational policy specifies the mandatory mechanisms, the starting
point; and the degrees of freedom for establishing a project process. The project
process is reviewed and approved by the SEPA.

. Is the project planned. and managed in accordance with the project’s

defined software process?

A The software project manager authors and approves the software development
plan and is held accountable for the plan through periodic PRA reviews.

Does the project follow a written organizational policy requiring that the
software project be planned and managed using the organization’s stan-
dard software process? , '

A The organizational policy is the written policy.

Is training required for individuals tasked to tailor the organization’s stan-
dard software process to define a software process for a new project?

A Training is an organization-dependent issue. The software project manager
should author the software development plan.

E.3 MATURITY QUESTIONNAIRE

379

S.

Are measurements used to determine the effectiveness of the integrated
software management activities (e.g., frequency, causes and magnitude of
replanning efforts)?

A Projects use status assessments, including required metrics, to assess progress
and quality performance. The metrics are collected and analyzed by the SEPA and
PRA to determine effectiveness and any improvements required.

Are the activities and work products used to manage the software project
subjected to SQA review and audit?

A The software development plan is reviewed by both the PRA and the SEPA (orga-
nizational SQA).

Software Product Engineering, Level 3

1.

4.

Are the software work products produced according to the project’s
defined software process?

A The software project manager is responsible for compliance with the software
development plan. Any deviations from plan or standards (or both) are reviewed
periodically through status assessments and are accommodated as appropriate in
subsequent iterations or product baselines.

Is consistency maintained across software work products (e.g., is the docu-
mentation tracing allocated requirements through software requirements,
design, code, and test cases maintained)?

A The CCB provides continuous attention to change management traceability.
Release descriptions are a mechanism for assessing consistency and completeness of
the work products of a major milestone. Traceability among the engineering sets
(use case models, design models, source code, and executable components) is main-
tained by the environment. The extent to which such information is summarized or
detailed to ensure completeness depends on the scale of the project and the stake-
holder concerns (for example, safety), and is captured in release descriptions.

Does the project follow a written organizational policy for performing the
software engineering activities (e.g., a policy which requires the use of
appropriate methods and tools for building and maintaining software
products)?

A The organizational policy requires specific activities and a standard environment
for the purpose of standardizing methods or tools across projects. Many of the
methods and tools are left open to project-specific selection.

Are adequate resources provided for performing the software engineering
tasks (e.g., funding, skilled individuals, and appropriate tools)?

380 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

A The adequacy of software engineering resources is not specified by policy. A
good benchmark is that about 50% of a project’s effort should be allocated to soft-
ware engineering tasks: 10% in requirements, 15% in design, and 25% in compo-
nent implementation. The determination of adequate resources and individuals is
project-specific and should be scrutinized by the PRA.

3. Are measurements used to determine the functionality and quality of the
software products (e.g., numbers, types, and severity of defects identified)?

A The explicit purpose of the metrics required and reported in status assessments is
to assess progress and quality.

6. Are the activities and work products for engineering software subjected to
SQA reviews and audits (e.g., is required testing performed, are allocated
requirements traced through the software requirements, design, code, and
test cases)?

A All the engineering sets (technical artifacts) are evolved and updated at each
major milestone. SCOs, CCBs, and release descriptions force continuous attention
to traceability.

Intergroup Coordination, Level 3

This set of questions is specifically supported by a focus on architecture. Intergroup
coordination is specifically associated with software architecture because architecture
encompasses the intercomponent and human-to-human interfaces.

1. On the project, do the software engineering group and other engineering
groups collaborate with the customer to establish the system requirements?

A The project vision statement and the release specifications are the responsibility
of the software architecture group. They are negotiated with the customer and are
evolved at each iteration.

2. Do the engineering groups agree to the commitments as represented in the
overall project plan?

A The software development plans, release specifications, and WBS define the
commitments and plans.

3. Do the engineering groups identify, track, and resolve intergroup issues
(e.g., incompatible schedules, technical risks, or system-level problems)?

A Demonstrations are the mechanism for productive and tangible engineering
coordination at an architectural level. CCBs provide intergroup resolution on the
level of SCOs. Proper scheduling of architecture demonstrations enables integration

E.3 MATURITY QUESTIONNAIRE 381

issues to be resolved as early in the life cycle as possible. Proper scheduling also
enhances early resolution of important intergroup issues.

4. Is there a written organizational policy that guides the establishment of
interdisciplinary engineering teams?

A CCBs, PRAs, and demonstration teams are established interdisciplinary engineer-
ing teams.

S. Do the support tools used by different engineering groups enable effective
communication and coordination (e.g., compatible word processing sys-
tems, database systems, and problem tracking systems)?

A Standard work breakdown structures, standard environments, and the SCO data-
base enable the various engineering groups to coordinate within a common frame-
work. Within a project, the artifacts developed by all teams should use common
notations, methods, and tools.

6. Are measures used to determine the status of the intergroup coordination
activities (e.g., effort expended by the software engineering group to sup-
port other groups)?

A Tracking the efforts of the architecture team provides insight into the stability of
the architecture. Stability is a good indicator of effective intergroup coordination.
Because the architecture team is separate, with explicit WBS elements, tracking can
be achieved more easily through the defined management and quality metrics
reported in the periodic status assessments.

7. Are the activities for intergroup coordination reviewed with the project
manager on both a periodic and event-driven basis?

A A good architecture-first approach plans the first iterations to expose any signifi-
cant issues in intergroup coordination. Periodic status assessments and major mile-
stone events provide tangible and objective insight into intergroup coordination
through observation of architecture metrics.

Peer Reviews, Level 3

The process framework does not specifically call for peer reviews in the classic sense.
However, there are several mechanisms whose purpose is exactly that of classic peer
reviews. These mechanisms include demonstrations (global integration peer reviews),
CCBs (change management peer reviews), status assessments (management peer
reviews), and conventional peer reviews (code walkthroughs, inspections), as incor-
porated by project software development plans.

382

PROCESS IMPROVEMENT AND MAPPING TO THE CMM

. Are peer reviews planned?

A CCBs, status assessments, and demonstrations should be planned and followed
through in a systematic way.

Are actions associated with defects that are identified during peer reviews
tracked until they are removed?

A All defects, independent of source, are tracked via SCOs, and the metrics are
reported in the status assessments.

Does the project follow a written organizational policy for performing peer
reviews?

A Organizational policy should require CCBs, demonstrations, and status assess-
ments. It should also specify that other forms of peer reviews be defined in the
project’s software development plan.

Do participants of peer reviews receive the training required to perform
their roles?
A Training is an organization-specific issue.

Are measurements used to determine the status of peer review activities
(e.g., number of peer reviews performed, effort expended on peer reviews,
and number of work products reviewed compared to the plan)?

A CCBs provide extensive change management metrics. Release descriptions
require the same ROl metrics to be collected for demonstrations. The SEPA periodi-
cally assesses the ROl of organizational trend analyses from status assessment data.

Are peer review activities and work products subject to SQA review and audit
(e.g., planned reviews are conducted and follow-up actions are tracked)?

A Software project managers, CCBs, and PRAs provide continuous follow-through.

Quantitative Process Management, Level 4

1.

Does the project follow a documented plan for conducting quantitative
process managements

A An appendix to the organizational policy should define the plan for quantitative
process improvement. Status assessments evaluate collected metrics in the context
of organizational norms maintained by the SEPA.

. Is the performance of the project’s defined software process controlled

quantitatively (e.g., through the use of quantitative analytic methods)?

E.3 MATURITY QUESTIONNAIRE 383

A The data are collected and reported to the SEPA through status assessments.
These metrics are fed back into the planning of each subsequent iteration.

3. Is the process capability of the organization’s standard software process
known in quantitative terms?

A An appendix to the organizational policy should define the current process
assessment and the plan for process improvement in quantitative terms.

4. Does the project follow a written organizational policy for measuring and
controlling the performance of the project’s defined software process (e.g.,
projects plan for how to identify, specify, and control special causes of vari-
ation)?

A The software development plan should define a metrics program for measuring
and controlling the software process. It should also require that this process (and its
control mechanisms) be evolved and improved as the project progresses.

5. Are adequate resources provided for quantitative process management
activities (e.g., funding, software support tools, and organizational mea-
surement program)?¢

A The adequacy of process management resources is not specified by policy. A
good benchmark is that a team about the size of the square root of the number of
active projects is sufficient.

6. Are measurements used to determine the status of the quantitative process
management activities (e.g., cost of quantitative process management
activities and accomplishment of milestones for quantitative process man-
agement activities)?

A An appendix to the organizational policy should address the ROl of the SEPA
activities.

7. Are the activities for quantitative process management reviewed with the
project manager on both a periodic and event-driven basis?

A Status assessments and major milestones provide periodic and event-driven
reviews of quantitative process management data.

Software Quality Management, Level 4

1. Are the activities for managing software quality planned for the project?

A Release specifications identify the expectations for the quality metrics. These speci-
fications are established for each iteration and are documented in status assessments
(in-progress snapshots) and release descriptions (major milestone baselines).

384 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

2. Does the project use measurable and prioritized goals for managing the
quality of its software products (e.g., functionality, reliability, maintain-
ability, and usability)?

A This is the purpose of the release specifications and associated demonstrations,
release descriptions, and metrics.

3. Are measurements of quality compared to goals for software product qual-
ity to determine if the quality goals are satisfied?

A The project vision statement, release specifications, and release descriptions track
the achievement of quality goals. Status assessments also provide periodic insight
into the achievement of a certain minimum set of quality indicators.

4. Does the project follow a written organizational policy for managing soft-
ware quality?

A Organizational policy defines the mechanisms for managing software quality
(release specifications, release descriptions, quality metrics, PRAs, and CCB/SCOs).

5. Do members of the software engineering group and other software-related
groups receive required training in software quality management (e.g.,
training in collecting measurement data and benefits of quantitatively man-
aging product quality)?

A Training is an organization-specific issue.

6. Are measurements used to determine the status of the activities for manag-
ing software quality (e.g., the costs of poor quality)?

A The scrap and rework metrics provide proven indicators of process performance
in achieving quality and of the costs associated with reworking inadequate quality in
intermediate products. ’

7. Are the activities performed for software quality management reviewed
with senior management on a periodic basis?

A Quality activities and metrics should be reviewed periodically with senior
management.

Defect Prevention, Level 5

1. Are defect prevention activities planned?

A Not addressed.

2. Does the project conduct causal analysis meetings to identify common
causes of defects?

E.3 MATURITY QUESTIONNAIRE 385

A Not addressed.

3. Once identified, are common causes of defects prioritized and systemati-
cally eliminated?

A Not addressed.

4. Does the project follow a written organizational policy for defect preven-
tion activities?

A Not addressed.

5. Do members of the software engineering group and other software-related
groups receive required training to perform their defect prevention activi-
ties (e.g., training in defect prevention methods and the conduct of task
kick-off or causal analysis meetings)?

A Training is an organization-specific issue.

6. Are measurements used to determine the status of defect prevention activi-
ties (e.g., the time and cost for identifying and correcting defects and the
number of action items proposed, open, and completed)?

A Projects must use a set of metrics for determining the effectiveness and status of
defects. Defect prevention activities are not specifically addressed or formalized, but
the primitives are well defined via the management and quality metrics. PRA
reviews, SCOs, and CCBs provide mechanisms for practicing defect prevention.

7. Are the activities and work products for defect prevention subjected to
SQA review and audit?

A All status assessments and PRA reviews are provided to the SEPA (for organiza-
tion SQA). Status assessments are distributed to project personnel and stakeholders,
and SCO data are reviewed in CCBs to verify that all personnel are contributing to
the SQA of defect prevention data.

Technology Change Management, Level 5

1. Does the organization follow a plan for managing technology changes?

A Not addressed.

2. Are new technologies evaluated to determine their effect on quality and
productivity?

A Not addressed.

3. Does the organization follow a documented procedure for incorporating
new technologies into the organization’s standard software process?

386

PROCESS IMPROVEMENT AND MAPPING TO THE CMM

A Not addressed.

Does senior management sponsor the organization’s activities for manag-
ing technology change (e.g., by establishing long-term plans and commit-
ments for funding, staffing, and other resources)?

A Not addressed.
Do process data exist to assist in the selection of new technology?
A Not addressed.

Are measurements used to determine the status of the organization’s activi-
ties for managing technology change (e.g., the effect of implementing tech-
nology changes)?

A Not addressed.

Are the organization’s activities for managing technology change reviewed
with senior management on a periodic basis?

A Not addressed.

Process Change Management, Level 5

1.

Does the organization follow a documented procedure for developing and
maintaining plans for software process improvement?

A The organizational policy should include an appendix on process improvement.

Do people throughout your organization participate in software process
improvement activities (e.g., on teams to develop software process im-
provements)? '

A The SEPA and PRAs participate. Other participation is organization-specific.

Are improvements continually made to the organization’s standard soft-
ware process and the project’s defined software processes?

A Each new iteration of a project is an opportunity to inject process improvements
into the software development plan. Organizational policy also requires periodic
reassessment and improvement.

Does the organization follow a written policy for implementing software
process improvements?

A The written policy should be included as an appendix to the organizational policy.

E.4 QUESTIONS NOT ASKED BY THE MATURITY QUESTIONNAIRE

387

S. Is training in software process improvement required for both manage-

ment and technical staff?

A Training is an organization-specific issue.

6. Are measurements made to determine the status of the activities for soft-

ware process improvement (e.g., the effect of implementing each process
improvement compared to its defined goals)?

A The organizational policy and SEPA should be required to assess the ROI of orga-
nizational improvement activities periodically.

7. Are software process improvement efforts reviewed with senior manage-

E.4

ment on a periodic basis?

A The general manager of the organization should be responsible for approving all
changes to the organizational policy.

QUESTIONS NOT ASKED BY THE
MATURITY QUESTIONNAIRE

To assess the maturity of an organization’s process, I would ask several other sets of
questions that are not currently addressed by the CMM key process areas. Whereas
the preceding responses track directly to the Maturity Questionnaire, the following
questions correspond to other policies, mechanisms, and approaches of a modern
process for which the CMM provides little motivation. These additions to the Ques-
tionnaire would help in the evaluation of additional discriminators of a successful
modern process framework.

Personnel Accountability, Level 2

One important goal of controlled software management is clear delineation of responsi-
bility and mechanisms for accountability. Consequently, the following questions should
also be asked in an assessment of an organization’s process implementation:

. Does the organization define a role for maintaining its process description

and assets?

. Does the SEPA role have a track record of influencing projects and corpo-

rate strategy?

3. Do software project managers author their development plans?

4. Do software project managers present their status assessments themselves?

388 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

Environment Automation, Level 3

An organization that lacks a significant level of automation is unlikely to have a truly
mature process. Answers to the following questions will help in evaluating an organi-
zation’s automation level:

1. Does the organizational policy define a minimum core environment?

2. Does the environment support metrics collectlon as a natural by-product of
the process? !

3. Is documentation an automated, homogeneous by-product of software
engineering (as opposed to a separate, heterogeneous artifact)?

4. Is round-trip engineering adequately supported by automation?

S. Are test artifacts developed and maintained with the same tools, tech-
niques, and change management as the product artifacts?

6. Is the regression testing adequately supported by automation?

7. Are randomized scenarios and after—hours tests used to ensure statistical
test coverage?

8. Are the language editors, configuration management environment, com-
piler, and debugger integrated?

Architecture Engineering, Level 3

An organization that lacks a significant and systematic focus on architecture is
unlikely to have a truly mature process. Answers to the following questions will help
in evaluating this perspective:

1. Is instrumentation available for providing objective insight into the execu-
tion characteristics of demonstrations (as opposed to being custom-devel-
oped on each project)?

2. Are peer inspections focused on the truly critical components?
3. Is there a well-articulated definition of architecture?

4. Is there a rigorous design notation from which design progress, design vol-
atility, and design qualities can be objectively assessed?

5. Does the architecture team exhibit expertise in both the domain knowledge
and the relevant software engineering disciplines?

E.4 QUESTIONS NOT ASKED BY THE MATURITY QUESTIONNAIRE 389

Change Management, Level 3

In an iterative development process, the management of changes and the extent of
change freedom are key indications of process maturity.

1. Are software changes defined unambiguously in terms of type and priority?
2. Are measurements of change collected, reported, and analyzed?

3. Are roles and responsibilities for maintaining the change management
database defined and enforced?

4. Is there a mechanism for verifying that the originator of a change request is
satisfied with the change implementation?

S. Is there a track record of changes as well as demonstrated change avoid-
ance for risk management purposes?

Predictability, Level 3

The best indication of a mature process is predictable results.

1. Does the organization maintain plan versus actual data?

2. Is there a documented correlation between plan versus actuals on recent
projects?

3. Are historical plans and actuals used in current projects?

4. Is there a track record of action where plan and actuals diverge?

Integrated Economics, Level 4

The appropriate economic motivations should be woven into an organization’s process.

1. Are there sufficient organizational standards to define the metrics primi-
tives so that measurements across projects are comparable?

2. Are measurements from previous iterations used systematically in the plan-
ning of subsequent iterations?

3. Does the SEPA assess the current state of the organization’s process maturity?

4. Are the process improvement activities of an organization measured
against the return on investment?

S. Do software project managers generally believe that the SEPA adds value
to their project?

390 PROCESS IMPROVEMENT AND MAPPING TO THE CMM

E.5 OVERALL PROCESS ASSESSMENT

The responses given here suggest that an organization that has implemented the pro-
cess framework described in this book would be at least a strong SEI level 3, and argu-
ably a level 4. A sure sign that an organization has achieved this level of maturity
would be its ability to (1) expand on the responses of this document with more-
detailed explanations of organization-specific and project-specific implementations,
and (2) back up each response with specific examples from experience in the field. If
the process of preparing for such a process audit requires more than 1 or 2 staff-
weeks, the organization’s Software Engineering Process Authority is probably more a
facade than a useful factor in the organization’s operation. The collateral needed for a
process audit should be a natural by-product of the project management process.

Glossary

Adaptability The rework trend over time

Architecture The significant structure and behavior of a system, including all engi-
neering specifications necessary to determine a complete bill of materials with a
high level of confidence

Architecture first An approach that requires a demonstrable balance to be achieved
among the driving requirements, the architecturally significant design decisions,
and the life-cycle plans before the resources for full-scale development are committed

Artifact A discrete, cohesive collection of information, typically developed and
reviewed as a single entity

Assessment workflow The activities associated with assessing the trends in process
and product quality

Breakage The average extent of change, which is the amount of software baseline
that needs rework; measured in source lines of code, function points, compo-
nents, subsystems, files, or other units

Budgeted cost The planned expenditure profile over the life cycle of the project
Business case Cost, revenue, schedule, and profit expectations

Change management Tracking changes to the technical artifacts in order to main-
tain control and understand the true technical progress and quality trends
toward delivering an acceptable end product or interim release

Change traffic The number of software change orders opened and closed over the
life cycle

Component A cohesive unit of software, either in source code or executable format,
with a defined interface and behavior

391

392 GLOSSARY

Component-based development A management and engineering paradigm that
emphasizes the use of existing components over the development of custom
components

Configurable process A life-cycle framework suitable for a broad spectrum of
applications

Configuration baseline A named collection of software components and support-
ing documentation that is subject to change management and is upgraded, main-
tained, tested, statused, and obsolesced as a unit

Configuration Control Board A team of people that functions as the decision
authority on the content of configuration baselines

Construction phase The third phase of the life cycle, focused on the construction of
a usable product that is mature enough to transition to the user community

Conventional process A waterfall software development process that transitions
sequentially from requirements analysis to design to coding to unit testing to
integration testing to system verification

Demonstration A set of software components that executes threads of relevant use
cases

Deployment artifacts Project-specific documents for transitioning the product into
operational status (for example, computer system operations manuals, software
installation - manuals, plans and procedures for cutover from a legacy system, site
surveys)

Deployment set Machine-processable languages and associated files

Deployment workflow The activities associated with transitioning the end products
to the user

Design model Design notations (for example, UML) at varying levels of abstraction
to represent the components of the solution space and their identities, attributes,
static relationships, dynamic interactions, and so forth

Design set Models of the solution space

Design workflow The activities associated with modeling the solution and evolving
the architecture and design artifacts

Development environment A full suite of development tools needed to support all
the various process workflows and round-trip engineering

Elaboration phase The second phase of the life cycle, focused on the elaboration of
an architecture baseline consistent with a production plan and a requirements
vision

Engineering stage The early life-cycle activities that evolve the plans, the require-
ments, and the architecture together, resolving the development risks; typically
operates with a diseconomy of scale

GLOSSARY 393

Environment The process automation support for producing the life-cycle artifacts;
should include requirements management, visual modeling, document automation,
host/target programming tools, automated regression testing, and continuous and
integrated change management and defect tracking

Environment workflow The activities associated with automating the production
of life-cycle artifacts and evolving the maintenance environment

Evolving levels of detail The evolution of project artifacts commensurate with the
current level of requirements and architecture understanding

Executable code Machine language notations, executable software, and the build
scripts, installation scripts, and executable target-specific data necessary to use
the product in its target environment

Expenditure profile Cost expended over time

Implementation set Human-readable programming language and associated source
files

Implementation workflow The activities associated with programming the compo-
nents and evolving the implementation and deployment set artifacts

Inception phase The first phase of the life cycle, focused on the inception of a product
vision and its corresponding business case

Initial operational capability milestone A review conducted late in the construc-
tion phase to assess the readiness of the software to begin the transition into
customer or user sites and to authorize the start of system qualification testing

Inspection A human review of an artifact

Iteration A distinct sequence of activities within a single phase, resulting in a
release; includes a well-defined plan and a well-documented result

Iterative life-cycle process A process that refines the problem understanding, an
effective solution, and an effective plan over several iterations to ensure a bal-
anced treatment of all stakeholder objectives

Life cycle One complete pass through the four phases (inception, elaboration, con-
struction, and transition); the span of time between the beginning of the incep-
tion phase and the end of the transition phase

Life-cycle architecture milestone A review conducted at the end of the elaboration
phase to demonstrate an executable architecture to all stakeholders and achieve
agreement on the detailed plan for the construction phase

Life-cycle objectives milestone A review conducted at the end of the inception
phase to present a recommendation to all stakeholders on how to proceed with
development; includes a plan, estimated cost and schedule, and expected benefits
and cost savings

Maintenance environment A mature version of the development environment

394 GLOSSARY

Maintenance stage The evolution of the software product after its initial develop-
ment life cycle

Major milestone Systemwide event held at the end of each development phase to
provide visibility to systemwide issues, synchronize the management and engi-
neering perspectives, and verify that the goals of the phase have been achieved

Management set Artifacts for capturing the project plans, intermediate states, and
histories

Management workflow The activities associated with planning and controlling the
life-cycle process and ensuring win conditions for all stakeholders

Maturity MTBF trend over time

Mean time between failures (MTBF) The average usage time between type 0 (criti-
cal) software faults

Minor milestone Iteration-focused event conducted to review the content of a given
iteration in detail and to authorize continued work

Model-based notation Semantically rich graphical and textual design notations (for
example, UML)

Modern process An iterative software development process that develops an archi-
tecture first, then evolves useful releases of capability within that architecture
until an acceptable product release is achieved

Modularity The average breakage trend over time

Objective quality control Life-cycle assessment of the process and all intermediate
products using well-defined measures derived directly from the evolving engi-
neering artifacts and integrated into all activities and teams

Organizational policy An artifact that defines the life cycle and the process primi-
tives: major milestones, intermediate artifacts, engineering repositories, metrics,
and roles and responsibilities

Phase The span of time between two major milestones of the process, during which
a well-defined set of objectives is met, artifacts are completed, and the decision is
made whether to move into the next phase

Product The subset of deployment artifacts delivered to end users

Product release milestone A review conducted at the end of the transition phase to
assess the completion of the software and its transition to the support organiza-
tion, if applicable '

Production stage The late life-cycle activities to construct usable versions of capa-
bility within the context of the baseline plans, requirements, and architecture
developed in the engineering stage; should operate with an economy of scale in a
modern process

Progress Work completed over time

GLOSSARY 395

Project Review Authority The single individual responsible for ensuring that a soft-
ware project complies with all organizational and business unit software poli-
cies, practices, and standards

Prototype A release that is not necessarily subjected to change management and
configuration control

Prototyping environment An architecture testbed for prototyping project architec-
tures to evaluate trade-offs during the inception and elaboration phases of the
life cycle

Release A set of artifacts that is the object of evaluation at a milestone

Release description An artifact that captures the result of release baselines

Release specification An artifact that contains the scope, plan, and objectives of
release baselines

Requirements model Requirements notations (for example, UML) at varying levels
of abstraction to represent the components of the problem space and their iden-
tities, attributes, static relationships, dynamic interactions, and so forth

Requirements set Organized text and models of the problem space

Requirements workflow The activities associated with analyzing the problem space
and evolving the requirements artifacts

Rework The average cost of change, which is the effort to analyze, resolve, and
retest all changes to software baselines

Risk An on-going or anticipated concern that has a significant probability of
adversely affecting the success of major milestones

Round-trip engineering The environment support necessary to automate and syn-
chronize engineering information in different formats (for example, require-
ments specifications, design models, source code, executable code, test cases)

Software architecture description Design model views that have structural and
behavioral information sufficient to establish a bill of materials that includes
quantity and specification of primitive parts and materials, labor, and other
direct costs

Software change order The atomic unit of software work that is authorized to cre-
ate, modify, or obsolesce components within a configuration baseline

Software change order database A persistent collection of discrete baseline change
descriptions

Software development plan A project-specific process instance

Software Engineering Environment Authority The person or group responsible for
automating the organization’s process, maintaining the organization’s standard
environment, training project teams to use the environment, and maintaining
organization-wide reusable assets

396 GLOSSARY

Software Engineering Process Authority The person or group responsible for
maintaining the organization’s process and facilitating process guidance to and
from project practitioners

Source code Programming language notation that represents the tangible implemen-
tation of components and their forms, interfaces, and dependency relationships

Stability The relationship between opened versus closed software change orders

Staffing Headcount levels

Stage A portion of the software life cycle with a relatively homogeneous economic
model

Stakeholder The representative decision authority in each of the organizations with
a stake in the outcome of a project

Status assessment Periodic events to provide management with frequent and regu-
lar insight into the progress being made

Team dynamics Staffing additions and attrition over time

Transition phase The fourth phase of the life cycle, focused on the transition of the
product to the user community

Type O software change order Critical failures or showstopper software problems
that have an impact on the usability of the software in its primary use cases -

Type 1 software change order A bug or defect that either does not impair the use-
fulness of the system or can be worked around

Type 2 software change order A change that is an enhancement rather than a
response to a defect

Type 3 software change order A change that is caused by an update to the
requirements

User manual The reference documentation necessary to support the delivered
software

Vision statement The view of the product to be developed in a format that is under-
standable and relevant to all stakeholders

Work The effort to be accomplished to complete a certain set of tasks

Work breakdown structure The planning framework; a project decomposition into
units of work from which cost, artifacts, and activities can be allocated and tracked

Workflow A thread of cohesive and mostly sequential activities

References

[Boehm, 1981] Boehm, Barry W., Software Engineering Economics (Prentice-Hall,
Englewood Cliffs, New Jersey, 1981). Used with permission.

[Boehm, 1987] Boehm, Barry W., “Industrial Software Metrics Top 10 List,” IEEE Soft-
ware, Volume 4, Number 5 (September 1987), 84-85. Copyright © 1987 IEEE.
Used with permission.

[Boehm, 1988] Boehm, Barry W., “A Spiral Model of Software Development and
Enhancement,” Computer, Volume 21, Number 5§ (May 1988), 61-72.

[Boehm, 1996] Boehm, Barry W., “Anchoring the Software Process,” IEEE Software,
Volume 13, Number 4 (July 1996), 73-82. Copyright © 1996 IEEE. Used with
permission.

[Boehm and Royce, Walker, 1988) Boehm, Barry W., and Walker E. Royce, “TRW
IOC Ada COCOMO: Definition and Refinements,” Proceedings of the 4th
COCOMO Users Group, Pittsburgh, Pennsylvania (November 1988).

[Boehm et al., 1995] Boehm, Barry W., Bradford Clark, Ellis Horowitz, Chris West-
land, Ray Madachy, and Richard Selby, “Cost Models for Future Software Engi-
neering Processes: COCOMO 2,” Annuals of Software Engineering, Volume 1
(1995), 57-94.

[Booch, 1996] Booch, Grady, Object Solutions: Managing the Object-Oriented
Project (Addison-Wesley Publishing Company, Menlo Park, California, 1996).

[Brown, 1996] Brown, Norm, “Industrial-Strength Management Strategies,” IEEE
Software, Volume 13, Number 4 (July 1996), 94-103. Copyright © 1996 IEEE.
Used with permission.

[Davis, 1994] Davis, Alan M., “Fifteen Principles of Software Engineering,” IEEE
Software, Volume 11, Number 6 (November 1994), 94-96, 101. Copyright ©
1994 IEEE. Used with permission.

397

398 REFERENCES

[Davis, 1995] Davis, Alan M., 201 Principles of Software Development (McGraw
Hill, New York, 1995). Copyright © 1995 McGraw Hill. Used with permission.

[Defense Science Board, 1994} Report of the Defense Science Board Task Force on
Acquiring Defense Software Commercially (The Undersecretary of Defense,
Acquisition and Technology, Washington, D.C. June 1994).

[DeMarco, 1982] DeMarco, Tom, Controlling Software Projects: Management,

Measurement & Estimation (Yourdon Press, Englewood Cliffs, New Jersey,
1982).

[DOD, 1988] DOD-STD-2167A, Defense System Software Development, Space and
Naval Warfare Systems Command (December 1988). Canceled December 5,
1994,

[Horowitz, 1997} Horowitz, Ellis, et al., “USC COCOMO 1II, 1997 Reference
Manual,” USC-CSE technical report (University of Southern California, Los
Angeles, California, 1997).

[Humphrey, 1989] Humphrey, Watts S., Managing the Software Process (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1989).

[Humphrey, 1995] Humphrey, Watts S., A Discipline for Software Engineering
(Addison-Wesley Publishing Company, Reading, Massachusetts, 1995).

[Jones, 1994] Jones, Capers, “The Economics of Object-Oriented Software,” American
Programmer, Volume 7, Number 10 (October 1994), 28-35.

[Jones, 1995] Jones, Capers, “Table of Programming Languages and Levels, Version
8,” Software Productivity Research white paper (Burlington, Massachusetts),
June 1995. Copyright © 1995 Capers Jones. Used with permission.

[Jones, 1996] Jones, Capers, Patterns of Software Systems Failure and Success (Inter-
national Thomson Computer Press, Boston, Massachusetts, 1996).

[Kruchten, 1995] Kruchten, Phillipe B., “The 4+1 View Model of Architecture,”
IEEE Software, Volume 12, Number 6 (November 1995), 42-50. Copyright ©
1995 IEEE. Used with permission.

[Royce, Walker, 1989] Royce, Walker E., “Ada Process Model Guidebook,” Systems
Engineering and Development Division Document TRW-TS-89-08 (TRW,
Redondo Beach, California), November 1989. Used with permission.

[Royce, Walker, 1990} Royce, Walker E., “Pragmatic Quality Metrics for Evolutionary
Software Development Models,” Proceedings TRI-Ada 90, Baltimore, Maryland
(December 1990), 551-565. '

[Royce, Walker, 1990b] Royce, Walker E., “TRW’s Ada Process Model for Incremental
Development of Large Software Systems,” Proceedings of the IEEE 12th Interna-
tional Conference on Software Engineering, Nice, France, March 26-30, 1990.

REFERENCES 399

[Royce, Walker, 1997] Royce, Walker E., “Managing Successful Iterative Develop-
ment Projects: A Seminar on Software Best Practices,” Version 2.3 (Rational
Software Corporation, Menlo Park, California), 1997.

[Royce, Winston, 1970] Royce, Winston W., “Managing the Development of Large
Software Systems,” Proceedings of IEEE WESCON (August 1970), 1-9.

[SEL, 1993] Capability Maturity Model for Software, Version 1.1, Document No.
CMUY/SEI-93-TR-24, ESC-TR-93-177 (Carnegie Mellon University Software
Engineering Institute, Pittsburgh, Pennsylvania, 1993). Used with permission.

[SEL, 1993b] Key Practices of the Capability Maturity Model, Version 1.1, Document
No. CMU/SEI-93-TR-25, ESC-TR-93-178 (Carnegie Mellon University Software
Engineering Institute, Pittsburgh, Pennsylvania, 1993). Used with permission.

[SEL, 1995] Carnegie Mellon Software Engineering Institute, The Capability Maturity
Model: Guidelines for Improving the Software Process (Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1995).

[SEL, 1998] Maturity Questionnaire, Document No. CMU/SEI-94-SR-007 (Carnegie
Mellon University Software Engineering Institute, Pittsburgh, Pennsylvania,
June 1994). Used with permission.

[Standish Group, 1995] The Standish Group, “Chaos,” 1995. Used with permission.

Ada COCOMO, 26, 269-274
Ada 83, 34-36
Ada 95, 34-36
Adaptability metric, 197-198, 286-287,
292,296, 344-345
Adversarial stakeholder relationships, 15-16,
225
Airlie Software Council, 202, 232
nine best practices, 233-235
Architectural risk, 217
Architecture
baseline, 110, 114-115
management perspective, 110-111
team, 161-162
technical perspective, 111-115
Architecture-first approach, 63, 64, 68, 118,
119, 231,233,234
Artifacts, 83-107
artifact sets, 84-95
associated with each workflow, 120
deployment set, 88-92
design set, 87
engineering, 103-105
engineering sets, 86-92
evolution over the life cycle, 92-93
implementation set, 87-88, 90-92
management, 96-102
management set, 8 5-86
pragmatic, 105-107

Index

requirements set, 86
test, 93-95
Assessment workflow, 118-124
Automation
improving through software environ-
ments, 4648
tools, 168-172

Boehm, Barry, 17-20, 44-45, 75, 126, 140,
242-245,266,271,274,292
staffing principles, 4445
top 10 software metrics, 17-20,
242-245
Bohr-bugs, 199
Booch, Grady, 36, 37
Bottom-up software cost estimation, 28
Breakage and modularity metric, 197
Brown, Norm, 202, 232
Budgeted cost and expenditures metric,
191-195
Business case, 96-97
Business context, 146

C language, 34-36
C++ language, 34-36
Capability Maturity Model, 68, 363-390
CCPDS-R case study, 15, 299-362
artifacts, 323-326
component evolution, 318-320

401

402 INDEX

CCPDS-R case study (cont.)
computer software configuration items,
305-307
core metrics, 337-348
incremental design process, 315-317
incremental test process, 321-323
major milestone demonstration, 329-336
metrics, 318-321, 337-356
minor milestones, 315-318
people factors, 356-359
process overview, 309-326
project organization, 304-306
risk management, 312-314
software acquisition process, 301-304
software architecture skeleton, 307-309
software artifacts, 323-326
Change management, 174-181
configuration baseline, 178-179
Configuration Control Board, 179-181
environment, 63, 64, 67,232,233, 234
software change orders, 175-178
Change metrics, 283-298
Change traffic and stability metric,
196-197
Checkpoints, 125-134
major milestones, 126-132
minor milestones, 132-133
periodic status assessments, 133-134
COBOL language, 34-35
COCOMO, 26, 43,265-281
COCOMO 11, 26, 67,274-281
Commercial components 39—40
Component-based development, 33, 63, 64,
68,231, 233
Component view, 112-114
Configurable process, 65, 67,232,233
Configuration baseline, 178-180
Configuration Control Board, 179-181,
286
Configured baseline, 286
Construction phase, 79
Construction team, 166

Continuous integration, 226-227
Conventional software engineering princi-
ples, §5-63
Conventional software management, 5-20
cost allocations, 227
design reviews, 17
quality, 49
work breakdown structures, 140-142
Cost estimation, 26-29, 265-281
Culture shifts, 248-251

Davis, Alan, 55-62

Defense Science Board Task Force, 5,
263-264

DeMarco, Tom, 284

Demonstration-based approach, 65, 68,119,
232,233

Deployment documents, 101

Deployment set, 88-92

Deployment view, 112-114

Deployment workflow, 118-124

Design breakage, late, 12-13, 225

Design set, 87

Design view, 112-114

Design workflow, 118-124

Development environment, 172

Diseconomies of scale, 22, 210, 245

Document-driven approach, 14-17, 225

Domain experience, 217-218

Early risk resolution, 227-228
Earned value system, 191-195
Economy of scale, 24, 65
Elaboration phase, 77-78
End-product quality metrics, 291-293
Engineering artifacts, 103-105
architecture description, 104-105
software user manual, 104-105
vision document, 103-104
Engineering sets, 86-92
deployment set, 88-92
design set, 87

INDEX 403

implementation set, 87-88, 90-92
requirements set, 86
Engineering stage, 74-76
Environment, 101
change management, 63, 64, 67,232,233,
234
project, 172-185
software, 4648
workflow, 118-124
Evolutionary requirements, 228-230
Evolutionary work breakdown structures,
142-146
Evolving levels of detail, 65, 67, 232, 233,
234
Expenditures metric, 191-195, 345-348

Formal inspections, 234

FORTRAN 77 language, 34

Forward engineering, 47

Functional decomposition, requirements-
driven, 14-15, 225

Function points, 34-36, 241

Heisen-bugs, 199
Horowitz, Ellis, 274, 363
Humphrey, Watts, 155

Implementation set, 87-88, 90-92
Implementation workflow, 118-124
Improving software economics, 31-53
Inception phase, 76-77
Independent software cost estimation, 28
Infrastructures, 181-184
Initial operational capability milestone,
130-131
In-progress indicators, 293-297
Inspections, 10, 51-53, 234
Integrated life-cycle environments, 49
Integration
continuous, 226-227
conventional software process, 50
protracted, 12-13, 225

Iteration workflows, 121-124

Iterative life-cycle process, 63, 64, 67,119,
231,233

Iterative process planning, 139-154

Java, 34
Jones, Capers, 5,27, 34, 36,259-261, 285

Kruchten, Philippe, 111

Languages, 34-36
Life-cycle architecture milestone, 129-131
Life-cycle objectives milestone, 128-129
Life-cycle phases, 73-81
construction phase, 79
effort and schedule, 268
elaboration phase, 77-78
inception phase, 76-77
transition phase, 80-81
Life-cycle stages
engineering, 74-76
production, 74~76
Life-cycle testing, 51
Line-of-business organizations, 155-158

Macroprocesses, 4041, 168
Maintainability, 287, 292-293
Maintenance environment, 172
Major milestones, 126-132, 231

initial operational capability milestone,

130~131

life-cycle architecture milestone, 129-131

life-cycle objectives milestone, 128-129

product release milestone, 132
Management artifacts, 96-102

business case, 96

deployment, 101

environment, 101

release descriptions, 100

release specifications, 98

sequences, 101-102

software change order database, 98-100

404 INDEX

Management artifacts (cont.)
software development plan, 96-97
status assessments, 100-101
work breakdown structure, 97

Management indicators, 188-196

Management reviews, 125-134

Management set, 85-86

Management workflow, 118-124

Maturity metric, 198-199, 287, 292,

296-297, 345-346

Metaprocesses, 40—41, 168

Metrics
adaptability, 286-287
attributes, 189-190
automation, 202-207
change, 283-298
characteristics of a good metric, 201-202
classes, 204-205
collected statistics, 288-291
core metrics, 188-202
derivation, 286-297
dynamic trend, 188
end-product quality, 291-293
in-progress indicators, 293-297
life-cycle expectations, 199-200
maintainability, 287
management indicators, 190-196
maturity, 287
modularity, 286
software change orders, 285
software quality, 284-285
source lines of code, 285
static value, 188

Microprocesses, 40-41,168

Minor milestones, 132-133

Model-based notation, 65, 68,232, 233,234

Model-based software architectures,

109-115
architecture baseline, 114-115
architecture descriptions, 114
component view, 114
deployment view, 114
design view, 114
management perspective, 110-111

process view, 114
technical perspective, 111-115
use case view, 112-113
Modern project profiles, 225-235
Modern software economics, 242-245
Modern software management principles,
63-66
architecture-first approach, 63, 64, 68,
118,119,231, 233,234
change management environment, 63, 64,
67,232,233,234
component-based development, 33, 63,
64, 68,231,233
configurable process, 65, 67,232,233
demonstration-based approach, 65, 68,
119,232, 233
evolving levels of detail, 65, 67,232, 233,
234
iterative life-cycle process, 63, 64, 67,119,
231,233
model-based notation, 65, 68, 232, 233,
234
objective quality control, 65, 68,232,233,
234
round-trip engineering, 47, 64, 68, 119,
173-174, 232, 233
Modularity metric, 197, 286, 292, 296,
343-344
MTBF and maturity metric, 198-199

Next-generation software economics,
237-245

Objective quality control, 65, 68,232,233,
234

Object-oriented methods, 36-37

Off-the-shelf products, 39-40

Organization environment, 183-184

Organization policy, 181-183

Peer inspections, S1-53
Process
automation, 167-18S5
discriminants, 209-218

INDEX 405

improvement, 40—43, 59, 352-353,
363-390
instrumentation, 187-207
maturity, 366
tailoring, 209-220, 367
variability, 209-210
versus method, 367
Process view, 112-114
attributes, 41
flexibility or rigor, 215-216
maturity, 215-216
transitions, 247-253
Production stage, 74-76
Product release milestone, 132
Progress metric, 190-191, 338-342
Progress profile, 12, 226
Project control, 187-207
Project environment, 172-185
Project organizations, 155-166
evolution of, 165-166
line-of-business, 155-158
project, 158-165
Project performance, next-generation, 252
Project Review Authority, 157
Project size, 213, 218-220
Prototyping, 92-93
Prototyping environment, 172

Quality, 31, 48-50, 284-285, 291-293
Quality indicators, 188-190, 196-199
Quality inspections, 51-53

Release descriptions, 99-100

Release histories, 178-179

Release specifications, 96-98
Requirements-driven approach, 14-16
Requirements set, 86

Requirements workflow, 118-124
Return on investment, 25

Reuse, 38-39

Reverse engineering, 47

Rework, 42-43, 296

Rework and adaptability metric, 197-198
Rework ratio, 292

Rework stability, 293
Risk
conventional software project, 14, 66
late resolution, 13-14, 225
modern process, 66
Risk management
across project life cycle, 13-14, 228-229
addressing early, 63
early resolution, 227-229
iterative process, 67
waterfall model, 8-11
Round-trip engineering, 47, 64, 68, 119,
173-174, 232, 233
Royce, Winston, 6-11

Scale, 210-213, 218-220, 240-241
Schedules, 42, 149-150, 218
Software Acquisition Best Practices Initia-
tive, 232-235
Software architecture, 110-115
Software architecture team, 161-162
Software assessment team, 163-165
Software change order database, 100-101
Software change orders, 175-178, 285,
353-354
Software development plan, 98-99
Software development team, 162-163
Software economics, 21-25
evolution of, 21-29
improving, 31-53
modern, 242-245
next-generation, 237-245
trends for improving, 32
Software Engineering Environment Authority,
157,158
Software Engineering Institute, 215, 361-387
Software Engineering Process Authority,
157,158
Software management
best practices, 232-235
state of the practice, 259-264
Software management principles, top 10,
231-232
Software management team, 160-161

406 INDEX

Software project control panel, 202-207
Software project managers, 45-46
Software project success, 259-264
Software user manual, 104-105
Stability metric, 196-197, 343
cohesion or contention, 214
staffing and team dynamics metric,
195-196
teamwork, 229-230
Stakeholder environments, 184-185
Standish Group, §,261-262
Status assessments, 100, 133-134

Teams, 43-45
improving effectiveness, 43-46
team dynamics metric, 195-196
Test artifacts, 93-95
Tools, 168-172
Transition phase, 80-81
Transition team, 166

Type 0 change order, 178, 180
Type 1 change order, 178, 180
Type 2 change order, 179, 180
Type 3 change order, 179, 180
Type 4 change order, 179, 180

Unified Modeling Language, 36, 84, 109-115
Universal function points, 34-36
Use case view, 112-113

Vision documents, 103-104
Visual Basic, 34
Visual modeling, 36-37, 49, 50, 65

Waterfall model, 6-17

Work and progress metric, 190-191

Work breakdown structures, 96, 139-146,
268-269

Workflows, 117-124

Software Engineering/Software Project Management

Find more information about the Object Technology Series
at http://www.awl.com/cseng/otseries

€ Text printed on recycled paper

Y ADDISON-WESLEY
Pearson Education

